

1 Supplemental Figure 1. PAC1 constrains papain-induced allergic airway inflammation in mice

- 2 (A) Flow cytometry plots showing the gating strategies to identify eosinophils in murine BALF or lungs.
- 3 (B-C) Frequency (B) and absolute number (C) of lung eosinophils in $Pac l^{+/+}$ (n = 4) and $Pac l^{-/-}$ mice (n = 1
- 4 4) on day 3 after papain administration, as determined by flow cytometry.
- 5 (D) Representative H&E-stained lung sections from $Pac1^{+/+}$ and $Pac1^{-/-}$ mice on day 3 after papain
- 6 administration.
- 7 (E) The histological score of lungs from $Pac1^{+/+}$ (n = 6) and $Pac1^{-/-}$ mice (n = 6) on day 3 after papain 8 administration.
- 9 Data are shown as the means \pm SEM. Statistical significance was assessed using a two-tailed unpaired
- 10 Student's t test.

11 Supplemental Figure 2. PAC1 is not involved in affecting the phenotype and heterogeneity of ILC2s,

12 and does not affect the developmental processes of ILC2s

- 13 (A) Pacl expression levels in various types of cells sorted from murine lungs, as determined by qPCR. Data
- 14 are shown as the means \pm SEM. AM, alveolar macrophages; AEC, alveolar epithelial cells; EOS,
- 15 eosinophils; cDC, conventional dendritic cells; moDC, monocyte-derived dendritic cells; NEU, neutrophils.
- 16 (B) Flow cytometry plots showing the gating strategies to identify T-bet⁺ ILC1s, GATA3⁺ ILC2s and
- 17 ROR γ T⁺ ILC3s in murine lungs.
- 18 (C) Frequency and absolute number of GATA3⁺ ILC2s in epididymal adipose tissue, intestinal lamina
- propria and colonic lamina propria of $Pac1^{+/+}$ (n = 3-4) and $Pac1^{-/-}$ mice (n = 3-4) in their resting states, as determined by flow cytometry.
- (D-E) Expression histograms (D) of selected ILC2 markers in *Pac1^{+/+}* and *Pac1^{-/-}* lung GATA3⁺ ILC2s in a
 resting states and mean fluorescence intensity (MFI) of each marker analyzed in (E), as determined by flow
- 23 cytometry.

(F) Frequency of CLPs ($Pac1^{+/+}$, n = 5; $Pac1^{-/-}$, n = 5), CHILPs ($Pac1^{+/+}$, n = 5; $Pac1^{-/-}$, n = 5), and ILC2ps ($Pac1^{+/+}$, n = 17; $Pac1^{-/-}$, n = 19) in bone marrow of $Pac1^{+/+}$ and $Pac1^{-/-}$ mice in their resting state, as

- 26 determined by flow cytometry.
- (G) MFI of GATA3 in bone marrow ILC2ps ($Pac1^{+/+}$, n = 11; $Pac1^{-/-}$, n = 11) of $Pac1^{+/+}$ and $Pac1^{-/-}$ mice in their resting state, as determined by flow cytometry.
- 29
- 30 Data are shown as the means ± SEM. Statistical significance was assessed using a two-tailed unpaired
 31 Student's t test.
- 32

33 Supplemental Figure 3. PAC1 also exhibits suppressive effects on inflammatory ILC2s

- 34 (A-B) Expression histograms (A) of selected ILC2 markers in $Pac l^{+/+}$ (n = 4) and $Pac l^{-/-}$ (n = 3) lung
- 35 GATA3⁺ ILC2s on day 4 after IL-33 administration and mean fluorescence intensity (MFI) of each marker
- 36 analyzed in **(B)**, as determined by flow cytometry.
- 37 (C) Flow cytometry plots showing the gating strategies to identify ILC2s, Ki 67^+ ILC2s and IL- 5^+ IL- 13^+
- 38 ILC2s in murine lungs.
- 39 (D-E) Expression histograms (D) of IL-25R and KLRG1 in $Pac1^{+/+}$ (n = 5) and $Pac1^{-/-}$ (n = 4) lung
- 40 inflammatory ILC2s (iILC2s) on day 4 after IL-25 administration and mean fluorescence intensity (MFI) of
- 41 each marker analyzed in (E), as determined by flow cytometry.
- 42 (F-G) Frequency (F) and absolute number (G) of lung iILC2s in $Pacl^{+/+}$ (n = 5) and $Pacl^{-/-}$ mice (n = 4) on
- 43 day 4 after IL-25 administration, as determined by flow cytometry.
- 44
- 45 Data are shown as the means \pm SEM. Statistical significance was assessed using a two-tailed unpaired
- 46 Student's t test.
- 47

48 Supplemental Figure 4. PAC1 plays a cell-intrinsic inhibitory role in ILC2s

- 49 (A) Pre-sort and post-sort purity of ILC2s from murine lungs.
- 50 **(B)** Frequency of CD45.1⁺ cells and CD45.2⁺ cells in donor CD45.2⁺ $Pac1^{+/+}$ mice, donor CD45.1⁺ $Pac1^{-/-}$
- 51 mice and recipient $Rag2^{-/-} Il2rg^{-/-}$ mice in the bone marrow chimera model.
- 52 (C) Experimental protocol followed for generating mixed bone marrow chimera.
- 53 (D) Frequency of lung CD45.2⁺ $Pac1^{+/+}$ ILC2s and CD45.1⁺ $Pac1^{-/-}$ ILC2s in chimeric mice (n = 6) on day 4
- 54 after IL-33 administration, as determined by flow cytometry.
- 55 (E) Frequency of lung CD45.2⁺ $Pac1^{+/+}$ Ki67⁺ ILC2s and CD45.1⁺ $Pac1^{-/-}$ Ki67⁺ ILC2s in chimeric mice (n = 1
- 6) on day 4 after IL-33 administration, as determined by flow cytometry.
- 57 (F) Frequency of lung CD45.2⁺ $Pac1^{+/+}$ IL-13⁺ ILC2s and CD45.1⁺ $Pac1^{-/-}$ IL-13⁺ ILC2s in chimeric mice (*n*
- 58 = 6) on day 4 after IL-33 administration, as determined by flow cytometry.
- (G) Flow cytometry plots showing the gating strategies to identify Ki67⁺ ILC2s and IL-5⁺ IL-13⁺ ILC2s in
 the lungs of R5^{/+} mice.
- 61 **(H)** Frequency and absolute number of BALF eosinophils in $R5^{/+} Pac l^{+/+}$ (n = 4) and $R5^{/+} Pac l^{fl/fl}$ mice (n = 4)
- 5) on day 4 after IL-33 administration, as determined by flow cytometry.
- 63 (I) Frequency and absolute number of lung eosinophils in $R5^{/+} Pac I^{+/+}$ and $R5^{/+} Pac I^{fl/fl}$ mice in resting state
- 64 $(R5^{/+} Pac1^{+/+}, n = 4; R5^{/+} Pac1^{fl/fl}, n = 4)$ or on day 4 after IL-33 administration $(R5^{/+} Pac1^{+/+}, n = 4; R5^{/+})$
- 65 $Pacl^{fl/fl}$, n = 4), as determined by flow cytometry.
- 66
- 67 Data are shown as the means \pm SEM. Statistical significance was assessed using a two-tailed paired
- 68 Student's t test (D-F), a two-way ANOVA followed by Holm-Sidak multiple-comparisons test (I) or a two-
- 69 tailed unpaired Student's t test (H).
- 70
- 71
- 72

Supplemental Figure 5

ll17a

n

73 Supplemental Figure 5. PAC1 deficiency impairs CGRP signaling in ILC2s

- 74 (A) Expression distribution of classic marker genes of ILC2s (*Gata3*, *Il1rl1*) or other ILC subtypes (*Eomes*,
- 75 *Tbx21*, *Rorc*, *Ncr1*) in sorted murine lung ILC2s.
- 76 (B) The regulation trajectory of murine lung ILC2s displayed according to a pseudotime analysis, using the
- 77 R package Monocle 3.
- (C) Expression distribution of *Pac1* and *Egr1* in *Pac1*^{+/+} and *Pac1*^{-/-} lung ILC2s.
- 79 **(D)** GSEA plots showing representative pathways enriched in $Pac1^{+/+}$ and $Pac1^{-/-}$ murine lung ILC2s after
- 80 treatment with IL-33 plus CGRP. NES, normalized enrichment score.
- (E) Expression levels (transcripts per million, TPM) of representative genes in $Pac1^{+/+}$ and $Pac1^{-/-}$ murine
- 82 lung ILC2s under four different conditions of stimulation. Two replicates were analyzed per condition.
- (F) Volcano plots of DEGs in $Pac1^{+/+}$ versus $Pac1^{-/-}$ murine lung ILC2s after treatment with IL-33 plus
- 84 NMU (Fold Change > 1.5; $P_{adj} < 0.05$). Representative DEGs are shown.

85

86 Supplemental Figure 6. PAC1 promotes CGRP-mediated inhibition of ILC2 responses

- 87 (A) Strategy for *in vitro* ILC2 stimulation.
- (B) Purified $Pac1^{+/+}$ and $Pac1^{-/-}$ murine lung ILC2s were treated under different conditions of stimulation for
- 89 3 days, and then the concentrations of a range of cytokines in the cell supernatants were assessed by
- 90 Luminex liquid chip technology. Three replicates were analyzed per condition.
- 91 (C-D) Frequency (C) and absolute number (D) of BALF eosinophils in $R5^{/+} Pac1^{+/+}$ and $R5^{/+} Pac1^{fl/fl}$ mice
- 92 on day 4 after Alternaria alternata administration ($R5^{/+} Pac1^{+/+}$, n = 4; $R5^{/+} Pac1^{fl/fl}$, n = 4) or Alternaria
- 93 *alternata* plus CGRP administration ($R5^{/+} Pac1^{+/+}$, n = 4; $R5^{/+} Pac1^{fl/fl}$, n = 4), as determined by flow
- 94 cytometry.
- 95
- 96 Data are shown as the means \pm SEM. Statistical significance was assessed using a two-way ANOVA
- 97 followed by Holm-Sidak multiple-comparisons test (**B**) or a two-tailed unpaired Student's t test (**C-D**).
- 98

Supplemental Table 1. The sequences of qPCR primers used in this study		
	Forward primer (5'-3')	Reverse primer (5'-3')
mouse <i>Il5</i>	GACAAGCAATGAGACGATGAGG	CCACTCTGTACTCATCACACC
mouse <i>Il13</i>	TGGTATGGAGTGTGGACCTG	AGCAAAGTCTGATGTGAGAAAGG
mouse Pac1	TGCCGTGGTGCTGGATGAAA	CCTCGGGTCAGAGTTGCTATTT
mouse Calca	GCCTTTGAGGTCAATCTTGGA	TGGGAACAAAGTTGTCCTTCAC
mouse Actb	GAGACCTTCAACACCCCAGC	ATGTCACGCACGATTTCCC
human CALCA	CTCCATGCAGCACCATTCAG	GTGTGAAACTTGTTGAAGTCCTG
human PAC1	CAAGAGTATCCCTGTGGAGGAC	GAAACTGAAGTTGGGGGGAGATG
human <i>IL13</i>	GAATCCCTGATCAACGTGTC	GAATCTGCAACTTCAATAGTCAGG
human GPR65	CGGAAGAAATATGGAAGGAAAGG	TTACACAGATATCAGCAGTTGG
human GAPDH	ACCCACTCCTCCACCTTTGA	ACCCACTCCTCCACCTTTGA