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Albert Garcia Lopez,1,9 Sascha Schäuble,1,9 Tongta Sae-Ong,1 Bastian Seelbinder,1 Michael Bauer,2,3

Evangelos J. Giamarellos-Bourboulis,4 Mervyn Singer,5,10 Roman Lukaszewski,5,10 and Gianni Panagiotou1,6,7,8,10,11,*
1Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena,

Germany
2Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
3Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
44th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, 124 62 Athens, Greece
5Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, WC1E 6BT London, UK
6Friedrich Schiller University, Institute of Microbiology, Faculty of Biological Sciences, 07743 Jena, Germany
7Department of Medicine, University of Hong Kong, Hong Kong SAR, China
8Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
9These authors contributed equally
10Senior author
11Lead contact

*Correspondence: gianni.panagiotou@leibniz-hki.de

https://doi.org/10.1016/j.xcrm.2024.101712
SUMMARY
Infection is a commonplace, usually self-limiting, condition but can lead to sepsis, a severe life-threatening
dysregulated host response. We investigate the individual phenotypic predisposition to developing uncom-
plicated infection or sepsis in a large cohort of non-infected patients undergoing major elective surgery.
Whole-blood RNA sequencing analysis was performed on preoperative samples from 267 patients. These
patients developed postoperative infection with (n = 77) or without (n = 49) sepsis, developed non-infectious
systemic inflammatory response (n = 31), or had an uncomplicated postoperative course (n = 110). Machine
learning classification models built on preoperative transcriptomic signatures predict postoperative out-
comes including sepsis with an area under the curve of up to 0.910 (mean 0.855) and sensitivity/specificity
up to 0.767/0.804 (mean 0.746/0.769). Our models, confirmed by quantitative reverse-transcription PCR
(RT-qPCR), potentially offer a risk prediction tool for the development of postoperative sepsis with implica-
tions for patient management. They identify an individual predisposition to developing sepsis that warrants
further exploration to better understand the underlying pathophysiology.
INTRODUCTION

Sepsis represents a life-threatening organ dysfunction caused by

a dysregulated host response to infection.1 It imposes a high

burden on patients, families, healthcare, and social systems.2

Although outcomes are improving, mortality rates remain high

(>25%), especially in low- or middle-income countries.3 Clinical

risk factors for developing infection and sepsis are well recog-

nized, including underlyingmalignancy, immunosuppression, dia-

betes, frailty, and socio-economic deprivation.4,5 Gender-specific

risk factors are reported in both patients and animal models.6,7

Androgens suppress cell-mediated immune responses in males

whereas female sex hormones such as estradiol possess protec-

tive effects.6 However, evidence at the genomic level for an indi-

vidual intrinsic predisposition influencing susceptibility risks is

conflicting.8 Studies have failed to yield any strong genomic signal

in adults, and findings are often contradictory, e.g., for the tumor

necrosis factor alpha (TNF-a) polymorphism �308 G/A.9
Cell Reports Medicine 5, 101712, Septem
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Postoperative complications following major elective surgery

are common and can result in an appreciable mortality, delayed

hospital discharge, and long-term morbidity. Risk factors include

body mass index, age, comorbidities, serum creatinine, and prior

functional status.10 Laboratory preoperative predictors of postop-

erative infection include serum albumin,11–14 C-reactive protein

(CRP),12–16 hemoglobin A1c,16 interleukin (IL)-6 and alpha-1-anti-

trypsin,12 platelet:lymphocyte ratio,17 lymphocyte:CRP ratio,18

neutrophil:lymphocyte ratio,19 lymphopenia,20 and monocyte hu-

man leukocyte antigen-DR (HLA-DR) expression.21 Although

these studies identified risk factors for postoperative complica-

tions, it remains uncertain whether these or other factors asso-

ciate specifically with the risk of postoperative sepsis.

Most cases of adult sepsis present in old age22 suggesting

both exogenous and endogenous non-genomic disease modi-

fiers that influence the transcriptomic response. Here, we hy-

pothesized that the phenotypic state of a patient undergoing

elective surgery, reflected within their individual transcriptomic
ber 17, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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signature, would identify those at high risk of developing postop-

erative sepsis. By utilizing a unique biobank of daily samples and

clinical data collected before and after electivemajor surgery, we

identifiedwith the aid ofML specificmolecular patterns from pre-

operative whole-blood RNA sequencing data that could predict

postoperative outcomes. This was further explored and

confirmed with quantitative reverse-transcription PCR (RT-

qPCR)-based ML model analysis.

RESULTS

Preoperative RNA profiles differ between patients
developing postoperative infection or not
We retrieved 267 preoperative samples from an elective surgery

patient cohort who had an uncomplicated postoperative course,

suffered an uncomplicated postoperative infection, or devel-

oped sepsis (STAR Methods, Figure S1).23 Demographics and

preoperative clinical data between patients with different post-

operative infection status were similar for all matched and

most unmatched characteristics (chi-squared test, Wilcoxon

rank-sum test, or Fisher’s exact test, p value > 0.05) (Tables 1

and S1). The only exceptions that were statistically significant

were heart rate, CRP, and blood urea (p < 0.05).

Preoperative transcriptome profiles using RNA sequencing

were derived for all 267 patients and yielded 776 differentially ex-

pressed genes (DEGs) (DESeq2 or edgeR, adjusted p value %

0.05, STAR Methods) for patients who went on to develop post-

operative infection (n = 126) compared to those who did not (n =

141) (Table S2). Preoperative samples are referred to by their

respective postoperative outcome unless otherwise noted.

The large number of DEGs supported our hypothesis that a

unique preoperative phenotypic state characterizing the risk of

developing postoperative infection exists. Hierarchical clus-

tering analysis revealed six clusters of differing expression pat-

terns between the two groups (Figure 1A; Table S2). The com-

mon enriched functionality within these clusters comprised

immune system-relevant categories including hapto-/hemoglo-

bin synthesis (cluster 3), chemokine binding (cluster 5), and

T cell differentiation (cluster 6) due to differential expression of

immune response-relevant factors such as integrins (ITGB3,

ITGB5, ITGB7), glycoproteins (CD8, CD59, CD74, CD151,

CD163, CD177), and chemokines (CCR4, CCR5, CCR8)

(Figure 1A).

With regard to gender-specific expression signatures, we

identified 72 DEGs common in both genders, opposed to 421

and 271 DEGs uniquely identified in males and females, respec-

tively (Figure 1B; Table S2). These 72 DEGs possess immune

response functionality (e.g., ITGB3, ITGB7, TNFAIP8L1) and

encode for zinc-finger proteins (ZBTB47, ZCCHC3, ZNF316,

ZNF580, ZNF787), transmembrane activity (TMEM185A,

TMEM250), and hemoglobin (HBG1). Most of these genes

showed the same fold change direction and were up-regulated

in both genders. Only the adhesion-relevant gene ADGRG7

was significantly down-regulated in females opposed to signifi-

cant up-regulation in males. Of note, 43 (60.5%) of the 72 com-

mon DEGs were associated with chemokine binding, while 15

(21%) are associated with T cell differentiation, a functional

enrichment that was also observedwhen using all samples (clus-
2 Cell Reports Medicine 5, 101712, September 17, 2024
ters 5 and 6, Figure 1A). Only 16% of all up-regulated DEGs and

11.6% of down-regulated DEGs in males showed opposite fold

changes in females, while only 1.7% up- and 8.1% down-regu-

lated female-specific DEGs showed opposite fold changes in

males (regardless of significance in the opposing gender,

Figure 1C).

In summary, preoperative transcriptome profiles differed

distinctly between patients who progressed to postoperative

infection and those who did not. Separate gender-specific tran-

scriptome profiles showed a primarily congruent expression di-

rection but included differing fold changes for infection

compared to an uninfected outcome. Taken together, the tran-

scriptional phenotype appears similar between the two genders

in preoperative samples with postoperative infection compared

to non-infection status.

Co-expression networks reveal specific module
patterns for postoperative sepsis
Co-expression network analysis offers a powerful complemen-

tary approach to reveal contextualized molecular functions.24–26

Using the same preoperative samples as before (developing

postoperative infection or not, Figure 1), we explored co-expres-

sion networks to detect gene modules with concerted expres-

sion patterns toward further postoperative outcomes including

a non-infectious systemic inflammatory response (SIRS+), un-

complicated infection (UInf+), and sepsis. Based on DEGs differ-

entiating infection outcome using all samples or gender-specific

subsets, we generated co-expression networks and identified

modules by weighted gene co-expression network analysis

(STAR Methods, Figure 2A; Table S3). After filtering for function-

ally annotated DEGs showing high correlation to at least one

further annotated DEG (Spearman r R 0.7, false discovery

rate [FDR] %0.05), our network comprised 486 DEGs and

5,232 correlation edges (Figure 2A). Modules enriching for

cellular defense and T cell activation, epithelial cell adhesion,

or taste receptor activity included DEGs primarily originating

from the analysis using all samples, whereas modules enriching

for GTPase regulator activity, cytokinesis, or non-motile cilium

assembly were dominantly differentially expressed in samples

of females with differing infection status (Figure 2A).

To exclude base expression and correlation bias, we normal-

ized all expression and correlation information by samples from

SIRS� patients (Figure 2B; Table S3). Infected patients (sepsis

and UInf+) showed significantly higher expression differences

compared to SIRS+ patients irrespective of gender (p %

1.7e�10 using all, only female, or only male samples; p value ac-

cording to multiple test-adjusted two-tailed pairedWilcoxon test

here and in the following, Table S4). Gene correlations between

sepsis compared to SIRS+ samples also differed significantly (p

% 0.04, Table S4). Gene correlation between UInf+ and SIRS+

samples differed significantly only for male samples (p =

6.1e�04, Table S4), indicating a more pronounced expression

shift in the response toward systemic inflammation in males

compared to females. Three modules showed significant differ-

ences in expression pattern across different operation out-

comes: cellular defense response/T cell activation, GTPase

regulator activity, and non-motile cilium assembly/cytokinesis

(test statistics summaries in Table S4).



Table 1. Patient characteristics

Characteristic n Inf+, n = 126a,b Inf�, n = 141a,b pc Sepsis+, n = 77a UInf+, n = 49a,b SIRS+, n = 31a,b SIRS�, n = 110a,b pd

Gender 267 0.68 0.11

Female 32 (25%) 40 (28%) 14 (18%) 18 (37%) 10 (32%) 30 (27%)

Male 94 (75%) 101 (72%) 63 (82%) 31 (63%) 21 (68%) 80 (73%)

Age (years) 267 66 (57, 73) 66 (58, 72) 0.97 68 (58, 73) 64 (55, 74) 66 (61, 72) 66 (57, 72) 0.87

Ethnic origin 262 0.09 0.23

Asian or Asian British 2 (1.6%) 1 (0.7%) 1 (1.3%) 1 (2.0%) 0 (0%) 1 (0.9%)

Black or Black British 2 (1.6%) 5 (3.6%) 2 (2.7%) 0 (0%) 1 (3.3%) 4 (3.7%)

Chinese or other

ethnic group

4 (3.2%) 0 (0%) 4 (5.3%) 0 (0%) 0 (0%) 0 (0%)

White 116 (94%) 132 (96%) 68 (91%) 48 (98%) 29 (97%) 103 (95%)

Temperature (0.1�C) 221 36.50 (36.40, 36.70) 36.50 (36.40, 36.70) 0.72 36.50 (36.40, 36.70) 36.50 (36.40, 36.70) 36.40 (36.20, 36.50) 36.50 (36.40, 36.80) 0.04

Heart rate (BPM) 256 75 (67, 85) 72 (63, 80) 0.03 73 (65, 84) 79 (71, 85) 72 (60, 78) 72 (63, 80) 0.05

Systolic BP (mmHg) 255 129 (112, 142) 133 (118, 146) 0.09 125 (110, 142) 130 (115, 146) 124 (108, 146) 135 (119, 146) 0.10

Diastolic BP (mmHg) 255 75 (65, 84) 76 (65, 85) 0.86 73 (65, 84) 78 (68, 90) 70 (60, 79) 77 (70, 85) 0.02

MAP 256 91 (82, 101) 93 (84, 105) 0.42 90 (81, 100) 95 (83, 110) 86 (76, 103) 95 (88, 105) 0.03

Total respiratory

rate (bpm)

239 16 (14, 17) 15 (14, 16) 0.13 15 (14, 16) 16 (14, 17) 16 (14, 17) 15 (14, 16) 0.07

FiO2 146 0.21 (0.21, 0.21) 0.21 (0.21, 0.21) 0.12 0.21 (0.21, 0.21) 0.21 (0.21, 0.21) 0.21 (0.21, 0.21) 0.21 (0.21, 0.21) 0.34

WBC count (3109 liter) 184 7.65 (6.36, 9.87) 7.00 (5.94, 8.54) 0.06 7.40 (6.09, 9.80) 8.03 (6.81, 9.90) 8.14 (6.48, 9.06) 6.84 (5.84, 8.20) 0.03

Neutrophils (3109 liter) 114 4.70 (3.71, 6.10) 4.30 (3.69, 5.90) 0.45 4.26 (3.65, 5.80) 5.46 (4.13, 6.22) 5.10 (4.40, 6.20) 4.10 (3.58, 5.60) 0.07

Lymphocytes (3109 liter) 114 1.70 (1.33, 2.30) 1.74 (1.20, 2.30) 0.66 1.90 (1.32, 2.30) 1.56 (1.39, 2.43) 2.20 (1.20, 2.40) 1.72 (1.20, 2.30) 0.97

Monocytes (3109 liter) 114 0.60 (0.50, 0.70) 0.60 (0.50, 0.70) 0.61 0.60 (0.50, 0.75) 0.60 (0.50, 0.70) 0.60 (0.40, 0.80) 0.59 (0.50, 0.70) 0.96

Eosinophils (3109 liter) 113 0.20 (0.10, 0.30) 0.20 (0.10, 0.26) 0.55 0.20 (0.10, 0.30) 0.20 (0.10, 0.30) 0.10 (0.10, 0.20) 0.20 (0.10, 0.28) 0.73

Platelets (3109 liter) 183 239 (207, 294) 244 (189, 314) 0.40 231 (199, 284) 268 (235, 320) 235 (194, 289) 247 (186, 315) 0.31

INR 121 1.00 (0.94, 1.09) 1.00 (0.97, 1.05) 0.51 1.00 (0.94, 1.05) 1.00 (0.94, 1.13) 1.00 (0.98, 1.10) 1.00 (0.97, 1.03) 0.65

APPT (seconds) 150 30 (26, 32) 31 (27, 34) 0.31 30 (23, 32) 30 (27, 32) 30 (25, 33) 31 (27, 34) 0.70

CRP (mg/L) 69 2 (1, 7) 1 (0, 2) 0.02 2 (1, 5) 4 (1, 12) 1 (0, 1) 1 (0, 4) 0.09

Blood urea (mmol/L) 145 5.1 (3.9, 7.7) 6.4 (4.8, 9.6) 0.03 5.5 (4.2, 7.9) 4.9 (3.9, 6.4) 7.0 (5.8, 9.1) 6.1 (4.6, 9.8) 0.08

Blood creatinine (mmol/L) 184 78 (66, 92) 80 (69, 89) 0.78 78 (67, 92) 78 (63, 93) 82 (73, 94) 79 (67, 88) 0.62

APPT, activated partial thromboplastin time; BP, blood pressure; CRP, C-reactive protein; INR, international normalized ratio; MAP, mean arterial pressure; WBC, white blood cells.
an (%), Median (IQR).
bInf+, infection; Inf-, non-infection; UInf+, uncomplicated infection; SIRS, non-infectious systemic inflammatory response syndrome.
cFisher’s exact test, Wilcoxon rank-sum test.
dFisher’s exact test, Kruskal-Wallis rank-sum test.
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Figure 1. Gene expression analysis of all preoperative samples categorized by infected and non-infected postoperative outcome
(A) Heatmap and hierarchical clustering of 267 samples of both gender including 776 identified differentially expressed genes (DEGs) discriminating infected and

non-infected postoperative outcome (adjusted p % 0.05 according to DESeq2 or edgeR; see STAR Methods). Enriched Gene Ontology (GO) categories for six

identified expression clusters are indicated. Named genes are also differentially expressed when investigating gender-specific expression.

(B) Venn Diagram of number of significant DEGs between infected and non-infected patients for each gender individually. The 72 genes are named and

associated to GO categories in (A).

(C) Significant up- and down-regulated DEGs for males and females, respectively. Each panel shows purely up- or down-regulated DEGs in the upper row

compared to the expression direction in the opposite gender in the lower row. Labeled genes were the top 20 up- or down-regulated DEGs per gender. Positive

and negative indicate genes showing the same or opposite fold change direction, respectively, in male and female samples with infection compared to non-

infection postoperative outcome. logFC = Log2 of expression fold change.
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Genes grouped in the module ‘‘cellular defense response/T

cell activation’’ (Figure 2A) were more expressed in sepsis sam-

ples using all (p = 2.5e�6) or male samples (p = 1.1e�9) and

significantly lower in female sepsis samples (1.6e�7) compared

to UInf+ samples. Highly concerted gene expression involved

immune-relevant genes that were previously identified; these

included ITGB7, CCL5, and its receptor CCR5, and further tar-

gets such as SPN. SIRS+ samples showed significantly lower

expression activity in this module compared to sepsis or UInf+

samples (p% 6.2e�6). Of note, when comparing gender-depen-

dent samples, females showed a significantly higher activation in
4 Cell Reports Medicine 5, 101712, September 17, 2024
this immune response-relevant module than males for UInf+

outcome (1.1e�9), but insignificant activation differences for

sepsis or SIRS+.

Genes included in the module with enriched GTPase regulator

activity are involved in correct actin cytoskeleton formation and

are a target for bacterial manipulation to ease bacterial entry into

host cells and escape phagocytosis and thus immune defense.27

The associated genes were significantly more activated in UInf+

than in sepsis or SIRS+ patients (p % 5.4e�9). Irrespective of

sepsis, UInf+, or SIRS+ postoperative outcomes, female-spe-

cific expression profiles yielded a significantly stronger
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Figure 2. Gene co-expression networks

(A) Visualization of merged co-expression networks based on annotated differentially expressed genes (DEGs) using preoperative samples with infection or non-

infection postoperative outcome. Edges refer to Spearman correlations ofR0.7 between genes in at least one sample set (all samples, only male, or only female

samples). Node color indicates for which preoperative sample set the respective gene was significantly differentially regulated. Enriched Gene Ontology (GO)

terms for identified modules of the co-expression network are indicated.

(legend continued on next page)
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expression response in the genes of this module compared to

males (p % 0.035).

Finally, genes of the ‘‘non-motile cilium assembly/cytokinesis’’

module were dominantly less expressed in UInf+ compared to

sepsis patients irrespective of gender (p % 5.2e�5), whereas

UInf+ compared to SIRS+ samples were significantly less ex-

pressed only in females (p = 0.003). Cilia are associated with

repeated chest infections and may thus play a role in the early

defense against inhaled pathogens.28 Sepsis differentiated

significantly from SIRS+ when combining samples from both

genders together, in particular for male-specific gene expression

in this module (p = 0.05 for samples of both genders and p =

3.7e�4 for the male subset). Gender-specific differences were

present in patient samples with a UInf+ or SIRS+ outcome (p =

0.048 and p = 7.3e�7, respectively), but not in samples with a

sepsis outcome.

In summary, T cell activity, GTPase, cilium assembly, and

cytokinesis modules differed, and these were mostly significant

between different postoperative outcomes. While the T cell ac-

tivity module was highest in sepsis patients, GTPase regulator

activity was most induced and cilium assembly/cytokinesis

module most reduced in UInf+ patients (Figure 2B). Gender-spe-

cific outcome subsets showed primarily the same expression di-

rection but also differed in, for example, the T cell activation

module with UInf+ outcome. Taken together, both relative

gene expression and co-expression correlations compared to

SIRS� samples showed gender-independent as well as punctu-

ated gender-specific characteristics for different molecular func-

tions involved in the response to infection (sepsis and UInf+).

This analysis suggests that, alongside gender-specific effects,

a gender-independent phenotypic signature may be present in

patients who are at risk of developing future sepsis.

Postoperative infection and sepsis can be predicted
from preoperative samples
We identified minor, albeit statistically significant, differences in

the patient-specific clinical factors heart rate, CRP, and blood

urea levels depending on whether patients developed postoper-

ative infection or not (Table 1). We therefore explored whether an

ML classifier would be able to predict infection onset based on

these preoperative clinical parameters (STAR Methods). Ac-

quired area under the receiver operating curves (AUROC) of

0.634 (95% confidence interval [CI95] = 0.625–0.643, Table S5)

suggested that the clinical characteristics of preoperative pa-

tients associated with our study cohort cannot be used for accu-

rate risk assessment for predicting postoperative infection.

When breaking down clinical outcomes into sepsis, UInf+,

SIRS+, or SIRS�, the clinical parameters temperature, heart

rate, diastolic blood pressure, mean arterial pressure, and white

blood cell count differed significantly in at least one group (Ta-

ble 1). Models of patient subsets based on these data differenti-

ating postoperative sepsis from postoperative UInf+, SIRS+, and

SIRS� achieved AUROC values of only 0.627 (CI95 = 0.614–
(B) Visualization of expression and correlation changes given preoperative sam

SIRS� postoperative outcome using all, male-, or female-associated samples. N

between each sub-group (sepsis, UInf+, SIRS+) against SIRS� (control). Edge co

sub-group against SIRS�. Spearman correlation differences %0.3 were omitted
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0.641), 0.636 (CI95 = 0.619–0.653), and 0.607 (CI95 = 0.595–

0.620), respectively (Table S5). As before, this exemplifies limited

ML classification performance when using only clinical

parameters.

Although there were only minor differences in the available

preoperative clinical data between groups with differing postop-

erative outcomes, RNA sequencing-based expression data of

preoperative samples yielded a significant number of DEGs

(Table S2). By using 1,282 DEGs arising from seven pairwise

comparisons as a starting point, we applied a combined

feature-reduction and performance assessment procedure to

develop expression-based ML prediction models (STAR

Methods, Table S2). We optimized ML models with fewer genes

when the increase in performance by adding more genes to the

respective ML gene signatures was minimal. In contrast to the

inadequate performance of ML models based on clinical data,

theMLmodels generated on gene expression could differentiate

infection and sepsis from other postoperative outcomes with

convincing power. We derived gender-independent classifica-

tion models with AUROC values ranging from 0.815 (CI95 =

0.810–0.821) to 0.910 (CI95 = 0.900–0.920; mean AUROC =

0.855), sensitivity ranging from 0.713 (CI95 = 0.705–0.722) to

0.767 (CI95 = 0.753–0.781; mean AUROC = 0.746), and speci-

ficity ranging from 0.743 (CI95 = 0.732–0.754) to 0.804 (CI95 =

0.786–0.821; mean AUROC = 0.769) using a balanced decision

threshold (Figure 3A; Table S5). Most samples could be classi-

fied correctly, ranging from 75% for the model Inf+ vs. Inf-to

83% for the model sepsis vs. SIRS+ (Figure 3B). All tracked sta-

tistical metrics including AUROC, accuracy, sensitivity, speci-

ficity, and their respective confidence intervals aswell as positive

and negative predictive values as functions of assumed preva-

lence are shown in Table S5. Our models could predict patient

outcome, even in the most challenging comparisons of sepsis

vs. UInf+ and sepsis vs. SIRS+ with AUROC/sensitivity/speci-

ficity of 0.872/0.762/0.759 (CI95: 0.863–0.881/0.750–0.775/

0.747–0.771) and 0.910/0.767/0.804 (CI95: 0.900–0.920/0.753–

0.781/0.786–0.821), respectively. In a diagnostic context where

patients need to be ‘‘ruled out’’ or ‘‘ruled in’’ for commencing

antibiotic therapy on the basis of having a postoperative infec-

tion, the decision threshold for our binary classification can be

optimized toward either ‘‘snout’’ (high sensitivity) or ‘‘spin’’

(high specificity) models (Table S5). Of note, using only male or

female samples yielded gender-specific classification models

with AUROC R0.8 (Table S5). Adding statistically relevant clin-

ical features as additional features to the identified model gene

signatures did not improve any of the gene expression-based

model performances (Table S5).

Notably, all classification models required only a few genes

(median 15 genes, interquartile range [IQR] 11.5–16, Figure 3C;

Table S5). Of all available gene expression data, only a pool of

72 genes remained after feature elimination as the basis for all

derived classification models. Forty-one of these 72 genes

were also part of a highly intra-connected module of the
ples with sepsis, UInf+, or SIRS+ postoperative outcome compared against

ode colors indicate the log2 fold change of mean normalized gene expression

lors indicate the difference in gene-gene Spearman correlations between each

for clarity.
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Figure 3. RNA sequencing-based model classification performance

(A) Mean AUROC curves and performance across TPR and FPR for the indicated seven classification models.

(B) Confusion matrices for the same models described in (A). n, number of samples after ROSE-based gender balancing (STAR Methods).

(C) Upset plot of the machine learning models using all preoperative samples from seven assessed comparisons referring to different postoperative outcomes.

Set size indicates the number of differentially expressed genes (DEGs) used in each comparison. Interaction size indicates the number of DEGs common across

different comparisons. The interaction matrix indicates the number of shared DEGs across different classification models.

(legend continued on next page)
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co-expression networks, including cilium assembly/cytokinesis

(e.g., TNFAIP3) and T cell activation (e.g., CCR5 and GZMH)

modules but also genes such as CENPB that are present in the

heterochromatin module (Figure 2A). While 13 of these genes

were used in at least two ML models, the remaining 59 genes

(82%) were part of individual ML models. Discriminating be-

tween different complex postoperative outcomes with high per-

formance thus requires distinct gene signatures. By algorithmi-

cally exploring the gene importance per model (STAR

Methods), we analyzed whether subsets of genes repeatedly ap-

peared to be main drivers of classification performance. By

investigating the top five most important genes per classification

model (Figure 3D), EMILIN1, KLF16, and MYDGF appeared as

important discriminators across multiple models; no single

gene alone was sufficient to allow for a highly predictive model.

Nonetheless, the achieved performance was remarkable, espe-

cially in light of using at most 17 genes as features for model

prediction.

The unique property of our classification models is the ability

to predict a prospective postoperative complication upon

expression data before elective surgery. At the time of publica-

tion, no similar studies were available for assessing prediction

of sepsis development using the transcriptional phenotype as

a risk-assessment tool. Consequently, until we perform pro-

spective validation studies, we are unable to directly test the pre-

dictive ability of our models in external cohorts but only to

examine whether any of the selected genes in the ML models

are still relevant after diagnosis of infection. We therefore tested

whether we could correctly classify patients with septic shock as

provided by an independent, publicly available dataset.29

Testing the most clear-cut models, Inf+ vs. SIRS� and sepsis

vs. SIRS�, offered very high classification performance (true

positive rate [c] 100%and 96%, respectively). Testing the perfor-

mance of the model with the more challenging comparison,

sepsis vs. SIRS+, still yielded a TPR of 75% (Table S5). Given

the impact of the recent COVID-19 pandemic, we additionally

performed RNA sequencing of blood samples from 61 affected

COVID-19 patients (including 51 with sepsis; STAR Methods)

and explored classification performance of the same models.

The majority of samples (TPR 98% for mild and TPR 77% for se-

vere, sepsis-like cases) were correctly classified for our model

Inf+ vs. SIRS�, while only 31 of the 51 patients (TPR 60%)

were correctly classified with our sepsis vs. SIRS� model. The

model sepsis vs. SIRS+ yielded again a good TPR with 41

correctly classified samples (TPR 80%, Table S5). These results

indicate that the prognostic models we developed, which are

based on pre-operation samples, include in part expression in-

formation that potentially allows to also discriminate ongoing

infection or sepsis.

To verify the RNA sequencing-based model classification re-

sults, we generated RT-qPCR data for all important gene fea-

tures (n = 72) of the most clinically interesting preoperative clas-

sification models using 77 patients (STAR Methods, Tables S5

and S6; Figure S1). Despite the different nature of RNA
(D) Heatmap representing the top 5 most important DEGs as indicated by the hig

across all seven classification models. DEGs shared by more than one classific

(sensitivity); FPR, false positive rate; CI95, 95% confidence interval.

8 Cell Reports Medicine 5, 101712, September 17, 2024
sequencing and RT-qPCR techniques and the lower number of

patients, using the same gene sets for new classification as

with RNA sequencing-based ML models, we achieved model

performances with high clinical potential as a risk-assessment

tool (mean AUROC of 0.766, Table S5; Figure S2). Given the

importance of predicting the risk of sepsis, we specifically tested

our RT-qPCR-based classification models for identifying sepsis

from other postoperative outcomes using a balanced cutoff for

classification decision (Table S5). Discerning sepsis from Inf�
achieved an AUROC of 0.791 (CI95 = 0.785–0.797), discerning

sepsis from SIRS� an AUROC of 0.751 (CI95 = 0.739–0.763),

discerning sepsis from a non-infectious inflammatory postoper-

ative outcome (sepsis vs. SIRS+) an AUROC of 0.820 (CI95 =

0.811–0.829), and, finally, discerning sepsis from UInf+ an

AUROC of 0.703 (CI95 = 0.685–0.722) using the respective RT-

qPCR-based classification models (Table S5). Having achieved

sufficiently high AUROC values for each of the tested models al-

lows optimization of different class cutoffs depending on needs

within a clinical context. Thus, high sensitivity at the cost of spec-

ificity (‘‘rule-in’’ for treatment) or vice versa (‘‘rule-out’’ for treat-

ment) models are feasible. Taken together, our RNA

sequencing-based high-performance MLmodels could be reca-

pitulated using RT-qPCR data and proposed classification

models based on at most 17 genes. For future perspectives,

these appear technically more appropriate toward complement-

ing clinical diagnostics than complete RNA sequencing ap-

proaches per individual.

DISCUSSION

Many patients develop sepsis, a life-threatening complication

that still carries large personal and societal burdens.2,3 Multiple

studies using various omic and other approaches have identified

prognostic biomarkers in septic patients.9,30–34 As the blood

samples in these studies were collected when patients were

already displaying clinical evidence of sepsis, none were predic-

tive of the risk of developing either uncomplicated infection or

sepsis. While there are well-described risk factors such as age,

immune suppression, and social deprivation, all these lack

sensitivity and specificity.

Preoperative blood samples show differential gene
expression toward sepsis
Here, we explored the possibility of a human phenotypic predis-

position at the transcriptomic level that could identify patients at

risk of developing postoperative infection with or without sepsis.

By analyzing the preoperative transcriptomic signatures of 267

patients undergoing elective major surgery, we detected a num-

ber of DEGs including integrins, CCR5, CD80, and VASH2 that

were associated with the subsequent development of sepsis.

Of note, integrins were recently proposed as novel targets for

sepsis therapy.35 CCR5 is a prime example of a gene that im-

pacts upon resistance to pathogens given that �1% of Cauca-

sian humans carry a 32-bp deletion in the gene leading to an
hest mean importance value using the varImp function of the R caret package

ation model are indicated in bold font. Abbreviations: TPR, true positive rate
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elevated resistance against HIV.36,37 CD80 may be involved in

sepsis-induced acute kidney injury.38,39 We also detected a

highly coordinated expression of ITGB7, CCL5/CCR5, and

SPN (also termed sialophorin or CD43) by co-expression anal-

ysis. This has been associated with discordant regulation of

TNF-a and IL-10 in association with mycobacteria.40 Thus our

analyses suggest that differential expression predisposing the

patient to developing uncomplicated infection or sepsis is

already manifested in preoperative blood samples.

Despite the high number of genes that appeared in the preop-

erative DEG and co-expression network analysis to differentiate

postoperative outcomes, a set of 72 genes was sufficient to

generate classification models reaching AUROCs in the range

of 0.815–0.910. Some genes, including GZMH, MYDGF,

PTGDR2, and SNN, were included across different classification

models. All four have been previously associated with tissue

damage, infectious disease, and sepsis, implicating an elevated

role in the host immune response.29,41–44 These genes also ap-

peared in our co-expression modules (GZMH, SNN, Figure 2A)

or were among the top five most important gene features in at

least one ML model signature (MYDGF, PTGDR2, SNN, Fig-

ure 3D). This exemplifies their expression differences and thus

potential importance for phenotypic differences in preoperative

samples that could predict postoperative outcome.
Transcriptomic profiles of preoperative samples differ
from established sepsis samples
Of note, the 72 genes of our ML models showed no overlap with

genes of the reported gene signatures for presymptomatic infec-

tion and sepsis up to three days before diagnosis.23 This hints at

remarkable differences in blood gene expression depending on

whether a patient has already a confirmed infection or sepsis

and may imply that early risk prediction is not achievable with

gene signatures derived from patients that have, or are shortly

about to have, infection or sepsis. Lastly, the biological rele-

vance of the genes selected in specific ML models was further

confirmed when classifying patients already with active infection

using cohorts of 61 COVID-19 patients and 28 septic shock pa-

tients.29 These results need to be interpreted with caution as our

models were trained on preoperative data of patients with future,

but not ongoing, infection and sepsis. Although our models

showed some capability to predict ongoing infection and sepsis,

the preoperative transcriptomic expression profiles with no

symptoms of infection would substantially differ from those of

patients with incipient or established infection or sepsis.
Limitations of the study
We recognize the need for prospective validation to confirm the

predictive capability of our ML-based classification models

before they are applied in a clinical setting. We show that our

identified risk assessment gene signatures can also classify pa-

tients with established infection and sepsis. Nevertheless, other

patient cohorts, for example cohorts over more diverse ethnic-

ities or with a different clinical context, need to be tested to

show that our identified preoperative risk signatures are general-

izable. It appears reasonable to attempt deriving infecting agent-

specific sepsis prediction signatures given the profound differ-
ences in impact of pathogens from different kingdoms.45,46

This question could be addressed in future, larger study cohorts.

Conclusion
We have shown here that it appears feasible to initiate counter-

measures such as antimicrobial therapy, not only at the time of

sepsis diagnosis but also even before any sign of infection or

complications thereof. Depending on the need, diagnostic tools

based on our models could be optimized toward either very high

sensitivity or specificity to allow for rule-out or rule-in decision

making (Table S5). If confirmed, our line of work will contribute

to improved risk assessment not just in patients before elective

surgery but also, potentially, more generally, in patients with

elevated health risks. An example would be expedited entry of

susceptible patients into vaccination programs for future

pandemics.47–49
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24. van Dam, S., Võsa, U., van der Graaf, A., Franke, L., and de Magalh~aes,

J.P. (2018). Gene co-expression analysis for functional classification and

gene–disease predictions. Brief. Bioinform. 19, 575–592. https://doi.org/

10.1093/BIB/BBW139.

25. Yang, Y., Han, L., Yuan, Y., Li, J., Hei, N., and Liang, H. (2014). Gene co-

expression network analysis reveals common system-level properties of

prognostic genes across cancer types. Nat. Commun. 5, 3231. https://

doi.org/10.1038/ncomms4231.

26. Ulas, T., Pirr, S., Fehlhaber, B., Bickes, M.S., Loof, T.G., Vogl, T., Mellinger,

L., Heinemann, A.S., Burgmann, J., Schöning, J., et al. (2017). S100-alar-
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The present study investigates preoperative samples from a recently reported study that demonstrated how postoperative transcrip-

tomic changes could identify patients developing infection with or without sepsis up to three days before clinical manifestations

become apparent.23 Ethical approval was granted through the Southampton and South-West Hampshire Multicentre Research

Ethics Committee (ref. 06/Q1702/152) and the protocol gained US Federal Wide Assurance Independent Review Board status

(IRB00001756). Patients were eligible for inclusion in the study if scheduled for ‘‘high-risk’’ elective surgery including extended

abdominal, cardiac, gynae-urological, thoracic and vascular operations and if they gave informed consent. Preoperative blood sam-

ples from these patients were collected and RNA sequencing performed to determine whether transcriptomic signatures in these

pre-surgery samples could predict postoperative outcomes, including uncomplicated infection and sepsis. Of the originally acquired

4,385 patient samples in the biobank we retrieved 267 preoperative samples of whom 126 came from patients who suffered post-

operative uncomplicated infection (n = 49, ‘‘UInf+’’) or sepsis (n = 77) (Figures S1A and S1B). Sepsis was identified using the Sepsis-3

criteria.1 An adjudication panel determined a high or definite likelihood of infection or sepsis from clinical and laboratory data.23 Pre-

operative samples were also taken from 141 patients determined as having a non-infectious post-operative course. This group was

subdivided into those developing a non-infectious systemic inflammatory response (n = 31, ‘‘SIRS+’’) and patients who made an un-

complicated postoperative recovery (n = 110, ‘‘SIRS-’’). Patient metadata including age, gender, cause of operation and affected

tissue are included in Table S1.

METHOD DETAILS

RNA extraction
Total RNA was extracted from whole blood preoperative samples and preserved with RNAlater (ThermoFisher). As per manufac-

turer’s guidelines 4 mL of vacutainer blood was added to 10.5 mL RNALater. 1.8 mL of RNAlater-preserved blood was used for

manual RNA extraction using the RiboPure-Blood Kit (Thermofisher) and following the manufacturer’s instructions.

RNA-seq QC, library preparation and sequencing
RNA quantity and quality were assessed using a NanoDrop Spectrophotometer and Agilent Bioanalyzer (2100). After quality control,

mRNA from organisms was enriched using oligo(dT) beads. rRNA and globin were removed using the TruSeq Stranded Total RNA

with Ribo-Zero Globin kit (Illumina). Library preparation and Illumina sequencing were performed by Novogene. mRNAwas randomly

fragmented by adding fragmentation buffer. The cDNA was then synthesized using mRNA template and a random hexamers primer,

followed by a custom second-strand synthesis buffer (Illumina), dNTPs(dUTP, dATP, dGTP and dCTP), RNase H and DNA polymer-

ase I to initiate the second-strand synthesis. Purification followed by AMPure XP beads, terminal repair, polyadenylation, sequencing

adapter ligation, size selection and degradation of second-strand U-contained cDNA by the USER enzyme. The strand-specific

cDNA library was generated after final PCR enrichment. QC of the constructed library included testing library concentration prelim-

inary with Qubit 2.0 Fluorometer (ThermoFisher), insert size with BioAnalyzer 2100 (Agilent) and qPCR to quantify effective library

concentration. Qualified QC checked libraries were loaded onto a NovaSeq 6000 S4 (Illumina) for sequencing using paired end

mode with 150 bp read length (2 3 150 cycles).

All preoperative samples were deposited in the GEO database with GEO-ID GSE208581 (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE208581).

RT-qPCR RNA QC, preprocessing and quantification
RNA transcripts to quantify with RT-qPCR were identified from all investigated classification models (n = 72, Tables S5 and S6). Ex-

tracted RNA was quantitated and quality-controlled on a QIAxpert instrument (Qiagen). An averaged concentration of RNA was

calculated based on all measured samples. A fixed volume (2 mL, equal to �100 ng) was used for all samples as input for the sub-

sequent cDNA synthesis, due to limited available RNA volume for some of the samples. cDNAwas synthesized from 100 ng total RNA

using the High-Capacity cDNA Reverse Transcription Kit (Thermofisher, cat. # 4368813) in a 20 mL reaction. Volumes of the different

kit components in each reaction were: 10x RTBuffer: 2mL, 25X dNTPMix (100mM): 0.8mL, 10XRTRandomPrimers: 2 mL,MultiScribe

Reverse Transcriptase: 1mL, Nuclease-Free H2O: 4.2mL, Total: 10 mL. 2 mL of total RNA and 8 mL of H2O was added to the 10 mLmas-

ter-mix. An NTC (No Template Control) reaction was set up for which no RNA and 10 mL of H2O was added to the reaction mixture. A

NEC (No Enzyme Control) reaction was set-up for which water was added instead of the MultiScribe Reverse Transcriptase enzyme.

2 mL of RNA was used as template for the reaction. The Standard curve was created based on a sample pool from a subset of the

samples. 1000 ng of RNA from the pool was used as template in a cDNA synthesis reaction. The cycling conditions for cDNA included

25�C for 10 min, 27�C for 120 min, 85�C for 5s and 4�C otherwise. cDNA was stored at �20�C. Pre-amplification and specific target

amplification (STA) was accomplished by combining a pool of each assay in a 1.5 mL tube and add 1 x TE buffer (29 samples for STA,

69 assays in in total). Assay pools were stored at�20�C. The STAmix was processed by using TaqMan PreAmpmasterMix (2x) and a

pooled assay mix (0.2x).

Samples were analyzed on a total number of 33 96.96 Fluidigm chips that were run on the Fluidigm BioMark HD instrument. The

number of technical replicates was 1 for the samples and standard curve. The cycling protocol included 70 �C at 40min and 60�C for
e2 Cell Reports Medicine 5, 101712, September 17, 2024
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30s for the thermal mix, 98�C 60 s for the hot start and 97�C 5 s (denaturation) and 60�C for 20 s (annealing) for the PCR cycle. The

NTC and NEC samples were loaded on each of the three chips. Raw data from the Fluidigm BioMark were analyzed in the Fluidigm

Real-Time PCR Analysis software v. 4.1.3 using the following settings (standard settings): Quality threshold: 0.65; Baseline correc-

tion: Linear (derivative); Ct Threshold method: User (detectors). The data from the software were then exported as Ct values to Excel

spreadsheets. The assays for Otulin and RANBP3 were used to normalize the relative abundance of transcripts between samples.

Missing data outside of detection limits were imputed using the R package mice (v3.16.0) with default settings.

COVID-19 sample collection
Blood was sampled from 61 patients with community-acquired pneumonia by SARS-CoV-2 (51 of those patients were classified as

having sepsis because they met the Sepsis-3 criteria) of either gender within the first 24 h of hospital admission from three different

study sites in Greece. RNAwas preserved in RNAlater. This was a sub-study of the ESCAPE study58 which has been approved by the

National Ethics Committee of Greece (approval 30/20) and by theNational Organization forMedicines of Greece (approval IS 021-20).

Sampling of 5 mL of whole blood was done before treatment with any biological disease-modifying drug or with corticosteroids

(EudraCT number 2020-001039-29; Clinicaltrials.gov NCT04339712) and poured into PAXgene tubes. Methodological details are

given in the supplementary material of the ESCAPE study publication.58

RNA sequencing was done following the protocol described above for preoperative samples and deposited in the GEO database

with GEO-ID GSE208587 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE208587).

RNA-seq preprocessing and analysis
RNA-seq raw data were processed following the GEO2RNA-Seq pipeline,50 an RNA-Seq pre-processing workflow and package for

analyzing read files, trimming of raw reads, mapping on reference genomes, counting reads per gene and finding significant differ-

entially expressed genes (DEGs). Quality of raw read data was checked using FastQC (v0.11.8). Reads were quality- and adapter-

trimmed using Trimmomatic (v0.39). Reads were rRNA-filtered using SortMeRNA version (v2.1b) with a single rRNA database

concatenated from all rRNA databases shipped with SortMeRNA. Reads were mapped against the human reference genome and

corresponding annotation GRCh38.99 (obtained from www.ensembl.org) using HiSAT2 (v2.1.0). Differentially expressed genes

(DEGs) were determined if significance (adjusted p % 0.05) was reported by either DESeq2 (v1.26),51 or edgeR (v3.28.1)52 and a |

log2(fold change)| R0.25. Clustering of significant DEGs was done by using K-means clustering. Heatmaps were created using

the R package ComplexHeatmap (v2.4.3).53 Venn diagrams were produced using the R package VennDiagram (v1.6.20).54

Gene co-expression networks were constructed based on all significant DEGs between postoperative infection and non-infection

outcome using all preoperative samples or only male or female specific preoperative samples were used. We computed Spearman

correlation between all DEGs for each dataset including Sepsis, UInf+, SIRS+ and SIRS- again using all preoperative or male or fe-

male specific preoperative samples. Correlations between DEGs were included in the co-expression network if the correlation was

significant (FDR %0.05) and high (absolute r R 0.7). Gene co-expression networks were constructed by using weighted gene co-

expression network analysis (WGCNA). GO terms for genes were obtained from Bioconductor package org.Hs.e.g.,.db (v3.11.4).

Gene enrichment analysis was performed using the R package ClusterProfiler (v3.16.1).55 Networks were visualized using cytoscape

(v3.7.0).56

Machine learning of classification models discriminating postoperative outcome
Classification was conducted for discriminating postoperative outcome based on preoperative samples, unless otherwise noted.

Prior to classification, samples were balanced for gender if all samples were used, using down-sampling. Next, supervised

random-forest using the Boruta wrapper method (up to 25 features allowed and otherwise default settings)57 to select the most rele-

vant gene features was performed. As input for Boruta 1282 protein encoding DEGs out of a total of 1932 differentially expressed

genes reported across pairwise comparisons of the infection and no infection groups with or without sepsis, UInf+, SIRS+ and

SIRS- groups were used (Table S2). 10-fold cross-validation was repeated 100 times applying a random search for optimal hyper-

parameters. The union of all gene features from the 10 best iterations in terms of reported AUROC were determined. Based on the

center-scaled protein-coding subset of these genes with non-zero variance across all considered samples recursive feature elimi-

nation was applied next to obtaining a minimum set of genes that supports AUROCR0.8 using again random-forest based classi-

fication. Performance was identified by running 100 times 10-fold cross-validation. Mean classification performance was checked

against classification using as small as possible set of genes (up to 20 features allowed) allowing for optimal AUROC values identified

after 100 times repeated recursive feature elimination runs. With these, 10-fold cross-validation was repeated 100 times and mean

statistical performance metrics including accuracy, AUROC, sensitivity, specificity, PPV and, NPV were tracked.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were processed in the R programming environment (v4.0.5). Differentially expressed genes were identified by

DESeq2 (v1.22.1),51 or edgeR (v3.24.3)52 as detailed out above. Significance for co-expression networks were calculated by one-

tailed Fisher exact test and using higher expression or correlation differences between the indicated groups as input for the required

2 3 2 tables.
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Supplementary Figure 1, Study Design to collect and process pre-operation samples of patients scheduled for 

elective surgery with different post-operative outcome, related to Table 1 and STAR methods. (a) CONSORT 

diagram and (b) flow chart of the study.  
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Supplementary Figure 2, Related to Figure 3. RT-qPCR based model classification performance. AUROC and 

confusion matrices are indicated. The color gradient denotes the probability threshold at any point along the AUROC 

curves over TPR and FPR. Mean performances for correct classification are indicated in respective confusion matrices. 

TPR/FPR: True/false positive rate. Further performance information is provided in Supplementary Table 5. RT-qPCR 

data is available in Supplementary Table 6. 
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Comparison of post-operative 

outcome Modules 

Expression 

(p-value) 

Correlation 

(p-value) 

Sepsis (♀♂) vs. SIRS+ (♀♂) All 5.1e-14 0.04 

Sepsis (♀) vs. SIRS+ (♀) All 1.6e-14 2.8e-03 

Sepsis (♂) vs. SIRS+ (♂) All 1.9e-13 3.7e-08 

UInf+ (♀♂) vs. SIRS+ (♀♂) All 2.4e-13 0.12 

UInf+ (♀) vs. SIRS+ (♀) All 1.2e-13 0.47 

UInf+ (♂) vs. SIRS+ (♂) All 1.7e-10 6.1e-04 

Sepsis (♀) vs. Sepsis (♂) All 0.06 1.7e-05 

UInf+ (♀) vs. UInf+ (♂) All 9.3e-11 2.5e-09 

SIRS+ (♀) vs. SIRS+ (♂) All 0.18 2.8e-03 

Sepsis (♀♂) vs. UInf+ (♀♂) Cell. defense resp./T cell activation 2.5e-06 NA 

Sepsis (♀) vs. UInf+ (♀) Cell. defense resp./T cell activation 1.6e-07 NA 

Sepsis (♂) vs. UInf+ (♂) Cell. defense resp./T cell activation 1.1e-09 NA 

SIRS+ (♀♂) vs. UInf+ (♀♂) Cell. defense resp./T cell activation 1.1e-09 NA 

SIRS+ (♀) vs. UInf+ (♀) Cell. defense resp./T cell activation 1.1e-09 NA 
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SIRS+ (♂) vs. UInf+ (♂) Cell. defense resp./T cell activation 6.2e-06 NA 

Sepsis (♀♂) vs. SIRS+ (♀♂) Cell. defense resp./T cell activation 1.1e-09 NA 

Sepsis (♀) vs. SIRS+ (♀) Cell. defense resp./T cell activation 1.7e-08 NA 

Sepsis (♂) vs. SIRS+ (♂) Cell. defense resp./T cell activation 1.1e-09 NA 

Sepsis (♀) vs. Sepsis (♂) Cell. defense resp./T cell activation 0.23 NA 

 UInf+ (♀) vs. UInf+ (♂) Cell. defense resp./T cell activation 1.1e-09 NA 

SIRS+ (♀) vs. SIRS+ (♂) Cell. defense resp./T cell activation 0.15 NA 

Sepsis (♀♂) vs. UInf+ (♀♂) GTPase regulator activity 4.6e-11 NA 

Sepsis (♀) vs. UInf+ (♀) GTPase regulator activity 1.7e-12 NA 

Sepsis (♂) vs. UInf+ (♂) GTPase regulator activity 5.4e-09 NA 

SIRS+ (♀♂) vs. UInf+ (♀♂) GTPase regulator activity 1.8e-11 NA 

SIRS+ (♀) vs. UInf+ (♀) GTPase regulator activity 3.5e-11 NA 

SIRS+ (♂) vs. UInf+ (♂) GTPase regulator activity 4.6e-11 NA 

Sepsis (♀♂) vs. SIRS+ (♀♂) GTPase regulator activity 9.3e-11 NA 

Sepsis (♀) vs. SIRS+ (♀) GTPase regulator activity 9.5e-10 NA 

Sepsis (♂) vs. SIRS+ (♂) GTPase regulator activity 1.1e-10 NA 
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Sepsis (♀) vs. Sepsis (♂) GTPase regulator activity 3.5e-08 NA 

 UInf+ (♀) vs. UInf+ (♂) GTPase regulator activity 0.04 NA 

SIRS+ (♀) vs. SIRS+ (♂) GTPase regulator activity 1.4e-09 NA 

Sepsis (♀♂) vs. UInf+ (♀♂) N.-m. cilium assembly/Cytokinesis 1.6e-08 NA 

Sepsis (♀) vs. UInf+ (♀) N.-m. cilium assembly/Cytokinesis 5.2e-05 NA 

Sepsis (♂)  vs. UInf+ (♂) N.-m. cilium assembly/Cytokinesis 4.6e-07 NA 

SIRS+ (♀♂) vs. UInf+ (♀♂) N.-m. cilium assembly/Cytokinesis 0.08 NA 

SIRS+ (♀) vs. UInf+ (♀) N.-m. cilium assembly/Cytokinesis 2.5e-03 NA 

SIRS+ (♂)  vs. UInf+ (♂) N.-m. cilium assembly/Cytokinesis 0.29 NA 

Sepsis (♀♂) vs. SIRS+ (♀♂) N.-m. cilium assembly/Cytokinesis 0.05 NA 

Sepsis (♀) vs. SIRS+ (♀) N.-m. cilium assembly/Cytokinesis 0.15 NA 

Sepsis (♂)  vs. SIRS+ (♂) N.-m. cilium assembly/Cytokinesis 3.7e-04 NA 

Sepsis (♀) vs. Sepsis (♂) N.-m. cilium assembly/Cytokinesis 0.31 NA 

 UInf+ (♀) vs. UInf+ (♂) N.-m. cilium assembly/Cytokinesis 0.05 NA 

SIRS+ (♀) vs. SIRS+ (♂) N.-m. cilium assembly/Cytokinesis 7.4e-07 NA 
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Supplementary Table 4, Related to Figure 2. Statistical comparisons of co-expression network components. 

Expression differences were assessed separately by log2 of fold change against SIRS- for each indicated postoperative 

outcome group. Expression (p-value) and Correlation (p-value) refer to FDR corrected p-values after paired Wilcoxon 

test for gene expression differences and correlation differences between genes. ♀♂: all samples, ♀: female samples, 

♂: male samples; UInf+: uncomplicated infection postoperative outcome; Cell. defense resp.: Cellular defense 

response; N.-m. cilium assembly: Non-motile cilium assembly (cf. Figure 2a); NA: test does not apply. 
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