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Design and benchmark of CAST architecture
Benchmark of CAST Mark

To investigate each hyperparameter in CAST Mark, we studied all four model architecture hyperpa-
rameters (n_layers, number of GNN layers; encoder_dim, dimension of the MLP encoder; dfr, feature 
dropout rate; der, edge dropout rate) and performed ablation studies for the graph convolutional layers 
(Supplementary Fig. 1-3). We modified one parameter at a time and performed 10 replicates of each 
combination of hyperparameters (with random seeds generated based on the system time). The medi-
an distance of the ground-truth cell pairs in aligned samples S1-S1’ was used as the evaluation metric 
(higher distance value indicates worse performance). 

1. Number of GCNII layers. We chose the largest number of GCNII layers (n_layer = 9) as recom-
mended by the original GCNII paper1. Our experimental results on the simulation dataset confirm that 
increasing the number of layers improves the accuracy of CAST alignment (Supplementary Fig. 
1a), presumably due to the increased contrast and spatial resolution of learned graph embeddings in 
layer-shaped anatomical regions (Supplementary Fig. 2). We recapitulated the enhanced resolution 
in layer structures using real samples S1-S8 (Supplementary Fig. 3). In the particular case of brain 
slice alignment, as the cortical layers are molecularly similar across different cortical areas, insufficient 
contrast of different cortical layers will result in inaccurate orientation of the tissue slice. These results 
confirmed that the performance gain from a deep GNN architecture is essential for high-reso-
lution spatial alignment and lays an important foundation for spatial integration at single-cell 
granularity by CAST Projection.

2. Encoder dimension. The purpose of the MLP encoder is to reduce the time and space complexity 
of the model, especially given datasets with large gene panels. As our test dataset has a gene panel 
of 2,766 genes, we chose encoder_dim from 32 to 2048, along with an experimental group without 
the MLP encoder module. Results (Supplementary Fig. 1b) showed that encoder dimensions 256 and 
512 yielded comparable and even slightly better alignment performance than the “No encoder” group. 
Therefore, we recommend using 256 and 512 for parameter encoder_dim for datasets with large gene 
panels (larger than 1,000 genes). We recommend using “No encoder” for datasets with limited gene 
panels (smaller than 1,000 genes). 

3. Feature dropout rate (dfr). This hyperparameter controls the extent of feature dropout for graph 
augmentation in the CCA-SSG self-supervised learning model2. dfr = 1 means complete dropout while 



dfr = 0 means no dropout. We scanned the entire possible range for dfr. For CAST, we used dfr = 0.3 
as the default unless otherwise stated, following the CCA-SSG paper2. Our parameter sensitivity ex-
periments (Supplementary Fig. 1c) showed that alignment performance is optimal from 0.1 to 0.4. We 
recommend users use the default dfr value unless necessary.

4. Edge dropout rate (der). This hyperparameter controls the extent of graph edge dropout for graph 
augmentation in the CCA-SSG self-supervised learning model2. der = 1 means complete dropout, 
while der = 0 means no dropout. We scanned the entire possible range for der. For CAST, we used der 
= 0.5 as the default unless otherwise stated, the same as the default used in CCA-SSG paper2. Our 
sensitivity experiments (Supplementary Fig. 1d) showed that alignment performance is optimal from 
0.3 to 0.7. We recommend users use the default der value unless necessary.

5. Ablation studies of the GCNII graph convolutional layer. We adopted the GCNII graph convolu-
tion layer to enable smooth learning with a higher number of graph convolutional layers than traditional 
GNN architectures. Since we have shown that increasing the number of layers boosts alignment per-
formance (Supplementary Fig. 1a), we further performed ablation studies using the vanilla GCN3 with 
2-9 graph convolution layers, which were visualized alongside our hyperparameter sensitivity experi-
ments performed using 2-9 GCNII layers (Supplementary Fig. 1e). The vanilla GCN layer architecture 
failed to generate alignment with acceptable performance (median of ground-truth distance > 200 µm), 
while increasing the number of layers did not improve the performance. In addition to our point made in 
the main text that GCNII brings performance boosts by enabling learning with more graph convolution-
al layers, we concluded that the vanilla GCN convolution layers failed the challenge of high-resolution 
alignment on single-cell resolved spatial datasets.

Benchmark of CAST Stack 

To better illustrate the gradient descent process, we benchmarked several important parameters and 
showed the intermediate results (already wrapped in the CAST Stack code) and final aligned figures 
(Supplementary Fig. 4 and Supplementary Information Table 1).

Supplementary Information Table 1 | The parameter list of the trials in the CAST Stack benchmark

Batch Iterations (affine) Iterations (B-spline) Mesh size Translation params Notes

b1 500 400 8 False Control

b2 100 400 8 False

b3 500 50 8 False

b4 500 400 4 False

b5 500 400 10 False

b6 500 400 8 True

1. The iterations of affine transformation. We first compared the results after different numbers of 
iterations of affine transformation gradient descent (500 versus 100, Supplementary Fig. 4a). The pro-
files of the five parameters a, d, Φ, b1, and b2 as well as the value of the loss function are shown. With 
only 100 iterations, we found that in the 100-iteration task, the DG region of the query sample (S4) ex-
hibited a small shift to the one in the reference sample (S1) and the five parameters did not converge, 
in contrast to the 500-iteration task. Thus, 500 iterations are necessary in this case.

2. The iterations of B-spline transformation. Although the 500-iteration task tended to converge and 



well-aligned the DG region, the CA1 region appears to be less well aligned. Thus, the B-spline phase 
is important to adjust such differences. With more iterations in the B-spline phase, we found that CA1 
could be better aligned (Supplementary Fig. 4b). 

3. The mesh size for B-spline transformation. Afterwards, we benchmarked the different values of 
the meshgrid parameters. A smaller value of the meshgrid generally gives coarse-grained adjustment, 
while a higher value of the meshgrid could adjust more details. We observed that the task with the 
Mesh_Size = 4 (the control points s) exhibits poor alignment performance compared to the tasks with 
Mesh_Size = 8 or Mesh_Size = 10 (Supplementary Fig. 4c). 

4. Translation in pre-location step. CAST Stack uses a pre-location strategy to map the query sam-
ple to a proper initial location based on the loss function values. By default, this step will try rotations 
(0°, 90°, 180°, and 270°) as well as reflection and then select the location with the lowest loss function 
value as the initial position. Here, we tested if allowing translation trials (details are listed below) will 
help the alignment (Supplementary Fig. 4d). Although the alignment results are similar in this task, the 
pre-location with translation can provide more trials for better initiations, which benefit a lot in the small-
to-big alignment tasks (Fig. 3c and Extended Data Fig. 4f,g).

Translation trials in the pre-location step. In this step, we established a range of ±50% for the x and y 
dimensions of the query sample, dividing each dimension into 10 intervals. Subsequently, all trials yield 
a loss function value for comparison. CAST Stack automatically selects the one with the lowest value 
as the initial location of the query sample.

5. Before and after B-spline transformation. As we showed previously (Supplementary Fig. 4a,b), 
the B-spline step is very important to adjust the differences that cannot be solved by the pure affine 
transformation. We also attached an example (Supplementary Fig. 4e) to showcase the necessity of 
non-rigid B-spline alignment even for adjacent tissue slices. The arrows in the figure highlighted that 
non-rigid B-spline alignment can correct local deformation between consecutive RIBOmap and STAR-
map sections in Mouse 2.

Benchmark of CAST Projection 

1. CAST Projection is flexible for different low-dimensional embeddings. Actually, CAST Projec-
tion can accommodate various shared embeddings as a bridge between the two datasets. The combi-
nation of Combat and Harmony, the default integration strategy in CAST, is a proper and robust way to 
integrate cells from different modalities. Such strategy was used in the publications of the mouse CNS 
atlas4 and RIBOmap5. However, there are also a series of great works developed to integrate different 
omics data into a shared low-dimensional space, like Seurat6, LIGER7, and MNN8. We tested CAST 
Projection based on the integrated features generated by these methods (Supplementary Fig. 10c-e). 
The performances of all three methods are pretty good, especially the LIGER and Seurat, indicating 
that CAST Projection can easily be adapted to different shared embeddings. Notably, when consid-
ering the region similarity, we recommend that the CAST Mark spatial features are a better option 
because of its ability to precisely capture spatial features.

2. The spatial constraint in CAST Projection is critical. As the integration methods are well devel-
oped, when designing CAST Projection, we focused on how to precisely and reasonably link two cells 
across different slices considering the spatial information.

When projecting the cell in the query slice to the one with closest cosine distance in the reference slice 
without any spatial constraints, we found that the cell pairs were separated by long physical distances, 



though the consistency of the cell type labels is higher (TP% = 0.93, compared with the initial CAST 
Projection result: 0.88 for S2-S1; 0.91 for S3-S1; 0.91 for S4-S1. Supplementary Fig. 9). Thus, the 
spatial constraints are critical for proper spatial-to-spatial projection.

Methodology advances of CAST
We summarize the novelties of CAST as several points:

1. Deep GNN increases the range of perception (Supplementary Fig. 1-3). In contrast to existing 
graph-based tools that merely utilize shallow layers (2-3 layers), CAST harnesses the power of deep 
graph layers (GCNII). This approach expands the receptive field, enabling the capture of more precise 
and consistent spatial features when undertaking tissue segmentation tasks, especially in large-scale 
single-cell resolved spatial omics data.

2. New training strategy enables cross-sample spatial feature detection. CAST has another two 
major innovations include (1) a sequential training strategy that allows for quick, memory-efficient train-
ing (Supplementary Fig. 5), and (2) the CCA training objective to identify consistent spatial features 
among samples despite drastic sample-level differences in technologies and conditions (Fig. 1c and 
Extended Data Fig. 2a). 

3. Affine and Non-rigid warping enable handling more variable datasets. CAST Stack builds af-
fine and B-spline transformations at its core. This enables CAST to tackle the prevalent challenge of 
significant discrepancies between two slices (Supplementary Fig. 4).

4. Sub-sampling strategy enables wider application on larger datasets. CAST uses a fast and 
low-memory-cost solution to apply the gradient-based non-rigid alignment (Supplementary Fig. 5), 
particularly in the case of single cell-based data. Thus, it can easily handle datasets with a substantial 
number of items or different spatial transcriptome technologies (>50k items, like Stereo-seq, Slide-seq, 
STARmap, and MERFISH (Supplementary Table 4). 

Details of the AD datasets ∆Analysis
∆Cell analysis. We calculated ∆Cell (R = 50µm) in the aligned cross-sample niches for three dis-
ease-relevant glial cell types: astrocytes, microglia, and oligodendrocytes (Supplementary Fig. 7a,b). 
For easier interpretation, the ∆Cell values of each cell-centered neighborhood are averaged based 
on their CAST Mark region labels (Extended Data Fig. 5c). The ∆Cell of oligodendrocytes shows the 
most significant changes in the white matter (WM) region in the 13-mos group and correlates with 
the accumulation of p-tau intensity (Supplementary Fig. 7b,c), consistent with the previously reported 
correlation between the oligodendrocytes and the p-tau9,10. The abundance of microglia increased in 
retrosplenial cortex (RSP), cortical layer 5 (L5), and cortical layer 6 (L6) regions at 8 months, and kept 
increasing in all regions except the hippocampal CA2 and CA3 regions (CA2 and CA3) at 13 months 
(Supplementary Fig. 7b). The elevated abundance of microglia in disease versus control quantified by 
∆Cell shows a high spatial correlation with the density of the increased Aβ plaques (Supplementary 
Fig. 7d), further validating the activated response of microglia to the Aβ plaque11,12. The ∆Cell values 
with different radii (R from 5 µm to 200 µm) show a consistent spatial pattern (Supplementary Fig. 7e).

Cell-specific ∆Exp screening. We calculated the delta-sample single-cell gene expression changes 
(∆Exp, R = 50µm) in each niche to interrogate the spatial gradient of differential gene expression (Ex-



tended Data Fig. 5d-f). Further correlating ∆Exp with spatial locations of the Aβ-plaque enables us to 
identify spatially resolved plaque-induced genes (PIGs; Methods). Based on this strategy, we identified 
30 spatially resolved PIGs (15 PIGs in the 8-mos group; 27 PIGs in the 13-mos group; Extended Data 
Fig. 5g; Supplementary Table 6). These genes are over-expressed in the disease samples, and their 
∆Exp patterns are spatially correlated with Aβ plaques (Extended Data Fig. 5h) and enriched in peptide 
binding (GO:0042277) and the lysosome pathway (mmu04142; Extended Data Fig. 5i; Supplemen-
tary Table 6). Notably, our results are consistent with previously reported PIGs identified by Spatial 
Transcriptomics (ST) technology11 and the initial STARmap PLUS study (Fisher Exact test, p < 0.001), 
such as Apoe, C1qb, Cd63, Ctsb, and Gfap. More importantly, the ∆Exp analysis further uncovered the 
regional heterogeneity of changes in PIG expression levels in AD. For instance, Ctsb, an AD-related 
gene13, does not show uniform over-expression in the microglia across the sample; rather, it exhibits 
over-expression in the CA stratum lacunosum-moleculare (CAslm), L6, and RSP regions in the 13-mos 
comparison (Extended Data Fig. 5d-f).

Supplementary Methods Notes
Sub-sampling strategy of CAST Mark and CAST Stack.

To reduce the computational cost and adjust the different spatial resolution between different samples 
or spatial omics technologies, we designed the sub-sampling strategy for CAST Mark and CAST Stack.

Sub-sampling for CAST Mark. Given the number of sub-sampling nodes (e.g. n = 10,000 nodes), 
CAST will randomly select n cells as the sub-sampling nodes. Each cell in the slice will be assigned to 
its nearest sub-sampling node. The gene expression (by default, norm1e4) of cells grouped at each 
node are aggregated as the new gene expression for that node. These newly formed sub-sampled 
datasets become the input for CAST Mark.

Sub-sampling for CAST Stack. In this approach, CAST randomly selects n cells (e.g., n = 10,000) to 
act as anchor cells for the CAST Stack.

Methods of Sub-sampling Alignment. There are two primary strategies for sub-sampling alignment:

1. CAST Mark with Sub-sampling, followed by CAST Stack: Here, sub-sampling is initially applied 
for CAST Mark, and all sub-sampling nodes are subsequently processed through CAST Stack. The 
learned transformation is then applied to the original sample.

2. Full-size Dataset for CAST Mark, with Sub-sampling in CAST Stack: In this method, CAST Mark 
utilizes the full-size dataset. Subsequently, sub-sampling is applied for CAST Stack where the original 
sample is transformed in conjunction with the sub-sampling anchor nodes.

Sample preparation of the STARmap Mouse 2 sample. The mouse (C57BL/6 strain) utilized in this 
study was anesthetized with isoflurane and subsequently decapitated quickly. We collected the brain 
tissue and embedded it in the Tissue-Tek O.C.T. Compound, which is next frozen in liquid nitrogen and 
stored at -80 °C. The mouse brain tissue was further transferred to a cryostat (Leica CM1950) at -20°C 
and was sliced into 20 µm coronal sections. These slices were then placed on glass-bottom 12-well 
plates that had been pretreated with 3-(Trimethoxysilyl)propyl methacrylate and poly-D-lysine. Next, 
the slices were fixed with 4% PFA in PBS for 15 minutes (room temperature), permeabilized with cold 
methanol and kept at -80 °C for an hour. The experimental procedures for STARmap were similar to 
those used for HeLa cells in Zeng et al.5, except that all the reaction volumes were doubled because 



the brain tissue was prepared in 12-well plates. We captured the images using a Leica TCS SP8 con-
focal microscopy with a 63× oil immersion objective (NA 1.4) and a voxel size of 90.14 nm × 90.14 nm 
× 300 nm. In the first sequencing round, we also imaged the DAPI staining signals. Overall, 9 imaging 
cycles were sequenced to detect the 5,413 genes.

Data processing for STARmap brain tissue sample.

STARmap Imaging Preprocessing. We used Huygens Essential version 21.04 (Scientific Volume Im-
aging, The Netherlands, http://svi.nl) to deconvolute the raw images (CMLE algorithm; SNR:10 and 10 
iterations). The image preprocessing operations, such as image registration, spot calling, and barcode 
filtering with minor adjustments were applied following the previous report5.

Cell Segmentation. The RNA amplicon-based cell segmentation method ClusterMap14 was utilized to 
automatically detect the cells. We applied the default pipeline with minor adjustments to the DAPI sig-
nal preprocessing to capture cells in each field of view (FOV). The following parameters were used in 
the ClusterMap: cell_num_threshold = 0.7; dapi_grid_interval = 5; pct_filter = 0.1; window_size = 550. 
After cell segmentation for each FOV, cells were stitched to generate the cell-by-gene matrix.

Quality control and Cell typing. We adopted the quality control strategy reported by Zeng et al.5 for the 
STARmap Mouse 2 sample. The median absolute deviation (MAD) was used to estimate the lower/
upper boundaries for cell filtration:

The cells with reads fewer than the lower boundary or greater than the upper boundary were filtered 
out, resulting in 44,751 cells and 5,413 genes. Employing the similar strategy reported by Zeng et al.5, 
we further identified 11 cell types across 4 samples.

CAST Projection performance benchmark. To check the differences between CAST Projection and 
projection without spatial constraints, we used the strategy of projecting the cell from the query slice 
(S2, S3 or S4) to the cell in the reference slice (S1) with the closest cosine distance value (Supple-
mentary Fig. 9).

We also compared the results of the algorithms which were designed to project single cells to spatial 
cells (Tangram15 and Cell2Location16; Supplementary Fig. 10a,b). The norm1e4 expression data was 
used in Tangram (achieved the best results in our hands) and the raw expression data was used in the 
Cell2Location (achieved the best results in our hands). The default parameters shown in the tutorials 
in these two methods were used in the benchmark.

In addition, we further compared the CAST Projection performance based on the integration embed-
dings of Seurat CCA6, MNN8, and LIGER7 (Supplementary Fig. 10c-e). The default parameters shown 
in the tutorials are used in the benchmark.
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Supplementary Fig. 1
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Supplementary Fig. 1 | Parameter sensitivity and ablation studies of the CAST Mark architec-
ture. The median distance of each ground-truth cell pair of samples S1-S1’ after alignment is used as 
the performance evaluation metric (sample size = 10 for each box). a-d, The benchmark results for 
different CAST Mark hyperparameters: n_layer, number of GCNII layers (a); encoder_dim, encoder 
dimension (b); dfr, feature dropout rate (c); der, edge dropout rate (d). e, Ablation studies of the graph 
convolution layer (blue, GCNII, the same data as in panel a; light blue, replacing GCNII with the vanilla 
GCN layers) used in CAST Mark. In the boxplots a-e, the middle line indicates the median; the first 
and third quartiles are shown by the lower and upper lines, respectively; the upper and lower whiskers 
extend to values not exceeding 1.5 times the IQR.



Supplementary Fig. 2
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Supplementary Fig. 2 | Spatial resolution of CAST Mark embedding with respect to the number 
of GCNII layers between S1 and simulated dataset S1’. Given the query cell in the query sample 
(simulated dataset S1’), the cells in the reference sample (S1) are colored by Pearson correlation of 
the graph embedding between the reference cells and the given query cell (the same as Fig. 2c). Data 
shown is the mean value for 10 CAST training replicates.



Supplementary Fig. 3
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Supplementary Fig. 3 | Spatial resolution of CAST Mark embedding with respect to the number 
of GCNII layers between S1 and real biological samples S2-S8. Given the query cell in the query 
sample (S2-S8), the cells in the reference sample (S1) are colored by Pearson correlation of the graph 
embedding between the reference cells and the given query cell (the same as Fig. 2c). Data shown is 
the mean value for 10 CAST training replicates.



Supplementary Fig. 4
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Supplementary Fig. 4 | Benchmark of the CAST Stack initialization. a, Different affine transforma-
tion iterations (left panel, 500 iterations; right panel, 100 iterations) were applied to align S4 to S1. The 
alignment results using only affine transformation are displayed, alongside the profiles of correspond-
ing parameters observed throughout the gradient descent process. b, Different B-spline iterations (left 
panel, 400 iterations; right panel, 50 iterations) are applied to align S4 to S1. The loss function, before 
and after the B-spline warping are displayed, respectively. c, Different mesh grid settings alongside 
the alignment results are exhibited respectively. d, Results of the pre-location screening with or with-
out translation trials are shown. Each panel shows the loss function profiles of different pre-location 
trials as well as the two samples before and after alignment. For visualization, the aligned results of 
b (left panel), c (middle panel), and d (left panel) are same. e, Alignment of STARmap_mouse2 and 
RIBOmap_mouse2. The results show the before alignment, after affine transformation, and following 
the subsequent B-spline warping.



Supplementary Fig. 5
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Supplementary Fig. 5 | Efficiency of the CAST algorithm in time and space scales with the num-
ber of cells and number of slices with the subsampling strategy. a, CAST Mark memory usage 
scales linearly with the number of cells per sample in subsampling while the time cost scales sublin-
early. RIBOmap Mouse 2 and STARmap Mouse 2 containing 60,481 cells and 44,751 cells, respec-
tively, were used as the training datasets for this task. b, CAST Stack time and memory usage scales 
superlinearly with the number of cells per sample in subsampling. RIBOmap Mouse 2 and STARmap 
Mouse 2 were used as the training datasets for this task. c, The memory efficiency of the CAST algo-
rithm is robust to the number of samples. The time cost of the CAST algorithm scales linearly with the 
number of samples. S1 and S1’ were used as the training datasets for this sample. The sample size is 
10 for each box in a-c. The middle line indicates the median; the first and third quartiles are shown by 
the lower and upper lines, respectively; the upper and lower whiskers extend to values not exceeding 
1.5 times the IQR.



Supplementary Fig. 6
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Supplementary Fig. 6 | Benchmark of PASTE. a, PASTE alignment from the Visium2 sample to the 
Visium1 sample. b, The Atp1a1 raw count gene expression profile of the before and after alignment 
(left, PASTE; right, CAST). c, Benchmarking the performance of CAST and PASTE in one-to-one align-
ment tasks. Spatial coordinates of query (S2-S8, respectively, colored in pink) and reference samples 
(S1, colored in blue) are overlaid before alignment (top panel), after PASTE alignment (middle panel), 
or after CAST Stack alignment (bottom panel). d, PASTE center-align alignment results of samples 
S1–S8. Spatial coordinates of these samples are overlaid. Cells are colored by samples. e, Manual 
rotation preprocessing fails to improve PASTE alignment performance. Human-preprocessed spatial 
coordinates were used as input for PASTE alignment. S7 to S1 alignment is shown as an example. 
Overlaid spatial coordinates of the two samples are plotted before and after PASTE alignment, the 
query sample (S7) colored pink and the reference sample (S1) colored blue.
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Supplementary Fig. 7 | Delta-sample analysis (∆Analysis) detects spatial differences of molecu-
lar characteristics between disease and normal conditions. a, Left panel: the spatial gradient map 
(S8 coordinates) shows the ∆Cell pattern of the microglia in 13 mos comparison (S8 − (S3 + S4) / 2). 
The dark green dots represent the Aβ-plaque in the S8 sample, and the size of the dots indicates the 
area of the Aβ-plaque. The dashed lines indicate the different CAST Mark regions (Extended Data Fig. 
5c). Similarly, the right panel is the ∆Cell pattern of S7 (S7 − (S3 + S4) / 2). b, The average delta cell 
type abundance (∆Cell) in different regions, cell types and comparison groups. The average spatial 
correlation (Pearson r) between the ∆Cell and the Aβ-plaque as well as p-tau scores (Methods) are 
displayed aside. For visualization, The values of 4 combinations in each comparison are averaged 
(13 mos comparison: S7 − S3, S7 − S4, S8 − S3, S8 − S4; 8 mos comparison: S5 − S1, S5 − S2, 
S6 − S1, S6 − S2). c, The scatter plot shows the significant high spatial correlation between the ∆Cell 
(Oligodendrocyte) and the p-tau score in S7 (left panel, n = 9,634) and S8 (right panel, n = 10,372). 
The ∆Cell values (y axis) are the subtraction of the disease sample and the average value of the con-
trol samples (left panel, S7 − (S3 + S4) / 2; right panel, S8 − (S3 + S4) / 2). In the Pearson correlation 
tests, all p-values are less than 2.2e-16. d, Analogous to c, the ∆Cell (Microglia) shows significant high 
spatial correlation with Aβ-plaque score in 13 mos (S8 − (S3 + S4) / 2, n=10,372; S7 − (S3 + S4) / 2, 
n = 9,634) and 8 mos (S5 − (S1 + S2) / 2, n = 8,202; S6 − (S1 + S2) / 2, n = 8,186) comparisons. In 
the Pearson correlation tests, all p-values are less than 2.2e-16. e, Analogous to a, The ∆Cell pattern 
of the microglia in 13 mos comparison (S8 − (S3 + S4) / 2) with different physical radii R (from 5 µm to 
200 µm). For visualization, the ∆Cell pattern in a (left) is also displayed here.
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Supplementary Fig. 8 | The ∆Analysis delineates the spatial differences of injury-associated 
cell types and gene expression. a, ∆Cell results of the nptxEx (Nptx+ lateral pallium excitatory neu-
ron) and reaEGC (reactive ependymoglial cells), and associated ∆Exp profiles (log2_norm1e4) of the 
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2DPI_3, respectively). b, The ∆Exp profiles (log2_norm1e4) of the example genes in Cluster 6 (Lgals1 
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Supplementary Fig. 9 | Projecting cells without spatial constraints. a-c, The cells in the query 
slice (S2, a; S3, b; S4, c) were projected to the cell in the reference slice (S1) with the closest cosine 
distance value. In each plot, the left panel is the confusion matrix of the projection (True positive rate 
= 0.93 for each group). In order to analyze cell types with an adequate sample size, we filtered out 
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results. For visualization, projection profiles of the initial CAST Projection (Fig. 5b and Extended Data 
Fig. 7c) are also displayed here. Dashed lines (100 randomly sampled assignment pairs for visualiza-
tion) connect cells from the query sample (S2-S4) with its destination cell in the reference sample (S1). 
Colors represent cell types. The right panel is the distribution of the physical distance in the spatial 
single-cell projection results (yellow) compared with the initial CAST Projection results (blue). 
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Supplementary Fig. 10 | Benchmark of the CAST Projection algorithm. a, b, The confusion ma-
trix of the true label and the predicted cell type label generated by Tangram (a) and Cell2Location (b) 
based on the query sample (S2, S3, S4, respectively). The cell type with the highest probability is 
assigned as the predicted cell type label. c-e, CAST Projection performance using different integration 
methods. The confusion matrix of the true label and the predicted cell type label generated by LIGER 
(c), MNN (d) and Seurat (e, based on CCA integration of Seurat version 4) based on the query sample 
(S2, S3, S4, respectively). All the parameters are the same as the initial CAST Projection based on the 
Combat and Harmony integration.
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