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Abstract

Compartmentalization is vital for cell biological processes. The field of rule-based
stochastic simulation has acknowledged this, and many tools and methods have
capabilities for compartmentalization. However, mostly, this is limited to a static
compartmental hierarchy and does not integrate compartmental changes. Integrating
compartmental dynamics is challenging for the design of the modeling language and the
simulation engine. The language should support a concise yet flexible modeling of
compartmental dynamics. Our work is based on ML-Rules, a rule-based language for
multi-level cell biological modeling that supports a wide variety of compartmental
dynamics, whose syntax we slightly adapt. To develop an efficient simulation engine for
compartmental dynamics, we combine specific data structures and new and existing
algorithms and implement them in the Rust programming language. We evaluate the
concept and implementation using two case studies from existing cell-biological models.
The execution of these models outperforms previous simulations of ML-Rules by two
orders of magnitude. Finally, we present a prototype of a WebAssembly-based
implementation to allow for a low barrier of entry when exploring the language and
associated models without the need for local installation.

Author summary

Biochemical dynamics are constrained by and influence the dynamics of cellular
compartments. Basic constraints are considered by many modeling and simulation tools,
e.g., certain reactions may only occur in specific cellular compartments and at a speed
influenced by the compartmental volume. However, to capture the functioning of
complex compartmental dynamics such as cell proliferation or the fission or fusion of
mitochondria, additional efforts are required from tool designers. These refer to how the
modeler can specify these dynamics succinctly and unambiguously and how the
resulting model can be executed efficiently. For modeling, we rely on ML-Rules, an
expressive, formal rule-based language for modeling biochemical systems, which ships
with the required features and which we only slightly adapt in our re-implementation.
We design a new simulation engine that combines efficient data structures and various
algorithms for efficient simulation. The achieved efficiency will enable thorough analysis,
calibration, and validation of compartmental dynamics and, thus, allow the “in-silico”
pursuit of research questions for which compartmental dynamics are essential. To
further facilitate exploring the interplay of compartmental and non-compartmental
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dynamics, we exploit recent advances in web technology so that ML-Rules models can
be run efficiently in the web browser.

1 Introduction 1

Compartmentalization is a central aspect of cell biological systems [1]. Modeling such 2

systems as interrelated compartments in and between which processes occur allows 3

approximating the system structure and its effect on the processes. To include the 4

causal influence of compartments on the processes, it suffices to support static 5

compartments, that is, compartments that do not change. However, to account for the 6

causal influence of the occurring processes on the compartmental structure and 7

interactions, the model must support dynamic compartments. This includes the creation 8

of new compartments, their deletion, merging, and splitting of compartments, as well as 9

one compartment entering or leaving another (Figure 1). 10

The reciprocal influence of compartments and the processes that occur in and 11

between them can be observed in many cell biological systems. For example, the life 12

cycle of a cell can be modeled as intracellular processes affecting cell growth, ultimately 13

leading to cell division [2]. Intercellular communication in cell populations affects the 14

intracellular behavior of individual cells. Signaling pathways include intracellular 15

compartmental processes such as endocytosis or the transfection of lipoplexes. Although 16

such processes can sometimes be approximated with static compartments, dynamic 17

compartments are the natural method for precise and expressive models. 18

Several modeling approaches that support dynamic compartments have been 19

proposed in the past [3–5]
:::::
[3–6]. However, in contrast to approaches limited to static 20

compartments, running simulations for these modeling approaches proved too 21

computationally challenging for usage in relevant biological applications. In fact, some 22

of the approaches developed were never equipped with a (publicly available) simulator 23

implementation. 24

In the following, we present an approach that overcomes these performance problems 25

and makes dynamic compartments feasible for studying cellular processes. The 26

approach builds on the modeling language
::
In

::::::::::
particular,

:::
our

::::::::::::
contributions

::::
are:

:
27

�
::
an

::::::::
analysis

::
of

:::::::::
rule-based

:::::::::
language

::::::
design

:::::::
choices

::
on

:::::::::
efficiently

:::::::::
executing 28

:::::::
dynamic

::::::::::::::
compartments,

:
29

�
::
an

::::::::
analysis

::
of

:::::::::
execution

::::::::::::
requirements

:::
for

:::
an

:::::::::
expressive

::::::::::
rule-based

::::::::
language,

:::::
such 30

::
as ML-Rules [5], which allows compact and expressive specifications of models 31

with dynamic compartments [7]. We devise an
:
,
:

32

�
:
a
::::::
design

::
of

::
a
::::
new

:
efficient stochastic simulation algorithm tailored to models with 33

dynamic compartments . The resulting
:::::::::
combining

:::::::
various

::::::::::
algorithms

::::
with

:::::
code 34

::::::::::
generation, 35

�
::
an

::::::::::::::
implementation

:::
of

:
a
::::
new

:
modeling and simulation tool combines an external 36

domain-specific language and a simulation engine realized in the programming 37

language Rust. Our software design also enables relatively simple deployment of 38

a
::::::::
ML-Rules

::
3
::
in

:::::
Rust

::::::
based

::
on

::::
the

::::
new

:::::::
efficient

::::::::::
stochastic

:::::::::
simulation

::::::::::
algorithm, 39

:::
and

::::::
slight

:::::::::::
adaptations

::
in

::::::::::
comparison

:::
to

::::::
earlier

:::::::::::::::
implementations

::
of

::::::::::
ML-Rules; 40

:::
the

:::::
latter

::::::::
includes

::::::::
syntactic

:::::::::::::
enhancements

:::
to

:::::::
improve

:::::::::
usability,

:::
like

:::::
type 41

:::::::
checking

:::
of

:::::
units

::
of

:::::::::::::
measurements,

::::
and

::
a
::::
new

:::::
type

::
of

:::::::::
attributes

:::
to

::::::::
facilitate 42

:::::::
efficient

::::::::::
simulation,

:
43

�
:
a
::::::::::
realization

::
of

::
a WebAssembly-based web simulation tool at 44

http://mlrules.pages.dev . The
::
to

::::::
enable

:::::::
simple

::::::::::
deployment

:::
of

:::
the

:::::
tool, 45
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�
:::
and

:::
an

::::::::::
evaluation

::
of

:::
the

:
expressiveness and performance of our approach are 46

illustrated
::::::::
ML-Rules

::
3 based on case studies from cell biology. 47

As this is the third version of a simulator implementation for
:
,
::::::::
including

:::
an 48

::::::
mRNA

::::::::
delivery

::::::
model,

::::::
where

:::::
based

:::
on

::::::::
dynamic

::::::::::::::
compartments,

:::
due

:::
to ML-Rules 49

[5, 8], the prototypical re-implementation of ML-Rules is called ML-Rules 3and 50

is available at .
:
,
::::
now

:::::
closer

::::::::
matches

:::
to

::::::::
biological

:::::::
results

:::::::
become

::::::::
possible.

:
51

1.1 Compartmental dynamics 52

Cell biology considers compartments essential elements of cell behavior [9]. 53

Compartments affect cellular processes by controlling both the reactions that can occur 54

and the rate at which they do. They are considered important to modeling signaling 55

pathways, in which extracellular ligands trigger a cascade of biochemical reactions that 56

span various cellular compartments, such as membrane, cytosol, and nucleus [10]. A 57

prominent example is the canonical Wnt/β-catenin signaling pathway, which is essential 58

for cellular functions such as proliferation and differentiation and is involved in several 59

diseases, including cancer [11]. In the last 20 years, more than 20 quantitative models 60

have been built to analyze the Wnt/β-catenin signaling pathway [12]. Many of these 61

models express the causal influence of compartments on processes, e.g., constrain 62

processes to specific compartments or study proteins shuttling between 63

compartments [13,14]. Also, the volume of the compartment may influence the 64

reactants’ density and, consequently, the kinetics within the different 65

compartments [15,16]. Compartmental constraints on reactions are supported by most 66

simulation tools and standardized modeling exchange formats such as SBML [16]. 67

More generally, treating compartments
::::::::::
Considering

::::::::
dynamic

:::::::::::::
compartments

::::::
opens 68

::
up

::::
new

::::::::::::
possibilities.

::::::::
Treating

:::::::::::::
compartments

:
as regular species with attributes enable 69

causal effects of
:::::::
enables

::::::
causal

::::::
effects

::::::::
between

:::::::::::::
compartments

:::
and

:::
of

:::
the 70

compartmentalization on underlying processes, called downward causation [5]. Causality 71

also occurs in the opposite direction— intra-compartmental dynamics can influence the 72

compartmental level, including its attributes such as volume. This upward causation 73

can also result in changes to the compartmental structure, such as fission and fusion, or 74

the creation and deletion of compartments. 75

The changes in the compartmental hierarchy occur during the simulation execution. 76

Therefore, they have been called dynamic compartments [17]. Dynamic compartments 77

are one form of variable structure model [18] and might occur at and involve various 78

levels of cellular organization [5]. Signaling interactions within multi-cellular 79

populations synchronize and organize the individual cells’ behavior in dynamic 80

processes such as tumor growth [19] or morphogenesis [20]. Cell proliferation, migration, 81

and differentiation are regulated by several signaling pathways, which again react to 82

changes in the cells’ environment. Dynamic compartments are also necessary for 83

intracellular dynamics; during the last decades, it became evident that a static view of 84

intracellular compartments does not suffice [9]. The internalization of receptors is 85

crucial in regulating signaling pathways [21]. Receptors are sorted into different 86

endosomal compartments when entering the endocytic pathway. To accomplish this 87

sorting, the organelles undergo frequent compartmental dynamics such as maturation, 88

transformation, fusion, fission, and degradation [22]. More recently, the development of 89

mRNA vaccinations has increased the interest in studying liposomal dynamics [23] and 90

its modeling [24] to provide effective drug delivery systems. 91

Compartmental dynamics take on various forms (cp.
::::::::::
Bioambients

:
[6]), including a) 92

the fission and fusion processes of compartments, as in the case of mitochondria [25] 93

(Figure 1a), b) the formation and disintegration of cellular compartments, as in the case 94

of liposomal dynamics [26] (Figure 1b), and c) a compartment entering or leaving 95
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another compartment, as in the case of a viral entry or release [27] (Figure 1c). 96

(a) Fission and fusion of compartments: A large mitochondrium can divide
into two smaller ones, whereby its content (here ?M1 and ?M2) is
distributed between the two new mitochondria. Two mitochondria can also
fuse into a large one containing the solution of both smaller ones.

(b) Creation and removal of compartments: During the endocytosis of the
lipoplex, an endosome is formed around it. Inside the cell, the lipoplex can
unpack its content (?L) into the cell.

(c) Shuttling of compartments: A virus carrying DNA or RNA can enter a
cell. New viruses produced in the cell can level it and spread.

Fig 1. Examples of compartmental dynamics in cell biology. The figure shows a sketch
of the processes, the specification in ML-Rules 3, and the n-ary tree structure of the
term rewriting that underlies ML-Rules interpretation. The red lines in the n-ary tree
structure indicate structures that are changed during the reaction. For the rules, we use
the ML-Rules notation. We have a

::::
The left side

:
is
:
transformed (using the →) into the

right side at a rate (following the @ symbol). The {} denote nesting relationships.
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1.2 Stochastic Simulation 97

To simulate these compartmental dynamics, we will interpret compartments as discrete 98

entities. We assume that the discrete compartments can be arbitrarily nested, that 99

entities can exist within and outside of compartments, that compartmental dynamics 100

rely on the explicit definition of reactions, and that the reactants are well-mixed within 101

and outside of each compartment. 102

Based on these assumptions, adopting stochastic simulation algorithms (SSA), 103

popularized under the term of Gillespie algorithms [28], appears most appropriate. 104

These algorithms can be formalized using Continuous-Time Markov Chains 105

(CTMCs) [29]. In CTMCs, the distributions for the waiting time until the next state 106

transition and the successor state only depend on the current state. The sojourn time in 107

a state is exponentially distributed, similar to a physical decay process. The propensity 108

is the expected rate of firing for a particular transition, given a specific model state. 109

Each potential transition i between states in the CTMC has a propensity pi. 110

In the direct method family of methods [30], a timestep is sampled using the 111

exponential distribution. The total propensity sum
∑

i pi is used as the rate parameter 112

of the exponential distribution. The reaction is selected by weighted random choice 113

(P(i) pi). The first reaction family of methods [28] computes a time for every possible 114

reaction by sampling from the exponential distribution (with the respective pis) and 115

then selecting the smallest one. Both original approaches are wasteful, as many 116

computations might be needlessly redone. Major performance benefits result from 117

storing results, such as propensities [31] or the time of the next event of a reaction [32], 118

and updating this information on demand. For this update on demand, a dependency 119

graph stores the dependencies between reactions and the associated propensities. The 120

next reaction method [32] builds on the first reaction method and maintains a schedule 121

of reactions and the time they will occur. After a reaction is executed, based on the 122

dependency graph, the affected reactions are rescheduled. Another approach builds on 123

the direct method, stores the propensities of reactions, and, based on the dependency 124

graph, updates the affected propensities in each step [31]. 125

1.3 Rule-based modeling and compartments 126

The modeler enumerates all possible species and reactions in species reaction models. 127

This modeling approach is limited when dealing with complex systems, like proteins 128

involving multiple binding sites, as the number of possible species and reactions can 129

grow exponentially in these cases [33]. The fundamental idea of rule-based modeling 130

(combined with CTMC semantics) is to use rewriting rules to specify transition classes 131

of a CTMC. The left side of a rewriting rule specifies the reactants and their context as 132

a pattern matched to the current state. Using patterns, a single rule can express a large 133

set of reactions, which can be parametrized with the variables matched in the pattern. 134

:::
The

::::::::
patterns

:::
on

::::
the

:::
left

::::
rule

::::
side

:::::::::
constrain

:::
the

:::::::::
reactants

::::::::::::
participating

::
in

::
a

::::::::
reaction, 135

::
for

:::::::::
example,

:
a
::::::::
pattern

:::
like

:::::::::::::::::
A(x) +B(x) → . . .

:::::::::
expresses

::::
that

::::
one

::::::
entity

::
A

::::
and

:::
one 136

:::::
entity

::
B

::::
can

::::
only

:::::
react

::
if
:::::
they

:::::
share

:::
an

::::::::
attribute

:::::
value

:::
x.

:
Each successful match 137

contributes one transition within the CTMC. The rewriting rule is annotated with a 138

rate expression, which is evaluated based on the left side’s match. This can include 139

factoring mass action kinetics into the transition rate (based on the multiplicities of the 140

reactants) as well as employing attribute values of the reactants or their context. The 141

successor state of the resulting transition is computed by applying the rewriting 142

operation: removing the reactants and adding the products. 143

Including dynamic compartments poses a challenge to rule-based modeling languages. 144

Languages like Kappa [34,35] or BNGL (as part of BioNetGen) [36,37], for example, are 145

based on graph rewriting rules. Their focus is
::
on modeling interacting entities between 146
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which bonds are created and destroyed. These bonds
:::::
Bonds

:
are defined for exactly two 147

entities, which precludes using them to express compartments. Static compartments can 148

be integrated into these approaches [15,38]. They are used to restrict the scope within 149

which a reaction takes place.
::::::::
Shuttling

::
of

:::::::
simple

:::
(or

:::::::
bound)

:::::::::
molecules

:::::::
between

::::::
static 150

::::::::::::
compartments

:::
as

::::
they

::::
are

:::::::::
commonly

::::::::::
supported

::::
also

:::
by

:::
the

:::::::::
modeling

:::::::::
standards

::::
[16]

:
, 151

:::
can

:::
be

:::::
easily

::::::::::
expressed,

::::
e.g.,

:::
by

:::::::::::::::::::::::::::::::::::
Protein@Cytosol → Protein@Nucleus

::
in

:::::::::::
BioNetgen. 152

::::::::
However,

:::::
here,

:::::::
neither

:::
the

:::::::
cytosol

:::
nor

::::
the

:::::::
nucleus

:::::
forms

::
a
:::::::
species

::::
and,

:::
as

:::::
such,

:
a 153

::::::::
potential

::::::::
reactant

::
or

::::::::
product

::
of

::
a

::::
rule

::
or

::::::::
reaction.

:
154

Dynamic compartments can be expressed using graph rewriting when extending the 155

formalism with hyperedges. Hyperedges are those that can connect to more than two 156

vertices. This approach is used in the modeling formalism React(C) [3]. Here, a 157

compartment can be denoted by a hyperedge, which can join any number of entities. In 158

addition, the compartment itself can be represented as an entity
:
a
:::::::
species. The following 159

rule describes a cell containing a nucleus and a protein . The protein
:::
that

:
shuttles into 160

the nucleus (Figure 1c): 161

Cell(c) +Nucleus(n, c) + Protein(c) → Cell(c) +Nucleus(n, c) + Protein(n) .

Note that the containment relation is expressed purely via variables c and n, identifying 162

the cell and nucleus as a compartment (hyperedge).
::
So

::::
the

::::::
values

::
of

:::
the

:::::::::
variables

:
c
::::
and 163

:
n
::::
are

:::::::::
identifiers

:::
for

:::
the

::::::::::
respective

:::::::::::::
compartments

:::
and

:::
as

::::
such

::::::::
unique. Entities not 164

affected by the rule can be omitted on both rule sides, Therefore, we could have omitted 165

Cell(c). However, this would have made it harder to understand the role of the value of 166

variable c. It should be noted that shuttling of simple (or bound) molecules between 167

compartments is commonly supported by systems biology modeling and simulation 168

tools, e.g., in BioNetgen [15], 169

Protein@Cytosol → Protein@Nucleus

and the corresponding standards [16]. However, here, neither the cytosol nor the 170

nucleus forms a species and, as such, a potential reactant or product of a rule or 171

reaction. 172

In the approaches based on hypergraphs, new compartments can be created by 173

introducing new, unused (“fresh”) values for variables on the right side. Similar 174

solutions to model dynamic compartments can be found in process algebras, e.g., the 175

attributed PI calculus [39]. The following rule expresses the fission of an organelle, with 176

the ν operator yielding fresh values
::::::::::
(identifiers)

:::
for

:::
the

::::
two

::::
new

:::::
cells,

::::
i.e.,

::
c1::::

and
::
c2: 177

Cell(c) → (νc1, c2)Cell(c1) + Cell(c2)

However, this cell fission example also shows a fundamental problem with the 178

hypergraph approach: The
:::
the

:
effects on the contained entities can not be modeled as 179

easily as the effect on the compartments. In the above reaction, all entities referencing 180

the value of c as their containing compartment need to be updated to either c1 or c2. 181

Also the fusion of compartments 182

Cell(c1) + Cell(c2) → (νc)Cell(c)

would require that all entities referencing the values c1 and c2 would now need to 183

reference c. These changes can be expressed with workarounds, for example, by defining 184

intermediate states and additional rules for each species contained within the original 185

compartment, with infinite propensities, but this clutters the model description and is 186

computationally rather expensive. An additional problem with the extension of graph 187

rewriting to hypergraphs is that finding occurrences of the left rule side in the current 188
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state is harder. Whereas graph rewriting can exploit some properties (e.g., Kappa 189

exploits “rigidity” [40]) to speed up this process, similar optimizations for hypergraphs 190

are not known. As a consequence, no simulation tool based on hypergraph rewriting has 191

been published. In particular, no simulator for React(C) is available. 192

An alternative approach to graph rewriting is multiset rewriting, a special case of 193

term rewriting [41,42]. Here, the hypergraphs representing containment in 194

compartments are essentially n-ary trees (see also Figure 1). Therefore, they can be 195

expressed as terms with a variadic function symbol or, equivalently, an associative and 196

commutative function symbol for forming multisets [43,44]. The contents of a 197

compartmental entity can then be represented by a multiset, usually denoted with the 198

symbol + or , in infix notation. The protein movement rule above (Figure 1c) can be 199

written as 200

Cell(Nucleus(?n) + Protein+?c) → Cell(Nucleus(Protein+?n)+?c) ,

where ?c captures the remaining multiset within the cell after finding a nucleus and a 201

protein in a cell, and ?n captures the contents of the nucleus. These variables starting 202

with ? (called “sequence variables” in the rewriting literature [45]) play a central role, as 203

they denote the entities unaffected by a rule and allow operations on those multisets of 204

entities
:
,
::::
i.e.,

:::
the

:::::::
content

::
of
::::
the

:::::::::::::
compartments

:
[46]. One line of work that very closely 205

follows the idea of multiset rewriting is Colored Stochastic Multilevel Multiset 206

Rewriting (CSMMR) [4,47]; another is ML-Rules [8]
::::
[5, 8]. 207

In multi-set rewriting, the cell fission rule could be written as 208

C(?c) → C(?c1) + C(?c2) where (?c1, ?c2) = splitHalf (?c) ,

binding the result of the function splitHalf to a pair of variables in a where block [46]. 209

In the syntax of CSMMR, the rule would read as 210

C(x) → let(z, y) = x in C(z) + C(y) .

In the syntax of ML-Rules 3, the operator “+” is overloaded to realize an inline 211

function on cell content, which randomly assigns each element of C to bind either to the 212

sequence variable ?c1 or ?c2, i.e., 213

C(?c1+?c2) → C(?c1) + C(?c2)

(see Figure 1a).
::
In

:::::
some

:::::::::
biological

:::::::::
processes,

::::::
fission

::::::
events

::::::
occur

::::::::::::::
asymmetrically.

::::
For 214

::::::::
example,

::::
such

:::::::::::::
asymmetrical

::::::
fission

::::::
events

:::
are

::::::::
observed

:::
in

::::::::::::
mitochondria.

:::::
The

:::::
small 215

::::::::::::
mitochondria

:::::
might

:::::::
include

::::::
many

::::::::
damaged

:::::
parts

::::
and

::::
can

::
be

::::::::
removed

:::::
from

::::
the

::::
cell, 216

:::::::
thereby

:::::::::::
contributing

::
to

::::
the

::::::
health

::
of

::::
the

::::::::::::
mitochondrial

:::::::::
network.

:::
To

::::::
model

::::
this 217

::::::
process

:::::::
weights

::::
can

:::
be

::::::::
assigned

::
to

::::
the

::::::::
sequence

::::::::
variables

:
218

Mito(?m1[R1]+?m2[R2]) → Mito(?m1) +Mito(?m2)
::::::::::::::::::::::::::::::::::::::::::::::

:::::
where

:::::::::::::
R1/(R1 +R2)::::

and
:::::::::::::
R2/(R1 +R2):::

are
::::
the

:::::
ratios

::
of

::::::::
elements

::::::::
assigned

:::
to

::::
?m1::::

and 219

::::
?m2,:::::::::::

respectively.
:

220

While multi-set rewriting provides an expressive and readable way to model dynamic 221

compartments (see Figure 1), languages
:::
that

::::
are

::::
built

:::
on

::::::::
multi-set

::::::::::
rewriting, such as 222

ML-Rulesare ,
::::
are

::::
still hard to execute efficiently precisely because of their expressive 223

power. One approach to alleviate this is to provide specialized simulators that exploit 224

that some language features are not used in a given model [8], thus working on a 225

subclass of models. Another subclass is considered in the modeling approach presented 226

in [17]: it only considers models where compartments are not nested, and entities do 227

not exist outside compartments. 228
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2 Simulation engine 229

We implemented version 3 of ML-Rules using the Rust programming language to 230

develop and test an efficient simulator for dynamic compartments. The model is 231

specified within an external domain-specific language which is parsed into Rust code. 232

The structure of the implementation and its components is shown in Figure 2. We have 233

tuned the implementation for performance on the main expected code paths. That 234

means we specifically applied several optimizations to the typical main loop at the 235

potential cost of the unusual behavior. Overall optimizations include minimizing 236

allocations, a flat, indexed-based data layout, and partial evaluation of repeated 237

computations. The following sections will discuss differences from the previous versions 238

and their implications on runtime performance and user experience. 239

Dynamic structure simulator

User Interface

User

Syntax check

Semantic check

Model

 Errors

Errors

Errors
Enumeration of

species and reactions

Error: model too large

Simulation output

Performance template
database

Flat model simulator
Change structure

Select reaction

Change
state

Update
propensities

Convert to tree

Make change

Convert to flat

Static optimization

Fig 2. This Figure shows the flow of information between components when running a
simulation. The user specifies the model, which is checked for syntactic and semantic
consistency (like units or variable names). This is done through interaction with the
web editor or command line interface. If these checks fail, errors are returned.
Otherwise, the simulation loop starts by enumerating all possible species and reactions
within the system into a flat representation. This can lead to errors if the system is too
large. This flat representation is then optimized and put into the flat model

:::::::::::::::::::
(non-compartmental) simulator. Whenever a dynamic structural change is needed, the
flattened model is transformed into a hierarchical

:
,
::::::::::::::
compartmental representation to

execute those changes, and the loop starts again with the enumeration.

Compared to the previous implementation, we introduced a few changes to the 240

syntax of ML-Rules (Section 2.1). However, the focus of our research has been to 241

develop a simulation approach that is able to handle models that may exhibit a wide 242

range of compartmental dynamics efficiently. It incorporates a new variant of an SSA 243

specifically designed for large SSA systems (Section 2.3). This variant of the SSA 244

(labeled flat model simulator in Figure 2) is not specific to compartmental models, as 245

compartmentalization is abstracted away in a previous step. One significant 246

optimization is code generation for repeated expression evaluation 2.4. We also 247

incorporated a hybrid rule-based simulation method, allowing individual attributes to 248

be simulated in a network-free manner (Section 2.1). Finally, through the use of recent 249
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advances in web technology (namely WebAssembly), we can provide a simple web editor 250

that enables fast local execution using the same codebase (Section 2.5). 251

2.1 Language 252

253

ML-Rules 3 builds on and adapts the language ML-Rules for rule-based multi-level 254

modeling of cell biological systems [5] and its formal semantics [48]. The model is 255

comprised of 256

� constants that can be used as input parameters for simulation experiments, 257

� definitions of functions for simplification of repeated notations, 258

� the initial model state, 259

� rewriting rules, that can also change the structure of compartments and may use 260

complex expressions for the rates and attribute values, and 261

� a definition of potential outputs of the model. 262

The rewriting rules have the form 263

<left> -> <right> @ <rate> 264

.
:
:
:

265

<left> -> <right> @ <rate> 266

We have a left side transformed (using the arrow) into the right side at a rate (following 267

the @ symbol). The {} denote nesting relationships. 268

In the following, we describe some key aspects of ML-Rules and some slight changes 269

compared to earlier implementations.
::::
The

::::::::
syntactic

:::::::::::::
enhancements

:::::
(with

::::
the

:::::::::
exception 270

::
of

:::
the

::::::::::::
network-free

::::::::::
attributes)

::::
were

::::
not

::::::::
intended

::
to

::::::::
improve

:::
the

::::::::::
simulation 271

:::::::::::
performance

:::
but

:::::::::
modeling

::
in

::::::::::
ML-Rules.

:
272

A core aspect of the language design is the nature of the patterns on the rules’ left 273

side. Modeling languages based on graph rewriting, such as Kappa or BNGL, employ 274

graph patterns. Modeling languages based on multiset rewriting, such as CSMMR or 275

ML-Rules, employ term patterns whose matching can be considered a specific case of 276

unification [49]. The matching relates to compartmental structures and attributes [5, 8]. 277

Attributes can be addressed either by position (structural pattern matching) or by 278

name. 279

For a species 280

S(att_1: int, att_2: String) 281

S(att_1: int, att_2: String) 282

the previous ML-Rules versions required to enlist
:::
list all attributes of a species: 283

S(a1,a2) -> S(a1 + 1, a2) 284

, 285

S(a1,a2) -> S(a1 + 1, a2) 286

as attributes were identified by their position. Instead, we now have named attributes, 287

where, in the case above, only the changed attribute needs to be listed: 288
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S() -> S(a1=S.a1 + 1) 289

. 290

S() -> S(a1=S.a1 + 1) 291

From a formal perspective, rule-based approaches implicitly match omitted attributes. 292

For example, given a cell species that has two attributes denoting its phase and volume, 293

the rule 294

Cell(phase == 1) → Cell(phase := 2)

Cell(phase == 1) -> Cell(phase = 2) 295

would be implicitly extended to 296

Cell(phase == 1, volume == v) → Cell(phase := 2, volume := v)

Cell(phase == 1, volume == v) -> Cell(phase = 2, volume = v) 297

to express that the volume does not change. Named attributes have been used in other 298

tools like BioNetGen [37] or Chromar [50]. 299

The use of named attributes is obviously particularly useful if species have many 300

attributes. For example, a simulation model of the Baltic Cod, which was developed in 301

a previous version of ML-Rules, relied on structural pattern matching [51], and is 302

available at http: 303

//github.com/Baltic-Cod/EBC_IBM/blob/main/Basic_asph/Basic_asphyx.mlrj, 304

has been rewritten using ML-rules 3 to exploit the more efficient execution. This also 305

resulted in a more succinct representation due to the named attributes 306

http://mlrules.pages.dev/gm/4/day. 307

Typically, the simulation engine for rule-based models transforms rules into reaction 308

networks by enumerating all possible values of attributes in advance to speed up the 309

actual simulation [52]. Attributes that may assume many different and potentially 310

unbound possible values are a challenge. In the case of unbound continuous attribute 311

values, e.g., if the size of a lipid raft changes depending on the number of membrane 312

proteins being aggregated within the raft or due to merging [53], this 313

in-advance-enumeration becomes impossible. Even finite, categorical values can lead to 314

a combinatoric explosion in the number of reactions and thus increase the reaction 315

network size beyond tractable limits.
:::
This

:::::::
results

::
in

::
a

:::::
model

::::
too

:::::
large

::::
error

:::
in

::::::
Figure

::
2. 316

We have introduced specific types for this kind of attribute called network-free-integer 317

and network-free-continuous. If an attribute is defined as one of these types, its values 318

will not be explicitly enumerated before simulation execution (to generate the reaction 319

network). For simulation, the attribute of type network free is equipped with a vector 320

that stores the currently existing attribute values when a reaction fires. Once a rule 321

fires, the species is instantiated with appropriate values. The approach is similar to the 322

network-free simulation in BioNetGen [54] or CSMMR [4], particularly to the hybrid 323

approach introduced in [55] that combines network-free and network-based calculations. 324

However, instead of specifying entire species as network-free species, the modeler 325

declares individual attributes to be network-free, and the simulator handles only those 326

attributes or combinations as network-free. This distinction between being executed as 327

network-based or network-free applies only to attributes of species that do not form a 328

compartment. All compartments are handled as individual entities, as compartments 329

are typically characterized by an attribute of continuous type, i.e., the volume, and they 330

may contain an arbitrary number of diverse species (which again might be attributed), 331

so one compartment’s state is very likely different from the next and is (including its 332

attributes’ values) treated individually. 333
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Other adaptations compared to earlier ML-Rule implementations are motivated by 334

further increasing readability. In the previous ML-Rules versions, only equality 335

constraints on the attribute values could be expressed on the left side of the rule. For 336

example, 337

Cell(vol, "M") -> ... if vol > 100 than k1 else 0 338

Cell(vol, "M") -> ... if vol > 100 than k1 else 0 339

can be expressed in ML-Rules 3 as 340

Cell(vol > 100, phase == "M") -> ... @ k1 341

Cell(vol > 100, phase == "M") -> ... @ k1 342

Further adaptations aim to provide further support to define correct models. 343

Similarly, as in other tools [56], modelers are now asked to assign units of measurement 344

to numerical variables and constants, like micrometer, 1/second, and liter. The 345

simulator performs the proper conversion and automatic type checking (Figure 2). This 346

means a meter is correctly added to centimeters but not seconds. In addition, we 347

introduced an enum type, allowing the modeler to constrain the admissible string values 348

for a specific attribute to a specific set. Type inference, as well as constraint checks, 349

occur ahead of simulation execution. 350

2.2 Efficient handling of dynamic structure reactions 351

Enumeration and optimization

Flat model simulator
Change structure

Select reaction

Change
state

Update
propensities

Convert to tree

Make change

Convert to flat

Select reaction

Change state Update propensities

Identify new reactions

Network-free algorithm ML-Rules 3 algorithm

Fig 3.
::::::::::
Comparison

:::
of

:::
the

::::::::
dynamic

:::::::::
structure

::::::::::
approaches.

::::
On

:::
the

:::::
left,

::
we

:::::
have

::::
the

:::::::
previous

::::::::::::
network-free

::::::::
method.

::
It

::
is

:::::::
simpler

::
to

:::::::::::
implement,

::::
but

:::
due

:::
to

:::
the

::::::::
dynamic

::::::::
structure,

:::::
each

::::
step

::
is
:::::::::::
significantly

:::::
more

::::::
costly

::
in

::::::
terms

::
of

::::::::::::
performance.

::::
For

::::::::
example,

::::::::::::
neighborhood

::::::::
relations

:::
are

:::::::::
dynamic,

::::
and

:::::::::
therefore,

:::
the

:::::::
nesting

::::
tree

:::::::::
structure

:::::
needs

:::
to

::
be

:::::::::
traversed.

:::::
Our

::::::::
approach

:::
(a

::::::
subset

::
of

::::::
Figure

:::
2)

::
is

:::
on

:::
the

:::::
right.

::::
We

::::
can

::::::
utilize

:
a

:::::
faster

:::
flat

:::::
(i.e.,

::::::
static)

::::::
model

:::::::::
simulator

::::
and

::::
have

::
a
::::::
costly

::::
but

::::::::::
amortizing

:::::::::::::
transformation

::::
and

::::::::::::
optimization

::::::
process

:::
on

::::
the

::::
rare

::::::::
occasion

::
of

::
a

:::::::::
structural

:::::::
change.

:::
For

::::::::
example,

:::
all

::::::::
relations

::::
can

:::
be

:::::::
encoded

:::
by

::::::
static

:::::::
indices.

As discussed in Sections 1.1 and 1.3, dynamic changes in the system’s structure are 352

core to the ML-Rules modeling language. Their efficient execution has been a challenge 353

in the past. Most simulation tools assume static compartmental structures
:
,
:
and their 354
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simulators have been optimized accordingly [35,37,56]. To integrate
::::::::::
Integrating 355

compartmental dynamics into these simulators without significant loss of efficiency has 356

been identified as a daunting challenge [57]. 357

To
:::
One

:::::::
option

::
to

:
solve the problem of dynamic structural changes , one option is to 358

write a fully dynamic simulator, which
:
.
:::::
This

:::::::::
simulator traverses the tree structure of 359

the model after each reaction execution to instantiate new reactions and re-calculate 360

propensities on demand, and .
:::
It also checks whether the dependency graph requires 361

any updates. This is how a previous implementation of ML-Rules was realized [8]
:::
and 362

::::
what

::
is
::::::
shown

:::
in

:::
the

::::
left

:::::
panel

::
of

:::::::
Figure

:
3. However, compared to methods optimized 363

for static networks [52], this has a significant overhead. 364

For ML-Rules 3, we implemented a new hybrid simulator approach
::::::
shown

::
on

::::
the 365

::::
right

::::::
panel

::
of

::::::
Figure

::
3. During an additional analysis step, every reaction is analyzed 366

and marked if its execution would result in a structural change. In the models we 367

encountered, most reactions do not induce a structural change, these .
::::::
These

:
reactions 368

are called regular reactions. A similar distinction between regular and complex 369

reactions has been made when simulating part of the system using deterministic 370

numerical integration methods [58] or by tau-leaping [59]. 371

The primary mode of our simulator is running an SSA (Section 2.3) that executes 372

only regular (non-dynamic) reactions. The model representation has been flattened, 373

enabling static index-based access to the model’s state, i.e., every species’ amount is 374

stored in an array. Hierarchical relations are only preserved to the point where they are 375

needed to reverse the system representation to a tree form. But they are neither 376

accessed nor needed during the simulation as long as no transformation to a tree form is 377

required. Therefore, we call this the Flat model simulator in Figure 2 .
::::::
Figures

::
2
::::
and

::
3. 378

When we encounter a structure-changing reaction, the model is transformed back into 379

the tree representation reflecting the compartmental structures. The reaction is applied 380

to this structural representation of the model. The resulting structured state is then 381

transformed
::::
back

:
into a flat representation, and processing is continued. This circular 382

process is shown on the right side of Figure 2
:
3. This Figure shows the inner loop within 383

the flat model simulator and the loop involving the dynamic structure changes. Every 384

dynamic structure change requires an entire rebuild of the simulator, including 385

re-enumerating all potential reactions and a do-over of the static optimization phase. 386

Especially for larger systems, this can be relatively costly; however, as long as dynamics 387

structural changes are rare, the costs amortize. We will analyze this in the evaluation 388

section 3. 389

2.3 Stochastic Simulation Algorithm for static compartments 390

Based on our experience with different SSAs, we developed our variant, which is suited 391

particularly well for typical problems in ML-Rules, where systems can be very large, 392

e.g., for simulating multi-cellular models. Systems become particularly large when 393

identical reactions are replicated across many different compartments. This is the Flat 394

model simulator in Figure 2. The implementation is based on storing the propensities in 395

a binary tree with cumulative sum tracking [60]. Each node in the tree corresponds to 396

one potential reaction and stores two values: The propensity of that reaction and the 397

sum of all propensities of its child nodes. This allows for updates of the total propensity 398

sum with logarithmic complexity changing a single propensity. Furthermore, reaction 399

selection (a weighted random choice based on the reaction propensities) can also be 400

completed in logarithmic time complexity. Similar approaches are used in other 401

algorithms like the logarithmic direct method [61] or the simulator implementation for 402

Sπ@ [62]. 403

An additional advantage of the tree-based approach is its improved numerical 404

stability due to the fewer operations needed to update the propensities. Another way to 405
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minimize total propensity calculation time is by keeping track of the total propensity 406

sum and only adding and subtracting the changes to reaction propensities after reaction 407

execution as done by the Optimized Direct Method [31]. However, here, numerical 408

errors from floating-point addition and subtraction accumulate over time and need to be 409

dealt with. In our tree-based approach, numerical rounding errors only originate from 410

the single summation, similar (arguably even better) to a single linear summation 411

approach. The numerical error does not accumulate over time. It is independent of the 412

number of steps and depends only on the number of reactions. 413

After a reaction has fired, multiple propensities in the tree must be updated. In 414

principle, each update in the tree could be done individually based on the dependency 415

graph via updating the cumulative sum until we reach the root. Instead, we roll these 416

changes out in two phases. First, the node values are changed based on the dependency 417

graph. Afterwards, the cumulative sums are updated as needed. If one were to update 418

all sums individually, some nodes near the root might perform repeated summation 419

updates. What total summation operations need to be done for each reaction is 420

calculated ahead of time in the static optimization component (Figure 2). This 421

computation has been accelerated via the use of bitsets. 422

The generation of the dependency graph and the propensity tree must be efficient, as 423

it needs to be redone after every non-regular reaction. 424

Reaction selection is based on a weighted random choice based on the reaction 425

propensities stored in the tree. The performance of reaction selection is improved by 426

sorting the more likely reactions towards the root of the tree. 427

2.4 Performance Templates 428

ML-Rules is an external domain-specific language. This means that all expressions are 429

written in a custom text format. This format is parsed by the simulation tool. One of 430

the main downsides of using an external domain-specific language is the significant 431

computational overhead in the repeated evaluation of mathematical expressions. 432

Generally, the more expressive and generic a domain-specific language is, the harder it 433

is to execute efficiently. In a more constrained language, code and algorithmic variations 434

that are tailored to the specific requirements of the application and hardware 435

architecture are easier to achieve. However, a domain-specific language is typically more 436

useful if it is more generic and expressive. 437

In [8], we developed specialized simulators for specific sub-classes of ML-Rules 438

models, e.g., those that do not exploit compartmental dynamics. In [63], we developed 439

an approach generating an entire simulator optimized for a specific model defined in a 440

rule-based language, such as BioNetGen [36]. After parsing the model, custom C or 441

Rust code was generated. This code was then compiled and optimized using existing 442

compiler software, resulting in a high throughput performance. This technique (called 443

partial evaluation or Futamura projection) [64,65] is an established technique to deal 444

with the problem that genericity does not go along well with achieving performance. 445

:::
The

:::::::
central

::::
idea

::
of

:::::::
partial

:::::::::
evaluation

::
is
:::::
that

:
a
::::::::
function

:::::
with

:::::::
multiple

:::::::
inputs

:::
can

:::
be 446

:::::::
reduced

::
to

::
a
:::::::
simpler

:::::::
version

::
if

:::::
some

::
of

:::
the

::::::
inputs

::::
are

:::::::
known.

:::
For

:::::::::
example,

:::
the

::::::
power 447

:::::::
function

::::::::::::::::
f(base, exponent)

:::::
may

::
be

:::::::::
simplified

:::
to

:::::::::::::::::::::
f(base, 2) = base · base

:::
for

:::
the

::::
case

:::
of 448

:
a
::::::
known

::::::::::
exponent. 449

Adopting the approach developed in [63] for dynamic compartments appears 450

impractical. Its performance gain relied to a large degree on optimizing the updates of 451

the dependency network. With dynamic compartments, these reaction networks change 452

during execution; thus, optimization (recompilation) would need to be repeated after 453

each structural change. However, the (re-)compilation induces a significant overhead. 454

Especially for large models (which is typical for ML-Rules models), the additional 455

compilation steps on every model run increase runtime significantly, independently of 456
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model execution duration. Therefore, we developed an approach that combines dynamic 457

interpretation and partial evaluation and does not require repeated compilation on 458

every change. Our approach focuses on the rate evaluation (and thus propensity 459

updates). This is costly for most dynamic compartmental models, as rate expressions 460

involving dynamic compartments are typically complex. The complex expressions result 461

in large abstract syntax trees (AST) that need to be parsed during execution. When 462

using an interpreted or reflection-capable language like Java, code generation for these 463

expressions can be introduced relatively simply [66]. For compiled languages such as 464

Rust, a different approach is required. Our approach developed for ML-Rules 3 465

generates performance templates during the simulation and stores them for later reuse. 466

Every time the simulator encounters a new AST, it checks whether generated code in 467

the form of a performance template is available to replace this tree. Each performance 468

template presents a partially evaluated AST and can be parameterized with numerical 469

values (like model-specific constants) and indices (as used to identify involved species). 470

If such an optimized previous version is found, it is used instead of the AST. If not, the 471

simulator dynamically interprets the expression (by evaluating the AST). It generates 472

an optimized code for future use and stores the corresponding performance template for 473

later reuse. With every new model developed or recompilation of the model, the 474

simulator can reuse previously created templates. 475

2.5 Web editor 476

The software tool is primarily designed as a command line tool. However, as a proof of 477

concept, we also built a web-based version. The idea to run simulations on the web is 478

not new and has been around almost as long as the web itself [67]. There have also been 479

attempts at running stochastic simulations of biochemical models using a web 480

interface [68]. However, efficient simulation was usually delegated to a server in the 481

background or the cloud. 482

However, the execution has been typically delegated to a server in the background or 483

the cloud to enable an efficient simulation of models [69]. WebAssembly is a binary 484

format recently developed that enables fast execution in web browsers [70]. 485

WebAssembly is executed on a stack-based virtual machine similar to other native code. 486

Additionally, it interoperates well with JavaScript. WebAssembly allows reasonable 487

performance for simulation without installation in a web browser or major changes to 488

the underlying simulator code [71]. 489

As the Rust language can be compiled into WebAssembly, we can use the same code 490

base for the simulator and only need to add a small frontend. We used the Rust Yew 491

framework 1 for this. A two-panel user interface is provided at 492

http://mlrules.pages.dev, which includes a code editor with some syntax 493

highlighting based on the Monaco editor from Visual Studio Code and another panel to 494

display simulation results or any errors and instructions from the simulator. 495

A significant advantage of this WebAssembly approach is that there are next to no 496

host costs. The simulation is executed on the end user’s machine. The web page is static 497

and has a size of roughly 10 Megabytes, which is very cheap or free to host compared to 498

other approaches that run the simulation on the server. We also added the possibility to 499

link to specific models. We use this in our case studies to provide links to the various 500

models, which facilitates the reproduction of results and allows users to change and 501

adapt models and conduct basic experiments with no additional setup. As done 502

throughout this paper, linking to an executable model with a custom URL is possible. 503

1http://yew.rs/
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3 Evaluation 504

In this section, cell biological simulation models showcase the capabilities and 505

performance of ML-Rules 3. All performance experiments were conducted using an intel 506

i9-13900K CPU, running Rust 1.74. WebAssembly was run in Firefox version 120 using 507

its spidermonkey engine. 508

3.1 Fission Yeast Model 509

The first case study is based on a multi-cellular model of fission yeast, including cell 510

division and mating type switching depending on intracellular dynamics. The model is 511

available at http://mlrules.pages.dev/yeast/300/min. The model (see Figure 4) 512

has been adopted from the original ML-Rules publication [5] to show the expressiveness 513

of ML-Rules. The fission yeast model includes an early cell cycle model [2]. 514

Fig 4. Fission Yeast Model. Inside the cell, proteins oscillate. Outside the cell, Sxa2
and pheromones (P and M-type) can inhibit the cell cycle of cells of the opposite
mating type. Triggered by the cell cycle, a yeast cell can fission into two daughter cells.

The cell cycle model consists of two proteins (cyclin and cdc2) that can form the 515

maturation-promoting factor (MPF). MPF exists in three versions (active, inactive, and 516

repressed), which oscillate with a cycle duration of approximately 200 minutes (see 517

Figure 4 left). This oscillation triggers the cell to change between its phases (G1, SG2, 518

and M), and eventually, a spike in inactive MPF causes cells in its M-phase to divide 519

into two daughter cells. In addition, cells are characterized by a mating type (P or M) 520

that might differ in one daughter cell from the type of the mother cell. Based on the 521

mating type, cells produce and secrete pheromones (M- or P-factor) to inhibit the cell 522

cycle of the opposite mating type cells by changing MPF from its inactive to the 523

repressed variant. M-type cells also release P-factor-specific protease (Sxa2) that 524

inhibits the P-factor pheromone. 525

This model relies on a unique combination of ML-Rules features and its 526

expressiveness. Individual cells are defined as compartments that frequently divide. 527

Compartments and proteins are equipped with attributes, e.g., to denote the cell cycle 528

phase, the cyclin’s phosphorylation state, or the cell’s volume. The cells secrete 529

pheromones into the extracellular environment. They influence the cell cycle of other 530

cells of the opposite mating type. The kinetics depend on rate factors that require 531
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Fig 5. Two sample replications of the fission yeast model show the oscillation of active,
inactive, and restricted MPF. At 200 minutes and 163 minutes, respectively, a fission
event is triggered by the spike of inactive MPF.

simulator runtime [s] throughput [1000/s]

ML-Rules 2 12.4 40.8
ML-Rules 3 0.124 (0.190) 4190 (2690)
ML-Rules 3 - network free 0.321 (0.352) 1590 (1440)
ML-Rules 3 - w/o templates 0.259 (0.331) 1950 (1530)

Table 1. Run time and reactions per second for different simulators. The fission yeast
model is executed until 1000 minutes (20 replications). The values in parenthesis refer
to executing ML-Rules 3 as WebAssembly code.

:::
The

::::::::::
ML-Rules

:
2
:::::::::::::::
implementation

::
of

:::
the

::::::
model

::::::::
contains

:::
ten

:::::::
species

::::
and

::
20

::::::
rules.

::::
The

:::::::::
ML-Rules

::
3

:::::::
version

::
of

:::
the

::::::
model

:::::::
consists

::
of

::
7

::::::
species

::::
and

:::
20

:::::
rules.

:::::
The

:::::
model

::::::
starts

:::::
with

:::
two

::::
cell

:::::::::::::
compartments

::::
and

::::
ends

::::
with

::::::
about

:::
12.

:::::::
During

::::
the

::::::::::
simulation

:::::
time,

:::
the

::::::
model

:::::::::
undergoes

::::::
about

:::
10

:::::::::
structural

::::::::
changes.

complex expressions, e.g., a Hill-type sigmoidal response curve defines the MPF 532

repression (depending on the number of pheromones). 533

We have used this model as a performance benchmark. The reaction throughput 534

rates for a run until 1000 minutes (simulation time) are shown in table 1. ML-Rules 3 is 535

significantly faster than the previous Java implementation, ML-Rules 2. If performance 536

templates are used, we observe a roughly 2-order speedup. Even without the templates, 537

the performance is 26 to 18 times faster. The 18x speedup is observed when enabling 538

network-free attributes (see Section 2.1). The model does not use network-free 539

attributes; even only enabling this capability introduces more branching in the critical 540

code and slows down execution. We also tested the WebAssembly version. The data for 541

this plot can be generated locally by visiting 542

http://mlrules.pages.dev/benchmark/yeast/3/1000. The first number is the 543

number of replications, and the second is the longest test duration in minutes of 544

simulation time. The WebAssembly has a performance penalty of only about 10% to 545

50%. 546

3.2 mRNA Delivery Model 547

Our second case study is centered around the delivery of mRNA into cells. 548

Understanding how to deliver mRNA into cells is crucial for its use as a drug or vaccine 549

[23]. Ligon et al. [72] published a simulation model capable of simulating the mRNA 550

delivery based on lipoplexes (small lipid spheres containing mRNA). 551
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Fig 6. Sketch of the mRNA delivery model. Lipoplexes are present in the cell’s
environment and can accumulate in pits in the cell membrane. The lipoplexes in the pit
can enter the cell via endocytosis, and the endosome can lyse to release the lipoplexes
into the cell. Once they unpack their mRNA, the mRNA gets translated to proteins.
The arrows that point down indicate the degradation of the species.

In their model, shown in Figure 6, lipoplexes are present within the extra-cellular 552

environment for an hour before being removed by an event mimicking the cell’s washing. 553

During this time, clathrin-coated pits containing one or more lipoplexes form at the 554

cell’s surface. Via the invagination of the plasma membrane, endosomes are formed, and 555

the lipoplexes enter the cell. Inside the cell, the endosome releases the lipoplexes, which 556

then unpack their mRNA. Afterward, the mRNA can be translated into proteins. 557

With their model, the authors could gain insight into mRNA delivery by lipoplexes 558

and the dose-response relationship. However, they also state a few simplifications and 559

workarounds needed in their model, as the used modeling and simulation method only 560

supported static compartments. One simplification is that all lipoplexes carry the same 561

amount of mRNA in the model. In wet lab experiments, this number has been found to 562

vary due to the different sizes of the lipoplexes [72,73]. 563

One possibility to model lipoplexes more realistically is to model each lipoplex as a 564

compartment that contains the mRNA and enters the cell (which is also represented as 565

a compartment). For this, support of dynamic compartments is required. Another 566

possibility is to model the amount of mRNA a lipoplex contains as a specific attribute 567

of type integer. Both solutions are possible in ML-Rules but were not possible in the 568

tool(s) used by the authors. This led to the simplification of assuming a fixed number of 569

mRNA per lipoplex (i.e., 350) in the model. As a result, the simulation of the protein 570

expression in the original model shows narrow bands, depending on the number of 571

lipoplexes that could enter the cell and unpack their mRNA (see Figure 7 A), which is 572

not the case in the wet-lab data [73]. The authors tried to use the modeling and 573

simulation tool SPim [74], which is based on the stochastic π calculus [75] and allows to 574

assign an attribute to a lipoplexe
:::::::
lipoplex that states how much mRNA it carries and 575

unpacks this amount into the cell. However, they ran into performance issues, which 576

made it impossible to use SPim for their study (see supplement TextS001 p. 7 577

from [72]). 578

As stated above in ML-Rules, this simplification is unnecessary, and a varying 579

number of mRNA can be assigned to the lipoplexes modeled as compartments. The 580

modified model can be found under http://mlrules.pages.dev/lipoplex_ext/30/h. 581

At the beginning of the simulation, the simulation state is set to contain one cell and 582

200 lipoplexes containing mRNA. The amount of mRNA per lipoplex (L) is calculated 583

based on the lipoplex size sampled from a normal distribution. The lipoplex can then 584

move into the cell, like in the original model. Inside the cell, the lipoplex compartment 585

L can unpack its content (?solL). 586
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Cell{L{?solL}+?solC} -> Cell{?solL + ?solC} @ kU; 587

Cell{L{?solL}+?solC} -> Cell{?solL + ?solC} @ kU; 588

The ?solL denotes the content of the lipoplex, here a population of mRNA, and ?solC is 589

the cell’s content, including other lipoplexes, mRNA, and proteins. Alternatively, we 590

could have modeled the mRNA as an attribute of type integer. In such an 591

implementation, the lipoplex would not be a compartment carrying the mRNA but a 592

simple species equipped with an attribute (NmRNA) that denotes the amount of mRNA 593

inside. The unpack rule shown above would change: 594

Cell{L+?solC} -> Cell{(L.NmRNA) mRNA + ?solC} @ kU; 595

Cell{L+?solC} -> Cell{(L.NmRNA) mRNA + ?solC} @ kU; 596

A second minor simplification is that lipoplexes can unpack their mRNA not only in 597

the cell but also in the endosome, where the unpacked mRNA can start to deteriorate. 598

This mechanism, called the “fully nested transfection model” by the authors (see Ligon 599

et al. [72] Figure 8), is missing in the original model. 600

In the ML-Rules 3 model, it is realized by the two reactions: 601

Cell{E{L{?solL} + ?solE}+?solC} -> Cell{E{?solL + ?solE} + ?solC} @ kU; 602

603

for the unpacking inside the endosome, and 604

E{mRNA:m + ?solE} -> E{?solE} @ dM*#m; 605

E{mRNA:m + ?solE} -> E{?solE} @ dM*#m; 606

for the degradation of mRNA in the endosome. 607

Besides the simplification in the original model, some reactions, like the formation of 608

pits, are lengthy to write down. Due to the lack of attributes or dynamic compartments, 609

the number of lipoplexes that reside in a pit is stated in the name of the species. The 610

original model uses ten pit species (P1 - P10) denoting 1 to 10 lipoplexes inside the pit. 611

Consequently, ten reactions need to be specified for all Pi regarding the formation of 612

pits, the endocytosis, the lysis, and the degradation of pits. This workaround only 613

works for a low number of P-species. The growing number of reactions makes writing 614

the model down for larger numbers increasingly harder. In ML-Rules 3, the dynamic 615

nesting allows us to write down reactions more compactly. For example, the ten 616

endocytosis reactions in the original model: 617

P1 -> E1 618

... 619

P10 -> E10 620

P1 -> E1

...

P10 -> E10 621

translate into a single rule in ML Rules 3. 622

Cell(?solC) + P{?solP} -> Cell{E{?solP}+?solC} 623
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Fig 7. Protein amounts over time for the original (left) and modified (right) mRNA
delivery model (N=100). The colors indicate the number of lipoplexes that unpack their
mRNA in the cell. The histograms next to the time courses show the distribution of
proteins after 30 hours without the cells that express no protein (N=1000000).

::::
Runs

:::::
where

:::
no

::::::::
proteins

:::
are

:::::::::
generated

:::
are

::::
not

:::::::
shown.

simulator
runtime [s]

::::
20%

::::::::
quantile

:::::::
average

::::
80%

::::::::
quantile

::::::
Copasi

: ::::
0.13

:::
4.8

::::
11.2

:::::::::
ML-Rules

:
3
: ::::

0.59
:::
0.6

::::
0.84

Table 2.
::::
Run

::::
time

:::
for

::::::::
different

::::::::::
simulators.

:::::
The

:::::::
mRNA

:::::::
delivery

::::::
model

::
is

::::::::
executed

::::
until

:::
30

:::::
hours

::::::
(1000

::::::::::::
replications).

::::
The

:::::::::
ML-Rules

::
3
::::::
model

::
is

:::::::::
initialized

:::::
with

:::
201

::::::::::::
compartments

:::
(1

:::
cell

::::
and

::::
200

::::::::::
lipoplexes)

::::
and

::::
ends

:::::
with

::::
one

::::::::::::
compartment.

::::
On

:::::::
average,

::::::
about

:::
207

::::::::::
structural

:::::::
changes

:::
are

:::::::::
executed

::::::
during

::
a

:::::::::
simulation

:::::
run.

Cell(?solC) + P{?solP} -> Cell{E{?solP}+?solC} 624

By applying the abovementioned changes, the model produces more realistic results, 625

as can be seen by the protein expression over time in Figure 7. As stated above, the 626

narrow bands as observed in the original model (Figure 7 A) are not observed in the wet 627

lab experiments [72,73]. By varying the mRNA number inside the lipoplexes, these 628

bands in the protein expression broaden and overlap (Figure 7 B), resulting in a more 629

realistic model behavior. 630

Finally, we have a look at the model’s runtime performance. Therefore, we compared 631

the runtime for executing the original model written in COPASI (version 4.41) and its 632

ML-Rules equivalent (available at http://mlrules.pages.dev/lipoplex_orig. The 633

original COPASI model consists of 48 reactions and 26 species compared to the 634

ML-Rules model with its 12 rules and 8 species. This is due to the manual unrolling of 635

the underlying nesting processes and illustrates ML-Rules’ expressiveness, which also 636

results in succinct models. We measured the runtime for 1000 replications. 637

As the simulation model contains events to describe the removal of external 638

lipoplexes, only the Direct Method implementation within COPASI is able to execute 639

the entire simulation model. This is not a limitation of the method but of the 640

implementations. Timed events can be added relatively easily to most methods as an 641

implementation feature. The difference in methods should be considered when 642

interpreting the runtime measurements. For larger systems, the direct methods used 643

generally perform worse than a more optimized logarithmic method, like the next 644

reaction method. We found the average runtime for a single execution to be 4.8 seconds. 645

However, in two-thirds of the simulation runs, no lipoplex can unpack their mRNA into 646
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the cell, and consequently, no proteins are created. The 20% quantile takes 0.13 seconds, 647

and the 80% quantile is 11.2 seconds. The equivalent simplified model in ML-Rules 648

takes only about 0.6 seconds on average but 0.59 seconds for 20% and 0.84 seconds for 649

the 80% quantile, respectively. This is an indication of the higher initialization cost but 650

better throughput of the ML-Rules implementation. Most of the runtime
::::
(87%

:::
on 651

:::::::
average)

:
in the ML-Rules model is spent on rebuilding the simulator after a dynamic 652

structure reaction
::::::::
reactions, something that COPASI does not need to consider. We find 653

similar runtimes for the adapted version of the model in ML-Rules. 654

4 Conclusion 655

We built ML-Rules version 3, making concise formulations of dynamic structure models 656

run with high performance. A performance-oriented implementation of various data 657

structures, including a partial summation tree, made this possible. We also made some 658

changes to the language, like introducing named attributes and units of measurement. 659

We found that this implementation outperforms the previous version of ML-Rules by 660

two orders of magnitude. The evaluation of the simulator is based on two biological case 661

studies. First, we used a fission yeast model that was also used in the original ML-Rules 662

publication to show that we have a similar expressiveness but a higher performance 663

than the previous implementation. Second, we rebuilt and extended an mRNA delivery 664

model and showed how using dynamic compartments needs fewer simplifications than 665

the original model that uses a static compartmental approach. The extended model 666

matches the wet-lab data more closely, allowing a more compact notation and better 667

performance. Finally, we built a prototypical web-based simulator using the same source 668

code compiled to WebAssembly that can run locally on the end user machine. 669

WebAssembly’s ease of deployment and development using existing code bases and 670

competitive performance are promising. We see further opportunities for simulation tool 671

developers to make their software more accessible using this technology. 672

Our investigation has also raised some questions for future research. Currently, the 673

network-free execution part of the model is determined by attributes explicitly defined 674

as network-free. However, possibly a larger portion of the model could benefit from a 675

network-free execution. To learn during simulation which part of the model to execute 676

most efficiently in a network-based or network-free manner, possibly reinforcement 677

learning approaches could be adapted [76]. 678

The main simulator for ML-Rules 3 now conforms to standard SSA, with the 679

potential exception of more complex rate expressions. It is easier to integrate with 680

previous research on more advanced SSA variants like the partial propensity 681

method [77] or approximate methods like advanced tau leaping [78]. Preliminary 682

experiments with approximate tau leaping showed significant improvement for some 683

models. However, frequently, the limiting factor is the repeated structural conversion. 684

Moving forward, only a subset of the simulator could be transformed if changes to the 685

dynamic structure are localized. It would also be possible to integrate the dynamic 686

structure more closely with the simulator, at the cost of some performance for the 687

regular transitions. The simulator is currently applied in three different simulation 688

studies, i.e., studying the fission and fusion of mitochondria, bone remodeling processes, 689

and the role of endocytosis in cellular signaling. 690
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