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SUMMARY
Fibrolamellar carcinoma (FLC) is a rare, lethal, early-onset liver cancer with a critical need for new therapeu-
tics. The primary driver in FLC is the fusion oncoprotein, DNAJ-PKAc, which remains challenging to target
therapeutically. It is critical, therefore, to expand understanding of the FLC molecular landscape to identify
druggable pathways/targets. Here, we perform the most comprehensive integrative proteo-metabolomic
analysis of FLC. We also conduct nutrient manipulation, respirometry analyses, as well as key loss-of-func-
tion assays in FLC tumor tissue slices from patients. We propose a model of cellular energetics in FLC point-
ing to proline anabolism being mediated by ornithine aminotransferase hyperactivity and ornithine transcar-
bamylase hypoactivity with serine and glutamine catabolism fueling the process. We highlight FLC’s
potential dependency on voltage-dependent anion channel (VDAC), a mitochondrial gatekeeper for anions
including pyruvate. The metabolic rewiring in FLC that we propose in our model, with an emphasis on mito-
chondria, can be exploited for therapeutic vulnerabilities.
INTRODUCTION

Fibrolamellar carcinoma (FLC) is a devastating, early-onset,

rare cancer of the liver with no standard of care.1–3 Surgery is

the only intervention with curative intent, but many patients

experience recurrence or are not eligible given the advanced

stage of disease by the time of diagnosis. For patients whose

tumors are unresectable, there is no standard systemic ther-

apy, and the average survival period is 12 months.4 There is

a dire need for deeper understanding of the disease toward

new therapeutic options.

The most recurrent genetic lesion in FLC is a somatic, hetero-

zygous �400 kb deletion on chromosome 19, which leads to an

in-frame fusion of exon 1 of DNAJB1 with exons 2–12 of

PRKACA.5,6 The translation of the resulting transcript leads to

the chimeric protein, DNAJ-PKAc (DP). At least two studies

have demonstrated that DP is sufficient to initiate tumors in

mice,7,8 and even more recent work has shown that it may play

a role in tumor maintenance as well.9 Although there is wide-
Cell Reports Medicine 5, 101699, Septem
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spread interest in targeting DP, clinical inhibitors are not yet

available. It also remains a challenge to inhibit DP without also

affecting wild-type protein kinase A (PKA), which is critical for

normal physiology.10,11 Therefore, it is important to investigate

downstream mediators of FLC pathogenesis, as it will deepen

mechanistic understanding of FLC and potentially unveil addi-

tional therapeutic targets.

Some mechanisms by which DP transforms cells and re-

wires their behavior have been elucidated through a growing

number of cell signaling and molecular profiling experiments.1

Genome-scale studies have brought to light potential therapeu-

tic vulnerabilities. For example, one of our earlier studies defined

FLC-specific super enhancers, which may be critical for under-

standing cellular rewiring.12 Other studies have identified highly

dysregulated microRNAs, including those that have emerged

as compelling targets in pre-clinical studies of other aggressive

cancers.1 Despite these important advances, all of the ‘‘omics’’

landscaping has been largely focused on chromatin/transcrip-

tion and gene/microRNA expression.
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Only one prior study13 aimed to characterize the proteome

and metabolome of FLC (proteomics—n = 16 patient samples;

n = 4,620 proteins; metabolomics—n = 10 patient samples).

Here, we have carried out the most extensive integrative pro-

teo-metabolomic analysis of FLC (proteomics—n = 23 patient

samples; n = 8,485 proteins; metabolomics—n = 26 patient sam-

ples; n = 135metabolites). We included in the analysis previously

generated transcriptomic data and performed a suite of comple-

mentary experiments and assessments including (1) respirom-

etry on frozen, matched FLC tumors vs. non-malignant adjacent

liver (NML) patient tissue, (2) nutrient manipulation and seahorse

assays on a cell-basedmodel of FLC, (3) manual curation of rele-

vant clinical data pertaining to serum, plasma, and urine speci-

mens, and (4) key loss-of-function experiments in FLC patient tu-

mor slices to validate several critical components of our model.

RESULTS

Data quality
A schematic of the proteo-metabolomics experimental design is

shown in Figure S1. After applying quality control filters to the

data (see STAR Methods), twenty-three (proteomics) and

twenty-six samples (metabolomics) remained, of which seven-

teen were omics matched (present in both the proteomics and

metabolomics data). Principal-component analysis (PCA) and hi-

erarchal clustering were performed on samples with proteomic

and metabolomic data (Data S1and S2). The sufficiency of our

sample size was assessed by constructing an extreme gradient

boost machine learning (XgBoostML) pipeline with nested cross-

validation (CV) (Figures S2A and S2B; see STAR Methods) that

needed to fulfill at least one of two criteria: (1) the omics-based

stratification of patient cohort samples (nproteomics = 23 samples

and nmetabolomics = 26 samples; used throughout this study) is

comparable to that of physician diagnoses and/or (2) the

omics-derived model is generalizable to a new, independent

cohort of patient samples. The pipeline fulfilled both criteria for

proteomics and one of the criteria for metabolomics (Figures

S2C–S2F; see STAR Methods for more detail).

Amino acid transportmay be favored in FLCanddiverted
into protein synthesis
We first assessed proteins and metabolites that comprise

plasma membrane (PM) transport and metabolism of key nutri-

ents. For glucose exchange, we focused on the SLC2A (solute

carrier 2A) family given that this class of transporters specializes

in the transport of monosaccharides.14–17 Seven out of the thir-

teen members were identified across both our proteomics and

previously published transcriptomics datasets. Most notably,

SLC2A2, the major glucose transporter of the liver,18–20 was

significantly downregulated at both the protein (<1st percentile)

and transcript (5th percentile) level in FLC compared to NML

(FvsN), with no concomitant upregulation of any other SLC2A

member (Figures 1A and S3A). Moreover, glucose was signifi-

cantly depleted in FvsN (Figures 1A, S3B, and S3C).

Amino acid (AA) transporters come from a diverse range of

SLC families. We identified twelve transporters that are well

known for the exchange of AAs across the PM (curated from

GeneCards and Protein Atlas). Notably, six of the twelve AA
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transporters were significantly upregulated at the protein level

(Figures 1A, 1B, and S3A). Interestingly, only four out of the nine-

teen AAs identified in our metabolomics analysis were signifi-

cantly altered in abundance (Figures 1A, S3B, and S3C). Gluta-

mine was the only significantly depleted AA in FLC, while

proline, leucine, and valine were the 2nd, 3rd, and 7th most en-

riched metabolites, respectively (Figure S3B).

Enhancement of pathways for transcription and
translation of mitochondrial genes
There are twomain biological processes that encompass AA uti-

lization: metabolism and translation. Regarding the latter, histo-

logical observations have shown that FLC is rich in mitochondria

that are abundant in proteins.21–25 Therefore, we investigated

whether protein synthesis is skewed toward translation of mito-

chondrial proteins. Indeed, the subcellular compartment with the

highest increase in the median log2FC (FvsN) of its proteins

compared to the median log2FC of all proteins (background

set, n = 8,040) was the mitochondrion (Figure 2A). Moreover,

themedian log2FC of genes involved inmitochondrial translation

(n = 143) as well as transcription (n = 70), but not cytoplasmic

translation (n = 164) or transcription (n = 685), was significantly

increased compared to the median log2FC of all genes related

to the mitochondria (background set, n = 939) at the protein level

(Figures 2B and 2C).

While a few AA metabolic enzymes were upregulated in FLC,

the median log2FC of genes involved in six out of nine AA meta-

bolic pathways was significantly lower compared to the median

log2FC of all genes (background set, n = 8,040) at the protein

level (Figure 2D). Taken together, these results suggest that,

while catabolism of some AAs may be of importance in FLC,

there are likely additional purposes for the presumed elevated

AA transport, including but not limited to mitochondrial transla-

tion (Figure 2E).

Suggestive enhancement of TCA cycle paired with
dysfunctional ETC in FLC
We reasoned that rewiring of the network of small-molecule

transporters within the mitochondrial membrane would be

needed to satisfy the presumed heavy demand of AAs by the

mitochondria in FLC to fuel mitochondrial translation. Therefore,

we conducted a concordance analysis in FLC to assess the rela-

tionship between the abundance of small-molecule transporters

(proteomics) and small molecules (metabolomics) partitioned

into four groups: fatty acid (FA)-carnitine conjugates (Figure 3A),

nucleotides (Figure 3B), AAs (Figure 3C), and tricarboxylic acid

(TCA) cycle intermediates (Figure 3D). For each group, the num-

ber of significant metabolite-protein associations was used as a

proxy for the degree of rewiring. There were no significant

metabolite-protein associations for FA-carnitine conjugates.

The average number of significant metabolite-protein associa-

tions per metabolite was relatively the same for nucleotides

and AAs (�2.17 and �1.72, respectively), while it was �2-fold

higher for TCA cycle intermediates (�4.5).

Given the increased abundance of mitochondria in FvsN along

with the high number of significant metabolite-protein associa-

tions between TCA cycle intermediates and small-molecule

transporters, we next sought to determine if there was a strong



Figure 1. Amino acid transport may be favored in FLC and diverted into translation

(A) Descriptive model embedded with omics data depicting transport of sugars, amino acids, and fatty acids in FLC. Proteomics data—n = 23 samples; me-

tabolomics data—n = 26 samples.

(B) Descriptive model depicting the potential relationship between amino acid transport and protein translation in FLC. (A and B) Left side of each node—gradient

red is increasing log2FC (FLC vs. NML) and gradient blue is decreasing log2FC; Right side of each node—gray is not significant and yellow is significant

(proteins—FDR-adj p < 0.05; metabolites—FDR-adj p < 0.1); nodes associated with edges that have open arrowheads, proteins; double-line edges, transport;

nodes associated with double-line edges, metabolites; SLC, solute carrier; CEAAs, conditionally essential amino acids; EAAs, essential amino acids; NEAAs,

non-essential amino acids; BCAAs, branched-chain amino acids; ECM, extracellular matrix; green traffic light, stimulation.
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relationship between mitochondrial abundance and TCA cycle

enzymes. We directly measured mitochondrial abundance via

MitoTracker Deep Red (MTDR) in FLC as well as NML patient tis-

sue samples and assessed the degree of association with pro-

tein abundance (proteomics). Indeed, the TCA cycle contained

the highest proportion of proteins that were significantly associ-

ated with mitochondrial abundance in FLC (Figure 3E). More-

over, pathways pertaining to calcium signaling and homeostasis

contained the 3rd and 10th highest, respectively (Figure 3E). It is

well documented that calciummodulates TCA cycle flux through

regulating the activity of several TCA cycle enzymes.26 In NML,

none of the three aforementioned mitochondrial pathways

were among the top twenty in terms of proportion of proteins

that were significantly associated with mitochondrial abundance

(Figure 3F).

With the implications of an enhanced TCA cycle in FLC, we as-

sessed if this was reflected in oxidative phosphorylation

(OXPHOS)-related protein expression and activity. We detected
twelve of the thirteen genes on the mitochondrial genome

that encode proteins (all OXPHOS) in our proteomics dataset.

Although the median log2FC of genes involved in mitochondrial

translation (n = 143) showed a significant increase compared to

the median log2FC of all genes localized to the mitochondria

(background set, n = 939), all but one of the OXPHOS-related

genes expressed and translated within the mitochondria were

not significantly altered at either the protein or RNA level (Fig-

ure S4A). Additionally, therewas no significant shift in themedian

log2FC of all genes (nuclear and mitochondrial) involved in the

ETC (n = 147) compared with the median log2FC of all mitochon-

drial-related genes (background set, n = 939) at the protein level

(Figure S4A). Intriguingly, the median log2FC of ETC assembly

factors (n = 55; genes needed for the maturation, function, and

stability of ETC complexes)27 displayed a significant increase

compared to all mitochondrial-related genes (Figure S4A).

Respirometry assays on frozen patient tissue (n = 6) revealed

no significant difference in maximal respiratory capacity (MRC)
Cell Reports Medicine 5, 101699, September 17, 2024 3



Figure 2. Enhanced transcription and translation of mitochondrial genes

(A) Dot plot where each dot represents the difference (x axis) between the median log2FC (FLC vs. NML) of the background set and a gene set that represents a

subcellular compartment (y axis). Error bars represent 95% confidence intervals.

(B–D) Comparison of log2FCs (FLC vs. NML; z-scaled) at the protein (x axis) and RNA (y axis) level. Density plots represent the distribution of the log2FCs

associated with proteins (x axis) and transcripts (y axis). (E) Descriptive model of amino acid utilization in FLC. Gene sets were identified as members of

(A) subcellular compartments, (B) the mitochondrial central dogma, (C) the cytoplasmic central dogma, and (D) amino acid metabolism. Background sets (bkgd)

are (A and D) all genes identified in both the transcriptomic and proteomic datasets, (B) all genes related to the mitochondrion, and (C) all genes not related to the

mitochondrion. (B–D) Lines associatedwith density plots represent themedian. (A–C)MitoCarta3.0 and (A, C, and D) Protein Atlas were used to identify gene sets.

(A–D) Gene sets (transcriptomic—n = 27 samples, proteomics—n = 23 samples) were compared to bkgd using Mann-Whitney (*FDR-adj p < 0.05; **FDR-adj

p < 0.01; ***FDR-adj p < 0.001; ****FDR-adj p < 0.0001). (B–D) For gene sets (excluding bkgd)—circles, genes with no significant log2FCs at either RNA or protein

level; diamonds, genes with significant log2FCs at both the RNA and protein level; triangles, genes with significant log2FCs at the protein level only; squares,

genes with significant log2FCs at the RNA level only; shape size, average expression values (from transcriptomic data). (A–D) Cyto, cytosol; Mito, mitochondria;

DNARep&Repair, DNA replication and repair; BCAA, branched-chain amino acids; ER, endoplasmic reticulum; Lyso, lysosome; NucMem, nuclear membrane;

Nucplasm, nucleoplasm; PM, plasma membrane; Perox, peroxisome.
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between FLC and NML for all complexes that were assessed,

although there was a trend toward decreased MRC in FvsN

(I, II, and IV; Figure S4B). Furthermore, assessment of mitochon-

drial respiration in a xenograft-derived FLC cell line (n = 3 trials)

showed no significant differences between basal respiration

and MRC (Figure S4C), which implies low spare respiratory

capacity (SRC).28 Low SRC is an indicator of high mitochondrial

respiratory activity but mitigated mitochondrial fitness pertaining

to aerobic respiration. Lastly, ATP was significantly depleted
4 Cell Reports Medicine 5, 101699, September 17, 2024
in FvsN although there was no significant perturbation in

ATP/ADP/AMP ratios (Figure S4D). Taken together, these

results suggest that high abundance of mitochondria in FLC is

paralleled with high instability and turnover of ETC complexes

(Figure S4E).

Glycolysis may be partially dispensable in FLC
Given the suggestive enhancement of the TCA cycle in FLC

despite a dysfunctional OXPHOS profile, we investigated if



Figure 3. Proteo-transcriptomic signature of mitochondrial respiration suggests an enhanced TCA cycle

(A–F) Concordance analysis in FLC patient tissue (n = 17 omics-matched sample pairs, 13 of which are FLC) between protein expression of (A–D) mitochondrial

small-molecule transporters (data points) and metabolites (x axis labels) composed of (A) FA/carnitine conjugates, (B) nucleotides, (C) amino acids, and (D) TCA

cycle intermediates. (A–D) Highlighted data points denote protein-metabolite pairs that are significantly (�log10(FDR-adj p) > 1.3) concordant (red) or discordant

(blue) in FLC. Arrows adjacent to labels denote direction of significant alterations in the abundance ofmetabolites (x axis labels; FDR-adj p < 0.1) in FLC compared

to NML. Gray data points indicate protein-metabolite pairs that were not statistically significant in concordance or discordance. Level of agreement between

mitochondrial content (measured by Mitochondria Deep Tracker Red Fluorescent Intensity—MTDR F.I.) and protein abundance of all genes related to the

mitochondria in (E) FLC (nmatchedpairs = 3; nrandompairs = 3) and (F) NML (nmatchedpairs = 4; nrandompairs = 2). Bars represent the top twenty mitochondrial pathways

(x axis) with the highest percentage (y axis) of proteinmembers whose abundance (proteomics) was significantly associated with mitochondrial content in (E) FLC

and (F) NML. (E and F) Colors correspond to percentage of protein members that are significantly upregulated (sig_up, red), significantly downregulated

(sig_down, blue), or unchanged (neutral, green) in FLC compared to NML. Protein_Diff_Express_Profile, protein differential expression profile; sig_up, signifi-

cantly up; sig_down, significantly down; Carb, carbohydrate; BCAA, branched-chain amino acids; AA, amino acids; metab, metabolism; Cholest, cholesterol.

(E and F) MitoCarta3.0 was used to identify gene sets.
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glucose was used as a primary fuel. Themedian log2FC of genes

involved in glucose production and storage (n = 45) was notably

decreased compared to the median log2FC of all genes (back-

ground set, n = 8,040) at both the protein and RNA level (Fig-

ure 4A). Notably, though, the median log2FC of glycolytic genes

(n = 97) also was markedly reduced compared to the median

log2FC of all genes (background set, n = 8,040) at the protein

level, but not at the RNA level (Figure 4A). Moreover, the signifi-

cant depletion of glucose was consistent with the significant
downregulation of the major glucose transporter in the liver,

SLC2A2 (Figure 1). We performed a closer inspection of the

glycolytic genes, separating those that are liver specific from

those that are muscle specific. The median log2FC of muscle-

specific glycolytic genes (n = 19) was increased compared to

the median log2FC of all glycolytic genes (background set, n =

91) at the protein and RNA levels (Figure 4B). Conversely, the

median log2FC of liver-specific genes (n = 26) was significantly

decreased compared to the median log2FC of all glycolytic
Cell Reports Medicine 5, 101699, September 17, 2024 5



Figure 4. Suggestive decoupling of glycolysis from pyruvate production

(A–C) Comparison of log2FCs (FLC vs. NML; z-scaled) at the protein (n = 23 samples) and RNA (n = 27 samples) level. Gene sets were identified that (a) participate

in glycolysis aswell as glucose production/storage and have (B andC) tissue specificity to liver or muscle. Background set (bkgd) is (B) all genes that participate in

glycolysis and (A and C) all genes identified in both omics’ datasets. (A–C) Protein Atlas database was used to identify gene sets. Six-day glucose titration assay

on FLC cell linemeasuring (D) ATP abundance (n = 8 samples for Ctrl 2 and zero concentration; n= 4 samples each for remaining concentrations) and (E) cell death

(n = 4 samples per concentration).

(D–G) High, Normal, and Low indicate glucose concentrations above, within, and below normal physiological range, respectively. Inhibition of glycolysis via

2-deoxyglucose (2-DG) on fresh tissue slices from (F) patients afflicted with FLC (n = 4 biological replicates) or other cancers and (G) NOD scid gamma (NSG)

mouse flank tumors seeded by either HepG2 or FLC primary cells. (F) BioRep, biological replicate; DMSO, control condition; CRLM, colorectal liver metastases;

EHE, epithelioid hemangioendothelioma; HCC, hepatocellular carcinoma. (D–F) RQV, relative quantitative value.Mann-Whitney used for statistical assessment of

(A–C) (*FDR-adj p < 0.05; **FDR-adj p< 0.01; ***FDR-adj p< 0.001; ****FDR-adj p< 0.0001). (A–C) For gene sets (excluding bkgd), circles, geneswith no significant

log2FCs at either RNA or protein level; diamonds, geneswith significant log2FCs at both the RNA and protein level; triangles, geneswith significant log2FCs at the

protein level only; squares, genes with significant log2FCs at the RNA level only; shape size, average expression values (from transcriptomic data).
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genes (background set, n = 91) at both the protein and RNA

levels (Figure 4B). This preference for muscle-specific enzymes

in FLC tumors, which we termed ‘‘glycolytic switch,’’ was not de-

tected in a global analysis of all proteins, indicating specificity of

this result to the glycolytic pathway (Figure 4C).

We performed a six-day glucose titration assay on a xeno-

graft-derived FLC cell line,29 and we did not observe any nega-

tive impact on ATP levels (a proxy for cell health and viability) or

cell death at concentrations of glucose as low as 0.679 mM
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(well below the normal physiological range; Figures 4D and

4E). Even in the complete absence of glucose, cell viability

was only impacted by approximately 40% to 50%. Moreover,

inhibition of glycolysis via 2-deoxyglucose (2-DG) at 2.5 mM in

fresh tissue slices from the liver tumors of FLC patients had

no impact on cell viability (Figure 4F). This contrasts with the

same dose in fresh tissue slices from tumors of other cancers

known to have moderate to high glycolytic capacity (Figure 4F).

The contrast remained evident when comparing the impact



Figure 5. Serine may be a major contributor to pyruvate generation for the TCA cycle

(A) Line plot of metabolomic data mapping metabolites along the trajectory of glycolysis in FLC (solid line; n = 20 samples) compared to NML (dashed line; n = 6

samples). Colored labels denote metabolites that are significantly depleted (blue) or enriched (red) in FLC. Data points and error bars represent mean abundance

and standard deviation, respectively; * FDR-adj p value < 0.1.

(B and C) Schematic that depicts inputs to pyruvate production. Excluding gray arrows, arrow size is directly associated with arrow color. Node size is arbitrary.

Questionmarks refer to (C) genes that are suspected to be involved in contributing to the pyruvate pool. Background (bkgd; gray data points) is all genes identified

in both omics’ datasets (transcriptomics—n = 27 samples; proteomics—n = 23 samples).

(D) Protein abundance profile of suspected contributors to pyruvate pool in FLC (n = 16 samples) compared to NML (n = 7 samples).

(E) Knockdown of SDS in fresh tissue slices derived from non-malignant liver tissue (n = 2 biological replicates) and tumors of patients afflicted with FLC (n = 2

biological replicates) or HCC (n = 1 biological replicate). HCC, hepatocellular carcinoma; BioRep, biological replicate. (C) For the highlighted genes, circles, genes

with no significant log2FCs at either RNA or protein level; diamonds, genes with significant log2FCs at both the RNA and protein level; triangles, genes with

significant log2FCs at the protein level only; squares, genes with significant log2FCs at the RNA level only; shape size, average expression values (from tran-

scriptomic data). Coloration of labels correspond to genes with a significant increase (red) or decrease (blue) in log2FC at least at the protein level. A green label

indicates no significant alteration at the protein level.
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of 2-DG administration up to 5 mM (over three orders of magni-

tude higher than the previous dose) in fresh tissue slices

derived from NOD scid gamma (NSG) mouse flank tumors

seeded by either HepG2 or FLC primary cells (Figure 4G). While

the glycolytic switch in the liver tumor to muscle-specific en-

zymes may be an adaptation to efficiently scavenge glucose,

it appears to be dispensable as illustrated by the lack of an ef-

fect of 2-DG on the viability of fresh tissue slices derived from

the tumors of patients or mouse models.
Serine may be a major contributor to pyruvate
generation for the TCA cycle
As previously mentioned, the significant depletion of glucose

was consistent with the significant downregulation of the ma-

jor glucose transporter in the liver, SLC2A2 (Figure 1; Fig-

ure 5A). In sharp contrast, pyruvate and lactate were signifi-

cantly elevated (Figure 5A), suggesting that there may be

sources other than glucose for the buildup of glycolytic end

products.
Cell Reports Medicine 5, 101699, September 17, 2024 7
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A thorough investigation of enzymes involved in reactions that

include glucogenic AAs revealed that serine dehydratase (SDS),

an enzyme that converts serine to pyruvate and ammonia, was

in the 99th and 98th percentile for increased protein and RNA

abundance, respectively, in FvsN (Figures 5B–5D). Importantly,

knockdown of SDS in fresh, patient FLC tumor slices (n = 2 bio-

logical replicates) reduced cell viability by �65% (Figure 5E).

Taken together these findings may be indicative of a strong reli-

ance on SDS in FLC to sustain tumor viability via supply of

pyruvate.

Rewiring of the TCA cycle is associated with urea cycle
defects in FLC
A natural explanation for increased pyruvate (Figure 5A) may be

to fuel the TCA cycle. Among the TCA cycle intermediates iden-

tified in our metabolomics dataset, the marked elevations of ox-

oglutarate (alpha-ketoglutarate [AKG]), the product of the rate-

limiting step in the TCA cycle,30–32 was sharply contrasted with

depleted malate, the intermediate positioned at the end of the

TCA cycle (Figure 6A). Additionally, AKG was the fifth most en-

riched metabolite in the metabolomics data. Voltage-dependent

anion channels (VDACs) are situated in the outer mitochondrial

membrane, and they facilitate transport of negatively charged

metabolites, such as pyruvate, from the cytosol to the intermem-

brane space.33–35 VDAC1 and VDAC2were both significantly up-

regulated at the protein level, and most of the subunits that

compose the pyruvate dehydrogenase (PDH) complex were

significantly upregulated at the protein level (PDHA1, PDHB,

and DLD [Figure 6B]). Erastin, a small-molecule drug, is well-

known for inducing ferroptosis that is thought to be partly medi-

ated by binding to VDAC which leads to hyperpolarization of

the mitochondrial membrane and a decrease in NADH oxida-

tion.36–38 Additionally, there has been some evidence for the

degradation of VDAC by erastin with undetectable levels of

VDAC2 after 10 h of treatment.37,38 Moreover, sensitivity to era-

stin has been shown to be positively correlated with VDAC2

abundance.39 A dose-response curve with administration of era-

stin in our FLC cell line29,40 revealed an EC50 (half maximal effec-

tive concentration) of �2 mM (Figure 6C), and caspase-3 activity

was significantly elevated in our cell line administered 3 mM era-

stin compared to DMSO at every time point beyond 8 h in a 72 h

trial (Figure 6D). Moreover, incubation of fresh tissue slices from

the liver tumors of FLC patients with 2.5 mM of erastin over six

days dramatically reduced cell viability when compared to adja-

cent non-malignant liver tissue (Figure 6E). This effect was not

pronounced in tissue slices from patients with epithelioid he-

mangioendothelioma (EHE, a rare cancer that commonly origi-

nates in the liver), hepatocellular carcinoma (HCC; the most

common type of liver cancer), or colorectal cancer liver metasta-

ses (CRLMs) (Figure 6E).

Investigation of enzymes involved in the TCA cycle revealed

the significant upregulation of the mitochondrially located pro-

tein aconitase 2 (ACO2), while the protein abundance of cyto-

plasmic ACO1 was unperturbed (Figure 6B). More importantly,

all three subunits of isocitrate dehydrogenase (IDH) 3, the

rate-limiting enzyme of the Krebs cycle that participates in the

irreversible reaction of converting isocitrate to AKG using

NAD+ as a cofactor,30–32 were significantly increased in protein
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abundance (Figure 6B). IDH1 and IDH2 participate in a similar re-

action to IDH3 with three key differences: (1) the reactions are

reversible, (2) they use NADP+ as a cofactor rather than NAD+,

and (3) IDH1 is localized to the cytoplasm.41 IDH 1 and 2 are

typically not associated with the TCA cycle but rather facilitate

lipogenesis, regulation of glycolysis, repair of mitochondrial

oxidative damage, and defense against reactive oxygen species

(ROS).41 In the context of FLC, IDH2 protein abundance was un-

altered while IDH1 was significantly downregulated (Figure 6B).

To dissect the AKG finding further (Figures 6A and 6B), we per-

formed an analysis of genes that participate in either the produc-

tion or consumption of AKG (n = 52; Figure 6F). Ornithine amino-

transferase (OAT) was very distinct from the remaining fifty-one

genes in both its protein (99th percentile) and RNA (99th percen-

tile) log2FC in FvsN (Figure 6F). Importantly, OAT was previously

implicated as part of a sixteen-gene signature that was able to

distinguish FLC from the thirty-three different cancers compiled

in The Cancer Genome Atlas.42 OAT is at the nexus of the TCA

cycle, urea cycle, glutamine metabolism, and proline synthesis.

It commences the reversible conversion of ornithine and AKG

of the TCA cycle to glutamate and pyrroline-5-carboxylate

(P5C, the precursor to proline).43–46 Importantly, the second-

most significant protein association with ornithine from our

concordance analysis was IDH3B, a subunit of the rate-limiting

enzyme from the TCA cycle that produces AKG (Figure S5A).

In newborns, OAT deficiency leads to a decrease in ornithine47,48

as opposed to young children, adolescents, and adults in whom

its deficiency results in an increase of ornithine and decrease in

P5C.47,49,50 Therefore, we presumed that, in the context of FLC,

OAT likely favors production of P5C and glutamate. This is

further supported by the fact that proline, which is made from

P5C, is the second-most significantly enriched metabolite in

our metabolomics data (Figure S5B). Additionally, clinical meta-

data (Figure S5C) along with blood and urine panels (Figure S5D)

from case studies of FLC patients experiencing hyperammone-

mia combined with our omics data suggest a rewired urea cycle

that supports proline production (Figure S5E; Figure 7A).

Mitochondrial GLS-ALDH18A1-PYCR is a critical axis in
FLC
As mentioned previously, OAT connects the urea and TCA cy-

cles with the proline synthesis pathway. Additionally, proline

can be completely derived from glutamate.51 However, gluta-

mate is a major contributor to multiple pathways that include

nucleotide synthesis, glutathione synthesis, AA synthesis,

TCA cycle, one-carbon metabolism, and urea cycle.51–53 So,

we next performed an analysis on genes (n = 62) that participate

in reactions involving glutamate. Strikingly, the increase in alde-

hyde dehydrogenase 18 family member A1 (ALDH18A1) protein

and RNA expression was the first- and second-most, respec-

tively, among all 62 enzymes (Figure 7B). Glutaminase (GLS)

upregulation was the third-most at both the protein and RNA

level (Figure 7B). Moreover, both genes are in the 99th percen-

tile for top-most significantly upregulated proteins, and 94th

(ALDH18A1) and 93rd (GLS) percentiles for top-most signifi-

cantly upregulated RNAs, in the entire dataset (Figure 7B).

ALDH18A1 is a mitochondrial enzyme that irreversibly converts

glutamate into L-glutamate gamma-semialdehyde, which



Figure 6. Rewiring of the TCA cycle is associated with bottleneck of AKG in FLC

(A and B) Line plot of (A) metabolomic and (B) proteomic data mapping the trajectory of the TCA cycle in FLC (solid line; proteomics—n = 16 samples; me-

tabolomics—n = 20 samples) compared to NML (dashed line; proteomics—n = 7 samples; metabolomics—n = 6 samples). Colored labels denote (A) metabolites

and (B) proteins that are significantly decreased (blue) or increased (red) in abundance in FLC compared to NML. Data points and error bars represent log2FC and

standard deviation, respectively—(A) *FDR-adj p value < 0.1 and (B) *FDR-adj p value < 0.05; **FDR-adj p value < 0.01; ***FDR-adj p value < 0.001.

(C) Dose-response curve measuring viability of FLC cell line (n = 5) with administration of erastin. EC50 = 1.969 mM; control, DMSO. Light-shaded green area

around curve represents 95% confidence interval.

(D) Caspase-3 activity in FLC cell line incubatedwith 3 mMof either DMSO (ctrl; n = 5) or erastin (n = 5) for 72 h. All time points were significant after 8 h.Wilcox used

for statistical analysis. Data points and error bars represent mean fluorescent intensity and standard deviation, respectively.

(E) Inhibition of VDAC via erastin (six-day trial) on fresh tissue slices from patients afflicted with FLC (n = 4 biological replicates) and other liver tumors (n = 1

biological replicate for each tumor type with the exception of CRLM in which n = 2 biological replicates). EHE, epithelioid hemangioendothelioma; HCC, he-

patocellular carcinoma; CRLMs, colorectal cancer liver metastases; BioRep, biological replicate; DMSO, control condition.

(F) Comparison of log2FCs (FLC vs. NML; z-scaled) at protein (n = 23 samples) and RNA (n = 27 samples) level. Gene sets were identified that participate in alpha-

ketoglutarate (AKG) consumption and production (Human Metabolome Database or HMDB used for identification). Background set (bkgd) is all genes identified

in both omics’ datasets.
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subsequently undergoes spontaneous degradation to produce

P5C.54–56 GLS irreversibly converts glutamine into ammonia

and glutamate. It is important to mention that there are two pa-

ralogs of GLS (both mitochondrial specific), GLS and GLS2.

GLS is often implicated in cancer progression57. GLS2 expres-

sion (protein and RNA) was unperturbed.

As with glutamate, glutamine contributes to a variety of meta-

bolic pathways. So, we next performed an analysis on genes
(n = 25) that participate in reactions involving glutamine. Indeed,

GLS was very distinct from the other twenty-four genes in both

its protein (99th percentile) and RNA (93rd percentile) log2FC (Fig-

ure 7C). A dose-response curve of GLS inhibition in our FLC pri-

mary cell line using SU-1, a pan-GLS inhibitor,58 revealed an

EC50 of � 5 mM (Figure 7D). GLS inhibition using 10 mM of

SU-1 negatively impacted cell viability by approximately 40%

(Figure 7E), and this effect was comparable to complete
Cell Reports Medicine 5, 101699, September 17, 2024 9



Figure 7. Glutamine likely serves as a critical substrate for proline production in FLC

(A–C) (A) Schematic (top) and correlation plot (bottom) depicting OAT nexus in FLC. Coloration of labels in correlation plot and nodes in schematic correspond to

proteins and metabolites with a significant increase (red) or decrease (blue) in log2FC in FLC (proteomics—n = 16 samples; metabolomics—n = 20 samples)

compared to NML (proteomics—n = 7 samples; metabolomics—n = 6 samples). Green coloration indicates no significant alteration. Comparison of log2FCs (FLC

vs. NML; z-scaled) at protein (n = 23 samples) and RNA (n = 27 samples) level for genes that participate in the consumption or production of (B) glutamate (Glu) or

(C) glutamine (Gln).

(D) Dose-response curve of FLC cell viability with varying concentrations (n = 8 replicates per concentration) of SU-1, a pan-glutaminase inhibitor. EC50 =

5.0267 mM. Light-shaded green area around curve represents 95% confidence interval.

(E) FLC cell viability under glutamine depletion and/or GLS inhibition. Mann-Whitney was used for statistical analysis. * FDR-adj p < 0.05; *** FDR-adj p < 0.001;

**** FDR-adj p < 0.0001; n.s., not significant.

(F) Serumammonia levels in patients afflicted with FLC comparing limited (n= 10) and extensive (n = 6) tumor burden usingMann-Whitney test (*FDR-adj p< 0.05).

JHU, John Hopkins University. Dotted line indicates the upper limit for serum ammonia. (A) For schematic, arrow size is directly associatedwith arrow color. Node

size is arbitrary. Red, increase; green, neutral; blue, decrease; gray, no data; elliptical node, protein; square node, metabolite; arrow, reaction; broken arrows,

series of reactions. (B andC) HumanMetabolomeDatabase was used to identify gene sets. (B andC) Gene sets were compared to bkgd usingMann-Whitney test

(*FDR-adjusted p < 0.05; **FDRFDR-adjusted p < 0.01; ***adjusted p < 0.001; ****adjusted p < 0.0001). (A–C) Background set (bkgd) is all genes identified in both

omics’ datasets. For the gene sets (excluding bkgd), circles, genes with no significant log2FCs at either RNA or protein level; diamonds, genes with significant

log2FCs at both the RNA and protein level; triangles, genes with significant log2FCs at protein level; squares, genes with significant log2FCs at RNA level; shape

size, average gene expression values (from transcriptomic data). (E) Bkgd, Background; RQV, relative quantitative value; Ctrl, control; FBS, fetal bovine serum;

Gln, glutamine.

Article
ll

OPEN ACCESS
glutamine depletion from media (Figure 7E). Interestingly, the

combination of glutamine depletion with GLS inhibition had no

further impact on cell viability than GLS inhibition alone (Fig-

ure 7E). The reactions performed by the GLS-ALDH18A1 axis
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are coupled with reverse reactions that are associated with

ALDH4A1 and glutamate-ammonia ligase (GLUL). ALDH4A1

irreversibly converts NAD+ and P5C into glutamate and NADH.

Subsequently, GLUL assimilates ammonia with glutamate and
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irreversibly produces glutamine. ALDH4A1 and GLUL were

significantly downregulated at the protein (4th and 12th percen-

tile, respectively) and RNA (3rd and 12th percentile, respectively)

levels in FvsN (Figures 7B and 7C).

Moreover, our data indicate that, along with ornithine transcar-

bamylase (OTC) deficiency and OAT hyperactivity, the GLS-

ALDH18A1 and ALDH4A1-GLUL axes coupled with enhanced

SDS may be major contributors to the ammonia accumulation

in FLC-induced hyperammonemia (HA) that we observe in pa-

tients (Figure 7F).

Potential shunting of P5C/proline into collagen
production via PYCR, PRODH, and P4HA
Starting with the reactant P5C, there are three critical proteins

that participate in proline metabolism: pyrroline-5-carboxylate

reductase (PYCR), proline dehydrogenase (PRODH), and prolyl

4-hydroxylase subunit alpha (P4HA). There are three known

paralogs of PYCR and two each for PRODH and P4HA. The

proteins encoded by PYCR1, PYCR2, PRODH, and PRODH2

all reside in the mitochondria while PYCR3 resides in the

cytosol.59–63 P4HA1 and P4HA2 reside mainly in the endo-

plasmic reticulum.64 PYCRs react NADH with P5C to produce

proline and NAD+, which in turn could help fuel the TCA cycle

and ATP production. PRODH and PRODH2 react proline and hy-

droxyproline, respectively, with oxidized flavin adenine dinucle-

otide (FAD+) to produce P5C (via PRODH), HO-P5C (via

PRODH2), and reduced flavin adenine dinucleotide ([FADH2];

via PRODH & PRODH2).59,61,65–67 P4HAs utilize AKG to hydrox-

ylate proline residues within procollagen chains, which results in

the production of succinate and collagen with hydroxyproline

residues.68–70

PYCR1, PYCR2, and P4HA2 were significantly upregulated at

the protein (96th, 99th, and 88th percentile, respectively; Fig-

ure S6A) level, andPYCR1 andP4HA2were also significantly up-

regulated at the RNA (97th and 92nd percentile, respectively; not

shown) level. PRODH2 and one of the isozymes of P4HA1 were

significantly downregulated at the protein (2nd and 11th percen-

tile, respectively; Figure S6A) and RNA (12th and 11th percentile,

respectively; not shown) level. PYCR3 and the other isozyme of

P4HA1 were not significantly altered (Figure S6A). PRODH pro-

tein was also elevated in FLC, though barely missed significance

(93rd percentile; p value = 0.061).

Given these data, we hypothesized that the rewired metabolic

network relating to proline/hydroxyproline synthesis could

contribute in part to enhanced production of collagen and path-

ways associated with extracellular matrix remodeling. We found

that the median log2FC of genes related to procollagen chains

(n = 55), proteoglycans (n = 32), and the lysosome (n = 93) was

significantly higher relative to the median log2FC of all genes

(background set, n = 8,040) at both the protein and RNA level

(Figure S6B). The median log2FC of genes involved in chon-

droitin, heparin, and keratin sulfate synthesis (n = 28) and degra-

dation (n = 22) was significantly higher relative to the median

log2FC of all genes (background set, n = 8,040) at the protein

level (Figure S6B). Additionally, the median log2FC of genes

involved in protein secretion (n = 98) was significantly higher rela-

tive to the median log2FC of all genes (background set, n =

8,040) at the protein level (Figure S6B).
The overall working model of cellular energetics in FLC is

shown in Figure S7.

DISCUSSION

Our working model of FLC metabolism proposes several unique

features that emerge in the cancer. First, AA import is favored in

the background of impeded glucose and long-chain fatty acid

(LFCA) entry (data not shown). We suspect that the metabolic

switch observed in the glycolytic pathway from liver- to mus-

cle-specific enzymes amplifies the tumor’s ability to scavenge

glucose which can serve as input for pyruvate generation. How-

ever, the juxtaposition of enriched pyruvate in our FLC metabo-

lomic profile with that of no significant impact on cell viability

from administration of 2-DG in FLC patient tissue slices (same

concentration of 2-DG had a negative impact on the cell viability

of other cancers) suggests an alternative primary input for pyru-

vate production other than glucose. Fructose is another major

sugar that could serve as input for the glycolytic end product, py-

ruvate. However, it is unlikely that fructose serves this role in FLC

as ketohexokinase (KHK), the major liver-specific enzyme that

allows fructose entry into the glycolytic pathway,71 is signifi-

cantly downregulated at the protein level (2nd percentile). Our

working model implicates SDS, the 10th most upregulated pro-

tein in FvsN, as amajor contributor to enrichment of pyruvate us-

ing serine as input. Reliance on SDS for pyruvate production

would likely circumvent dependence on glycolysis. Importantly,

knockdown of SDS in FLC patient tissue slices, but not HCC or

NML, leads to a greater than 2-fold loss in cell viability impli-

cating SDS as a potential therapeutic vulnerability.

Our working model also suggests that combined upregula-

tion of SLC16A3 (a major lactate transporter) and LDHB partic-

ipates in the recycling of lactate into pyruvate, which is shuttled

into a rewired TCA cycle. The proposed shuttling of pyruvate

into the TCA cycle is supported by the apparent dependency

of FLC on VDAC in patient tissue slices. Although erastin is

problematic as an actual therapy, it is valuable here in eluci-

dating the importance of VDAC function (one of which is pyru-

vate entry into the mitochondria) for FLC viability. This finding

motivates future studies into how else this aspect of the meta-

bolic network can be targeted in a manner that also mitigates

toxicity.

The main feature of the rewired TCA cycle in FLC is a critical

juncture point at AKG, one of the top-most enriched metabo-

lites in our metabolomic data. TCA cycle-related metabolites

prior to AKG display a steady increase in enrichment in FvsN,

while TCA cycle-related metabolites post-AKG display dimin-

ishing enrichment to the point where malate is significantly

depleted in FLC. A similar trend is evident in the proteomic

data, ten proteins that are significantly upregulated pre-AKG

contrasted by only one post-AKG. We suspect that the rewiring

characterized by the aforementioned proteo-metabolomic pro-

file creates a substantive bottleneck at AKG, which is subse-

quently provided to OAT. It may be the case that OAT, despite

likely increased activity, is not increased enough to metabolize

all of the available AKG, leading to an excess of AKG. Therefore,

we propose that OAT is the rate-limiting step in this metabolic

process.
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AKG feeds into a metabolic subnetwork that includes the TCA

and urea cycles in which OAT is at the nexus. Reconfiguration of

the urea cycle in FLC involves three important features: (1) an

OTC deficiency, (2) upregulation of the cytoplasmic (SLC7A2)

andmitochondrial (SLC25A15) transporters that have high spec-

ificity for ornithine,50 and (3) upregulation of the mitochondrial-

specific arginase (ARG2) that participates in the penultimate

step of the urea cycle converting arginine into urea and ornithine.

Plasma arginine levels in patients with FLC-associated HA are at

the very low end of the reference range, implying heavy demand

of this AA by the tumor. Additionally, ARG2 is among the top-

most significantly upregulated genes at both the protein (96th

percentile) and RNA (99th percentile) level. The reconfiguration

of the urea cycle results in the funneling of ornithine along with

AKG into a reaction commenced by OAT that yields glutamate

and P5C, the immediate precursor to proline. Additionally, the

significant upregulation of 50% of the identified AA transporters

in our dataset (almost exclusively at the protein level) and an

enhanced GLS-ALDH18A1 axis coupled to a suppressed

ALDH4A1-GLUL axis result in the shuttling of glutamine into

P5C generation. We provide evidence that FLC is most depen-

dent onGLSout of all glutamine-consuming enzymes by demon-

strating that (1) the negative impact on cell viability in our FLC pri-

mary cell line with complete glutamine depletion from the media

(affecting all glutamine-consuming enzymes) was comparable to

inhibition of GLS with SU-1 and (2) the combination of glutamine

depletion and GLS inhibition had no further impact on cell

viability than GLS inhibition alone. The aforementioned coupling

of the enhanced GLS-ALDH18A1 axis with that of suppressed

ALDH4A1-GLUL axis also ensures that glutamate generated

from OAT, GLS, other mitochondrial enzymes, or mitochondrial

import, is siphoned into P5C generation.

This centralization on P5C production is leveraged by

enhanced mitochondrial-specific pyrroline-5-carboxylate re-

ductases (PYCR1 and PYCR2) that utilize NADH to convert

P5C into proline and NAD+. We suspect the aforementioned re-

action has three major effects in FLC: (1) generation of proline for

subsequent use in producing collagen to be incorporated into

strong fibrous bands, the morphological hallmark of FLC, (2)

regeneration of NAD+ to fuel the TCA cycle, and (3) diversion

of electrons away from the ETC. The mitochondrial proline pool

is presumed to have two fates, export into the cytoplasm via

SFXN4 followed by incorporation into collagen or reconversion

into P5C by PRODH which requires the cofactor, FAD+.

P4HA2 upregulation in FLC is consistent with what has been

observed in other cancers.72 Additionally, SFXN4 and PRODH

protein abundance displayed a trend toward elevation in FLC

and barely missed significance (p = 0.064 and p = 0.061, respec-

tively). PRODH is known to generate elevated levels of ROS rela-

tive to ETC complexes.73–76 Moreover, PRODH has been impli-

cated in reducing mitochondrial respiratory fitness.76

The mitochondrial genome encodes thirteen proteins that are

all involved in oxidative phosphorylation.77 We detected twelve

of the thirteen in our omics datasets. While genes involved in

mitochondrial-specific translation and stability of ETC com-

plexes seemed to be enhanced in FLC, most mitochondrial-spe-

cific genes involved in OXPHOS (eleven out of the twelve)

showed no significant alterations. Despite increased mitochon-
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dria in FLC,21–25 there was no difference in MRC of ETC com-

plexes in FvsN, suggesting FLC-associated ETC dysfunction.

ETC dysfunction was also evident in our FLC cell line, which

showed no significant differences between basal respiration

and MRC, which is indicative of low SRC.28 We suspect that

enhanced proline metabolism in FLC compromises mitochon-

drial respiratory fitness by diminishing NADH and FADH2 re-

serves and generating ROS, which damages ETC complexes.

The enhanced production of proteins involved in mitochondrial

translation and stabilization of ETC subunits is likely an attempt

to keep pace with rapid degradation of the electron transport

chain (ETC) proteins as oxidative phosphorylation may, at least

in part, still be utilized for ATP production utilizing a portion of

glutamine as a substrate. The presumptive ROS generation in

FLC by proline metabolismmay help explain why FA-beta oxida-

tion, a biological process that is known for copious production of

ROS,78–80 is suppressed. FLC may be particularly susceptible to

free radical damage primed by a combination of suppressed liver

detoxification pathways and proline metabolism-induced ROS

generation. ROS susceptibility coupled with enhanced transla-

tion in FLC is supported by a recent, major drug screen that

included the use of established FLC cell lines, cell culture derived

from fresh patient tissue, and patient-derived xenograft (PDX)

murine models.81 Napabucasin was among the top hits, and its

proposed mechanisms of action are promotion of ROS genera-

tion and inhibition of translation initiation.81 A subsequent study

investigating signaling pathways in FLC associated aberrant

PKA signaling with stimulation of translation initiation in FLC pa-

tient-derived and engineered cell lines.40 Moreover, cell growth

was dramatically inhibited by blocking translation initiation.40

We have constructed a robust proteo-metabolomic model that

proposes a centrality of AAs for energy, mitochondrial translation,

and proline synthesis in FLC. The metabolic adaptations in this

cancer involve dysregulation of key transporters, a glycolytic

switch, rewiring of the TCA and urea cycles, upregulated OAT, re-

vamping of the GLS-ALDH18A1/ALDH4A1-GLUL axes, and

enhanced enzymes involved in the penultimate step of proline

synthesis as well as proline hydroxylation. Our model serves as

a metabolic roadmap for the FLC scientific community in the

hopes of finding effective therapeutic vulnerabilities.

Limitations of the study
The heterogeneity across metabolomic profiles in particular is a

well-documented challenge, especially with relatively small sam-

ple sizes. Future studies would benefit from the addition of a

mixed sample (aggregate of all samples) to the pipeline that

would serve as a representative metabolome of the patient

cohort with the aim of normalizing the data. Additionally, having

at least three technical replicates of each patient sample and

weightingmetabolite abundance in each sample by the standard

deviation across replicates could serve to increase signal-to-

noise ratio. In this study, to increase statistical power, we aggre-

gated primary and metastatic samples into one group. However,

we suspect that due to tissue environment there may be inter-

esting differences between primary and metastatic categories,

and in the future with increased sample sizes it would be infor-

mative to consider them separately. Finally, although we provide

important functional validation in patient tissue slices for the
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dependency of FLC on several proposed key players in critical

metabolic networks, we have not yet confirmed these findings

in in vivo models of FLC. Also, the primary role of some of our

metabolic enzymes of interest remains unknown, and this can

be addressed at least in part with tracing studies in the future.
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CellTiter-Glo 2.0 (FLX1 cell line) Promega Cat#G9241

IncuCyte Caspase-3/7 Green Apoptosis

Assay Reagent (FLX1 cell line)

Sartorius Cat#4440

Incucyte ZOOM system Sartorius RRID: SCR_019874

RealTime-Glo MT Cell Viability Assay (Tissue slices) Promega Cat#G9711

Experimental models: Cell lines

FLC-H primary cell line (Originating as metastatic

cells from ascites fluid of patient)

Praveen Sethupathy (pr46@cornell.edu) N/A

FLX1 primary cell line (Originating as metastatic

cells from ascites fluid of patient)

Taran Gujral (tgujral@fredhutch.org) N/A

Oligonucleotides

siRNA (human) against SDS Horizon Discovery Cat#L-008214-01-0005

siRNA (mouse) against Sds (non-targeting control) Horizon Discovery Cat#L-053256-01-0005

Software and algorithms

Code for core analyses and generation

of all main figures

Donald Long Jr

(dl964@cornell.edu); Zenodo

Zenodo: 12739492; https://doi.org/

10.5281/zenodo.12739492

Deposited data

Raw proteomics data ProteomeXchange Consortium ProteomeXchange

Consortium: PXD051527

Raw metabolomics data NIH Common Fund’s National

Metabolomics Data Repository (NMDR)

NMDR: PR001989; https://doi.org/

10.21228/M8MT61
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Praveen

Sethupathy (pr46@cornell.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The mass spectrometry proteomics and metabolomics data have been deposited to the ProteomeXchange Consortium (via

PRIDE82 partner repository) and NIH Common Funds National Metabolomics Data Repository (NMDR), respectively. The

data is publicly available as of the date of publication. Accession numbers and DOIs are listed in the key resources table.
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d All code for execution of core analyses and generation of all main figures has been deposited at Zenodo and is publicly available

as of the date of publication. The DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human patients
Informed consent was obtained from all individuals and studies were performed in accordance with the protection of human subjects

guidelines (U.S. CommonRule). FLC tumors (metastatic and primary) andNML samples were obtained from the Fibrolamellar Cancer

Foundation (FCF) biobank in accordance with IRB protocols 1802007780, 1811008421 (Cornell University, Ithaca, NY) and 33970/1

(FCF). Both male and female subjects were included, and all samples were deidentified. Frozen patient tissue was sent to the Kar-

olinska Institute (Stockholm, Sweden; n = 36) and Weill Cornell (NYC; n = 34) for proteomics and metabolomics, respectively. There

were no metastatic and primary tissue samples in our downstream analyses that were obtained from the same patient.

Cell line
The FLC cell line used in this study was graciously donated by the Bardeesy lab at Harvard. The line was originally derived from

a previously described patient-derived xenograft (PDX) murine model.25 Briefly, metastatic cells were purified from the ascites

fluid of the patient, conditioned on serum-free Kubota’s medium (PhoenixSongs Biological; Branford, CT), and seeded into non-

immunogenic mice. The resulting PDX tumor was dissociated from murine cells and adapted for monoculture. The FLC cell line

was cultured in the following conditions: RPMI 1640 media (Gibco 11875119), 10% fetal bovine serum (Gibco 26140079, heat-

treated at 56�C for 30 min, 1% penicillin-streptomycin (Gibco 15140122), and 2.5 ng/mL hepatic growth factor (Gibco

PHG0321).

METHOD DETAILS

Nutrient manipulation assays
Cell media (stock) was generated for the FLC cell line as previously described or RPMI1640 media was exchanged for either the

glucose- or glutamine-free versions (modified media). The stock was diluted with the glucose-free media to attain the following

glucose concentrations (conditions): 9.77mM (Ctrl #1), 7.497mM, 5.225mM, 2.952mM, 1.815mM, 1.243mM, 0.961mM, and

0.679mM. FBS was removed from the respective modified media to generate glucose and glutamine concentrations of 0mM.

DMSO was added (final concentration, 0.1%) to the 0mM concentration and 9.77mM concentration (Ctrl #2). The small molecule in-

hibitor targeting GLS, SU-1, was kindly donated by Rick Cerione (Cornell University College of Veterinary Medicine; Department of

Molecular Medicine). FLC cells were seeded into a 96-well plate (10,000 cells/well; Corning, black with clear flat bottom, CellBIND

surface) and incubated with the various conditions for six days. Subsequently, Cell-Titer Glo and CellToxGreen were used to assess

cell viability and cell death, respectively, on the Gen5 Biotek Synergy 2 Microplate Reader.

Cell viability and apoptosis assays
FLX1 cells29,40 were cultured in DMEM media supplemented with 10% FBS and 1% penicillin-streptomycin. For viability measure-

ments, 5,000 cells were seeded per well in a 96-well plate using the completemedium. The following day, Erastin was administered in

a dose-dependent manner. Viability was assessed 72 h later using the CellTiter-Glo 2 reagent (Promega), following the manufac-

turer’s instructions. The following equation was used for curve fitting: minResponse +
maxResponse�minResponse
1+ehill coefficient3ðec50�DoseÞ , where hill coefficient = 1

and ec50 = 1.969 mM. For the apoptosis assays, the activity of caspase 3/7 was measured using the NucView 488 reagent

(IncuCyte Caspase 3/7 Green reagent) and live-cell imaging (IncuCyte ZOOM; Essen Bioscience), following the manufacturer’s in-

structions. The NucView 488 reagent, at a concentration of 1 mM, was added to the cell culture medium along with either Erastin

(3 mM) or a DMSOcontrol in 96-well plates. Over a period of 72 h, apoptotic cells were identified and quantified based on the presence

of green fluorescence signals (visible in the 488 nm green channel) using the IncuCyte ZOOM system.

Transcriptomics
All RNA-seq datasets analyzed in this study were generated previously.29

Proteomics
Samples were lysed by 4%SDS lysis buffer and prepared for mass spectrometry analysis using amodified version of the SP3 protein

clean up and digestion protocol.83 Peptides were labeled with TMT16-plex reagent according to the manufacturer’s protocol

(Thermo Scientific) and separated by immobilized pH gradient – isoelectric focusing (IPG-IEF) on 3–10 strips as described previ-

ously.84 Extracted peptide fractions from the IPG-IEF were separated using an online 3000 RSLCnano system coupled to a Thermo

Scientific Q Exactive-HF. MSGF+ and Percolator in the Galaxy platform was used to match MS spectra to the Ensembl Homo sa-

piens (release 103 pep.all fasta) protein database.85
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Metabolomics
Polar metabolite profiling was performed as previously described.86 Briefly, metabolites were extracted from cells (derived from tis-

sue homogenate of samples) using pre-chilled 80%methanol (�80�C). The extract was dried completely with a Speedvac and redis-

solved in HPLC grade water prior to application on hydrophilic interaction chromatography LC-MS. Metabolites were measured on a

Q Exactive Orbitrap mass spectrometer (Thermo Scientific), which was coupled to a Vanquish UPLC system (Thermo Scientific) via

an Ion Max ion source with a HESI II probe (Thermo Scientific). A Sequant ZIC-pHILIC column (2.1 mm i.d.3 150 mm, particle size of

5 mm,Millipore Sigma) was used for separation ofmetabolites. A 2.13 20mmguard columnwith the same packingmaterial was used

for protection of the analytical column. Flow rate was set at 150 mL/min. Buffers consisted of 100% acetonitrile for mobile phase A,

and 0.1% NH 4 OH/20 mM CH 3 COONH 4 in water for mobile phase B. The chromatographic gradient ran from 85% to 30% A in

20 min followed by a wash with 30% A and re-equilibration at 85% A. The Q Exactive was operated in full scan, polarity-switching

mode with the following parameters: the spray voltage 3.0 kV, the heated capillary temperature 300�C, the HESI probe temperature

350�C, the sheath gas flow 40 units, the auxiliary gas flow 15 units. MS data acquisition was performed in the m/z range of 70–1,000,

with 70,000 resolution (at 200 m/z). The AGC target was 1e6 and the maximum injection time was 250 ms. The MS data was pro-

cessed using Xcalibur 4.1 (Thermo Scientific) to obtain the metabolite signal intensity for relative quantitation. Metabolites were iden-

tified using an in-house library established using chemical standards. Identification required exact mass (within 5ppm) and standard

retention times.

Frozen tissue respirometry
The frozen patient tissue from each sample (2 x�100 mg chunks per sample) was thawed and homogenized in 500uL of MAS buffer

(70 mM sucrose, 220 mMmannitol, 5 mM KH2PO4, 5 mMMgCl2, 1 mM EGTA, 2 mMHEPES pH 7.4) with protease inhibitor cocktail

(Roche). For each sample, the set of homogenates was centrifuged at 1,1603g for 10 min at 4�C, and the resulting supernatant (liver

homogenate) was collected. Subsequently, one of the homogenates was taken through another round of centrifugation at 10,000xg

to attain mitochondrial isolates (pellet). The pellet was washed and resuspended in MAS buffer. Protein concentrations were

determined by Bradford colorimetric assay (Thermo Fisher). Liver homogenates (15 mg/well) and mitochondrial isolates (15ug/well

or 6ug/well) were loaded into Seahorse XF96 microplate in MAS buffer (20 mL/well) and centrifuged at 2,0003g for 5 min at 4�C. After
centrifugation the volumewas increased to 150mL by adding 130mLMASwith cytochrome c (10 mg/mL) void (wells with mitochondrial

isolates) or present (wells with liver homogenate). At port A, substrates of NADH (1 mM) were injected to determine the respiratory

capacity of Complex I; succinate (5 mM) + rotenone (2 mM) were injected to determine the respiratory capacity of Complex II. Sub-

sequently, the following compounds were injected so that final concentrations were: port B—rotenone (2 mM) + antimycin (4 mM); port

C—TMPD (0.5mM) + ascorbic acid (1mM); port D: azide (50mM). Port C injection determined the respiratory capacity of Complex IV.

OCR rates weremeasured using Seahorse XF96 Extracellular Flux Analyzer (Agilent Technologies) and normalized to either 1) protein

(liver homogenates) or mitochondrial content (mitochondrial isolates) quantified by MTDR. Isolates were stained with 500 nMMTDR

for 10 min followed by two wash steps to remove the dye (Thermo Fisher). MTDR fluorescence was read on a Tecan Spark plate

reader (Excitation: 633 nm; Emission: 678 nm).

Tissue slice preparation and drug treatments
The process for preparing tumor slices was carried out as previously described.87,88 In summary, tumor tissues were sliced into

400-micrometer sections using a Leica VT1200S vibratome (Leica Biosystems), employing HBSS as the slicingmedium. These slices

were further processed into 400-micrometer cuboids using theMcIlwain tissue chopper (Ted Pella) as described in.89 These cuboids

were immediately placed into 96-well ultralow-attachment plates (Corning) in Williams’ medium supplementing with 12 mM nicotin-

amide, 150 nM ascorbic acid, 2.25 mg/mL sodium bicarbonate, 20 mM HEPES, an additional 50 mg/mL glucose, 1 mM sodium py-

ruvate, 2 mM L-glutamine, 1% (v/v) ITS, 20 ng/mL EGF, 40 IU/mL penicillin, and 40 mg/mL streptomycin. The RealTime Glo reagent

(Promega) was added to the incubation media as per the guidelines provided by the manufacturer. The baseline cell viability in the

cuboids was determined after 24 h using RealTime Glo bioluminescence, measured with a Synergy H4 instrument (Biotek). The cu-

boids were subjected to either DMSO as a control or various experimental drugs as indicated.Measurements of the overall viability of

the tumor tissues were taken daily for up to 7 days following the treatment.

Gene knockdown experiments in tissue slices
The preparation of tissue slices followed the method as described above. We obtained small interfering RNA (siRNA) targeting SDS,

or non-targeting control from Horizon Discovery. To evaluate changes in aggregate viability, we performed siRNA transfections in

96-well plates using Lipofectamine RNAiMax (provided by Invitrogen), following the instructions of the manufacturer. Each transfec-

tion process involved a minimum of two wells, with each well containing 4 to 6 3D cuboids. We monitored the viability changes using

the Synergy H4 instrument from Biotek. To assess the overall changes in the viability of the tumor tissues, we carried measurements

for a period of up to 7 days after the treatment.

FLC cell line respirometry
Oxygen consumption rate (OCR) was measured by the Agilent seahorse xFe 24 Bioanalyzer. FLC cells were plated on xFe24 cell

culture plates at a seeding density of 60,000 cells per well and incubated for 48-h at 37�C with 5% CO2. Following incubation, cells
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were washed in PBS and culture media was replaced with unbuffered Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented

with 4.5 g/L glucose, 4 mM glutamine, and 1 mM pyruvate. The compound concentrations for the mitochondrial stress test were as

follows (final concentration): Port A: Oligomycin (1 mM), Port B: Carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP)

(1 mM), Port C: Rotenone/Antimycin A (2 mM each). The OCR was normalized to the total cell number using the Celigo image cytom-

eter. Respirometry data were collected using Agilent Wave v2.4 software and were expressed as the mean ± SEM.

QUANTIFICATION AND STATISTICAL ANALYSIS

Proteomics
For proteomics, samples were run through LC MS/MS in two consecutive batches (16 samples per batch). Protein quantification by

TMT16plex reporter ions was calculated using TMT PSM ratios to the entire sample set (all 16 TMT-channels) and normalized to the

samplemedian. Themedian PSMTMT reporter ratio frompeptides unique to a gene symbol was used for quantification. Protein false

discovery rates were calculated using the picked-FDR method using gene symbols as protein groups and limited to 1% FDR.90

Quantified proteins (n = 10065) displayed 1) values for all samples across both batches, 2) values missing for all samples in one

of the batches, or 3) values missing for all samples across both batches. For the full and omics-matched datasets, only proteins con-

taining values for all samples across both batches were retained (n = 8485). Covariate adjustment using R was performed to remove

batch effect. Python and R were used to generate hierarchal clustering with heatmap and PCA-based clustering, respectively. Data

profiles frommetastatic (MET) and primary (PRI) tissue sampleswere aggregated and deduplicated (random removal of eitherMET or

PRI that came from the same patient) to create the FLC cohort. DeqMS91 was used for differential protein expression analysis.

Metabolomics
For metabolomics, observations that were either blank or displayed a zero value were considered missing.92,93 Subsequently, me-

tabolites (n = 180) were filtered using the modified 80% rule where any metabolite that contained less than or equal to 20% missing

values in at least one of the cohorts (NML or tumor) were retained (nfull_dataset = 135; nomics-matched_dataset = 119). At this point, approx-

imately 9% of observations were missing values. The following five different imputation methods were assessed for optimally

imputing missing values in our dataset: imputeBasic, multivariate imputation by chained equations (MICE),94 missMDA,95 missFor-

est,96 and softImpute.97 A test dataset (n = 76) was derived from the metabolomics dataset where the modified 80% rule had been

applied. The test dataset was void of anymissing values. For each imputationmethod (except forMICE, a very computationally inten-

sive platform) one-hundred simulations were run generating three different missing data patterns (missing completely at random or

MCAR, missing at random or MAR, and missing not at random or MNAR)98 at 3%, 10%, 30%, or 50% of the data missing. Thirty

simulations were run for MICE. In total, 1200 simulations each (100 simulations x 3 missing data patterns x 4 different degrees of

data missing) were run for imputeBasic, missMDA, missForest, and sofImpute, while 360 simulations (30 simulations x 3 missing

data patterns x 4 different degrees of data missing) were run for MICE. Five quality metrics generated from the simulations were

used to compare and contrast the imputation methods—raw bias (difference between predicted value of point estimate and it’s

true value from the test dataset), percent bias (raw bias expressed as a percent), coverage rate (proportion of confidence intervals

generated from simulations that contain the true value), average width (average width of confidence interval), and root mean squared

error (represents compromise between bias and variance or accuracy and precision). Given the distribution of missing values in our

metabolomics dataset and our unawareness of any bias that would influence the distribution, we presumed the missing values were

MCAR. At a missing value rate of 10%, missForest displayed the best combination of quality metrics, and it was used for imputing

missing values (�9%) in our full and omics-matched metabolomic datasets. Samples were run through LC/MS in four consecutive

batches. In the resulting peak intensity file, MET and PRI tissue samples were aggregated and deduplicated (random removal of

either MET or PRI that came from the same patient) to create the FLC cohort. Subsequently, the peak intensity files from the full

and omics-matched data was processed in the following manner after imputation: (1) batch median normalization (each observation

of a metabolite divided by its batch median), (2) log2 transformation, (3) co-variate adjustment for batch, (4) reverse-log2 transfor-

mation, (5) metabolite median normalization (each metabolite within a sample divided by the median of all metabolites within that

sample), (6) log2 transformation and (7) co-variate adjustment for injection order. Differential abundance analysis was performed us-

ing MetaboAnalyst99,100 where Empirical Bayes Analysis of Microarrays (EBAM) was used for statistical testing.

Full datasets vs. omics-matched profiles
Pearson was utilized to assess the correlation between log2FCs of significantly altered features (proteins and metabolites) in either

our full dataset (nproteomics = 23; nmetablomics = 26) or omics-matched dataset (nmetabolomics-matched = 17; nproteomics-matched = 26) but

present in both. The overlap of differentially abundant features between the full sample set and omics-matched sample set were

53.6% and 27.8% for proteomics and metabolomics, respectively (Data S3 and S4). However, the effect sizes between the

sample sets were comparable in magnitude and direction (Data S3 and S4). Quantification of the relationship of effect sizes via Pear-

son between the sample sets showed a strong, positive correlation (RR0.98, p < 2.2e�16; data not shown). The use of Pearsonwas

justified by the Central Limit Theorem, which states that a sample size of greater than or equal to thirty approximates a normal

distribution.
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Concordance analysis
Proteomics & metabolomics

For concordance analysis between our proteomics and metabolomics data, omics-matched tumor samples (patient tumor samples

that were present in both the proteomics and metabolomics datasets; n = 13 out of the 17 omics-matched samples) were used as

input for pipeline adapted from Benedetti et al. 2023101 to assess level of agreement between proteomic and metabolomic abun-

dance in FLC. Importantly, concordance assumes no underlying distribution. We leveraged the ‘concordance’ function from the ‘sur-

vival’ package in R to perform the computations (n = 1,009,715 measured associations).

Proteomics & mitochondrial abundance

For concordance analysis betweenmitochondrial abundancemeasured viaMitoTracker Deep Red (MTDR) and our proteomics data,

proteins specific to the mitochondria (identified by MitoCarta3.0) were retained for downstream analysis (n = 1003). Four of the six

NML samples measured via MTDR were patient-matched with samples in the mitochondria-specific, omics (MSO) dataset. The two

unmatched samples measured via MTDR were randomly paired with two samples from the remaining MSO sample set (n = 3). For

FLC, three of the six samples measured via MTDR were patient-matched with samples in the MSO dataset. The three unmatched

samples measured via MTDR were randomly paired with three samples from the remaining MSO sample set (n = 13).

The library of mitochondrial pathways contained in MitoCarta3.0 (n = 150) were filtered by the following criteria: (1) The sub-

pathways of generalized over-arching pathways were retained to avoid redundancy of protein members. For example, ‘‘Gluco-

neogenesis’’ was retained, but its overarching pathway, ‘‘Carbohydrate Metabolism’’, was removed. (2) Retained pathways had

at least one protein member identified in the MSO dataset that was significantly concordant or discordant with mitochondrial

abundance. (3) Retained pathways had at least ten protein members. Subsequently, mitochondrial pathways were ranked by (1)

highest proportion of pathway members that were significantly associated with mitochondrial abundance (pathway members

identified in MSO dataset that were significantly associated with mitochondrial abundance divided by all pathway members

identified in MSO dataset), (2) highest proportion of pathway members identified in MSO dataset, and (3) absolute value of

scaled concordance (2 * concordance – 1). Finally, a threshold was set for attaining the top twenty mitochondrial pathways

where at least 10% of a pathway’s protein members that were identified in the MSO dataset were significantly associated

with mitochondrial content.

To address the potential issue of reproducibility associated with random pairing, we performed Monte Carlo simulations with the

aforementioned pipeline for identifying all possible sets of top twenty mitochondrial pathways from all possible sample combinations

of NML (4 matched samples + [3choose2] = 3 possible combinations) or FLC (3 + [13choose3] = 286 possible combinations). Sub-

sequently, we attained the top twenty mitochondrial pathways with the greatest hits. A hit was considered a gene that was signifi-

cantly associated with mitochondrial abundance in at least one of the simulations. Cumulative distribution function (CDF) was used

for statistical testing.

Machine learning
Sufficient sample size was assessed by the fulfillment of at least one of two criteria: (1) the omics-based classification of the patient

cohort samples (nproteomics = 23 samples and nmetabolomics = 26 samples; used throughout this study) was in alignment with the physi-

cian-based classifications and/or (2) the omics-derived profiles were generalizable to a new, independent cohort of patient samples.

An extreme gradient boost machine learning (XgBoostML) pipeline with nested cross-validation (CV) was constructed (Figures S2A

and S2B) and trained on the twenty-three (proteomics) and twenty-six (metabolomics) samples used throughout this study. Subse-

quently, the trained model was tested on thirteen (proteomics) and ten (metabolomics) independent samples (these samples were

used exclusively for machine learning and not any other downstream analyses). The ML pipeline consistently performed significantly

better than random chance at classifying patient samples across both the training (fulfillment of first criteria) and testing (fulfillment of

second criteria) phases for proteomics (Figures S2C and S2D). For the metabolomics data (nmetabolomics = 26 samples), the ML pipe-

line fulfilled the first criteria but failed to meet the second criteria (Figures S2E and S2F). This is consistent with the greater inter-in-

dividual heterogeneity associated with metabolomics, which has been observed previously.102–104

Data processing was performed independently on the training and hold-out sets to minimize data leakage,105 with the exception of

imputation for metabolomics which was performed on all the samples combined. Training data went through two (proteomics) to

three (metabolomics) iterations of inner-loop train/test splitting (ninner-loop train_proteomics = 13 samples and ninner-loop test_proteomics =

10 samples; ninner-loop train_metabolomics = 18 samples and ninner-loop test_metabolomics = 8 samples). With each iteration, the inner training

(IT) data was subsetted for themost relevant features using a PCA-basedmethod106,107 that involved the following steps: (1) perform-

ing PCA with centering (proteomics, metabolomics) and scaling (metabolomics), (2) selecting principal components that explained

greater than 10% of the variance in the data, (3) performing varimax rotation on raw loadings, and (4) isolating features that were

greater than or equal to an absolute value of 0.5 in any of the selected principal components. The subsetted IT data was subsequently

used for stratified 2-fold,3-repeat CV where each fold (resample) contained at least six samples (nNML_proteomics_resample = 2 and

nFLC_proteomics_resampleR 4; nNML_metabolomics_resample = 2 and nFLC_metabolomics_resample = 5) within each partition for training and testing.

Hyperparameter tuning (described in more detail below) was incorporated into the 2-fold, 3-repeat CV. The best model from the inner

training was assessed for performance against the inner test data (ninner-loop test_proteomics = 10 samples; ninner-loop train_metabolomics = 8

samples). Overall evaluation of training performance was attained by averaging of the two (proteomics) to three (metabolomics)

training assessments from the two (proteomics) to three (metabolomics) iterations of inner training. The union of the feature subsets
e5 Cell Reports Medicine 5, 101699, September 17, 2024
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from the two (proteomics) to three (metabolomics) iterations was used to subset the whole training dataset (ntraining_proteomics = 23 and

ntraining_metabolomics = 26), and 2-fold,3-repeat CV with hyperparameter tuning was performed. A final evaluation was executed by as-

sessing the performance of the trained model from the whole training dataset against the hold-out set (nholdout_proteomics = 13 and

nholdout_metabolomics = 10). Performance metrics of interest were balanced accuracy (the accuracy of the training model taking class

imbalance of the testing set into account), precision-recall area under curve (similar to ROC AUC but takes class imbalance of the

testing set into account), Kappa (the performance of the classifier compared to classification at random according to class fre-

quency), and learning rate (lower values indicate better learning).

Hyperparameter tuning was performed with the ‘bayesOpt’ function of the ‘ParBayesianOptimization’ package in R.108 The

following tuning parameters were considered: max_depth (maximal depth of decision tree), eta (learning rate, lower rates allow

for better granularity of the model), gamma (modulator for tree complexity), colsample_bytree (the proportion of features used

for each tree), min_child_weight (additional modulator for tree complexity), nrounds (number of boosting rounds), and subsam-

ple (proportion of samples used for each tree). A grid design containing fifty different combinations of tuning parameters was

used to initialize the search (generated by using the ‘maximinLHS’ function from the ‘LHS’ package in R). After initialization, the

optimization algorithm was programmed to perform ten optimization steps with ten samplings of the search space (optimums)

at each step. The acquisition function type used to assess performance was excepted improvement (ei) accompanied by the

tunable parameter, epilson, which balances exploitation of the search space with exploration. Other important parameters

considered were the following: convergence threshold (maximum acceptable difference in ei between successive optimization

steps), utility (score that represents the potential to find a better parameter set than the previous), acquisition threshold (per-

centage of global optimal utility required for a local optimum to be included as a candidate parameter set in the successive

optimization step), and time limit on whole optimization process. Additionally, we utilized the upsampling method, SMOTE (Syn-

thetic minority over-sampling technique),109 during resampling to account for class imbalances (FLC samples [ NML

samples).

Eight datasets were used for XgBoostML nested CV. Background datasets (noise) were created by permutating the original data-

sets (proteomics and metabolomics) before data processing (normalization, transformation, or co-variate adjustment). A second set

of background datasets (adjusted noise) were generated by processing the former datasets (noise). The original datasets (both pre-

processed and postprocessed) were the remaining four inputs. Each input went through ten consecutive rounds of nested CV, and

the following comparisons were made with each performance metric: noise-to-adjusted noise, noise-to-original preprocessed,

adjusted noise-to-original postprocessed, and original preprocessed-to-original postprocessed. Mann Whitney was used for statis-

tical testing.

Pathway enrichment
For Qiagen Ingenuity Pathway Analysis (IPA), differential abundance profiles of mitochondrial-specific proteins (n = 1004) and

the metabolome (n = 135) from our proteomics and metabolomics data, respectively, were used as initial input. Qiagen IPA

required a threshold to determine what it called ‘‘analysis-ready’’ molecules. We used an FDR-adjusted p-value cut-off of

0.1 as the threshold, which filtered the initial input to 617 analysis-ready molecules. Pathway enrichment was determined by

comparing the number of analysis-ready molecules from our differential abundance profiles that overlapped with molecule

sets from Qiagen pathways to the overlap of 617 randomly chosen molecules from the initial input with molecule sets from Qia-

gen pathways. A right-tailed Fisher’s Exact test was used for statistical analysis, and p-values were adjusted using Benjamini-

Hochberg. For each pathway, Qiagen IPA used a Z score algorithm on the analysis-ready molecules to compute a Z score that

represented pathway activity. This pathway activity score was statistically compared to Qiagen IPA’s canonical patterns of ac-

tivity for a given pathway. A pathway with an activity score greater than 2 or less than �2 was predicted to be activated or sup-

pressed, respectively.

Retrospective cohort studies
Serum ammonia & tumor burden

A retrospective cohort study was performed on patients with FLC using the Johns Hopkins Liver Cancer Database. Only patients

with: (i) a confirmed pathologic diagnosis, (ii) imaging of the chest, abdomen, and pelvis sufficient for evaluation of FLC tumor burden,

and (iii) serum ammonia measurement ordered as standard of care, were eligible for this analysis. Ammonia was considered to be

elevated above 32 mmol/dL for adults (age R18) and above 55 mmol/dL for children (age 12–18). If patients had multiple assess-

ments of serum ammonia, the serum ammonia level obtained at the time when FLC tumor burden was greatest was reported.

FLC tumor burden was assessed by adding the sum of the diameter of up to 5 measurable tumor lesions using RECIST 1.1 criteria.

Examination of case studies from literature

Case studies of patients with FLC were collected by literature search. ‘‘FLC’’, ‘‘fibrolamellar carcinoma’’, ‘‘hyperammonemia’’, and

‘‘case study’’ were the combination of search terms in PubMed and Google Scholar. A total of eighteen case studies from the liter-

aturewere identifiedwith an additional two cases generously donated from the JohnHopkins University (JHU)medical center cleared

via IRB approval. Cases from the literature were split evenly by gender (nine male and nine female), while the gender of the two cases

from JHU were undisclosed. The median age of the cohort was 23. These demographics are in alignment with data from the Surveil-

lance, Epidemiology, and End Results (SEER) program. Data was collected on levels of serum ammonia, plasma AAs, urinary orotic
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acid, urinary creatinine, and circulating liver enzymes. The time at which the aforementioned measurements were performed (pre- or

post-treatment of HA) was noted and information on drugs used for treatment was also documented. In some cases, the following

additional parameters were noted: suspected OTC deficiency, OTCmutation status, patient responsiveness to arginine supplemen-

tation, viral infection status, cirrhosis, chronic liver disease, drug-induced HA encephalopathy, portosystemic shunting, portal hyper-

tension, liver failure, and idiopathic etiology.

All data visualization was generated using a combination of R, Python, and BioRender.
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Figure S1. Workflow diagram. Schematic of proteomic and metabolomic workflow. LC MS/MS = Liquid 
Chromatography Mass Spectrometry/Mass Spectrometry; ML = Machine Learning; DEqMS = Differential 
Expression of quantitative Mass Spectrometry ; XgBoost = Extreme Gradient Boost; CV = Cross-Validation; Adj = 
Adjusted; EBAM = Empirical Bayes Analysis of Microarrays. Omics-matched refers to patient samples that were 
present in both the proteomic and metabolomic datasets. Related to STAR Methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Figure S2. Machine learning using omics datasets performed significantly better than noise at tumor 
classification. Schematics that depict core principles of nested cross-validation for (a) proteomics and (b) 
metabolomics. Total samples for (nproteomics = 36;nmetabolomics = 36) were split into a training set (nproteomics = 23 and 
nmetabolomics = 26 samples that were used for analyses involving machine learning & beyond) and a hold-out set 
(nproteomics = 13 and nmetabolomics = 10 additional, independent samples. These samples were used exclusively for 
machine learning). The data from the training and hold-out sets were processed independently, thereby minimizing 
data leakage. Training data went through two iterations of inner-loop train (nproteomics = 13 and nmetabolomics = 18)/test 
(nproteomics =10 and nmetabolomics  = 8) stratified splitting. With each iteration, the inner training (IT) data was subsetted 
for the most relevant features using a PCA-based method (see Methods). The subsetted IT data was subsequently 
used for stratified 2-fold,3-repeat cross validation (CV) where each fold (or resample) contained at least (a) six  
(nNML = 2; nFLC > 4) or (b) nine (nNML = 2; nFLC = 7) samples within each partition for training and testing. (a,b) 
Hyperparameter tuning was incorporated into the 2-fold,3-repeat CV. With each iteration, the best model from the 
inner training was assessed for performance against the inner test data. Overall evaluation of training performance 
was attained by averaging the (a) two or (b) three training assessments from the (a) two or (b) three iterations of 
inner training. The union of the feature subsets from the (a) two or (b) three iterations was used to subset the whole 
training dataset, and 2-fold,3-repeat CV with hyperparameter tuning was performed. A final evaluation was 
executed by assessing the performance of the trained model against the hold-out set. Bar plots displaying 
performance metrics generated from machine learning (ML) pipeline (see Methods for further details) using (c,d) 
proteomic and (e,f) metabolomic data as input. Performance metrics are associated with the (c,e) training phase or 
(d,f) testing phase of the machine learning algorithm. (c-f) Dot dash line represents threshold at which the model 
performs no better than random chance. Mann Whitney used for statistical analysis—*BH-adj pval < 0.05; **BH-
adj pval < 0.01; *** BH-adj pval < 0.001. Permute_df_prebatchadj = permutated proteomics dataset without batch 
adjustment; Permute_df_postbatchadj = Batch-adjusted, permutated proteomics dataset; original_df_prebatchadj =  
original proteomics dataset without batch adjustment; original_df_postbatchadj =  original proteomics dataset with 
batch adjustment; permutated_df_b4process = permutated metabolomics dataset prior to processing (prior to 
normalization, transformation, or co-variate adjustment); permutated_df_postprocess = permutated metabolomics 
dataset that has been processed; original_df_b4process = original metabolomics dataset prior to processing (prior to 
normalization, transformation, or co-variate adjustment); original_df_postprocess = original metabolomics dataset 
that has been processed; PR_AUC = precision-recall area under the curve; Round represents consecutive rounds of 
full pipeline (nested cross-validation) execution. For learning rate, lower values indicate better learning. Related to 
STAR Methods. 

 

 

 

 

 

 

 

 

 

 

 

 





Figure S3. Macronutrient profile in FLC. Volcano plots and box plot show abundance of (a) proteins and (b,c) 
metabolites. (a,b) Highlighted datapoints and colored labels denote down-regulated (blue) or up-regulated (red) (a) 
proteins (fdr-adj p < 0.05; n = 23 samples) or (b,c) metabolites (fdr-adj p < 0.1; n = 26 samples). Related to Figure 
1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Figure S4. Proteo-transcriptomic signature and functional assessment of mitochondrial respiration suggests 
ETC dysfunction. (a) Comparison of log2FCs (z-scaled) at the protein (x-axis; n = 23 samples) and RNA (y-axis; n 
= 27 samples) level. Density plots represent the distribution of the log2FCs. Lines = median. Labeled datapoints = 
mitochondrially translated ETC subunits. Gene sets were compared to bkgd using Mann Whitney (**fdr- adj p < 
0.01). Bkgd = Background. MitoCarta3.0 was used to identify gene sets. (b) MRC of ETC complexes in matched, 
frozen patient tissue per gram of protein (n = 6 samples per tissue type). Per gram protein is representative of 
collective MRC. RQV = relative quantitative value. (c) Assessment of MRC, SRC (spare respiratory capacity), and 
basal respiration (BR) of mitochondria in FLC cell line (n = 5 per trial). OCR = Oxygen consumption rate. (d) 
Abundance levels and ratios of ATP, ADP, and AMP from frozen patient tumor (FLC, n=20) and non-malignant 
liver (NML, n=6) tissue. (e) Descriptive model depicting dysfunction of mitochondrial respiration in FLC. Related 
to Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Figure S5. Rewiring of the TCA cycle is associated with urea cycle defects in FLC. (a) Concordance (n = 17 
omics-matched sample pairs, 13 of which are FLC) between abundance of proteins (datapoints) and ornithine. 
Colored datapoints denote protein-metabolite pairs that are significantly (-log10(fdr-adj p) > 1.3) concordant (red) or 
discordant (blue) in FLC. Labeled datapoints represent the top four associations. Arrows adjacent to labels denote 
direction of significant alterations in the abundance of proteins (datapoints; fdr-adj p < 0.05) in FLC (n = 16 
samples) compared to NML (n = 7 samples). Gray datapoints = no significance. (b) Volcano plot highlighting the 
abundance of key metabolites associated with OAT nexus. Highlighted datapoints associated with colored labels 
denote metabolites that display differential abundance in FLC (n = 20 samples) compared to NML (n = 6 samples). 
(c) Table depicting clinical features and outcomes from our meta-analysis of case studies involving patients with 
FLC-associated hyperammonemia encephalopathy (HAE). OTC = ornithine transcarbamylase; Arg = arginine. (d) 
Ammonia (serum; n = 14 cases) and amino acid (plasma; n = 10 cases) levels from case studies involving patients 
with FLC-associated HAE.  Area between the dotted lines = reference range. (e) Differential protein expression of 
arginases in FLC (n = 16) compared to NML (n = 7)—*fdr-adj p < 0.05. Related to Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Figure S6. Rewired OAT nexus in FLC may be to fuel ECM remodeling. (a) Descriptive model embedded with 
omics data (proteomics—n = 23 samples; metabolomics—n = 26 samples) depicting OAT nexus in FLC. Left side 
of each node—gradient red = increasing log2FC (FLC vs NML) and gradient blue = decreasing log2FC; right side 
of each node—gray = not significant and yellow = significant (proteins—fdr-adj p < 0.05; metabolites—fdr-adj p < 
0.1); nodes associated with edges that have open circles = proteins; nodes associated with edges that have solid 
arrows = metabolites; ellipses = pathways; red arrow = hypothesized enhancement; blue arrow = hypothesized 
suppression. (b) Comparison of log2FCs (FLC vs. NML; Z-Scaled) at protein (n=23 samples) and RNA (n=27 
samples) level for genes that participate in extracellular matrix remodeling. Protein Atlas, Uniprot, and Reactome 
were used to identify gene sets. Gene sets were compared to bkgd using Mann Whitney test (*FDR adjusted p < 
0.05; **fdr adjusted p < 0.01;***adjusted p<0.001;****adjusted p<0.0001). Background set (bkgd) is all genes 
identified in both omics’ datasets. For the gene sets (excluding bkgd): circles = genes with no significant log2FCs at 
either RNA or protein level; diamonds = genes with significant log2FCs at both the RNA and protein level; triangles 
= genes with significant log2FCs at protein level; squares = genes with significant log2FCs at RNA level; shape size 
= average gene expression values (from transcriptomic data). Related to Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Figure S7. Working model of FLC metabolism. Arrow size is directly associated with arrow color. Node size is 
arbitrary. Red = increase; green = neutral; blue = decrease; gray = no data; elliptical node = protein; square node = 
metabolite; arrow = reaction or transport; broken arrows = series of reactions; ROS = reactive oxygen species. 
Sections pertaining to ROS, GLUD, and electron transfer are implications of the model as opposed to direct data. 
Related to Figures 1-7. 
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