
A Distribution of coordinates for the IOU process conditioned on

the initial velocity

The distribution is normal with expectation and variance given below:

E(X(t) | x(0), y(0)) = x(0) + (y(0)− µ)

(
1− e−θt

θ

)
+ µt (10)

V(X(t) | x(0), y(0)) = σ2

θ3

(
tθ − 3

2
− e−2tθ

2
+ 2e−tθ

)
(11)

On expectation, the coordinates thus grow linearly with time, with a rate given by the trend µ of the
underlying OU, when the process has reached its equilibrium, which happens when e−θt ≃ 0. The
variance of X(t) grows exponentially for values of θt smaller than ∼ 2 and linearly beyond that. Note
that when θ goes to 0, the variance converges to σ2t3/3, so that the IOU converges to an IBM.

B Distributions of velocity and coordinates for PIV models condi-

tioned on the initial and final velocities

Velocities

We consider the situation where velocities at the start and the end of a branch of length t, y(0) and
y(t), are given, and aim at deriving the distribution of the location at the end of the branch, X(t),
given the location at the start, x(0). Characterizing this distribution is required in the calculation of
the likelihood of the PIV models in the PhyREX approach (see Section “Likelihood calculation and
Bayesian inference” in the “Material and Methods” of the main text).

In case the velocity evolves according to a Brownian bridge starting at y(0) and stopping at y(t),
the corresponding process is defined as follows:

Y (s) =
s

t
y(t) +

(
t− s

t

)
y(0) +W (s)− s

t
W (t) (12)

where W denotes the Wiener process (with W (0) = 0). The expected value and variance of velocity
at time s (with 0 ≤ s ≤ t) are thus as given below:

E(Y (s) | y(0), y(t)) = s

t
(y(t)− y(0)) + y(0) (13)

Cov(Y (u), Y (v)) = σ2u(t− v)

t
(14)

with u ≤ v ≤ t and s ≤ t.
When the velocity follows a OU bridge, Lemma 1 in (Papież and Sandison, 1990) shows that:

Y (s) =
sinh (θs)

sinh (θt)
y(t) +

sinh (θ(t− s))

sinh (θt)
y(0) +W (s)− sinh (θs)

sinh (θt)
W (t) (15)

where W is the non-tied OU process with W (0) = 0. The distribution of velocity is thus normal with
expectation and covariance as follows:

E(Y (s) | y(0), y(t)) = sinh (θs)

sinh (θt)
y(t) +

sinh (θ(t− s))

sinh (θt)
y(0) + µ

(
1− e−θs

)
− sinh (θs)

sinh (θt)
µ
(
1− e−θt

)
(16)

Cov(Y (u), Y (v)) =
σ2

θ

sinh (θu) sinh (θ(t− v))

sinh (θt)
(17)

with u ≤ v ≤ t and s ≤ t.
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Spatial coordinates

We use the mean and covariance of the constrained velocity derived in the previous section in order
to derive that of the spatial coordinates at the end of an edge of length t, given the coordinates at
the start of that branch along with the velocity at both extremities of the same edge. We thus focus
on
∫ t

0
E(Y (s) | y(0), y(t))ds and

∫ t

0

∫ t

0
Cov(Y (u), Y (v))dudv and obtain the following expressions:

E(X(t) | x(0), y(0), y(t)) = x(0) +
t

2
(y(t) + y(0)) (18)

V(X(t) | x(0), y(0), y(t)) = σ2t3

12
. (19)

The expectation of X(t) therefore grows linearly with t at a pace determined by the velocity averaged
over the two nodes at the extremity of the branch under scrutiny.

Using an approach equivalent to that applied to the IBM process, the expectation and variance of
the coordinates given the velocities at both extremities of an edge are given below for the IOU model:

E(X(t) | x(0), y(0), y(t)) = x(0) +

(
cosh (θt)− 1

θ sinh (θt)

)
(y(t) + y(0)) + µt− µ

θ

(
1− e−θt

)(
1 +

cosh (θt)− 1

sinh (θt)

)
(20)

V(X(t) | x(0), y(0), y(t)) = σ2

θ3

(
θt− 2

(cosh(θt)− 1

sinh(θt)

))
(21)

When θ ≪ 1, i.e., the pace to reach the equilibrium is slow with respect to t, we have (1−e−θt)/θ → t
and (cosh(θt) − 1)/ sinh(θt) ∼ θt/2 so that E(X(t) | x(0), y(0), y(t)) ≃ x(0) + (t/2)(y(t) + y(0)). In
addition, developing the variance term up to order 4 at the numerator and order 3 at the denominator,
we get that (cosh(θt)− 1)/ sinh(θt) ∼ (θt)/2− (θt)3/24, so that V(X(t) | x(0), y(0), y(t)) ≃ σ2t3/12.
As expected, when θ goes to 0, the IOU and the IBM processes thus behave similarly. Also, note that
the function f : x 7→ x− 2(cosh(x)− 1)/ sinh(x) converges to 0 when x → 0+ and the derivative of f
with respect to x is non negative, so that f is non negative for x ≥ 0, and V(X(t) | x(0), y(0), y(t)) as
expressed above is non negative for all values of θt ≥ 0. If θ is large, then E(X(t) | x(0), y(0), y(t)) ≃
x(0) + ((y(t)− µ) + (y(0)− µ))/θ + µt) ≃ x(0) + µt, and V(X(t) | x(0), y(0), y(t)) ≃ σ2

θ3 (θt− 2).
Hence, in both regimes of θ, the expected value of the coordinates grows linearly with time. It is

doing so in a manner that is proportional to the velocities at both extremities of the branch (if θ is
small) or proportional to the drift term (if θ is large). In terms of variance, as previously, the IOU
behaves similarly to the IBM when θ is small, and grows linearly in t when θ is large.

C The pruning approach for the IBM and IOU processes

Joint process

We assume here a general multivariate integrated process of dimension p (typically, p = 2 for phy-
logeography), and denote by Z(t) = (YT (t),XT (t))T the joint process of dimension 2p describing
the evolution of both the velocity and position vectors. This joint process is then a linear Gaussian
process, and it can be fully described by the Gaussian distribution of the trait at any node i given
the trait at its parent pa(i) (Mitov et al., 2020; Bastide et al., 2021):

Zi

∣∣ Zpa(i) ∼ N
(
qiZpa(i) + ri,Σi

)
, (22)

with qi an actualization matrix and Σi a variance matrix both of size 2p × 2p, and ri a vector or
size 2p, that are all independent from the data, and depend only on the tree and its branch lengths.
For the IBM, assuming that the velocity vector follows a BM with constant directional drift δ and
variance Σ, we get:

qi =

(
Ip 0p,p

Ipti Ip

)
=

(
1 0
ti 1

)
⊗ Ip (23)

ri =

(
δti

δt2i /2

)
=

(
ti

t2i /2

)
⊗ δ (24)

Σi =

(
Σti Σt2i /2

Σt2i /2 Σt3i /3

)
=

(
ti t2i /2

t2i /2 t3i /3

)
⊗Σ, (25)
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where ti is the length of the branch going from pa(i) to i, and ⊗ denotes the Kronecker product. For
the IOU, assuming that the velocity vector follows a OU with actualization matrix Θ, central vector
µ and variance Σ, we get (Cumberland and Rohde, 1977):

qi =

(
e−Θti 0p,p

Θ−1(Ip − e−Θti) Ip

)
(26)

ri =

(
(Ip − e−Θti)µ

µti −Θ−1(Ip − e−Θti)µ

)
(27)

Σi =

(
KY(ti) KX,Y(ti)

T

KX,Y(ti) KX(ti)

)
, (28)

with, for any t, KY(t), KX(t), and KX,Y(t), the variance and covariance of the velocity and position
vectors at time t, given by:

KY(t) = S− e−ΘtSe−ΘT t (29)

KX(t) = ∆t− (Ip − e−Θt)Θ−1∆−∆Θ−T (Ip − e−ΘT t) +Θ−1SΘ−T − e−ΘtΘ−1SΘ−T e−ΘT t

(30)

KX,Y(t) = SΘ−1[Ip − e−Θt]− [Ip − e−Θt]Θ−1Se−ΘT t (31)

with S the stationary variance of the OU, and ∆ = Θ−1S+ SΘ−T .

Pruning algorithm

As showed in (Mitov et al., 2020; Bastide et al., 2021), for a general linear Gaussian process of the
form of Eq. 22 we can compute the likelihood of the traits at the tips of the tree in an efficient way by
integrating over all the internal states using a pruning algorithm. This yields an algorithm in O(np3),
that is linear in the number of tips. In the case of an integrated process, the velocity is never observed
at the tips, only the spatial coordinates are. As shown in (Bastide et al., 2021), missing data can be
accounted for in this algorithm, and because the velocity and position traits are correlated, we can
still get information on the velocity, even though it is not observed. This approach is implemented
in BEAST (Suchard et al., 2018), and allows for the Bayesian fit of the model without resorting to
stochastic integration of the internal node velocities as is done in PhyREX. Note that, although we
used a standard Metropolis-Hastings update for the parameters of the processes, from (Bastide et al.,
2021) we could also get derivative with respect to the parameters of the IBM or IOU, allowing for
efficient Hamiltonian Monte Carlo sampling schemes (Neal, 2011).

D Marginal tip position distribution under the IBM and IOU pro-

cesses

In the previous sections, we used the conditional distribution of a node given its parent to derive
efficient pruning algorithm for the computation of the likelihood. However, as the IBM and IOU
are Gaussian processes, it is also possible to directly derive the marginal distribution of the observed
positions at the tip of the process. Denote by Xt the n× p matrix of observations at the tips of the
tree, and by Xi

t the vector of p observations at tip i (Xt = (X1
t · · · Xn

t )
T ).

Marginal distribution under a BM

Recall that for a simple multivariate BM on a tree with rate variance Σ and root position parameter
Xρ ∼ N

(
µX,ΓX

)
, then we get that Xt has a matrix normal distribution, with, for any two vectors

of observations at tips i and j, an expectation vector and variance covariance matrix given by:

E[Xi
t] = µX and V[Xi

t;X
j
t ] = Στij + ΓX (32)

with τij the time between the root and the most recent common ancestor of i and j (see e.g. (Felsen-
stein, 1973)).
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Marginal distribution under an IBM

We now assume that the process is an IBM, with a root position parameter Xρ ∼ N
(
µX,ΓX

)
, a root

velocity parameter Yρ ∼ N
(
µY,ΓY

)
, and rate variance matrix of the velocities equal to Σ. Then

the distribution of the traits at the tips is still matrix normal. More precisely, as the velocities are
simply Brownian, we get that:

E[Yi
t] = µY and V[Yi

t;Y
j
t ] = Στij + ΓX. (33)

For the positions, we get:

E[Xi
t] = µYτi + µX (34)

V[Xi
t;X

j
t ] = ΓX + ΓYτiτj +Στij

[
τiτj + τij

(
τij
3

− τi + τj
2

)]
. (35)

Note that, if i = j, then τii = τi, and we recover that the variance of a tip is cubic in the time of
evolution. We can also get the covariances between velocities and positions:

V[Xi
t;Y

j
t ] = ΓYτi +Στij

[
τi −

τij
2

]
. (36)

The proof of these formulas rely on the following equality:

V[Xi
t;X

j
t ] =

∫ τi

0

∫ τj

0

V[Yi(t);Yj(s)]dtds (37)

V[Xi
t;Y

j
t ] =

∫ τi

0

V[Yi(t);Yj
t ]dt, (38)

where Yi(t) denotes the value of the velocity process on lineage leading to tip i at time t, and the
covariance function is equal to:

V[Yi(t);Yj(s)] =

{
Σmin(s, t) + ΓY if s ≤ τij or t ≤ τij

Στij + ΓY otherwise.
(39)

Marginal distribution under an IOU

We now assume that the process is an IOU, with a root position parameter Xρ ∼ N
(
µX,ΓX

)
, a root

velocity parameter Yρ ∼ N
(
µY,ΓY

)
, rate variance matrix of the velocities equal to Σ, actualization

matrix Θ, central vector µ and stationary variance S. Then the distribution of the traits at the tips
is still matrix normal, and we get that the velocities are OU distributed as (see e.g. (Clavel et al.,
2015)):

E[Yi
t] = e−ΘtµY + (Ip − e−Θt)µ and (40)

V[Yi
t;Y

j
t ] = e−Θ(τi−τij)Se−ΘT (τj−τij) − e−ΘτiSe−ΘT τi + e−ΘτiΓYe−ΘT τi . (41)

For the positions, we get:

E[Xi
t] = µX +Θ−1(Ip − e−Θt)(µY − µ) + µt and (42)

V[Yi
t;Y

j
t ] = ΓX + [Ip − e−Θτi ]Θ−1ΓYΘ−T [Ip − e−ΘT τj ] +∆τij + (Ip − eΘτij )e−ΘτiΘ−1∆

+∆Θ−T e−ΘT τj (Ip − eΘ
T τij )e−Θτi

[
eΘτijΘ−1SΘ−T eΘ

T τij −Θ−1SΘ−T
]
e−ΘT τj

(43)

using the same notations as in section C for ∆.
The proof of the formulas rely on the integration of the following covariance function (see (Cum-

berland and Rohde, 1977)), defined, for any 0 ≤ s ≤ t, as:

V[Yi(t);Yj(s)] = Se−Θ(t−s) − e−ΘsSe−ΘT t + e−ΘsΓYe−ΘT t, (44)

if s ≤ τij or t ≤ τij , and:

V[Yi(t);Yj(s)] = e−Θ(s−τij)Se−ΘT (t−τij) − e−ΘsSe−ΘT t + e−ΘsΓYe−ΘT t (45)

otherwise.
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PhyREX BEAST

parameter ESS/s mean 95% HPDI ESS/s mean 95% HPDI

σ2 lat 9.73 2.37 ( 1.7, 3.1) 100.15 2.29 ( 1.7, 3.0)
σ2 lon 10.82 11.81 ( 8.7, 15.3) 111.90 11.32 ( 8.4, 14.5)

root lat 5.74 39.88 ( 32.9, 47.1) 164.66 40.65 ( 33.7, 47.6)
root lon 6.78 -71.07 ( -86.2, -55.7) 164.11 -74.62 ( -90.3, -59.3)

root veloc lat 17.63 -0.13 ( -3.4, 3.3) 166.60 -0.26 ( -3.5, 3.1)
root veloc lon 17.81 -3.80 ( -11.0, 3.7) 161.19 -2.32 ( -9.6, 4.9)

Table S1: Comparison of PhyREX and BEAST estimations of variance and root parameters for a
bi-variate IBM on a fixed tree (WNV data of (Pybus et al., 2012) with 104 tips).

Likelihood computation checks

The formulas above give the full distribution of the observed positions at the tips of the tree, that
is matrix normal. They are therefore used to compute the likelihood of the data directly. As in the
standard BM case, this direct computation involves the inversion of large matrices, and the pruning
approach of section C is to be preferred, as it is linear in the number of tips (see e.g. (Mitov et al.,
2020; Bastide et al., 2021)). However, these formulas can be used to test that the likelihoods obtained
by BEAST and PhyREX do match with the direct “näıve” formulas. We implemented these direct
formulas in R (R Core Team, 2024), and checked on small examples that the two software gave
matching likelihoods.

E Comparison of PhyREX and BEAST implementations

We compared two independent implementations of the IBM model in PhyREX and BEAST, with
the WNV data from (Pybus et al., 2012) (104 tips), independent IBM models for the latitudes and
longitudes, and a vague Gaussian prior centered at 0 and with variance 1000 for the root trait. We
compared the two implementations first using a common fixed tree, and then starting from sequences
and inferring the tree.

Settings

For the fixed tree analysis, as PhyREX needs to sample interval velocities, we ran a longer MCMC
chain for this software, with 10 million iterations sampled every 10 thousands steps, while we used
a chain with only 10 thousands iterations sampled every 10 steps for BEAST. We reproduced this
analysis 10 times on a 13-inch M2 2022 MacBook Pro, and took the mean times and estimates.

For the inferred tree analysis, we ran a MCMC chain with 50 million iterations sampled every
10 thousands steps for both software. Since the analyses are computationally intensive, we only ran
the chain once with the same set up and compared running times. For both analyses, we used a
constant population coalescent prior, an HKY substitution model (Hasegawa et al., 1985b), and an
uncorrelated relaxed random local clock (Drummond et al., 2006) with a log-normal distribution of
rates with a strong prior on a small standard error to speed up convergence. Tip heights were fixed
at their sampling times.

We used R (R Core Team, 2024) to run analyses, using packages ape (Paradis and Schliep, 2019)
and treeio (Wang et al., 2019) for tree manipulation, tracerer (Bilderbeek and Etienne, 2018) for
reading and summarizing log files, ggplot2 (Wickham, 2016) and cowplot (Wilke, 2024) for plotting
results, here (Müller, 2020) for file manipulation, and kableExtra (Zhu, 2024) for extracting tables
automatically for display.

Results for the fixed tree analysis

We found that the two approaches gave very similar results for the estimation of the variance and
root parameters (see Table S1). Unsurprisingly, as BEAST only needs to sample two parameters
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Figure S1: Effective sample size per seconds of all node velocities (internal and tips) of BEAST versus
PhyREX for a bi-variate IBM on a fixed tree (a) or with an inferred tree (b). WNV data of (Pybus
et al., 2012) with 104 tips, i.e. 208 velocity estimates per software program.
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Figure S2: Comparison of PhyREX and BEAST estimations of variance and root parameters for a
bi-variate IBM when the tree is inferred using WNV data of (Pybus et al., 2012) with 104 tips.

(the variance parameters), it was faster in this setting, with analyses taking around 5.2 seconds,
versus 33.6 seconds with PhyREX. This led to a mean approximate 15.3 times factor increase of the
BEAST versus PhyREX implementation in terms of effective sample size per seconds (see Table S1).
Because velocities are sampled during the MCMC in PhyREX, but directly sampled in their posterior
distribution in BEAST, their ESS in BEAST was more reliably high and less spread out than PhyREX
estimations (see Fig. S1-a). Note that each PhyREX iteration was about 155.0 times faster than each
BEAST iteration, as it requires less computations.

Results for the inferred tree analysis

As inferring the tree is much more computationally intensive, these analyses took longer to run,
taking, respectively, 1.05 hours for BEAST and 2.85 hours for PhyREX. PhyREX convergence was
slower, taking around 10 million iterations to warm up, while BEAST reached a reasonable sampling
area within less than 1 million iterations. This led to a mean approximate 13.70 times factor increase
of the BEAST versus PhyREX implementation in term of effective sample size per seconds. As in the
fixed tree case, ESS in BEAST was more reliably high and less spread out than PhyREX estimations
(see Fig. S1-b). Because many operators are involved in the tree search, it is difficult to pinpoints
the exact reasons for these different convergence behaviors, and it may not be entirely due to the
different IBM implementations. Contrary to the fixed tree case, each BEAST iteration was faster
than a PhyREX iteration by a factor of about 2.70. This time difference is likely due to the use of
BEAGLE (Ayres et al., 2012) in the BEAST analyse, which allows for efficient parallelization and
GPU use. The two approaches gave very similar results for the estimation of the root time and
position, but gave slightly different variance parameter estimations, although with intersecting HPD
intervals (see Fig. S2). Reconstructed velocities at tips were highly similar in both approaches (not
shown).
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F Dispersal prediction via linear extrapolation of tip velocities

Let αi(t) design the coordinates of tip i at time t that occurs after the sample corresponding to tip
i was observed, which is noted as ti (i.e. t ≥ ti). αi(t) then corresponds to the position of lineage i,
should it survive up to time t. Also, we assume that, after time ti, lineage i dies at rate λ so that
the probability of surviving up to time t is exp(−λ(t− ti)). Finally, A represents a particular region,
e.g., a state or county. Below is the probability that one or more lineage occupies A at time t, where
t ≥ ti for all tips i = 1, . . . , n. Let PA,t be that probability. We have:

PA,t = 1−
n∏

i=1

Pr(αi(t) /∈ A) (46)

where Pr(αi(t) /∈ A) is the probability that lineage i is not within A at time t. We have Pr(αi(t) /∈
A) = 1 − Pr(αi(t) ∈ A) and Pr(αi(t) ∈ A) is the probability that (1) lineage i survives up to time
t and (2) the linear extrapolation of its position from time ti to time t given its velocity at time ti,
falls within A. In practice, we are interested in the probability of occupation for a given time interval
[t, t+ s], which we approximate as follows:

PA,[t,t+s] =
1

s

∫ t+s

t

PA,xdx (47)

≃ 1

K + 1

K∑
i=0

PA,t+i s
K

(48)

The time unit considered in this study is the year and we used K = 4 so that one year is split up into
four parts of equal lengths. Also, we fixed the value of λ to 1.0 so that the probability of a lineage to
survive for a period of one year is 0.37. This value of λ derived from the observation that the length
of external branches in WNV phylogenies are generally close to 1.0. Assuming a critical birth-death
model approximates the branching process here, Theorem 3 in (Mooers et al., 2012) states that the
rate of death of lineage is given by the inverse of the average length of an external edge. Note that PIV
models allow us to derive the joint distribution of the velocity and position of each tip conditionally
on all other tips thanks to the pruning algorithm described in Section C. We could therefore derive
the distribution of the particle starting from this tip after a time t, assuming that the velocity is
constant. Probabilities PA,x would then be obtained by integrating this distribution over on domain
A. Such an approach could be computationally expensive and would need to be carefully examined
for possible use in future work.

G Cross-validation of tip coordinates

In an attempt to compare the fit of the PIV and the RRW models to the WNV data sets, we assessed
the ability of these two models to recover coordinates at tips where only sequence data is made
available. A MCMC analysis was first performed on the full data set. Then, for each tip taken in a
sequential manner, coordinates were hidden and considered as parameters of the model. The posterior
distribution of the standard model parameters (including the tree topology, age of internal nodes plus
the dispersal parameters of the model considered) along with that of the missing tip location, were
obtained and the posterior distribution of the great circle distance between the true and estimated
tip locations was recorded.

Let x∗
i be the tip coordinates at tip i and x∗

−i the set of coordinates observed at all tips except i.
Also, let s∗ be the set of observed sequences at the tips. θ is a generic parameter that encompasses all
the parameters of the model excluding the tip and ancestral velocities, noted as y∗ and y respectively.
Our objective is to draw samples from the distribution of x∗

i ,y
∗,y, θ | x∗

−i, s
∗. Given samples from

this joint distribution, one marginalizes over y∗,y and θ in order to recover the posterior distribution
of interest. We have:

p(x∗
i ,y

∗,y, θ | x∗
−i, s

∗) ∝ p(x∗
i ,x

∗
−i, s

∗,y∗,y, θ) (49)

∝ p(s∗ | θ)p(x∗,y | θ) (50)

so that samples from the target distribution can be obtained by standard MCMC with xi considered
as a parameter of the model along y∗,y and θ. As explained above, we ran a first MCMC on the
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Figure S3: Predicted occurrence of WNV in the early phase of the epidemic (model for prediction:
IBM). Here, the prior distribution for the velocity at the root had a variance set to (10−2, 10−2)
(mean set to (0, 0)) as opposed to a virtually flat prior (variance set to (102, 102)) by default (see Fig.
4 of the main text).

full data set so as to reach the stationary distribution of the Markov chain that generates correlated
samples from p(y∗,y, θ | x∗, s∗). Each tip coordinates is then hidden sequentially. For each hidden tip
coordinates x∗

i , a shorter MCMC analysis is ran with p(x∗
i ,y

∗,y, θ | x∗
−i, s

∗) as its target distribution.
Note that, thanks to the pruning algorithm described in Section C, one could directly get the

distribution of left-out tips conditionally on observed ones, to carry out a cross validation relying on
the expected log predictive density similar to (Hassler et al., 2022).

H Prediction of WNV incidence deriving from alternative models

By default, predictions were performed using the IBM model with a flat prior on each of the two
parameters making up the variance of the velocity vector. A normal distribution centered on (0, 0)
and variance (102, 102) was used here. Figure S3 gives the predicted occurrence of WNV in the early
stages of the epidemic using a more informative prior with variance vector (10−2, 10−2). While the
predictions for years 2001-2003 are similar to that obtained with a flat prior, the occupied area for year
2000 is smaller when using the informative prior compared to that obtained with a non-informative
one. The sensitivity to priors observed here is a likely consequence of the lack of signal conveyed by
the limited amount of data (only seven sequences with coordinates are available for this time point).

We also performed prediction analyses using the RRW model. Velocity at each tip was estimated
during the MCMC analysis as follows: (1) ancestral location were sampled from their joint posterior
density; (2) great-circle distances between each tip location and that sampled for its direct ancestor
were evaluated; (3) the obtained distance was divided by the time elapsed along the corresponding
(external) edge. Predictions were then made using the same approach as that used with the IBM
model (see SI, section F). Figures S4 and S5 show the incidence from the CDC data (see main text)
and the corresponding predictions using the RRW model. We note that the predictions of the RRW
are much more spread out than the ones of the IBM (see main text and Figure S3), which is consistent
with the fact that the RRW can allow for jumps in the process, i.e. large dispersion events in small
time scales, so that, according to this model, a spread far away from the origin is not unlikely, even
in the early phases of the epidemics.

We compared the IBM and RRW models by evaluating their sensitivity (true positive rate) and
specificity (true negative rate) corresponding to the predicted occurrence of the virus in each county.
More specifically, for each year in the 2000-2007 time period, a county was said to be predicted as
“infected” as soon as at least one lineage was predicted in this county. This county was then labeled
as a “true positive” if the corresponding incidence from the CDC data (see main text) showed at least
one case. Figure S6 shows that the RRW has a greater sensitivity, but a lower sensitivity. This is
consistent with the spatial patterns observed on Fig. S5 and S4, that showed a wider dispersion for
the RRW.

Using the empirical cumulative distribution function, we transformed the predicted count data of
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Figure S4: Incidence and predicted occurrence
of WNV in the early phase of the epidemic
(model for prediction: RRW). Purple dots corre-
spond to sampled locations. Incidence data (left)
for each year and each county was obtained from
the CDC. For year Y , predicted occurrence of
the WNV (right) was inferred using data col-
lected earlier than the end of December of year
Y − 1. The maps were generated with EvoLaps2
(Chevenet et al., 2024)

Figure S5: Incidence and predicted occurrence
of WNV in an endemic regime (model for pre-
diction: RRW). See caption of Figure S4.

both methods into probabilities. These probabilities were then used to predict the occurrence of the
virus in each county. This allowed us to compute Receiver Operating Characteristic (ROC) curve for
both predictor for each year, using the R package ROCR (Sing et al., 2005). Results in Fig. S7 show
that the IBM predictor is generally further from the diagonal than the RRW predictor, indicating
a better overall performance of the IBM. We also note that the predictor are more accurate for the
early stages of the epidemics, when the spatial distribution of the virus is limited.
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Figure S6: Sensitivity and specificity of the predicted county level occurrences by the IBM and RRW
models.
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Figure S7: ROC curves for the predicted county level occurrences by the IBM and RRW models.

I Tip velocity estimation under the IBM model

We performed a simulation study using the IBM both for simulation and inference in order to check
that our model and implementation produced correct results when presented with datasets that
matched its assumptions.

We took a fixed and dated WNV tree inferred from previous analyses, and simulated 100 datasets
using an IBM with independent movements on the latitude and longitude axes, with variances respec-
tively set to 0.1 and 1. The root location was set to the New-York region (latitude 40.65°, longitude
-74.33°) with root velocity vector (-0.24, -2.48) degrees per year.

We then used the BEAST implementation of the IBM, using the true fixed tree, but inferring all
other parameters from the data. For each dataset, we ran an MCMC chain for 50 000 iterations, log
every 100, with a standard log-transformed random walk operator on the variance parameters, and
vague half-t priors. We then extracted estimates and 95% highest posterior density intervals (HPDI)
for variance parameters, root position and velocity, and all tip velocity vectors.

Fig. S8 shows that the true variance parameters and root position and velocity are correctly
recovered, with unbiased estimates, as expected. Further, Fig. S9 shows that the 104 tip velocity
vectors are also correctly estimated, with unbiased estimates, and HPDI reaching coverages close to
their nominal values.

In this simple setting with a fixed tree and an IBM used for both simulation and inference, this
experiment shows that our implementation can recover the correct velocity dynamic of the epidemic
over the different regions of the tree. Further investigations, using other velocity-explicit simulation
models, could be the focus of future work which goal would be to asses the robustness of PIV models
and its ability to recover specific propagation dynamics.
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Figure S8: Variance and root parameter IBM estimate. Difference between the estimated and true
value, normalized by the true value, for the IBM variance parameter (first panel) and the root position
and velocity vectors (in degrees, second and last panels). Violin plot over 100 replicates. Data was
simulated using an IBM on the WNV tree with 104 tips. BEAST was used for inference, using the
true fixed tree, and an IBM model.
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Figure S9: Tip speed and velocity estimates. (a) Estimated vs. true speed (in km/year) for the 104
tips and the 100 replicates. (b) Estimated minus true tip velocity vector (in degrees). (c) Realized
coverage of the 95% highest posterior density intervals for the tip velocity vectors. Violin plot over
100 replicates and 104 tips. Data was simulated using an IBM on the WNV tree with 104 tips.
BEAST was used for inference, using the true fixed tree, and an IBM model.
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