A Large-Scale Examination of Inductive Biases Shaping High-Level
Visual Representation in Brains and Machines

Supplementary Information

SI.1 Surveyed Models

The list of all surveyed models may be found in Table 1 below.

Table 1: List of All Models Tested

Model ID Architecture Train Task Train Data cRSA eRSA

1 CLiP-ResNet50 ResNet50 clip openai400M 0.346 0.717
2 CLiP-ResNet101 ResNet101 clip openai400M 0.353 0.715
3 RegNet-64Gf-SEER RegNet-64Gf seer random1B 0.351 0.712
4 RegNet-128Gf-SEER RegNet-128Gf seer random1B 0.331 0.711
5  CLiP-ViT-B/32 ViT-B/32 clip openai400M 0.349 0.709
6  CLiP-ViT-B/32 ViT-B/16 clip openai4d00M 0.350  0.708
7 VIiT-B-SLIP ViT-B slip YFCCI15M 0.335 0.706
8  ConvNext-Large-IN21K convnext_large classification imagenet21k 0.353 0.706
9  ResMLP-Big-24-IN21K resmlp_big_24 224 classification imagenet21k 0.395 0.705
10 RegNet-32Gf-SEER RegNet-32Gf seer random1B 0.352 0.705
11 CLiP-ViT-L/14 ViT-L/14 clip openai4d00M 0.314 0.704
12 ConvNext-Base-IN21K convnext_base classification imagenet21k 0.330 0.702
13 ViT-L-SLIP ViT-L slip YFCC15M 0.315 0.701
14 BiT-Expert-Abstraction ResNet50-V2 bit_expert big_transfer 0.350 0.701
15 Swin-B-P4-W7-IN21K swin_base_patch4_window7_224 classification imagenet21k 0.323 0.700
16 Swin-L-P4-W7-IN21K swin_large_patch4_window7_224 classification imagenet2 1k 0.324 0.700
17 BiT-Expert-Mammal ResNet50-V2 bit_expert big_transfer 0.350 0.700
18 ResNet50-SimCLR ResNet50 selfsupervised imagenet 0.362 0.699
19 BiT-Expert-Object ResNet50-V2 bit_expert big_transfer 0.348 0.699
20 RegNet-32Gf-SEER-INFT RegNet-32Gf seer randomIB 0.362 0.698
21 RegNet-64Gf-SEER-INFT RegNet-64Gf seer random1B 0.333 0.697
22 BiT-Expert-Animal ResNet50-V2 bit_expert big_transfer 0.357 0.697
23 XCIT-N-12-P8 xcit_nano_12_p8_224 classification imagenet 0.364 0.697
24 ResMLP-Big-24 resmlp_big_24 224 classification imagenet 0.362 0.697
25 ViT-L-SLIP-CCI2M ViT-L slip YFCC15M 0.287 0.696
26  BiT-Expert-Bird ResNet50-V2 bit_expert big_transfer 0.349 0.696
27  YOLO-V5-S yolov5s yolo €0Co,voc 0.356 0.695
28  YOLO-V5-M yolov5Sm yolo €0C0,vVoC 0.370 0.695
29  YOLO-V5-L yolov51 yolo €0C0,vVoC 0.350 0.694
30  BiT-Expert-Relation ResNet50-V2 bit_expert big_transfer 0.356 0.693
31  ResMLP-36 resmlp_36_224 classification imagenet 0346 0.692
32 NF-ResNet50 nf_resnet50 classification imagenet 0.401 0.691
33 ViT-B-SimCLR ViT-B slip YFCC15M 0.341 0.691
34 EfficientNet-B1 efficientnet_b1 classification imagenet 0.422 0.691
35 BiT-Expert-Arthropod ResNet50-V2 bit_expert big_transfer 0.361 0.691
36  BiT-Expert-Flower ResNet50-V2 bit_expert big_transfer 0.334 0.691
37  BiT-Expert-Instrument ResNet50-V2 bit_expert big_transfer 0.353 0.691
38  BiT-Expert-Vehicle ResNet50-V2 bit_expert big_transfer 0.350 0.691
39  GMLP-S16 gmlp_s16_224 classification imagenet 0.402 0.690
40  VIiT-L-SimCLR ViT-L slip YFCCI15M 0.327 0.690
41 BiT-Expert-Food ResNet50-V2 bit_expert big_transfer 0.356 0.690
42 ResNet50-DeepClusterV2 ResNet50 selfsupervised imagenet 0.330 0.690
43 RegNet-128Gf-SEER-INFT RegNet-128Gf seer random1B 0.342 0.689
44 HardCoreNAS-F hardcorenas_{ classification imagenet 0.435 0.689
45  ViT-S-SLIP ViT-S slip YFCCI15M 0.331 0.689
46 ViT-S-SimCLR ViT-S slip YFCC15M 0.339 0.688
47  LeViT128 levit_128 classification imagenet 0.425 0.688
48  Dino-ResNet50 resnet50 selfsupervised imagenet 0.358 0.687
49  ResMLP-24 resmlp_24_224 classification imagenet 0.368 0.686
50 Swin-L-P4-W7 swin_large_patch4_window7_224 classification imagenet 0.283 0.685
51 PoolFormer-S36 poolformer_s36 classification imagenet 0.364 0.685
52 HardCoreNAS-A hardcorenas_a classification imagenet 0.422 0.685
53  XCIT-N-12-P16 xcit_nano_12_pl6_224 classification imagenet 0.392 0.685
54  Dino-VIT-B16 vitb16 selfsupervised imagenet 0.331 0.684
55 GMixer-24 gmixer_24_224 classification imagenet 0.344  0.684
56  ResNet50-SwAV-BS4096 ResNet50 selfsupervised imagenet 0.337 0.684
57  ECA-NFNeT-LO eca_nfnet_l0 classification imagenet 0.401 0.683
58 NF-Net-L0 nfnet_10 classification imagenet 0417 0.683
59  EfficientNet-B3 efficientnet_b3 classification imagenet 0.431 0.681
60  ResNet50 resnet50 classification imagenet 0.379 0.680
61 Mixer-L16-IN22K mixer_116_224 classification imagenet21k 0.234 0.680
62  SemNASNet100 semnasnet_100 classification imagenet 0.405 0.679
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Model ID Architecture Train Task Train Data cRSA eRSA

63 ResNet50-BarlowTwins-BS2048 ResNet50 selfsupervised imagenet 0.367 0.679
64  Swin-B-P4-W7 swin_base_patch4_window7_224 classification imagenet 0296  0.679
65 Swin-T-P4-W7 swin_tiny_patch4_window7_224 classification imagenet 0.315 0.678
66  ViT-B-P16-IN21K vit_base_patch16_224 classification imagenet21k 0.312 0.677
67  CSP-ResNet50 cspresnet50 classification imagenet 0.400 0.677
68  MobileNet-V3-Large mobilenetv3_large_100 classification imagenet 0.412 0.676
69  MobileNet-V2 mobilenet_v2 classification imagenet 0.358 0.676
70  Faster-RCNN-ResNet50-FPN faster_rcnn_R_50_FPN_3x detection coco2017 0.370 0.676
71 GhostNet100 ghostnet_100 classification imagenet 0.399 0.676
72 ConvNext-B convnext_base classification imagenet 0.298 0.676
73 ConvMixer-768-32 convmixer_768_32 classification imagenet 0.342 0.675
74 SEResNext50-32x4D seresnext50_32x4d classification imagenet 0.384 0.675
75 ResMLP-12 resmlp_12_224 classification imagenet 0.365 0.675
76 Inception-V3 inception_v3 classification imagenet 0.417 0.675
77  RegNetX-64 regnetx_064 classification imagenet 0.303 0.674
78  MNASNetl.0 mnasnet]_0 classification imagenet 0.369 0.673
79  CoaT-Lite-Tiny coat_lite_tiny classification imagenet 0.323 0.673
80  ResNet50-PIRL ResNet50 selfsupervised imagenet 0.355 0.672
81 Mask-RCNN-ResNet50-FPN mask_rcnn_R_50_FPN_3x segmentation coco2017 0.363 0.671
82  GoogleNet googlenet classification imagenet 0.377 0.671
83  ViT-S-CLIP ViT-S slip YFCCI15M 0.293 0.670
84  RegNetY-64 regnety_064 classification imagenet 0.372 0.670
85  ViT-B-CLIP ViT-B slip YFCC15M 0.294 0.668
86  DenseNetl21 densenet121 classification imagenet 0.369 0.668
87  JX-NesT-Tiny jx_nest_tiny classification imagenet 0.319 0.668
88  MLP-Mixer-L16 mixer_116_224 classification imagenet 0.351 0.668
89  VGGI6 vggl6 classification imagenet 0.342 0.668
90  SKResNext50-32x4D skresnext50_32x4d classification imagenet 0.355 0.666
91 RetinaNet-ResNet50-FPN retinanet_R_50_FPN_3x detection coco2017 0.357 0.665
92  DLA34 dla34 classification imagenet 0.359 0.665
93 ViT-B-R50-S16-IN21K vit_base_r50_s16_224 classification imagenet21k 0.334 0.664
94 ResNetl01 resnet101 classification imagenet 0.322 0.663
95 ViT-L-P16-IN21K vit_large_patch16_224 classification imagenet21k 0.306 0.663
96 MLP-Mixer-B16 mixer_bl6_224 classification imagenet 0.349 0.662
97  PiT-T-224 pit_ti_224 classification imagenet 0.394 0.662
98  ResNetl52 resnet]52 classification imagenet 0.349 0.662
99  XCeption xception classification imagenet 0.332 0.661
100 Visformer visformer_small classification imagenet 0.334 0.661
101 ViT-B-P32 vit_base_patch32_224 classification imagenet 0.385 0.661
102 ShuffleNet-V2-x1.0 shufflenet_v2_x1_0 classification imagenet 0.357 0.660
103 TnT-P16-224 tnt_s_patch16_224 classification imagenet 0.281 0.657
104  ViT-B-P16 vit_base_patch16_224 classification imagenet 0.319 0.657
105 ViT-L-CLIP ViT-L slip YFCC15M 0.284 0.655
106 CrossViT-B crossvit_base_240 classification imagenet 0.315 0.655
107 ViT-S-P32-IN21K vit_small_patch32_224 classification imagenet21k 0.287 0.654
108  ConvNext-L convnext_large classification imagenet 0.243 0.654
109 VIT-B-P32-IN21K vit_base_patch32_224 classification imagenet21k 0.364 0.652
110 ResNetl8 resnetl8 classification imagenet 0.325 0.648
111 ViT-L-P16 vit_large_patch16_224 classification imagenet 0.320 0.648
112 ViT-S-P16 vit_small_patch16_224 classification imagenet 0.311 0.647
113 ViT-S-P16-IN21K vit_small_patch16_224 classification imagenet21k 0.319 0.645
114 Mixer-B16-IN22K mixer_b16_224 classification imagenet2 1k 0.269 0.641
115 ViT-L-CLIP-CCI2M ViT-L slip YFCCI5M 0.283 0.640
116 DeiT-B-P16-224 deit_base_patch16_224 classification imagenet 0.309 0.640
117 ConViT-B convit_base classification imagenet 0.345 0.639
118  ViIT-S-P32 vit_small_patch32_224 classification imagenet 0.289 0.638
119  PiT-B-224 pit_b_224 classification imagenet 0.272 0.638
120 AlexNet alexnet classification imagenet 0.338 0.633
121 ResNet50-ClusterFit-16K-RotNet ~ ResNet50 selfsupervised imagenet 0.326 0.630
122 ConViT-T convit_tiny classification imagenet 0286  0.628
123 Keypoint-RCNN-ResNet50-FPN keypoint_rcnn_R_50_FPN_3x segmentation coco2017 0.349 0.627
124 SqueezeNet1.0 squeezenet]_0 classification imagenet 0.323 0.623
125 DPT-Hybrid DPT_Hybrid monoculardepth MegaDepth+ 0.265 0.620
126 MiDaS MiDaS monoculardepth MegaDepth+ 0.200 0.619
127 ResNet50-MoCoV2-BS256 ResNet50 selfsupervised imagenet 0.266 0.610
128  ViT-T-P16 vit_tiny_patch16_224 classification imagenet 0.293 0.590
129 ResNet50-JigSaw-P100 ResNet50 selfsupervised imagenet 0.267 0.577
130 ResNet50-RotNet ResNet50 selfsupervised imagenet 0.238 0.572
131 ResNet50-JigSaw-Goyal19 ResNet50 selfsupervised imagenet 0257  0.565
132 AlexNet-GN-IPCLImageNet alexnet_gn ipcl imagenet 0.272 0.562
133 AlexNet-GN-IPCLOpenlmages alexnet_gn ipcl openimages 0.249 0.517
134 AlexNet-GN-IPCLPlaces256 alexnet_gn ipcl places256 0.242 0.495
135 Object Classification resnet50 taskonomy taskonomy 0.189 0.436
136 Scene Classification resnet50 taskonomy taskonomy 0.147  0.426
137 3D Keypoints resnet50 taskonomy taskonomy 0.165 0.362
138 Euclidean Depth resnet50 taskonomy taskonomy 0.173 0.361
139 Reshading resnet50 taskonomy taskonomy 0.161 0.358
140 Occlusion Edges resnet50 taskonomy taskonomy 0.162 0.348
141 Surface Normals resnet50 taskonomy taskonomy 0.154 0.339
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142 Z-Buffer Depth resnetS0 taskonomy taskonomy 0.132 0.331
143 Semantic Segmentation resnet50 taskonomy taskonomy 0.144 0.324
144 Curvatures resnet50 taskonomy taskonomy 0.132 0.320
145 Unsupervised 2.5D Segmentation resnet50 taskonomy taskonomy 0.171 0.313
146 Room Layout resnet50 taskonomy taskonomy 0.137 0.309
147  AlexNet-GN-IPCLVGGFace2 alexnet_gn ipcl vggface2 0.101 0.290
148 NF-ResNet50 nf_resnet50 random_weights 0.083 0.280
149 Camera Pose (Fixated) resnet50 taskonomy taskonomy 0.099 0.236
150  Point Matching resnet50 taskonomy taskonomy 0.093 0.216
151 Egomotion resnet50 taskonomy taskonomy 0.087 0.197
152 Inpainting resnet50 taskonomy taskonomy 0.095 0.195
153 Vanishing Point resnet50 taskonomy taskonomy 0.088 0.184
154 JX-NesT-Tiny jX_nest_tiny random_weights 0.053 0.175
155 Unsupervised 2D Segmentation resnet50 taskonomy taskonomy 0.081 0.170
156 Texture Edges resnet50 taskonomy taskonomy 0.063 0.166
157  GoogleNet googlenet random_weights 0.056 0.161
158 Jigsaw resnet50 taskonomy taskonomy 0.062 0.155
159 Camera Pose (Nonfixated) resnet50 taskonomy taskonomy 0.095 0.153
160  XCeption xception random_weights 0.063 0.150
161 Denoising resnetS50 taskonomy taskonomy 0.061 0.142
162 HardCoreNAS-A hardcorenas_a random_weights 0.028 0.140
163 XCIT-N-12-P8 xcit_nano_12_p8_224 random_weights 0.038 0.138
164 SKResNext50-32x4D skresnext50_32x4d random_weights 0.044 0.135
165 AlexNet alexnet random_weights 0.039 0.133
166 DenseNetl21 densenet121 random_weights 0.057 0.132
167  CSP-ResNet50 cspresnet50 random_weights 0.041 0.131
168 Random Weights resnet50 taskonomy 0.037 0.125
169 Visformer visformer_small random_weights 0.053 0.123
170 ViT-L-P16 vit_large_patch16_224 random_weights 0.052 0.123
171 VGG16 vggl6 random_weights 0.040 0.122
172 SqueezeNetl.0 squeezenet]_0 random_weights 0.071 0.121
173 DLA34 dla34 random_weights 0.018 0.118
174 2D Keypoints resnet50 taskonomy taskonomy 0.060 0.118
175 ConViT-B convit_base random_weights 0.053 0.118
176 ViT-B-P32 vit_base_patch32_224 random_weights 0.052 0.116
177  MNASNetl.0 mnasnetl_0 random_weights 0.065 0.115
178 Swin-L-P4-W7 swin_large_patch4_window7_224  random_weights 0.064 0.115
179 RegNetY-64 regnety_064 random_weights 0.052 0.115
180 SEResNext50-32x4D seresnext50_32x4d random_weights 0.049 0.115
181 HardCoreNAS-F hardcorenas_{ random_weights 0.024 0.114
182 GhostNet100 ghostnet_100 random_weights 0.037 0.114
183 ViT-B-P16 vit_base_patch16_224 random_weights 0.051 0.113
184  MLP-Mixer-L16 mixer_116_224 random_weights 0.072 0.113
185 ResNet18 resnetl8 random_weights 0.044 0.113
186 DeiT-B-P16-224 deit_base_patch16_224 random_weights 0.055 0.112
187 GMLP-S16 gmlp_s16_224 random_weights 0.065 0.111
188  Swin-B-P4-W7 swin_base_patch4_window7_224 random_weights 0.071 0.111
189  Swin-T-P4-W7 swin_tiny_patch4_window7_224 random_weights 0.074 0.110
190  Inception-V3 inception_v3 random_weights 0.016 0.109
191 ECA-NFNeT-LO eca_nfnet_l0 random_weights 0.067 0.109
192 ConvNext-L convnext_large random_weights 0.074 0.107
193  XCIT-N-12-P16 xcit_nano_12_p16_224 random_weights 0.026 0.106
194 ViT-S-P16 vit_small_patch16_224 random_weights 0.069 0.106
195 ViT-S-P32 vit_small_patch32_224 random_weights 0.068 0.106
196 ResMLP-12 resmlp_12_224 random_weights 0.055 0.103
197 Autoencoder resnet50 taskonomy taskonomy 0.077 0.103
198  MLP-Mixer-B16 mixer_bl6_224 random_weights 0.069 0.103
199 EfficientNet-B3 efficientnet_b3 random_weights 0.078 0.102
200 ConvNext-B convnext_base random_weights 0.072 0.102
201 ResMLP-36 resmlp_36_224 random_weights 0.059 0.101
202 ResMLP-24 resmlp_24_224 random_weights 0.059 0.101
203 CrossViT-B crossvit_base_240 random_weights 0.053 0.100
204 MobileNet-V2 mobilenet_v2 random_weights 0.043 0.100
205  ResMLP-Big-24 resmlp_big_24_224 random_weights 0.058  0.098
206  PiT-B-224 pit_b_224 random_weights 0.068 0.098
207 ViT-T-P16 vit_tiny_patch16_224 random_weights 0.061 0.097
208  CoaT-Lite-Tiny coat_lite_tiny random_weights 0.067 0.096
209  ConViT-T convit_tiny random_weights 0.069 0.096
210  LeViT128 levit_128 random_weights 0.032 0.095
211 PoolFormer-S36 poolformer_s36 random_weights 0.057 0.094
212 NF-Net-LO nfnet_10 random_weights 0.080 0.094
213 PiT-T-224 pit_ti_224 random_weights 0.046 0.093
214 ResNet50 resnet50 random_weights 0.039 0.093
215 SemNASNet100 semnasnet_100 random_weights 0.032 0.090
216  TnT-P16-224 tnt_s_patch16_224 random_weights 0.074 0.089
217 ResNetl01 resnet101 random_weights 0.033 0.086
218 EfficientNet-B1 efficientnet_b1 random_weights 0.049 0.085
219 ConvMixer-768-32 convmixer_768_32 random_weights 0.017 0.082
220  GMixer-24 gmixer_24_224 random_weights 0.073 0.078
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221 ResNet152 resnet]52 random_weights 0.035 0.075
222 RegNetX-64 regnetx_064 random_weights 0.039  0.075
223 MobileNet-V3-Large mobilenetv3_large_100 random_weights 0.009 0.057
224 ShuffleNet-V2-x1.0 shufflenet_v2_x1_0 random_weights 0.041 0.048

SI.2 Effective Dimensionality

Concurrent work by Elmoznino and Bonner [66] found that model feature spaces with greater effective dimen-
sionality (ED) were better predictors of high-level visual cortex, including in prediction of occipitotemporal
responses in the Natural Scenes Dataset. In our analysis, we do not find this trend. What reasons might account
for this disjunct between findings?

First, we considered model sets. At the time of this preprint, the models tested by Elmoznino and
Bonner [66] include only ResNet18 and ResNet50 models, trained via self- or category-supervision on
ImageNet1K; the ResNet50 models of Taskonomy; and untrained ResNet18 and ResNet50 models. When we
subsetted our models to include only the best layers of the Taskonomy Resnet50s (N = 24), we found that ED
was indeed a significant positive predictor of OTC predictivity (rspearman = 0.41 [0.015, 0.73], p = 0.026
in cRSA; 0.435 [0.162, 0.730], p = 0.039 in veRSA). However, as is perhaps already evident from the large
confidence intervals, we found this effect to be somewhat brittle, quickly breaking with the addition of the 12
less-performant models that ranked similarly to those of Taskonomy (and below the breakpoint suggested by
the segmented regression analysis; 7spearman = 0.041 [-0.357, 0.392], p = 0.341 in cRSA; 0.0532 [-0.324,
0.393], p =0.37 in veRSA).

Second, we tested the impact of the image set on computation of ED. Elmoznino and Bonner [66]
estimated ED over 10,000 ImageNet1K validation images, whereas we estimated ED over the ‘shared1000’
COCO images. To check for differences in ED estimates computed over the different image sets, we directly
replicated the approach of Elmoznino and Bonner [66]. This involved considering only the ReL.U stages
of each convolutional block, and performing a global-pooling operation over features of each model layer,
prior to computing ED. While we did not include this pooling step in our main analyses, we did so in this
supplementary analysis to ensure that ED levels across the two image sets could be compared with all other
analytical choices held constant. The results of this analysis can be seen in Supplementary Figure 1. We
observe similar ED estimates when probing these two different image sets, with slightly lower ED estimates in
the later layers when using the ‘shared1000’ probe set.
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Supplementary Figure 1: Replication of ElImoznino and Bonner [66]’s Effective Dimensionality (ED). We
use the ReLLU outputs of ResNet18’s residual blocks to determine whether the ‘shared1000° COCO images
were a sufficiently diverse image set for calculating a meaningful measure of ED, compared with 10,000
ImageNet1K validation used in previous analyses. While the estimated ED yielded by the 10,000 ImageNet1 K
images is visibly higher in later layers, the correlation between the ED across layers (which undergirds the
primary statistics we use to assess the relationship of ED to brain predictivity in our main analysis) is effectively
1:1 (7 pearson = 0.99 [0.98, 0.99]). This shows that the ‘shared1000° COCO images are a sufficiently diverse
image set for calculating ED.

Broadly, there are several key analytical differences in our test of ED and brain predictivity that likely
underlie the divergence between our findings and those of Elmoznino and Bonner [66]. First, Elmoznino and



Bonner [66] jointly analyzed ED from multiple layers of individual models, as well as from untrained models.
We argue that this choice introduces significant covariation between high-level feature quality and effective
dimensionality. If the importance of ED for high brain predictivity was truly a general principle, then our
stronger test examining the ED variation across models from only the most brain-aligned layer should also
yield correlations with brain predictivity (but this was not the case). Second, ElImoznino and Bonner [66]
applied a global max-pooling to the convolutional feature maps before computing ED, noting their primary
interest in the variance of image features, rather than the variance in those properties across space. However, in
our analysis pipeline, such a global max-pooling operation is frequently infeasible (e.g, for non-convolutional
models). And, more generally, estimating ED over the exact same feature space used to fit the brain responses
seems preferable from a theoretical standpoint.

SI.3 Stability of Rankings across Subjects

In our main analysis, all predictivity scores we report are the average across 4 subjects. That even the smallest
differences in predictivity between models is significant across many of our controlled model comparisons
already suggests that patterns in these scores are meaningfully stable and consistent across subjects. We further
quantity this stability in two ways.

The first is with a rank-order correlation of model rankings between individual pairs of subjects (N =6
unique pairwise comparisons). Across all models — including randomly-initialized models — this correlation is
TSpearman = 0.98 [0.975, 0.985] for cRSA and 0.957 [0.945, 0.967]. Across only the top 125-ranking models,
this correlation remains remarkably high, at rspcqrman = 0.923 [0.907, 0.938] for cRSA and rspearman =
0.835[0.797, 0.873] for eRSA. A permutation test in which we scramble the model scores across subjects and
recompute this same rank order correlation suggests these values are extremely unlikely to occur by chance
(mean permuted 7 speqrman = 0.0052 [-0.0455, 0.0736] in cRSA and 0.008 [-0.0239, 0.0278] in eRSA; not a
single permutation achieves 7 speqrman > 0.1).

What we are testing here, in effect, is the logic of brain-predictivity leaderboards. This analysis suggests
that — while small — the differences between consecutively ranked models in our analyses are statistically
meaningful. This does not spare inferences derived from leaderboards from the critique that differences
between consecutively ranked models are rarely attributable to unique or controlled sources of variation, but it
does suggest that small score differences reflect more than random statistical variation.

We visualize the degree of inter-subject variability in model rankings in Supplementary Figure 2 below.
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Supplementary Figure 2: Overall Model Variation for Individual Subjects. Brain predictivity is plotted
for all models (N = 224), sorted by the group-average veRSA score. Each point is the score from the most
brain-predictive layer (selected by cross-validation) of a single model, plotted for both cRSA (open) and
veRSA (filled) metrics. Colors refer to the 4 NSD subjects. Shaded regions refer to the subject-specific noise
ceilings.



SI.4 Brain Predictivity as a Function of Layer Depth

In our main analyses, we compare models based on only their most brain-predictive layers, identified via cross-
validation. We also examined whether these peak layers tended to arise at a particular level of computational
depth. In Supplementary Figure 3 below, we summarize prediction scores as a function of relative layer depth
for all models in the controlled architecture comparison (CNNs versus Transformers, with constant task and
input diet; see Results Figure 2). The x-axis ranges from 0.5 to 1.0 relative layer depth (where 0 is the input
layer, and 1 is the output layer), reflecting our focus on testing the correspondence of the later model layers to
OTC for computational efficiency.

Supplementary Figure 3 reveals that the later layers of trained models show gradually increasing brain
predictivity with layer depth, peaking at a relative depth of around 0.9 on average, followed by slight decrease
in mean predictivity toward the output layers. This pattern is more pronounced in veRSA compared to cRSA.
No such trend is evident in untrained models, regardless of the metric used. These comparisons further
demonstrate the gap in predictive capacity of trained versus untrained models across the late-stage model
hierarchy.
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Supplementary Figure 3: Layer Summaries of Brain Prediction Scores. OTC prediction scores are plotted
against relative layer depth for the 64 DNN architectures included in our survey of ImageNet-trained models
(including the architectures in Figure 2), for cRSA (left) and veRSA (right). Scores for each distinct model are
represented by thin lines, with the average trend shown by a thick line (purple for trained models and gray for
untrained). The x-axis reflects relative layer positions within each network, where 0.5 reflects the middle layer
and 1 reflects the final layer. Data points are binned by 0.1 intervals of relative depth, with OTC-prediction
scores averaged within each bin.

SI.5 Modeling Results in Early Visual Cortex

While the focus of our main analyses was the predictivity of a unified OTC ROI, we designed our pipeline to
generate predictions for a number of additional ROIs — including early visual cortex (EVC: V1-V4).

This ROI encapsulates the ventral and dorsal aspects of areas V1, V2, and V3, as well as area hV4. To
define the EVC ROI for each subject, we again first isolated voxels within the "nsdgeneral" ROI, and then
selected for analyses any voxels that both fell within one of the early visual regions listed above, and that
exceeded the NCSNR threshold of 0.2. This procedure yielded a total of 4,657 voxels for subject 01, 3,757
voxels for subject 02, 3,661 voxels for subject 05, and 3,251 voxels for subject 07.

A first question we might ask, then, is whether the better models of OTC in general are better models
of EVC. To do this, we can correlate the predictivity of each model we test in OTC with that same model’s
predictivity in a macro-scale EVC ROI. (Note that, as in our analyses of OTC, we select the most EVC-
predictive layer from each model using the training set of 500 images, and report the score of this layer on the
500 held-out test images). Across all models, this correlation is high: 7spearman = 0.809 [0.801, 0.822] in
cRSA and 0.835 [0.816, 0.853] in eRSA. Across only the 125 highest ranking models of OTC, this correlation
is markedly lower: 0.212 [0.166, 0.261] in cRSA and 0.287 [0.209, 0.364] in eRSA. In other words, it seems,
poor models of OTC (e.g. the Taskonomy-trained and randomly-initialized) models are also poor models of



EVC; excluding these poor-performing models, however, better models of OTC are not necessarily better
models of EVC.

This rank-order correlation across many models, more generally, does not necessarily capture the
subtleties and trends we saw in our opportunistic experiments and controlled model comparisons, which we
can directly repeat in EVC. While a comprehensive recap of each opportunistic experiment applied to EVC
is beyond the scope of this analysis, what we can say is that many, but not all, of the trends we observe in
OTC are recapitulated in EVC. For example, there is, once again, only a negligible difference in the average
predictivity of CNNs versus transformers (cCRSA g =-0.029, p = 7.08e-10; veRSA 5 =-0.007, p =2.61e- 3).
Perhaps the most notable divergence between EVC and OTC in terms of our opportunistic experiments is
the minimal difference of the veRSA metric in EVC between the self-supervised (IPCL) model trained on
objects (ImageNet) versus faces (VGGFace2) (EVC g =-0.0394, p = 8.62e- 4, OTC 5 =-0.2719, p = 1.03e-
9). Unlike in OTC, then, face-trained models (with reweighting) perform on par with object-trained models.
This means that even the depleted set of natural image statistics available in a visual diet of faces alone may
still be sufficient to capture core aspects of early visual cortical representation.

SI.6 Compute Required

We used a single machine with 8 Nvidia RTX 3090 GPUs, 755gb of RAM, and 96 CPUs. GPUs were used
only for extracting model activations, and could (without major slowdown) be removed from the analytic
pipeline. Dimensionality reduction and regression computations were CPU and RAM intensive. Replicating
all of our results would take approximately three weeks on a similar machine.
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