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Supplemental Methods 

Regression models 
 
Regression models were trained to take as input a one-hot encoded CRE sequence and predict 
as output its activity. All regression models were based on the Enformer architecture (Avsec et 
al. 2021) and were built using the enformer-pytorch package 
(https://github.com/lucidrains/enformer-pytorch). All regression models were trained for 10 
epochs on 1 NVIDIA A100 GPU using the Adam optimizer. Performance was measured as the 
Pearson’s correlation between measured and predicted CRE activity on the test set. 

Yeast promoters 
 
All regression models were Enformer-based models with 3 convolutional blocks followed by 1 
transformer encoder layer. The first convolutional block has 384 channels. Each model has a 
single linear output layer that predicts promoter activity in one of the two media. Models were 
trained with learning rate 5 × 10-4 and batch size 2048. Validation set loss was measured after 
each epoch and the model with lowest validation loss was saved. 

Human enhancers 
 
For human data, we downloaded the pre-trained Enformer model and reduced its size by 
dropping the last 8 transformer encoder layers (leaving 7 convolutional blocks and 3 transformer 
encoder layers). For each of our regression models, we added a single linear output layer that 
predicts the total measured expression for the input sequence in a specific cell type. 
 
For the regLM-matched regression models, we fine-tuned the model on the same sequences as 
regLM. These models were fine-tuned with learning rate 10-4, batch size 1024, and MSE loss. 
During training, examples with each label were sampled from the training set with a weight 
inversely proportional to the frequency of the label, allowing the model to focus on cell type-
specific enhancers that were extremely rare. Validation set loss was measured after each epoch 
and the model with lowest validation loss was saved. 
 

Additional Models for Human CREs 

Lentiviral MPRA model 
 
Training data were obtained from (Agarwal et al. 2023),  specifically the three cell line 
experiment detailed in supplemental tables 6 (200bp sequences) and 7 (log-transformed MPRA 

https://paperpile.com/c/9kTbdY/WhMZ
https://paperpile.com/c/9kTbdY/WhMZ
https://github.com/lucidrains/enformer-pytorch
https://paperpile.com/c/9kTbdY/WNyY
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values). The dataset was restricted to sequences from autosomes and not overlapping 
ENCODE blacklist regions. Sequences from Chromosome 10 were used for validation and 
Chromosome 11 for testing, and sequences from the remaining autosomes were used for 
training. 
 
We took the pre-trained Enformer model, dropped all but the first transformer layer, and fine-
tuned the model on this dataset using a batch size of 512, learning rate of 10-4, and MSE loss 
for 10 epochs with the Adam optimizer.  
 
The Pearson’s correlation coefficient between the model predictions and the true values, in the 
test set, was: 0.84 for HepG2, 0.84 for K562, and 0.85 for WTC11. 

ATAC-seq model 
 
We downloaded public ATAC-seq data in the form of processed BAM files from the ENCODE 
Project for the following cell lines: K562 (ENCFF534DCE), HepG2 (ENCFF624SON), GM12878 
(ENCSR095QNB), IMR90 (ENCFF715NAV), WTC11 (ENCFF240QKT), and SK-N-SH 
(ENCFF270AGJ). As standard, SK-N-SH cells were treated with trans-retinoic acid prior to 
sequencing to induce neural-like differentiation. In addition, we downloaded raw fastq files for 
Jurkat cells from the SRA archive (SRX7785407). These raw reads were then aligned to the 
hg38 genome following the ENCODEv4 standards.  
 
Peaks for each cell line were called using MACS3 (Zhang et al. 2008) callpeaks with the 
additional parameters "--nomodel --shift -100 --extsize 200".  We then created a unified peak set 
as described in (Corces et al. 2018) with an SPM = 2 and an extension of 250bp. This resulted 
in a uniform peak set consisting of 366,776 500 bp regions to which we added an additional 15 
percent of 500 bp regions overlapping no known peak to serve as no-signal background regions 
during modeling. These peak regions were binarized per cell line by overlapping them with cell 
line specific MACS3 peak calls using an SPM value of 5. Peaks were then resized to 200bp 
around the center. Peaks overlapping ENCODE blacklist regions were dropped. Of the 
remaining peaks, peaks from Chromosome 10 were used for validation, peaks from 
Chromosome 11 were used for testing, and peaks from all remaining autosomes were used for 
training. 
 
We took the pre-trained Enformer model, dropped all but the first transformer layer, and added a 
head (linear layer) with a sigmoid activation function to predict the probability of the input 
sequence being a peak in each cell line. We fine-tuned the model on this dataset using a batch 
size of 512, learning rate of 10-4, and binary cross-entropy loss for 10 epochs with the Adam 
optimizer. Validation set loss was measured after each epoch and the model with lowest 
validation loss was saved. 
 
The average precision of the trained model on the test set, per cell line, was: 0.73 in GM12878, 
0.70 in HepG2, 0.73 in IMR90, 0.73 in Jurkat cells, 0.75 in K562, 0.70 in SK-N-SH, and 0.77 in 
WTC11. 

https://paperpile.com/c/9kTbdY/ajhG
https://paperpile.com/c/9kTbdY/5NYK
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At inference, predicted probabilities were thresholded with a cutoff of 0.5 to generate final 
predictions. 

CATLAS scATAC-seq model 
 
We downloaded binarized single-cell pseudobulk chromatin accessibility matrices from the 
CATLAS project (Zhang et al. 2021). Peaks were resized to 200 bp around the center. Cell 
types with accessibility in less than 3% of peaks were discarded, which reduced the number of 
cell types from 222 to 204. Of the remaining peaks, peaks from Chromosome 7 were used for 
validation, peaks from Chromosome 13 were used for testing, and peaks from all remaining 
autosomes were used for training. 
 
We took the pre-trained Enformer model, dropped all but the first transformer layer, and added a 
head (linear layer) with a sigmoid activation function to predict the probability of the input 
sequence being a peak in each cell type. We fine-tuned the model on this dataset using a batch 
size of 512, learning rate of 10-4, and binary cross-entropy loss for 10 epochs with the Adam 
optimizer. Validation set loss was measured after each epoch and the model with lowest 
validation loss was saved.  
 
The average precision of the trained model on the test set was 0.53 across all 204 cell types. 
For the cell types shown in Fig. 3H, it was: 0.61 in Hepatocytes, 0.56 in Fetal Hepatoblast, 0.55 
in Fetal Erythroblast 1, 0.51 in Fetal Erythroblast 2, 0.58 in Fetal Erythroblast 3, and 0.55 in 
Fetal Erythroblast 4. 
 
At inference, predicted probabilities were thresholded with a cutoff of 0.5 to generate final 
predictions. 

Full-stack ChromHMM model 
 
Annotations for the hg38 genome generated using the full-stack ChromHMM model were 
obtained from (Vu and Ernst 2022). These annotations were extended to 1024bp from the 
center and restricted to the autosomes. The fine scale categories were collapsed by stripping off 
the prefix and suffix values to generate 16 broad categories of annotations (Acet (acetylations), 
BivProm (bivalent promoter), DNase, EnhA (Enhancers), EnhWk (Weak enhancers), GapArtf 
(Assembly gaps and artifacts), HET (heterochromatin), PromF (Flanking promoter), ReprPC 
(Polycomb repressed), Quies (Quiescent), TSS (Transcription start site), Tx (Transcription), 
TxWk (Weak transcription), TxEnh (Transcribed Enhancer), TxEx (Exon & Transcription), and 
znf (ZNF genes)). The resulting element set was downsampled to have a maximum of 250,000 
instances of any given category. The dataset was also restricted to autosomes with 
Chromosome 7 used for validation and Chromosome 13 for testing, excluding regions 
overlapping ENCODE blacklist regions.  
 

https://paperpile.com/c/9kTbdY/sIbA
https://paperpile.com/c/9kTbdY/igfl
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We took the pre-trained Enformer model, dropped all but the first transformer layer, and added a 
linear layer with a Softmax activation function to predict class probabilities. We fine-tuned the 
model to perform multiclass classification on this dataset. For fine-tuning, we used a batch size 
of 512, learning rate of 10-4, reverse complement augmentation at randomly selected examples, 
and cross-entropy loss for 14 epochs with the Adam optimizer. Validation set loss was 
measured after each epoch and the model with lowest validation loss was saved.  
 
The average precision of the model for each class, in the test set, was: 0.81 for DNase, 0.81 for 
TSS, 0.67 for GapArtf, 0.64 for PromF, 0.57 for HET, 0.47 for Quies,  0.41 for BivProm, 0.4 for 
EnhA, 0.40 for EnhWk, 0.32 for Tx, 0.32 for TxEx, 0.31 for Acet, 0.29 for TxEnh, 0.27 for TxWk, 
0.20 for ReprPC, and 0.14 for znf. 
 
At inference, each sequence was predicted to belong to the class with the highest predicted 
probability. 

Generating synthetic yeast promoters with benchmark methods 
 
In order to benchmark regLM against existing commonly used approaches, we ran five other 
methods to generate synthetic yeast promoters: Directed Evolution, Ledidi, AdaLead, 
FastSeqProp and Simulated Annealing. These are all model-guided methods that iteratively 
make edits to a starting sequence to maximize a defined objective function using a trained 
predictive model (the 'oracle'). 
 
We randomly chose sequences that had been measured to have low activity in all conditions 
(label 00) as the starting sequences. To ensure a fair comparison to regLM-generated 
sequences, the regression models trained on the same data as regLM were used as oracles. All 
approaches were each run multiple times with a different starting sequence each time, to 
generate diverse synthetic CREs. We used the CODA software package (Gosai et al. 2023 Aug 
9) to run AdaLead, FastSeqProp and Simulated Annealing. 
 
For yeast promoters, we aimed to generate promoters with high activity in both media. The 
objective function for all methods was the mean predicted activity in the two media. All methods 
were run 200 times, each time with a different initial sequence, resulting in a diverse set of 
synthetic promoters from each method. Parameters were tuned to achieve synthetic sequences 
with similar predicted activity to those generated by regLM. 
 
The following parameters were used: 
Directed Evolution: 10 iterations 
Ledidi: max_iter=800, l=20, lr=4×10-3 

AdaLead: model_queries_per_batch=75 
FastSeqProp: n_steps=5, learning_rate=0.1 
Simulated Annealing: n_steps=220, n_proposals=5 
 

https://paperpile.com/c/9kTbdY/zbOu
https://paperpile.com/c/9kTbdY/zbOu
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For each method, each regLM-generated strong promoter was matched to the method-
generated sequences that were closest to it in predicted activity (measured by the mean 
squared error across both conditions), resulting in a matched set of 200 putative strong 
promoters designed by each method. Thus, since the various groups of synthetic elements have 
highly similar predicted activity, we can compare their sequence content to assess which 
approach gives rise to more biologically realistic sequences while reaching the same objective. 
 

Supplemental Notes 

Supplemental Note S1: Regulatory programs used by synthetic 
yeast promoters generated with different methods 
 
We clustered yeast promoters into groups containing different combinations of motifs and 
partitioned the synthetic promoters generated by each method into clusters. 23% of the strong 
promoters in the test set mostly fell into cluster 0, which is characterized by ABF1, SKO1, YAP6, 
and CIN5 motifs, followed by 18% in cluster 1 (RSC3, RSC30, DAL82, SUT1, and TEA1 motifs), 
17% in cluster 2 (ECM22, HAL9, ERT1, CAT8, and ASG1 motifs) and 15% in cluster 3 (CHA4, 
PDR3, PDR1, IME1, and RDS1 motifs). regLM promoters partitioned similarly to test set 
promoters, with no significant differences. However, the most notable feature in all other 
methods was a strong enrichment for clusters 6 (CUP2, EDS1, STB3, SUM1, and SFP1 motifs) 
and 8 (ARR1, CIN5, FKH1, RLM1, and SPT15 motifs). In addition, promoters generated by 
FastSeqProp were enriched in clusters 2 (ECM22, HAL9, ERT1, CAT8, and ASG1 motifs) and 7 
(characterized by the presence of XBP1 motifs). 

Supplemental Note S2: Choice of labels 
 
In the above experiments, we generated labels by dividing yeast promoters into 5 equal bins per 
medium and dividing human enhancers into 4 unequal bins per cell type. In theory, any number 
of class labels can be used, and our package allows users to choose the number of labels and 
to define them in any way. However, the more we subdivide our data, the less information the 
model will have to learn an accurate distribution of each class. In contrast, having fewer 
subdivisions may make it more difficult for the model to share information across similar 
categories. 
 
The resolution of the data should also be kept in mind. In the case of the yeast promoter GPRA 
assay, promoters were sorted into bins based on their measured activity; however, many 
promoters were measured only once and so their measured values are not precise. Hence, we 
chose to use a lower resolution. 
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To demonstrate that our method can work with different labeling schemes, we have also re-
trained the yeast model using 10 label classes instead of 5. The 10-class model performs well at 
generating sequences with label-consistent expression (Fig. S30). 
 
In the case of human enhancers, the cell type specific enhancers we aimed to design were 
extremely rare in the dataset. Therefore instead of dividing the dataset into equally sized bins, 
we assigned sequences with extremely high activity (in the 95th percentile for each cell line) to a 
separate bin. 
 

Supplemental Tables 
 

 Transcription 
Factor 

Motif Contribution TOMTOM q-
value (test set) 

TOMTOM q-value 
(regLM generated 
promoters) 

1 ABF1 MA0265.3 Positive 4.5×10-8 4.4×10-3 

2 REB1 MA0363.3 Positive 1.2×10-5 5.0×10-4 

3 RAP1 MA0359.3 Positive 1.9×10-4 3.5×10-5 

4 TBF1 MA0403.3 Positive 3.4×10-3 N/A 

5 RTG3 MA0376.2 Positive 6.3×10-3 N/A 

6 RSC3 MA0374.2 Positive 0.03 0.02 

7 SFP1 MA0378.2 Positive 0.04 0.01 

8 STB3 MA0390.2 Positive 0.05 0.02 

9 UME6 MA0412.3 Negative 1.4×10-6 2.9×10-4 

10 RPH1 MA0372.2 Negative 0.014 N/A 

Supplemental Table S2. Motifs identified by TF-MoDISco and TOMTOM on test set and regLM 
generated promoters. N/A indicates that no motif with a significant match was found by TF-
MoDISco. 

 
 
 Test 

Set 
regLM Evolution Evolution 

(V) 
Ledidi Ada- 

Lead 
FastSeq 
-Prop 

Simulated 
Annealing 
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Differential k-mers w.r.t. 
Test Set 

N/A 0 86  122 
 

51  33 
 

27  71 

Fraction of Nearest 
Neighbors in Test Set (k-
mer frequency) 

0.88  0.91  0.45  0.33 0.53  
 

0.73 0.73 0.87 
 

SVM AUROC vs. Test Set 
(k-mer frequency) 

N/A  0.5 0.52  
 

0.64 0.57  0.5 
 

0.5 0.51 

Differential motifs w.r.t. 
Test Set 

N/A  0 22 42 5  6  1  0 

Fraction of Nearest 
Neighbors in Test Set 
(motif frequency) 

0.85  0.83  0.67 0.47 0.71 0.75 0.82 0.82 

SVM AUROC vs. Test Set 
(motif frequency) 

N/A  0.5  0.52  0.53 
 

0.53 0.5  0.5  0.5  

Differential motif pairs w.r.t. 
Test Set 

N/A 1 
 

285  439 153 125 89 21 

Differential motif 
positioning w.r.t. Test Set 

 N/A  
 

0  1  
 

9  2  3  0 2 

Pearson’s Rho (fraction of 
pair in same orientation) 
with test set 

N/A  0.52  0.51   0.34  0.47 0.45 0.45 0.41 

Differential inter-motif 
distance w.r.t. Test Set 

N/A 1897  1853 
 

1846 2052 1909 1945  1968 

Fraction of Nearest 
Neighbors in Test Set 
(model embedding)  

0.88  0.88  0.80  0.53 0.79  0.81  0.86  0.86 
 

Supplemental Table S5. Additional metrics for all sets of synthetic yeast promoters as well as 
strong promoters from the test set. The best performances for each method are highlighted in 
bold. Evolution (V) represents synthetic promoters generated by (Vaishnav et al. 2022). 

 
 
 
 
 
 
 
 

https://paperpile.com/c/9kTbdY/5v99
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 Specificity Transcription 
Factor 

Motif Contribution TOMTOM q-
value 

1 HepG2- 
specific 

HNF1A MA0046.3 Positive 0.000070 

2 HNF1B MA0153.2 Positive 0.000064 

3 HNF4A MA0114.5 Positive 0.01 

4 HNF4G MA0484.3 Positive 0.01 

5 FOXD1 MA0031.2 Positive 0.02 

6 FOXA2 MA0047.4 Positive 0.06 

7 K562- 
specific 

GATA2 MA0036.4 Positive 0.06 

8 KLF4 MA0039.5 Positive 0.05 

9 SK-N-SH- 
specific 

AP-1 MA0099.4 Positive 0.07 

Supplemental Table S9. Motifs identified by TF-MoDISco and TOMTOM on the 100 regLM 
generated human enhancers specific to each cell type. 

 
 
Transcription 
Factor 

Motif Group Mean no. 
of sites 

Fraction 
sequences 
with motif 

Log2 Fold 
Change in 
abundance 

FDR-adjusted 
p-value 

HepG2-specific 

HNF1B MA0153.2 AdaLead (G) 1.77  0.64 1.96 3.2×10-8 

FastSeqProp (G) 1.76  0.63 1.94 3.1×10-7 

Simulated 
Annealing (G) 

2.13 0.73 2.56 3.0×10-13 

regLM (top 100) 1.80 0.79 2.01 1.2×10-11 

regLM (all) 0.81 0.31 N/A 0 

CEBPA MA0102.5 AdaLead (G)  1.27 0.62 1.8 2.5×10-6 

FastSeqProp (G) 0.64  0.42 0.29 0.92 
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Simulated 
Annealing (G) 

0.73  
 

0.5 0.55 0.3 

regLM (top 100) 0.93  0.74 1.06 1.2×10-5 

regLM (all) 0.54 0.45 N/A 0 

K562-specific 

GATA1 MA0035.5 AdaLead (G) 1.69 0.89 3.6 2.5×10-34 

FastSeqProp (G) 1.12 0.55 2.5 3.8×10-9 

Simulated 
Annealing (G) 1.43 0.82 3.1 6.9×10-27 

regLM (top 100) 0.72 0.72 1.6 3.7×10-12 

regLM (all) 0.30 0.29 N/A 0 

GATA1::TAL1 MA0140.3 AdaLead (G) 1.49 0.79 3.8 5.4×10-29 

FastSeqProp (G) 1.95 0.90 4.6 8.1×10-43 

Simulated 
Annealing (G) 1.62 0.85 4.1 2.7×10-35 

regLM (top 100) 0.49 0.49 1.5 4.7×10-6 

regLM (all) 0.21 0.21 N/A 0 

SNAI3 MA1559.2 AdaLead (G) 1.54 0.77 1.0 1.9×10-4 

FastSeqProp (G) 1.45  0.76 0.8 9.3×10-4 

Simulated 
Annealing (G) 1.38  0.76 0.7 4.5×10-3 

regLM (top 100) 0.34 0.26 -2.1 1.1×10-8 

regLM (all) 1.02 0.56 N/A 0 

NFKB1 MA0105.4 AdaLead (G) 0.39 0.19 -1.2 0.12 

FastSeqProp (G) 0.31 0.15 -1.5 3.4×10-2 

Simulated 
Annealing (G) 0.31 0.15 -1.5 3.1×10-2 

regLM (top 100) 0.09 0.07 -3.5 3.9×10-4 

regLM (all) 0.72 0.27 N/A 0 
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Supplemental Table S10. Abundance of selected motifs in synthetic cell type-specific human 
enhancers generated by different methods. Fold changes were calculated for each group using 
the set of all regLM-generated enhancers (regLM (all)) as the reference group. P-values were 
calculated using the two-sided Wilcoxon test. 

 
 
 
 

Supplemental Figures 
 

 
Supplemental Figure S1. Histograms of measured promoter activity in the two media, colored 
by the assigned token in each medium. Each promoter was assigned a token ranging from 0-4 
where 0 corresponds to the lowest quintile of measured activity and 4 corresponds to the 
highest. This procedure was performed separately for measurements in complex and defined 
media. 
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Supplemental Figure S2. A. Boxplots showing the average per-nucleotide prediction accuracy 
of the yeast regLM model on A) 3,922 native yeast promoters and B) 50,000 promoters from the 
test set, separated by the promoter class labels. Only the 5 most common labels (00, 11, 22, 33, 
44) are shown. The dashed lines represent the accuracy of 0.25 expected by chance. 
 

 
 
Supplemental Figure S3. Box plots showing the average per-nucleotide prediction accuracy of 
the yeast regLM model on 50,000 promoters from the test set, compared to baseline models. 
Dotted lines show the performance of regLM (0.338) and random chance (0.25). 
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Supplemental Figure S4. Boxplots showing the average per-nucleotide prediction accuracy of 
the yeast regLM model on 3,922 native yeast promoters, before and after shuffling the labels 
across sequences. The dashed line represents the accuracy of 0.25 expected by chance. 
 
 

 
Supplemental Figure S5. A) Average nucleotide prediction accuracy of the regLM model on 
50,000 promoters in the test set, for nucleotides within known TF-binding motifs versus those 
outside. The dashed line represents the accuracy of 0.25 expected by chance. B) Scatterplot 
showing the accuracy of the regLM model on nucleotides within TF binding motifs in the test set. 
Each point represents a TF binding motif. The x-axis shows the number of occurrences of the 
motif across the test set. The y-axis shows the average accuracy of the regLM model on all 
instances of the motif in the test set. The red line shows the linear fit to the data. 
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Supplemental Figure S6: Scatter plot showing the accuracy of the regLM model on 
nucleotides at different positions along the sequence length, for the test set. 
 
 

 
Supplemental Figure S7: Accuracy of the regLM model on 50,000 promoters in the test set, 
over different categories of nucleotides. “Common Motifs” are nucleotides within the 50 most 
common motifs in the test set. “Sequence End” comprises the last 15 bases of each 80 bp long 
sequence. Dotted lines show the mean performance of regLM across all nucleotides (0.338) 
and random chance (0.25). 
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Supplemental Figure S8: Scatterplot showing the log ratio between the abundance of a motif 
in strong promoters (label 44) vs. weak promoters (label 00) on the x-axis, and the log ratio 
between the average accuracy of the regLM model on all instances of the motif in strong 
promoters vs. weak promoters on the y-axis. The red line shows the linear fit to the data.  
 

 
Supplemental Figure S9: Performance of supervised regression models trained to predict 
promoter activity of yeast promoter sequences, in A) complex medium and B) defined medium. 
The models were trained and tested on the same data as the regLM model. Scatterplots show 
the measured and predicted activity of 50,000 test set promoters. 
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Supplemental Figure S10: Performance of two supervised regression models trained to predict 
promoter activity of yeast promoter sequences in A) complex medium and B) defined medium 
respectively. These models were trained and tested on separate data from the regLM model. 
Scatterplots show the measured and predicted activity of 50,000 test set promoters each. 
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Supplemental Figure S11: A) Scatterplot showing the association between motif abundance in 
regLM generated promoters versus the test set, for promoters with different labels. Red lines 
show the linear fit to the data. B, C) A closer focus on the motifs that show the strongest 
differential abundance between strong and weak promoters in the test set, showing the close 
match between their abundance in the test set and in the generated promoters. Bar plots show 
the fraction of regLM generated promoters and test set promoters that contain selected 
activating and repressing TF motifs, separated by label. Only the 5 most common labels (00, 11, 
22, 33, 44) are shown. 
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Supplemental Figure S12: Examples of strong promoters in the test set. Height represents the 
per-nucleotide importance score obtained from the paired regression model using ISM. Motifs 
with high importance are highlighted. 
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Supplemental Figure S13: Examples of strong promoters generated by regLM. Height 
represents the per-nucleotide importance score obtained from the paired regression model 
using ISM. Motifs with high importance are highlighted. 
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Supplemental Figure S14: Predicted activity of synthetic strong yeast promoters generated by 
different methods, in complex and defined media. 200 synthetic promoters were generated by 
each method. Evolution (V) represents synthetic promoters generated by (Vaishnav et al. 2022). 
 
 
 
 
 

https://paperpile.com/c/9kTbdY/5v99
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Supplemental Figure S15: Heatmap showing log2 fold changes in motif abundance for the top 
differentially abundant motifs across clusters of strong promoters. Fold changes were calculated 
for each cluster relative to the entire dataset. 
 
 
 



24 

 

 

 
 
Supplemental Figure S16: UMAP visualization of real (Test Set) and synthetic strong 
promoters, labeled by the source dataset. 
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Supplemental Figure S17: Histogram of the Pearson’s correlation between per-base ISM 
scores from the paired regression model, and the per-base log-likelihood ratios from the regLM 
model (44 vs. 00), across all 50,000 promoters in the test set. 
 

 
Supplemental Figure S18: Histograms showing the measured enhancer activity in each of 3 
cell lines, for cell type-specific enhancers in the training set. Sequences were divided into 4  
bins based on their measured activity. Each sequence was assigned a token ranging from 0-3 
where 0 corresponds to the lowest bin and 3 corresponds to the highest. This procedure was 
performed separately for measurements in each cell line. The color corresponds to the assigned 
token in that cell line. 
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Supplemental Figure S19: Performance of a supervised regression model trained to predict 
activity of human enhancer sequences in A) HepG2 cells B) K562 cells C) SK-N-SH cells. The 
models were trained and tested on the same data as the regLM model. Scatter plots show the 
measured and predicted activity of enhancers in the test set. 
 
 

 
Supplemental Figure S20: Predicted activity of synthetic cell type-specific enhancers 
generated by regLM. The y-axis represents the activity predicted by independent regression 
models. Numbers in blue show the number of regLM-generated enhancers remaining after each 
filtering step. A) All 5,000 enhancers generated by regLM for each cell line B) Generated 
enhancers with a minimum edit distance of 20 from the training set C) Generated enhancers 
with a minimum edit distance of 20 from the training set, as well as on-target predictions >= 3.5 
and maximum off-target prediction <=0.2, based on the regLM-paired regression models. D) 
The final set of the top 100 regLM-generated enhancers for each cell type, based on cell type 
specificity predicted by the regLM-paired regression models. 
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Supplemental Figure S21: Performance of a supervised regression model trained to predict 
activity of human enhancer sequences in A) HepG2 cells B) K562 cells C) SK-N-SH cells. The 
models were trained and tested on separate data from the regLM model. Scatter plots show the 
measured and predicted activity of enhancers in the test set. 
 

 
Supplemental Figure S22: Predicted activity of the synthetic cell type-specific enhancers 
generated by regLM and by Gosai et al. (Gosai et al. 2023), in 3 cell lines. Predictions were 
generated by regression models trained on separate data from regLM. (G) indicates that the 
method was performed by Gosai et al. 
 
 

https://paperpile.com/c/9kTbdY/zbOu
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Supplemental Figure S23: ISM-based importance scores for regLM generated K562 and 
HepG2-specific enhancers, highlighting highly contributing motifs. 
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Supplemental Figure S24: ISM-based importance scores for K562 and HepG2-specific 
enhancers in the test set, highlighting highly contributing motifs. 
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Supplemental Figure S25: Predicted activity of 100 synthetic cell type-specific enhancers 
generated by regLM for each cell line, and the 100 Gosai et al. (Gosai et al. 2023) designed 
elements chosen to have the most similar activity for each cell line. (G) indicates that the 
method was performed by Gosai et al.  
 
 

 
 
Supplemental Figure S26: Predicted activity of synthetic cell type-specific enhancers 
generated by different methods, using a model trained on Lentiviral MPRA data. (G) indicates 
that the method was performed by Gosai et al. (Gosai et al. 2023). The 300 Gosai et al. 
designed elements chosen based on similar activity to regLM generated enhancers are shown 
here. 
 
 
 

https://paperpile.com/c/9kTbdY/zbOu
https://paperpile.com/c/9kTbdY/zbOu
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Supplemental Figure S27: Predictions of a binary classification model trained to predict ATAC-
seq peaks in three cell lines, on synthetic cell type-specific enhancers generated by different 
methods. (G) indicates that the method was performed by Gosai et al. (Gosai et al. 2023). The 
300 Gosai et al. designed elements chosen based on similar activity to regLM generated 
enhancers are shown here. 

https://paperpile.com/c/9kTbdY/zbOu
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Supplemental Figure S28: Predictions of a binary classification model trained to predict ATAC-
seq peaks in 203 cell types, on synthetic cell type-specific enhancers generated by different 
methods. (G) indicates that the method was performed by Gosai et al. (Gosai et al. 2023). The 
300 Gosai et al. designed elements chosen based on similar activity to regLM generated 
enhancers are shown here. 
 

https://paperpile.com/c/9kTbdY/zbOu
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Supplemental Figure S29: Predictions of a classification model trained to classify genomic 
DNA into chromatin states defined by the fullstack ChromHMM annotation (Vu and Ernst 2022), 
on synthetic cell type-specific enhancers generated by different methods. (G) indicates that the 
method was performed by Gosai et al. (Gosai et al. 2023). The 300 Gosai et al. designed 
elements chosen based on similar activity to regLM generated enhancers are shown here. 

 
Supplemental Figure S30: The yeast regLM model was re-trained with labels consisting of 10 
tokens ranging from 0 (lowest activity) - 9 (highest activity). The trained model was prompted 
with labels ranging from 00-99 and 100 synthetic promoters were generated from each prompt. 
The activity of these synthetic promoters was predicted using regression models trained on 
separate data and compared to the predicted activity of experimentally validated test set 
promoters with the same labels. 

https://paperpile.com/c/9kTbdY/igfl
https://paperpile.com/c/9kTbdY/zbOu


34 

Supplemental References 
 

Agarwal V, Inoue F, Schubach M, Martin BK, Dash PM, Zhang Z, Sohota A, Noble WS, 
Yardimci GG, Kircher M, et al. 2023. Massively parallel characterization of transcriptional 
regulatory elements in three diverse human cell types. bioRxiv doi:10.1101/2023.03.05.531189.  

Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A, Taylor KR, Assael Y, 
Jumper J, Kohli P, Kelley DR. 2021. Effective gene expression prediction from sequence by 
integrating long-range interactions. Nat Methods 18(10):1196–1203. 

Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou W, Silva TC, Groeneveld C, 
Wong CK, Cho SW, et al. 2018. The chromatin accessibility landscape of primary human 
cancers. Science 362(6413). 

Gosai SJ, Castro RI, Fuentes N, Butts JC, Kales S, Noche RR, Mouri K, Sabeti PC, Reilly SK, 
Tewhey R. 2023. Machine-guided design of synthetic cell type-specific cis-regulatory elements. 
bioRxiv doi:10.1101/2023.08.08.552077. 

Vaishnav ED, de Boer CG, Molinet J, Yassour M, Fan L, Adiconis X, Thompson DA, Levin JZ, 
Cubillos FA, Regev A. 2022. The evolution, evolvability and engineering of gene regulatory 
DNA. Nature 603(7901):455–463. 

Vu H, Ernst J. 2022. Universal annotation of the human genome through integration of over a 
thousand epigenomic datasets. Genome Biol 23(1):9. 

Zhang K, Hocker JD, Miller M, Hou X, Chiou J, Poirion OB, Qiu Y, Li YE, Gaulton KJ, Wang A, 
et al. 2021. A single-cell atlas of chromatin accessibility in the human genome. Cell 
184(24):5985–6001.e19. 

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, 
Brown M, Li W, et al. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol 
9(9):R137. 

 

http://paperpile.com/b/9kTbdY/WNyY
http://paperpile.com/b/9kTbdY/WNyY
http://paperpile.com/b/9kTbdY/WNyY
http://dx.doi.org/10.1101/2023.03.05.531189
http://paperpile.com/b/9kTbdY/WNyY
http://paperpile.com/b/9kTbdY/WhMZ
http://paperpile.com/b/9kTbdY/WhMZ
http://paperpile.com/b/9kTbdY/WhMZ
http://paperpile.com/b/9kTbdY/WhMZ
http://paperpile.com/b/9kTbdY/WhMZ
http://paperpile.com/b/9kTbdY/5NYK
http://paperpile.com/b/9kTbdY/5NYK
http://paperpile.com/b/9kTbdY/5NYK
http://paperpile.com/b/9kTbdY/5NYK
http://paperpile.com/b/9kTbdY/5NYK
http://paperpile.com/b/9kTbdY/zbOu
http://paperpile.com/b/9kTbdY/zbOu
http://paperpile.com/b/9kTbdY/zbOu
http://dx.doi.org/10.1101/2023.08.08.552077
http://paperpile.com/b/9kTbdY/zbOu
http://paperpile.com/b/9kTbdY/5v99
http://paperpile.com/b/9kTbdY/5v99
http://paperpile.com/b/9kTbdY/5v99
http://paperpile.com/b/9kTbdY/5v99
http://paperpile.com/b/9kTbdY/5v99
http://paperpile.com/b/9kTbdY/igfl
http://paperpile.com/b/9kTbdY/igfl
http://paperpile.com/b/9kTbdY/igfl
http://paperpile.com/b/9kTbdY/igfl
http://paperpile.com/b/9kTbdY/sIbA
http://paperpile.com/b/9kTbdY/sIbA
http://paperpile.com/b/9kTbdY/sIbA
http://paperpile.com/b/9kTbdY/sIbA
http://paperpile.com/b/9kTbdY/sIbA
http://paperpile.com/b/9kTbdY/ajhG
http://paperpile.com/b/9kTbdY/ajhG
http://paperpile.com/b/9kTbdY/ajhG
http://paperpile.com/b/9kTbdY/ajhG
http://paperpile.com/b/9kTbdY/ajhG

