1 Supplemental Information

2 To accompany Jakobson^{*}, Hartl^{*}, *et al*.

3

4 Contents:

- 5 Key Resources Table
- 6 Figures S1-S7
- 7 Table S6

8 Key Resources Table

Reagent or resource	Source	Identifier	
Chemicals			
Yeast nitrogen base	RPI	Y20040	
Glucose	Fisher	D16-3	
Uracil	Sigma	U0750	
Agar	IBI	IB49170	
Fluconazole	TCI	F0677	
Ethanol (95%)	Fisher	04-355-226	
Water (LC-MS grade)	Fisher Scientific	Cat 10509404; CAS: 7732- 18-5	
Acetonitrile (LC-MS grade)	Fisher Scientific	Cat 10489553; CAS: 75-05-8	
Methanol (LC-MS grade)	Fisher Scientific	Cat 10767665; CAS: 67-56-1	
Formic acid (LC-MS grade)	Fisher Scientific	Cat 5.33002; CAS: 64-18-6	
Dithiothreitol (≥99.5%)	Sigma Aldrich	Cat 43815; CAS: 3483-12-3	
Iodoacetamide (≥99%)	Sigma Aldrich	Cat I1149; CAS: 144-48-9	
Ammonium Bicarbonate	Sigma Aldrich	Cat 40867; CAS: 1066-33-7	
Urea	Sigma Aldrich	Cat 33247	
Trypsin/Lys-C (Mass Spec Grade)	Promega	V5072	
Solid-glass beads (borosilicate, diam. 4 mm)	Sigma Aldrich	Cat Z143936	
Deposited data			
Mass spectrometry data	This study	Will be made available on the PRIDE archive upon acceptance	
Experimental models: Strains			
RM11 haploid	34	YDJ6649	

YJM975 haploid	34	YDJ6635	
YJM975 <i>ERG11</i> ^{122014T>C}	34	YDJ8281	
YJM975 ERG11 ^{Asn433Lys}	34	YDJ8436	
YJM975 <i>ERG11</i> ^{122014T>C;} Asn433Lys	34	YDJ8437	
RM11 MCR1 ^{G>A}	This study	YDJ8524	
RM11 NCP1 ^{A>T}	This study	YDJ8525	
RM11 SER2 ^{G>A}	This study	YDJ8526	
RM11 AAT2 ^{G>A}	This study	YDJ8527	
YJM975 GCS1 ^{C>T}	This study	YDJ8528	
RM11 IRA2 ^{G>A}	This study	YDJ8578	
YJM975 IRA2 ^{A>G}	This study	YDJ8529	
Oligonucleotides			
<i>MCR1</i> CRISPEY editing oligo GAGTTACTGTCTGTTTTC CTGTTACTTACTTGTTG ACGACAAGCAAGATGAC CAAGACTTTGATGGTGA AATTAGTTTCATCTCCAA AGATTTTATTCAGGAGC ATGTTCCAGGTCCAAAG GAAACCCGTTTCTTCTGA CGTAAGGGTGCGCACAA GACTTTGATGGTGAAAT GTTTCAGAGCTATGCTGG AA	This study	CMJP697	
<i>NCP1</i> CRISPEY editing oligo GAGTTACTGTCTGTTTTC CTGGTCAACCCGCTATTG TTCTCCAGCCAGCTTTTA TCGTTTTGCATTTTTTT CGGGCTGCTTTTCGTTCT TCGAGGACAAACGCACC TGTAAAGCTCAGAGGAA	This study	СМЈР703	

ACCCGTTTCTTCTGACGT AAGGGTGCGCAATCGTT TTGCATATTTTTTTGTTTC AGAGCTATGCTGGAA		
SER2 CRISPEY editing oligo GAGTTACTGTCTGTTTTC CTTTCTTGGCTACACCGA TGATGAAATATACAATA GACAATGAAGAAGAAAATAA TGATAGATAGATGTAAT AGAGTTTCTTTTTAAAAT TGTTTATTTAAACTGAGG AAACCCGTTTCTTCTGAC GTAAGGGTGCGCAGACA ATGAAGAAAAATAATGAG TTTCAGAGCTATGCTGGA A	This study	CMJP721
AAT2 CRISPEY editing oligo GAGTTACTGTCTGTTTTC CTAACTGCGTGGGTTTCT TCAAGTCGTTTAACCATT TGAGGAGTCAATCCTGT AAAGGAGAACATCCCGC ATTGATTTACTATATGAT CCCAGTTGCCAGGAAGG AAACCCGTTTCTTCTGAC GTAAGGGTGCGCATTGA GGAGTCAACCCTGTAAG TTTCAGAGCTATGCTGGA A	This study	CMJP707
<i>GCS1</i> CRISPEY editing oligo GAGTTACTGTCTGTTTTC CTAATCCATACATTTCTT ATTTGCACCAATCTTTTG CAATTGCAAAAAGACGCC TACGGGTATCTGGGTCC ACTTTCCAATCTGACATG CTCTATAATCCGCGAGG AAACCCGTTTCTTCTGAC GTAAGGGTGCGCAGCAA TTGCAAAAGACGCCTGG TTTCAGAGCTATGCTGGA A	This study	CMJP706

<i>IRA2</i> CRISPEY editing oligo (RM>YJM) GAGTTACTGTCTGTTTTC CTAAGTTCAATACAAGA ACTTTGCAAATTTTACAA AATATGATCAGTCATGTT CATGGAAACATTCTAAC GACTTTGAGTTCCTCGAT TCTTCCCCGCCACAAGG AAACCCGTTTCTTCTGAC GTAAGGGTGCGCAAGTA TGATCAGTCATGTTCAGT TTCAGAGCTATGCTGGA A	This study	CMJP709
<i>IRA2</i> CRISPEY editing oligo (YJM>RM) GAGTTACTGTCTGTTTTC CTAAGTTCAATACAAGA ACTTTGCAAATTTTACAA AGTATGATCAGTCATGTT CATGGAAACATTCTAAC GACTTTGAGTTCCTCGAT TCTTCCCCGCCACAAGG AAACCCGTTTCTTCTGAC GTAAGGGTGCGCAAATA TGATCAGTCATGTTCAGT TTCAGAGCTATGCTGGA A	This study	СМЈР710
Recombinant DNA		
CRISPEY editing plasmid: PDJ2318	34	PDJ2318
Software and algorithms		
DSSP	84	https://swift.cmbi.umcn.nl/gv/ dssp/index.html
DIA-NN	26	https://github.com/vdemichev /DiaNN
maxLFQ	82	https://rdrr.io/cran/iq/man/ma xLFQ.html
Other		

Custom genetic mapping code	This study	https://github.com/cjakobson/ pqtl-mapping
Genetic mapping dependencies	This study	https://www.dropbox.com/scl/ fo/3xbcbe9ivwz8aahrlk137/A PGxHor01S7jnNX3a1Yk3Og ?rlkey=yx81ckrtaq8eb5pu80g gprjhs&dl=0
Custom protein structure analysis code	This study	https://github.com/cjakobson/ pop-gen-structure
Protein structure analysis dependencies	This study	https://www.dropbox.com/scl/ fo/le2voq9djr79p2ehxqvs3/A Gecke84_fLbzrsis2Ncpjk?rlk ey=g5etvtwhay27j4y0sh6dh8 dh7&dl=0

10

11 Figure S1. To accompany Figure 1. (A) Distribution of coefficients of variation (CVs) of all 12 analyzed proteins (n=1225) from biological replicates of RM11 (n=36) and YJM975 (n=34) distributed and processed in 12 plates and measured in 3 LC-MS batches. (B-C) Variation 13 according to principal components 1 and 2 of data described in (A) with only proteins without 14 missing values (n=850) colored according to MS batch (B) or processing plate (C). (D) Median 15 protein abundances from n=851 F₆ strains (ordinate) plotted and spearman correlated against 16 17 absolute quantitative protein data from Lawless⁸⁵ (abscissa) for matching proteins (n=538). (E) Harvest OD₆₀₀ of RM and YJM biological replicate samples. (F) Mean broad-sense heritability 18 19 (ordinate) as a function of technical variability (C.V.; abscissa). (G) Abundance of Arg4 (left) and 20 Aco2 (right) as a function of harvest OD_{600} amongst the F₆ progeny. (H) Genetic mapping 21 coefficient (beta; units of st. dev.) from global (ordinate) and local (abscissa) approaches. Line of parity is shown in a red dashed line. (I) Genetic mapping sensitivity (fraction of simulated pQTLs 22 discovered; ordinate) as a function of effect size (st. dev.; abscissa). Shown is the mean of N = 10023 24 simulations of protein traits with 50 pQTLs. (J) Volcano plot illustrating log₂ fold-change in 25 protein abundance (abscissa) and Benjamini-Hochberg-corrected t test p value (ordinate) between 26 the vineyard (RM) and clinical (YJM) parents highlighting proteins not differentially expressed 27 between the parents. Closed symbols have a mapped pQTL; open symbols have no identified pQTLs. n = 36 - 39. (K) Number of pQTLs discovered (ordinate) as a function of normalized C.V. 28 29 amongst the F6 progeny as compared to the mean C.V. in the parental isolates (abscissa).

30

31 Figure S2. To accompany Figure 2. (A) Summary of replication across all *cis*-acting pQTLs we 32 discovered; shown is log₂ fold-change in mean protein abundance between 1.002 Yeast Genomes 33 strains bearing the RM and YJM alleles in *cis*, divided by whether genetic mapping predicted the 34 YJM or RM allele to exhibit higher protein level. p value by two-sided t test. (B) Predicted effect on protein level from genetic mapping (ordinate) and measured effect on mRNA level from allele-35 36 specific expression analysis (abscissa) for regulatory cis-pQTLs. Highlighted are cis-pQTNs selected for reconstruction. (C) Frequency of proteins (ordinate) as a function of the number of 37 38 controlling pQTLs (abscissa). (D) Schematic of adenine biosynthetic pathway enzymes controlled 39 by Pho2, uracil biosynthetic pathway enzymes controlled by Fur4, and metabolic enzymes controlled by Imd2. 40

41

42 Figure S3. To accompany Figure 3. (A) Predicted effects of trans pQTNs from genetic mapping (ordinate) as a function of measured mRNA effects of deleting the corresponding gene (abscissa) 43 ⁴⁴ for *IRA1*, *IRA2*, and *PDE2*, as indicated. p values by t statistic. (B) Normalized frequency 44 (ordinate) of minor allele frequencies amongst the 1,002 Genomes collection (absicssa) for pOTL 45 46 variants (blue) and all segregating variation amongst the F₆ progeny (grey). (C) Relative abundance of Ira1 and Ira2 targets (ordinate; identified by pOTL mapping) in wild yeast proteomes 47 bearing $IRA1^{RM}$ and $IRA2^{RM}$ alleles (n=5) as compared to strains with $IRA1^{YJM}$ and $IRA2^{YJM}$ (n=371) 48 as a function of predicted effect from pQTL mapping (abscissa). (D) Number of proteins (ordinate) 49 50 predominantly controlled by RM-higher trans pQTL alleles (blue) or YJM-higher trans pQTL 51 alleles (orange) as a function of genetic mapping *p* value (abscissa).

52 53

Figure S4. To accompany Figure 4. (A) Normalized frequencies of solvent-accessible surface

54 area (left) and number of C_{α} within 10Å (right) for all possible missense SNPs (purple) and all

55 missense variants segregating in the F_6 mapping panel (grey).

Figure S5. To accompany Figure 5. (A) Top: Hxk2 levels (ordinate) as a function of Hxk1 levels 57 58 (abscissa) amongst F₆ progeny. Bottom: As above, but for Hxk2 and Glk1. (B) Left: Correlation between protein-protein correlations amongst 1,002 Genomes strains (ordinate) ³² and the same 59 statistic amongst the F₆ progeny (abscissa). Shown is Pearson's r. Right: As on the left, for protein-60 protein correlations amongst precise deletions³⁰. (C) Pairwise correlations of observed ATP 61 62 synthase components (left) and cryo-EM structure of the yeast ATP synthase (6CP6)⁸⁶ with subunits highlighted as indicated (right). (D) Left: Idh2 levels (ordinate) as a function of Idh1 63 64 levels (abscissa) amongst F₆ progeny. Right: As left, but for Kgd2 and Kgd1. (E) Coexpression score from stringDB for ascending quintiles of protein pairs sorted by SWATH-MS abundance 65 66 correlation. (F) As in (E) for the genetic interaction score from TheCellMap.

67

Figure S6. To accompany Figure 6. (A) Growth in glucose of clinical (YJM), vineyard (RM), 68 and CRISPR-edited RM *NCP1^{A-177T}* mutant strains in glucose. n = 96; p value by Student's t test. 69 70 (B) CRISPR reconstruction and mass spectrometry to test the effect of the *NCP1*^{A-177T} variant on 71 Erg11 levels. n = 6; p value by two-sided t test. (C) Miami plot of pQTLs (top) and growth QTLs (bottom) on Chromosome XV. IRA2 pQTLs and QTLs are highlighted in black. (D) Predicted 72 IRA2 pQTL effects from genetic mapping (this study; ordinate) as compared to measured effects 73 of IRA2 precise deletion (Z-scored by protein; ³⁰; abscissa) for all proteins predicted to be 74 controlled by *IRA2*. *p* value from *t* statistic. Estimated abundances normalized to wild-type in each 75 case. (E) Growth of clinical (YJM), vineyard (RM), and CRISPR-edited RM Ira2^{Ser201Asn} mutant 76 (left) and YJM Ira2^{Asn210Ser} mutant (right) in glucose. n = 96; p values by Student's t test. 77

78 79

Figure S7. To accompany Figure 7.(A) Variance explained by phenotypic QTNs (ordinate) as a 80 function of variance explained by pQTNs mapped to the same variant (abscissa). r by Pearson's 81 correlation; p value from t statistic. (B) In silico simulations of the apparent effect of a linear QTL 82 at IRA2 with the number of segregating suppressing alleles indicated. p value by t test. (C) Fraction 83 of simulated pQTLs discovered (ordinate) as a function of the number of true underlying simulated 84 pQTLs (abscissa) for hypothetical pQTL mapping panels with the number of segregants indicated. N = 3 simulations for each parameter combination. (D) Estimated broad-sense heritability H² in 85 YJM (ordinate) as a function of estimated H² in RM (abscissa) for all measured proteins. 86

Upregulated in YJM975		Upregulated in RM11	
TF	<i>p</i> value	TF	<i>p</i> value
Sfp1	< 10 ⁻²²	Sut1	< 10 ⁻¹¹
Stb3	< 10 ⁻¹⁶	Msn2	< 10 ⁻¹¹
Abf1	< 10 ⁻¹⁰	Msn4	< 10 ⁻¹¹
Sum1	< 10 ⁻¹⁰	Hap3	< 10 ⁻⁹
Gcn4	< 10 ⁻⁸	Abf1	< 10 ⁻⁹
Tod6	< 10 ⁻⁷	Hap5	< 10 ⁻⁹
Dot6	< 10 ⁻⁶	Gis1	< 10 ⁻⁹
Arg81	< 10 ⁻⁶		
Swi4	< 10 ⁻⁴		

Supplemental Table S6. PSCAN transcription factor target enrichments and *p* values for proteins up- and down-regulated in the YJM975 and RM11 parents.