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S1 Method formulation

S1.1 Fundamentals of information theory

Consider N quantities of interest at time t represented by the vector of observable variables Q = [Q1(t), Q2(t), . . . , QN (t)].
We treat Q as a random variable and consider a finite partition of the observable phase space D = {D1, D2, . . . , DND

},
where ND is the number of partitions, such that D = ∪ND

i=1Di and Di ∩ Dj = ∅ for all i ̸= j (i.e., non-overlapping
partitions that cover all the space D). We use upper case Q to denote the random variable itself; and lower case q
to denote a particular state contained in one Di (also referred to as a value or an event) of Q. The probability of
finding the system at state Di at time t is p(Q(t) ∈ Di), that in general depends on the partition D. For simplicity,
we refer to the latter probability as p(q).

The information contained in the variable Q is given by [44]:

H(Q) =
∑
q

−p(q) log2[p(q)] ≥ 0, (S1)

where the summation is over all the states of Q. The quantity H is referred to as the Shannon information or
entropy [44]. The units of H are set by the base chosen, in this case ‘bits’ for base 2. For example, consider a fair
coin with Q ∈ {heads, tails} such that p(heads) = p(tails) = 0.5. The information of the system ‘tossing a fair coin n
times’ is H = −

∑
0.5n log2(0.5n) = n bits, where the summation is carried out across all possible outcomes (namely,

2n). If the coin is completely biased towards heads, p(heads) = 1, then H = 0 bits (taking 0 log 0 = 0), i.e., no
information is gained as the outcome was already known before tossing the coin. The Shannon information can also
be interpreted in terms of uncertainty: H(Q) is the average number of bits required to unambiguously determine Q.
H is maximum when all the possible outcomes are equiprobable (indicating a high level of uncertainty in the state
of the system) and zero when the process is completely deterministic (indicating no uncertainty in the outcome).

The Shannon information of Q conditioned on another variable Q′ is defined as:

H(Q|Q′) =
∑
q,q′

−p(q, q′) log2[p(q|q′)]. (S2)

where p(q|q′) = p(q, q′)/p(q′) with p(q′) ̸= 0 is the conditional probability distribution, and p(q′) =
∑

q p(q, q′) is
the marginal probability distribution of q′. It is useful to interpret H(Q|Q′) as the uncertainty in the variable Q
after conducting the ‘measurement’ of Q′. If Q and Q′ are independent random variables, then H(Q|Q′) = H(Q),
i.e., knowing Q′ does not reduce the uncertainty in Q. Conversely, H(Q|Q′) = 0 if knowing Q′ implies that Q is
completely determined. Finally, the mutual information between the random variables Q and Q′ is

I(Q;Q′) = H(Q) − H(Q|Q′) = H(Q′) − H(Q′|Q), (S3)

which is a symmetric measure I(Q;Q′) = I(Q′;Q) representing the information shared among the variables Q and
Q′. Figure S1 depicts the relationship between the Shannon information, conditional Shannon information, and
mutual information.

The definitions above can be extended to continuous random variables by replacing summation by integration
and the probability mass functions by probability density functions:

Hc(Q) =
∫
Q

−ρ(q) log2[ρ(q)] dq, (S4a)

Hc(Q|Q′) =
∫
Q,Q′

−ρ(q, q′) log2[ρ(q|q′)] dq dq′, (S4b)

Ic(Q;Q′) = Hc(Q) − Hc(Q|Q′) = Hc(Q′) − Hc(Q′|Q), (S4c)

where Hc is referred to as the differential entropy, Q and Q′ are now continuous random variables, ρ denotes
probability density function, and the integrals are performed over the support set of Q and Q′. The differential
entropy shares many of the properties of the discrete entropy. However, it can be infinitely large, positive or
negative. SURD relies on the use of mutual information, which is non-negative in the continuous case. Additionally,
it can be shown that if ρ(q, q′) log2[ρ(q, q′)] is Riemann integrable, then I(Q∆;Q′∆) → Ic(Q;Q′) for ∆ → 0, where
Q∆ and Q′∆ are the quantized versions of Q and Q′, respectively, defined over a finite partition D = ∪ND

i=1Di with
a characteristic partition size for Di equal to ∆. In the following section, SURD is presented using discrete mutual
information; nevertheless, a similar formulation is applicable to the continuous case.
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H(Q|Q′) H(Q′|Q)I(Q;Q′)

H(Q′)H(Q)

Figure S1: Venn diagram of the Shannon information, conditional Shannon information and mutual information
between two random variables Q and Q′.

S1.2 Synergistic-Unique-Redundant Decomposition of causality (SURD)

Our objective is to quantify the causality from the components of Q(t) to the future of the variable Q+
j = Qj(t+∆T ),

where Qj could be one of the components of Q and ∆T > 0 represents an arbitrary time lag. Moreover, for each
component of Q, the causality is decomposed into redundant, unique, and synergistic contributions to Q+

j . The
theoretical foundation of the method is rooted in the forward propagation of information in dynamical systems:
information can only flow toward the future. Let us consider the information in the variable Q+

j , given by H(Q+
j ).

Assuming that all the information in Q+
j is determined by the past states of the system, we can write the equation

for the forward propagation of information [45]

H(Q+
j ) = ∆I(Q+

j ;Q) + ∆Ileak→j , (S5)

where ∆I(Q+
j ;Q) is the information flow from Q to Q+

j , and ∆Ileak→j is the causality leak, representing the causality
from unobserved variables that influence the dynamics of Q+

j but are not part of Q. The causality leak can be
expressed in closed form as a function of the observed variables:

∆Ileak→j = H(Q+
j |Q), (S6)

that is the uncertainty in Q+
j given the information in Q. The amount of available information about Q+

j given Q is

H(Q+
j ) − ∆Ileak→j = ∆I(Q+

j ;Q) = H(Q+
j ) − H(Q+

j |Q) = I(Q+
j ;Q), (S7)

which is the mutual information between Q+
j and Q,

I(Q+
j ;Q) =

∑
q+

j
,q

p(q+
j , q) log2

(
p(q+

j |q)
p(q+

j )

)
=
∑
q+

j
,q

p(q+
j , q) log2

(
p(q+

j , q)
p(q+

j )p(q)

)
, (S8)

or in continuous form

I(Q+
j ;Q) =

∫
Q+

j
,Q

ρ(q+
j , q) log2

(
ρ(q+

j |q)
ρ(q+

j )

)
dq+

j dq =
∫

Q+
j

,Q

ρ(q+
j , q) log2

(
ρ(q+

j , q)
ρ(q+

j )p(q)

)
dq+

j dq. (S9)

Equation (S8), quantifies the average dissimilarity between p(q+
j ) and p(q+

j |q). In terms of the Kullback-Leibler
divergence [65], Equation (S8) measures the dissimilarity between p(q+

j , q) and the distribution obtained under the
assumption of independence between Q+

j and Q, viz. p(q+
j )p(q). Hence, SURD quantifies the causality from all the

components of Q to Q+
j by examining how the probability of Q+

j changes when accounting for Q. Figure S2 provides
an interpretation of the quantification of causality based on Equation (S8).
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p(q+
j )

p(q+
j |q)

q+
j

p(q+
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j |q)

q+
j

Figure S2: Dissimilarity between p(q+
j ) and p(q+

j |q) contributing to I(Q+
j ;Q). Examples of (a) p(q+

j |q) resembling
p(q+

j ), which barely contributes to I(Q+
j ;Q); and (b) p(q+

j |q) different from p(q+
j ), which increases the value of

I(Q+
j ;Q). Causality from Q to Q+

j is quantified by the expectation of log2[p(q+
j |q)/p(q+

j )].

The next step involves decomposing I(Q+
j ;Q) into its unique, redundant, and synergistic components as

I(Q+
j ;Q) ≡

N∑
i=1

∆IU
i→j +

∑
i∈C

∆IR
i→j +

∑
i∈C

∆IS
i→j , (S10)

where ∆IU
i→j is the unique causality from Qi to Q+

j , ∆IR
i→j is the redundant causality among the variables in Qi

with i = [i1, i2, . . .] being a collection of indices, ∆IS
i→j is the synergistic causality from the variables in Qi, and C

is the set of all the combinations of numbers from 1 to N with more than one element and less than or equal to N
elements. For example, Equation (S10) can be expanded for N = 4 as

I(Q+
j ;Q) ≡ ∆IU

1→j + ∆IU
2→j + ∆IU

3→j + ∆IU
4→j (S11a)

+ ∆IR
12→j + ∆IR

13→j + ∆IR
14→j + ∆IR

23→j + ∆IR
24→j + ∆IR

34→j+ (S11b)
+ ∆IS

12→j + ∆IS
13→j + ∆IS

14→j + ∆IS
23→j + ∆IS

24→j + ∆IS
34→j+ (S11c)

+ ∆IR
123→j + ∆IR

124→j + ∆IR
134→j + ∆IR

234→j+ (S11d)
+ ∆IS

123→j + ∆IS
124→j + ∆IS

134→j + ∆IS
234→j (S11e)

+ ∆IR
1234→j + ∆IS

1234→j . (S11f)

An important insight used to define SURD is the realization that the source of causality might change depending
on the value of Q+

j . For example, Q1 can be only causal to positive values of Q+
j , whereas Q2 can be only causal

to negative values of Q+
j . For that reason, we define the specific mutual information [124] from Qi to a particular

event Q+
j = q+

j as

ı̃(Q+
j = q+

j ;Qi) =
∑
qi

p(qi|q+
j ) log2

(
p(q+

j |qi)
p(q+

j )

)
≥ 0. (S12)

Note that the specific mutual information is a function of the random variable Qi (which encompasses all its states)
but only a function of one particular state of the target variable (namely, q+

j ). For the sake of simplicity, we will use
the notation ı̃i(q+

j ) = ı̃(Q+
j = q+

j ;Qi). Similarly to Equation (S8), the specific mutual information quantifies the
dissimilarity between p(q+

j ) and p(q+
j |q) but in this case for the particular state Q+

j = q+
j . The mutual information

between Q+
j and Qi is recovered by I(Q+

j ;Qi) =
∑

q+
j

p(q+
j )̃ıi(q+

j ).
We are now in the position of introducing the steps involved in the calculation of redundant, unique, and syner-

gistic causalities (Figure S3). Our definitions are motivated by the following intuition:

• Redundant causality from Qi = [Qi1 , Qi2 , . . .] to Q+
j is the common causality shared among all the components

of Qi, where Qi is a subset of Q with two or more components.

• Unique causality from Qi to Q+
j is the causality from Qi that cannot be obtained from any other individual

variable Qk with k ̸= i.

• Synergistic causality from Qi = [Qi1 , Qi2 , . . .] to Q+
j is the causality arising from the joint effect of the variables

in Qi.
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• Redundant and unique causalities must depend only on probability distributions based on Qi and Q+
j , that is,

p(qi, q+
j ). On the other hand, synergistic causality must depend on the joint probability distribution of Qi and

Q+
j , i.e., p(qi, q+

j ).

For a given value Q+
j = q+

j , the specific redundant, unique, and synergistic causalities are calculated as follows:

1. The specific mutual information are computed for all possible combinations of variables in Q. This includes
specific mutual information of order one (̃ı1, ı̃2, . . .), order two (̃ı12, ı̃13, . . .), order three (̃ı123, ı̃124, . . .), and so
forth. One example is shown in Figure S3(a).

2. The tuples containing the specific mutual information of order M , denoted by G̃M , are constructed for M =
1, . . . , N . The components of each G̃M are organized in ascending order as shown in Figure S3(b).

3. The specific redundant causality is the increment in information gained about q+
j that is common to all the

components of Qjk
(blue contributions in Figure S3c):

∆ı̃R
jk

=
{

ı̃ik
− ı̃ik−1 , for ı̃ik

, ı̃ik−1 ∈ G̃1 and k ̸= n1

0, otherwise,
(S13)

where we take ı̃i0 = 0, jk = [jk1, jk2, . . .] is the vector of indices satisfying ı̃jkl
≥ ı̃ik

for ı̃jkl
, ı̃ik

∈ G̃1, and n1 is
the number of elements in G̃1.

4. The specific unique causality is the increment in information gained by Qik
about q+

j that cannot be obtained
by any other individual variable (red contribution in Figure S3c):

∆ı̃U
ik

=
{

ı̃ik
− ı̃ik−1 , for ik = n1, ı̃ik

, ı̃ik−1 ∈ G̃1

0, otherwise.
(S14)

5. The specific synergistic causality is the increment in information gained by the combined effect of all the vari-
ables in Qik

that cannot be gained by other combination of variables Qjk
(yellow contributions in Figure S3c)

such that ı̃jk
≤ ı̃ik

for ı̃ik
∈ G̃M and ı̃jk

∈ {G̃1, . . . , G̃M } with M > 1 (dotted line in Figure S3c):

∆ı̃S
ik

=


ı̃ik

− ı̃ik−1 , for ı̃ik−1 ≥ max{G̃M−1}, and ı̃ik
, ı̃ik−1 ∈ G̃M

ı̃ik
− max{G̃M−1}, for ı̃ik

> max{G̃M−1} > ı̃ik−1 , and ı̃ik
, ı̃ik−1 ∈ G̃M

0, otherwise.

(S15)

6. The specific redundant, unique and synergistic causalities that do not appear in the steps above are set to zero.

7. The steps (1) to (6) are repeated for all the states of Q+
j (Figure S3d).

8. Redundant, unique, and synergistic causalities are obtained as the expectation of their corresponding specific
values with respect to Q+

j ,

∆IR
i→j =

∑
q+

j

p(q+
j )∆ı̃R

i (q+
j ), (S16a)

∆IU
i→j =

∑
q+

j

p(q+
j )∆ı̃U

i (q+
j ), (S16b)

∆IS
i→j =

∑
q+

j

p(q+
j )∆ı̃S

i (q+
j ). (S16c)

9. Finally, we define the average order of the specific causalities with respect to Q+
j as

Nα
i→j =

∑
q+

j

p(q+
j )nα

i→j(q+
j ), (S17)
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where α denotes R, U, or S, nα
i→j(q+

j ) is the order of appearance of ∆ı̃α
i (q+

j ) from left to right as in the example
shown in Figure S3. The values of Nα

i→j are used to plot ∆Iα
i→j following the expected order of appearance of

∆ı̃α
i→j . All the causalities from SURD presented in this work are plotted in order from left to right, following

Nα
i→j .

It is worth noting that the problem of defining redundant, unique, and synergistic causalities can be generally
framed as the task of decomposing the mutual information I(Q+

j ;Q) into multiple components. The definitions
proposed above are motivated by their consistency with the properties presented in the following sections along with
the ease of interpretability. Alternative definitions are possible and other decompositions have been suggested in the
literature [114, 115, 116, 117, 118, 45, 119]; however, these do not comply with the properties discussed next or result
in an unmanageable number of terms. For instance, one of the most referenced decompositions by Williams & Beer
[114] results in a number of terms that grows as the Dedekind numbers. In the case of 9 variables, this decomposition
yields over 1023 terms, whereas SURD produces only 512 terms.

In scenarios with a large number of terms, synergistic and redundant causalities in SURD can be grouped by
different orders to facilitate interpretation. For example, for three variables, we can define ∆IS

2nd = ∆IS
12→1 +

∆IS
23→1 + ∆IS

13→1, which represents the second-order causal synergy to the target variable 1 (similarly for other
orders and redundancies). This is possible in SURD due to the additivity of its causal components. Additionally,
if synergistic causalities above a given order are not computed, they are accounted for by the causality leak. In
§ S3.8, we apply SURD to a system of eight interacting species and calculate synergistic causalities up to the fourth
order. The remaining synergistic causalities are considered as causality leaks. This approach effectively manages the
challenge of dimensionality by focusing on lower-order synergistic interactions, which are often sufficient for practical
analyses.

S1.3 Application of SURD to multiple time lags

The vector of observables can also include variables at multiple time lags:

Q = [Q1(t), Q1(t − ∆T1), . . . , Q1(t − ∆Tp), . . . , Q2(t), Q2(t − ∆T1), . . . , Q2(t − ∆Tp), . . . ] , (S18)

where ∆Ti > 0 for i = 1, . . . , p. For instance, for N = 2 and p = 1, the vector is

Q = [Q1(t), Q1(t − ∆T ), Q2(t), Q2(t − ∆T )] . (S19)

For simplicity, we will use the notation Q = [Q11 , Q12 , Q21 , Q22 ], where the first subindex denotes the variable
number and the second subindex denotes the present time for i = 1 and past times for i > 1, e.g., Q11 = Q1(t),
Q12 = Q1(t − ∆T ), Q21 = Q2(t), Q22 = Q2(t − ∆T ) and so on. The formulation of SURD presented above is equally
applicable to the observable Q from Equation (S19). Following the example above for N = 2 and p = 1, the mutual
information between the target variable Q+

j and Q is decomposed as:

I(Q+
j ;Q) = ∆IU

11→j + ∆IU
21→j + ∆IU

12→j + ∆IU
22→j (S20a)

+ ∆IR
1121→j + ∆IR

1112→j + ∆IR
1122→j + ∆IR

2112→j + ∆IR
2122→j + ∆IR

1222→j+ (S20b)
+ ∆IS

1121→j + ∆IS
1112→j + ∆IS

1122→j + ∆IS
2112→j + ∆IS

2122→j + ∆IS
1222→j+ (S20c)

+ ∆IR
112112→j + ∆IR

112122→j + ∆IR
111222→j + ∆IR

211222→j+ (S20d)
+ ∆IS

112112→j + ∆IS
112122→j + ∆IS

111222→j + ∆IS
211222→j (S20e)

+ ∆IR
11211222→j + ∆IS

11211222→j . (S20f)

S1.4 Properties of SURD

• Non-negativity. All the terms in Equation (S10) are non-negative by the definition of the redundant, unique
and synergistic causalities, and the non-negativity of the specific mutual information [124].

∆IU
i→j ≥ 0, for all i = 1, . . . , N, ∆IR

i→j ≥ 0, ∆IS
i→j ≥ 0, for all i ∈ C. (S21)

• Reconstruction of individual mutual information. The mutual information between Qi and Q+
j is equal to the

6
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Figure S3: Schematic of the steps involved in the calculation of specific causalities. For a given state Q+
j = q+

j , the
panels illustrate: (a) all possible specific mutual information values for a collection of four variables; (b) tuples of
specific mutual information with the components organized in ascending order; (c) the increments corresponding to
specific redundant (blue), unique (red), and synergistic (yellow) causalities; and (d) examples of specific causalities
for different states of Q+

j .
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Figure S4: Diagram of the decomposition into redundant, unique, and synergistic causalities and contributions to
total and individual mutual information for three observable variables Q = [Q1, Q2, Q3] and the target Q+

j .

unique and redundant causalities containing Qi

I(Qi; Q+
j ) = ∆IU

i→j +
∑
i∈Ci

∆IR
i→j , (S22)

where Ci is the set of the combinations in C containing the variable Qi. This condition is consistent with
the notion that the information shared between Qi and Q+

j should comprise contributions from unique and
redundant causalities only, whereas synergistic causalities should arise through the combined effects of variables.
This property, along with the non-negativity and forward propagation of information, enables the construction
of the causality diagrams as the example depicted in Figure S4 for three variables. The properties mentioned
above are also responsible for avoiding the duplication of causalities within the system.

• Zero-causality property. If Q+
j is independent of Qi, then ∆IR

i→j = 0 for i ∈ Ci and ∆IU
i→j = 0 as long as Qi is

observable.

• Invariance under invertible transformations. The redundant, unique, and synergistic causalities are invariant
under invertible transformations of Q. This property follows from the invariance of the mutual information.

S1.5 Example of SURD in logic gates

We illustrate the concept of redundant, unique, and synergistic causality in three simple examples. The examples
represent a system with two inputs Q1 and Q2 and one output Q+

3 = f(Q1, Q2). Both input and output are binary
variables distributed randomly and independently. The causal description of the system is characterized by the four
components:

H(Q+
3 ) = ∆IU

1→3 + ∆IU
2→3 + ∆IR

12→3 + ∆IS
12→3, (S23)

where ∆Ileak→3 = 0 as H(Q+
3 |Q1, Q2) = 0. The results for the three cases are summarized in Figure S5.

The first example represents a system in which Q2 ≡ Q1 (duplicated input) and the output is given by Q+
3 =

Q1. In this case, both Q1 and Q2 provide the same information about the output and the only non-zero term in
Equation (S23) is the redundant causality ∆IR

12→3 = 1 bit. In the second example, the output is given by Q+
3 = Q1
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Figure S5: Schematic of logic gates (top panels) and associated specific mutual information (bottom panels) for
(a) duplicated input (pure redundant causality), (b) output equal to first input (pure unique causality), and (c)
exclusive-OR output (pure synergistic causality). The schematics of the specific mutual information apply to both
states Q+

3 = 0 and Q+
3 = 1.

with no dependence on Q2, which only results in the unique causality ∆IU
1→3 = 1 bit. In the last example, the output

is given by the exclusive-OR operator: Q+
3 = Q1 ⊕ Q2 such that Q+

3 = 1 if Q1 ̸= Q2 and Q+
3 = 0 otherwise. In this

case, the output behaves randomly when observing Q1 or Q2 independently. However, the outcome is completely
determined when the joint variable [Q1, Q2] is considered. Hence, [Q1, Q2] contains more information than their
individual components and all the causality is synergistic ∆IS

12→3 = 1 bit.
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S2 Other methods for causal inference: description and implementation

In this section, we discuss the methods for causal inference implemented in our study. For each method, we provide
a description of the approach, details of the implementation, and its verification in documented cases.

S2.1 Conditional Granger causality (CGC)

Granger causality (GC) [25] is a statistical technique for assessing causality between two time series. This approach
relies on the ability of past values of one time series, Q2(t), to enhance the predictability of another series, Q1(t).
The time signal Q2(t) is considered to Granger-cause Q1(t) if the historical data of Q2(t) significantly improves the
forecast of Q1(t). A foundational principle of Granger causality rests on the assumptions that the causative factor
must provide unique information not available in the past values of the effect itself, and that this unique information
can be detected via a forecasting model.

GC analysis is typically implemented by means of vector autoregressive (VAR) modeling of the time series. In
the bivariate case, Granger causality between Q1 and Q2 is assessed by computing the change in the error between
two VAR models:

Q1(t) = â0 +
p∑

j=1
âjQ1(t − ∆Tj) + ε̂(t), (S24)

Q1(t) = a0 +
p∑

j=1
ajQ1(t − ∆Tj) +

p∑
j=1

bjQ2(t − ∆Tj) + ε(t), (S25)

where âj , aj and bj are regression coefficients that represent the influences of the past values of the time series of
Q1(t) and Q2(t), ε̂(t) and ε(t) denote the errors of the models at time t, j is the lag into the past used to predict
the values of Q1(t) and p represents the maximum time lag used. Granger causality from Q2 to Q1 is defined as a
measure of the extent to which inclusion of Q2 in the second model (S25) reduces the prediction error of the first
model (S24). The standard measure of Granger causality is given by the natural logarithm of the ratio of the residual
variance between both models:

GC2→1 = log2

(
var (ε̂)
var (ε)

)
≥ 0. (S26)

Therefore, if the past values of Q2(t) improve the prediction of Q1(t), the residual variance of the second model will
be smaller than that of the first model, i.e., var (ε) < var (ε̂), and the Granger causality measure will be greater than
zero, GC2→1 > 0. Conversely, if the residual variance between both models is exactly the same after introducing Q2
in the model, i.e., var (ε) = var (ε̂), the past values of Q2(t) do not improve the prediction of Q1(t) and the Granger
causality measure will be zero, GC2→1 = 0.

In this work, we use the extension first proposed by Geweke [26], in which both models use an additional vector of
variables, Q′(t) = [Q3(t), Q4(t), . . . , QN (t)], which do not contain Q1 and Q2. The method is referred to as conditional
Granger causality (CGC) and allows us to compute the Granger causality value from Q2 to Q1 conditioned on Q′

by comparing the errors from:

Q1(t) = â0 +
p∑

j=1
âjQ1(t − ∆Tj) +

p∑
j=1

ĉjQ
′(t − ∆Tj) + ε̂(t), (S27)

Q1(t) = a0 +
p∑

j=1
ajQ1(t − ∆Tj) +

p∑
j=1

bjQ2(t − ∆Tj) +
p∑

j=1
cjQ

′(t − ∆Tj) + ε(t), (S28)

where ĉj and cj are the regression coefficient matrices associated with Q′(t − ∆Tj). Causality is then computed as:

CGC2→1 = log2

(
var (ε̂)
var (ε)

)
≥ 0. (S29)

The CGC formulation has been extensively investigated and further developed in a multivariate setting–the Multi-
variate Granger causality (MVGC) [29].

We have validated our implementation of CGC with the MVGC toolbox [28]. Here, we show as an example the
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Figure S6: Comparison of current implementation of conditional Granger causality (CGC) and multivariate Granger
causality toolbox (MVGC) [28] for a five-node oscillatory network. The MVGC does not provide self-causality values
and the diagonal is colored in light pink. Note that in this case the results from CGC and MVGC have not been
normalised, as compared with the results presented in the main text.

five-node oscillatory network given by the following equations [28]:

Q1(n + 1) =
(

0.95
√

2 − 0.9025
)

Q1(n) + η1(n)

Q2(n + 1) = 0.5Q1(n) + η2(n)
Q3(n + 1) = −0.4Q1(n) + η3(n)
Q4(n + 1) = −0.5Q1(n) + 0.25

√
2Q4(n) + 0.25

√
2Q5(n) + η4(n)

Q5(n + 1) = −0.25
√

2Q4(n) + 0.25
√

2Q5(n) + η5(n),

(S30)

where ηi(t) for i = 1, 2, 3, 4, 5 represents Gaussian white noise processes with variances σ2
i = [0.6, 0.5, 0.3, 0.3, 0.6].

The results, shown in Figure S6, indicate that both CGC and the MVGC toolkit yield identical values that cor-
rectly identify the cross-induced causalities. Our implementation of CGC also computes the self-induced causalities,
although MVGC does not provide this information.

It is known that CGC is subject to some important limitations [21]. First, CGC cannot account for hidden con-
founding effects or capture non-linear causal relationships. This limitation stems from the assumed linear relationship
between variables, which may not be appropriate for complex nonlinear systems. Several nonlinear extensions of
Granger causality have been proposed in the literature [30, 31, 32, 34, 33, 33, 35], although their adoption is much
more limited than that of the linear counterpart.

S2.2 Convergent cross-mapping (CCM)

Convergent cross-mapping (CCM) [36] is a statistical method for causal inference grounded in the theory of dynamical
systems. The approach relies on Takens’ embedding theorem [42], which states the conditions under which the
dynamics of chaotic nonlinear systems can be captured by observing the trajectory of a single variable over time.

Consider two time series Q1(t) and Q2(t). We can define the vector of delay coordinates for Q1 (similarly for Q2)
as Q1 = [Q1(t), Q1(t − ∆T ), ..., Q1(t − (E − 1)∆T )], where ∆T is the time lag, and E is the embedding dimension
that determines the number of time lagged observations. The lagged-coordinate embeddings Q1 and Q2 lie within
the shadow manifolds M1 and M2, respectively. A consequence of Takens’ embedding theorem is that if Q1 and Q2
belong to the same manifold, then M1 and M2 are topologically equivalent. CCM leverages this property and states
that if Q1 causally influences Q2, then local neighborhoods on M1 should correspond to local neighborhoods on M2.

The reconstruction of Q2(t) from the manifold of Q1, denoted as Q̂2(t)|M1 , is calculated as a weighted average:

Q̂2(t)|M1 =
E+1∑
i=1

wiQ2(ti), (S31)
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where ti represent the time indices of the nearest neighbors in M1, and wi are the weights. The process of estimating
Q2(t) from Q̂2(t)|M1 is referred to as cross mapping. The weights are computed as

wi = ui∑E+1
j=1 uj

, ui = exp
(

− d(Q1(t),Q1(ti))
d(Q1(t),Q1(t1))

)
, (S32)

where d(Q1(t),Q1(ti)) is the Euclidean distance between the lagged-coordinate vectors in M1, and d(Q1(t),Q1(t1))
is the distance to the nearest neighbor, serving as a normalization factor to scale the weights. This ensures that
the prediction is most influenced by the states closest to the current state, whereas the effect of more distant states
decays exponentially. The causality from Q2 to Q1 is evaluated by examining the correlation coefficient between the
actual and estimated values of Q2 across the timeline:

CCM2→1 = corr(Q2, Q̂2(t)|M1). (S33)

where a causal link is detected for CCM2→1 → 1 as the length of the time series increases. An analogous definition
applies to CCM1→2 using Q1(t) and Q̂1(t)|M2 .

The assessment of causality in CCM is predicated upon the convergence of CCM1→2 as the length of the time
series N increases. As N grows, the shadow manifolds become more densely populated, leading to a reduction in the
distances among the E + 1 nearest neighbors. This increased density enables more accurate predictions as Q̂2(t)|M1

converges to Q2(t). Observing the convergence of the nearest neighbors and the resulting improvement in prediction
accuracy is crucial for substantiating claims about the influence of one variable on another within the framework of
CCM. Generally, the stronger the causal link between variables, the faster the convergence with N .

In this work, we employ the Python implementation of CCM by Erneszer [83]. The method was used with an
embedding dimension equivalent to the number of variables of the system and executed with a library size that
ensured convergence of the prediction capabilities for all cases. In this section, we illustrate the assessment of
causality from CCM for the two test cases used by Sugihara et al. [36]. The system used consists of a nonlinear
logistic difference system with constant coefficients that exhibits chaotic behaviour and represents the phenomenon
of mirage correlation. The dynamical system is given by:

Q1(n + 1) = Q1(n) [r1 − r1Q1(n) − β2→1Q2(n)] , (S34a)
Q2(n + 1) = Q2(n) [r2 − r2Q2(n) − β1→2Q1(n)] . (S34b)

For certain combinations of the coefficients, the variables of this system can be positively coupled for long periods of
time and can spontaneously become anticorrelated or decoupled. This can become challenging when fitting models
for the variables as in the Granger causality framework.

We analyze two cases proposed by Sugihara et al. [36]. The results, shown in Figure S7, aim to illustrate
the role of convergence in CCM. For the first case, the variable Q1 is decoupled from Q2, while Q2 is driven by
Q1, namely β2→1 = 0 and β1→2 ̸= 0, respectively. The results for this case are displayed in Figure S7(left),
where the aforementioned dependencies are clearly captured. For the second model, both variables are coupled, but
β1→2 > β2→1. In this scenario, observing the evolution of prediction accuracy can aid in understanding the influence
of each variable on the other. Figure S7(right) demonstrates how the lower coupling coefficient β2→1 leads to a lesser
prediction accuracy as the sample size increases: cross mapping Q1 using M2 converges faster than cross mapping
Q2 using M1. Consequently, the causality from variable Q2 to Q1 is weaker compared to that from Q1 to Q2.

CCM is particularly suited for data measured from a deterministic nonlinear attractor. For time series of stochastic
nature, CCM is known to underperform [123]. Additionally, the presence of noise in the signals complicates the
reconstruction process of the attractor manifold and could reduce the reliability of the CCM, as observed in this
work and previously reported in the literature [121, 122, 123]. Moreover, CCM fails to accurately predict the causality
direction in cases where the coupling is strong enough to lead to the synchronization of variables.

Finally, this study focused on the original CCM algorithm introduced by Sugihara et al. [36]. However, more
recent algorithms have been developed to examine the impact of noise, external signals, and synchronisation of
variables such as pairwise asymmetric inference (PAI) [37], multispatial CCM (MCCM) [38], partial cross-mapping
(PCM) [40], and latent CCM [41].

S2.3 Peter–Clark algorithm with momentary conditional independence test (PCMCI)

Conditional independence-based methods uncover the causal structure of interactions, often represented as directed
acyclic graphs, by examining the conditional dependencies among variables [61]. The core idea is that if two variables
are conditionally independent given a set of other variables, then there is no direct causal link between them. The
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Figure S7: Convergent cross-mapping for two cases in the nonlinear logistic difference system from Equation (S34).
CCMi→j is the prediction of cross-map estimates represented by the correlation coefficient as a function of the
number of samples. (Left) CCMi→j for the system with β2→1 = 0 and β1→2 = 0.32 (i.e., Q2 has no effect on Q1)
and (right) β2→1 = 0.02 and β1→2 = 0.1 (i.e., the effect of Q1 on Q2 is stronger than in the previous case).

approach was popularized by the Peter–Clark (PC) algorithm [59], with subsequent extensions incorporating tests for
momentary conditional independence (PCMCI) [23]. PCMCI algorithms are formulated under two main assumptions:
(i) the causal Markov condition, which assumes that a variable is independent of its non-descendants, given its parents
in a causal graph, and (ii) the faithfulness assumption, which posits that if two variables are statistically independent,
then they must be conditionally independent given some set of variables in the causal network. Here, the parents
of a particular variable are all those variables in the causal graph that have a direct arrow pointing to it, whereas
non-descendant refers to any variable in the graph that is not a direct or indirect outcome of the given variable.

Contrary to methods that condition on the entire past of all processes, PCMCI seeks to identify a reduced set of
conditioning variables that includes, at a minimum, the parents of the target variable. These parents are associated
with the particular time lag at which the causal relationship occurs in the system. The algorithm unfolds in two
phases:

• The initial phase, based on the PC algorithm, is a selection stage aiming to infer a superset of the parents of
each variable Qj at time t, denoted as P̂[Qj(t)]. This phase starts with a fully connected graph and tests the
independence of Qi(t − ∆T ) and Qj(t), given conditioning sets of increasing size. The goal of this phase is
the removal of irrelevant links and it is designed to have an initial estimate of the parents of each variable Qj ,
namely P̂[Qj(t)].

• The second phase of the algorithm conducts the momentary conditional independence (MCI) test for each pair
of variables Qi(t − ∆T ) and Qj(t) using the estimated parents P̂[Qi(t − ∆T )] and P̂[Qj(t)] as conditions. The
test examines the null hypothesis at a significance threshold αMCI:

Qi(t − ∆T )⊥⊥ Qj(t)|P̂ [Qj(t)] \ Qi(t − ∆T ), P̂ [Qi(t − ∆T )] , (S35)

which denotes the conditional independence of Qi(t − ∆T ) and Qj(t), given the causes (or parents) of Qj(t)
excluding Qi(t − ∆T ), and the causes of Qi(t − ∆T ). If this hypothesis is not rejected at a significance
threshold αMCI, the causal link between Qi(t − ∆T ) and Qj(t) is removed. This phase effectively eliminates
autodependencies and controls false positives, while improving detection power compared to other adaptations
of the PC algorithm.

In our study, we use the Python implementation of PCMCI provided by the package Tigramite. It is worth noting
that PCMCI accommodates different independence tests, such as partial correlation, nonlinear two-step conditional
independence test, and a fully non-parametric test based on conditional mutual information (CMI). For comparison
purposes with SURD, we selected the CMI with the k-nearest neighbor (k-NN) estimator. The causal strength of
the causal link is determined by the statistic value of the test in Equation S35:

PCMCIi→j = I (Qi(t − ∆T ); Qj(t)|C) , (S36)
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Figure S8: Validation for PCMCI. (a) Time series evolution for the signals of the system. (b) Graphical result of the
causal connections identified by PCMCI. The indices on top of the arrows represent the time lag at which the causal
links are identified. (c) Representation of PCMCI results in bar format. The first subindex represents the variable,
and the second subindex represents the time lag. The height of the bar in (c) represents the color of the links in (b).

where C = P̂ [Qj(t)] \ Qi(t − ∆T ), P̂ [Qi(t − ∆T )] and I(·, ·|·) is the conditional mutual information. PCMCIi→j

is non-zero only if the null hypothesis is not rejected at a certain significance threshold. All cases examined in
this study were evaluated at a significance level of 1%. Furthermore, PCMCI was estimated with αPC = 0.05 and
CMI-kNN parameters kCMI = 0.1, ksn = 5, and B = 200 permutation surrogates. The parameter αPC denotes the
signficance level for the parent selection phase of the algorithm, kCMI determines the size of hypercubes, i.e., the
data-adaptive local length-scale used in the k-NN estimator, ksn denotes the number of neighbours to which each
sample is mapped randomly, and B the number of surrogates to approximate the null distribution. More details
about these parameters and their effect on the PCMCI algorithm are provided in Ref. [123].

The graphical results for PCMCI are now reported for the test case provided by the package Tigramite. The
system is a set of time series given by:

Q1(n) = 0.7Q1(n − 1) − 0.8Q2(n − 1) + η1(n),
Q2(n) = 0.8Q2(n − 1) + 0.8Q4(n − 1) + η2(n),
Q3(n) = 0.5Q3(n − 1) + 0.5Q2(n − 2) + 0.6Q4(n − 3) + η3(n),
Q4(n) = 0.7Q4(n − 1) + η4(n),

where η are independent Gaussian variables. PCMCI results for this system are provided in Figure S8, where we
also introduce the notation and organization of the results from PCMCI used in our study.

Finally, we discuss some of the limitations of the PCMCI algorithm. First, the method relies on the selection of
parameters during the parent-selection and link-selection steps. The presence or absence of a link can be affected by
the confidence level used during these steps. Certain parameters used in the k-NN estimator, such as permutation
surrogates, might also affect the results: lower values alleviate computational cost; however, they could lead to
reduced confidence in the results. The choice of independence test may also impact the results depending on the
type of relationships in the data. The CMI is conceptually the most reliable approach but also computationally
expensive and data demanding, particularly for a large number of neighbors and permutations. A summary of
the results presented in this work for different independence tests is reported in Table S2. Lastly, the presence of
redundant variables in the conditioning set can yield to unidentified links, even when the conditioning set encompasses
the entire history of all other processes [23], as demonstrated in the examples from this work.
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Figure S9: Comparison of current implementation of conditional transfer entropy (CTE) and conditional Granger
causality (CGC) for a five-node oscillatory network [28]. CGCi→j is divided by 2 for consistency with CTEi→j . Both
quantities are then normalized with the mutual information between the target and the vector of observed variables.
The system is integrated for N = 108 steps and the phase space was partitioned using 50 bins for each variable to
calculate CTE.

S2.4 Conditional transfer entropy (CTE)

Transfer entropy (TE) is a method for assessing the directional information transfer between two time series in a
non-parametric manner [49]. The TE between two time signals Q1 and Q2 is defined as follows:

TE2→1 = H
(

Q1(t)|Q(k)
1

)
− H

(
Q1(t)|Q(k)

1 ,Q
(l)
2

)
, (S37)

where H(· | ·) is the conditional Shannon entropy defined in Equation (S2), k and l are constants denoting the time
lag of the variables, Q(k)

1 = Q1(t − ∆T ), . . . , Q1(t − k∆T ) and Q
(l)
2 = Q2(t − ∆T ), . . . , Q2(t − ∆T ). TE measures the

amount of information about the future state of Q2 that is exclusively provided by the current state of Q1, beyond
what is already known from the past of Q2 itself. The method is particularly effective for analyzing complex systems
where traditional linear methods may not be suitable, such as in the study of nonlinear dynamics.

The multivariate extension of TE is given by the conditional transfer entropy (CTE) [50, 51, 52, 45]. The approach
is usually formulated for one single time lag as:

CTEi→j(∆T ) = H(Q+
j |Q

�i
) − H(Q+

j |Q), (S38)

where Q = [Q1(t − ∆T ), Q2(t − ∆T ), . . . , QN (t − ∆T )] represents the vector of observed variables and Q
�i

denotes
the same vector excluding the components given by the indices in i. In this work, we have restricted our analysis to
applications of CTE with one single component in i. The results of CTE using combinations of variables is discussed
below in Figure S23.

Barnett et al. [27] showed that conditional Granger causality and CTE are equivalent up to a factor of 2 when
the variables in Q follow a joint multivariate Gaussian distribution:

CTEi→j = 1
2CGCi→j . (S39)

Consequently, both measurements of causality share the same upper bound, given by the maximum value of the
mutual information between the target and the vector of observed variables Q. Throughout our study, CGCi→j is
divided by 2 to allow for direct comparisons with CTE.

We validate the current implementation of CTE in the five-node oscillatory network [28] from Equation (S30). In
this case, CTE and CGC should yield similar results, as the variables are Gaussian distributed. The results for CTE
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Figure S10: Lotka–Volterra prey-predator model [68, 69]. Redundant (R), unique (U), and synergistic (S) causalities.
The gray bar is the causality leak. The results from CGC, CTE, CCM, and PCMCI are depicted on the right. CGC
and CTE use the same normalization as SURD. The methods are applied at a time lag ∆t = 1.5 corresponding to
the delay between the maximum in the predator and prey population numbers.

and CGC are shown in Figure S9, where both methods provide same causal links with almost identical strengths.
While CTE offers a robust framework for causal inference in time series data, its practical application requires

careful consideration of sample size and estimation methods. Various approaches, such as binning, nearest neighbors,
and non-uniform embedding, are employed to effectively estimate the probabilities in entropy calculations. Regarding
the effect of multiple variables, some attempts have been made in the literature to account for causality from
combinations of variables, for example, through the calculation of CTE in its multivariate form [45]. However, these
methods may yield negative values of causality, which can limit the interpretability of the results. Examples are
discuss below in Figure S23.

S3 Additional validation cases

We discuss additional validation cases for SURD, CGC, CTE, CCM, and PCMCI. The metric for success is based
on whether the results are consistent with the functional dependencies of the system, rather than on the concrete
value of the causal strength provided by each method.

S3.1 Lotka–Volterra prey-predator model

The Lotka–Volterra predator-prey model [68, 69] was envisioned to describe the dynamics of biological systems in
which two species interact. The model can be expressed as a pair of first-order nonlinear differential equations:

dQ1

dt
= αQ1 − βQ1Q2, (S40)

dQ2

dt
= ΓQ1Q2 − γQ2, (S41)

where Q1 and Q2 denote the prey and the predator population number, respectively, and α = 1, β = 0.05, Γ = 0.02,
and γ = 0.5 represent the prey reproduction rate, predation rate, predator reproduction rate and predator death rate,
respectively. Figure S10 shows a visualization of the time signals of the model together with the results from SURD,
CGC, CTE, CCM and PCMCI. SURD identifies synergistic causality as the most significant contribution for both
variables, i.e., ∆IU

1→1 and ∆IU
2→2, together with some smaller redundant and synergistic causalities for both variables.

This is in agreement with the low values of the nonlinear coupling between variables in Equation (S40). In relation
to the other approaches, we observe relationships consistent with the functional dependencies in Equation (S40) for
CCM, CGC and CTE; however, PCMCI does not detect any significant causal link.

S3.2 Moran effect model

The Moran effect [70] refers to a phenomenon in population ecology that describes how spatially separated popu-
lations can exhibit synchronous fluctuations in their sizes due to a common environmental factor affecting them all
simultaneously. The system comprises two variables, N1 and N2, that do not exhibit causal relationships but are
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Figure S11: Moran effect model [70]. (Left panel) Time evolution of independent variables N1 and N2. (Right panel)
Redundant (R), unique (U), and synergistic (S) causalities with the vector of observed variables N = [N1, N2]. The
gray bar is the causality leak. The results from CGC, CTE, CCM, and PCMCI are depicted on the right. CGC
and CTE use the same normalization as SURD. The model was run for 108 time steps with the set of parameters:
r1 = 3.4, r2 = 2.9, Ψ1 = 0.5, Ψ2 = 0.6, s1 = 0.4, s2 = 0.35, D1 = 3, D2 = 3, R1(0) = R2(0) = 1, N1(0) = N2(0) = 0.5.

significantly correlated in their time series due to shared external forcing, V . The latter follows a Gaussian distribu-
tion with a mean of zero and a standard deviation of one, acting on N1 and N2 through the mediator variables R1
and R2, respectively. The equations of the model are given by:

Ri(n + 1) = riNi(n)[1 − Ni(n)]e−ΨiV (n)

Ni(n + 1) = siNi(n) + max [Ri(n − Di), 0].

The vector of observed variables is N = [N1, N2], and the aim is to assess whether different methods can discern
the causal independence between N1 and N2 despite their significant correlation due to a shared confounder. The
results are provided in Figure S11. The most significant causal interactions detected by SURD are self-unique
causalities, while the remaining components are redundant causalities. These outcomes align with the functional
dependencies between the variables in Figure S11, and SURD accurately captures the confounding effect. The other
approaches also identify the causal independence among variables. CCM yields a non-zero value for cross-induced
causal relationships. However, the inspection of this value for increasing number of samples revealed that it does not
converge to 1, suggesting no causal link between the variables.

S3.3 Coupled logistic difference system

We consider the deterministic, nonlinear, logistic difference system proposed by Sugihara et al. [36]. The system,
given in Equation (S34), illustrates the concept of mirage correlation, namely, a perceived but spurious correlation
between two variables. To illustrate this phenomenon, we use four versions of the models for different values of the
coupling parameters β2→1 and β1→2. A comparison of the results for all methods is shown in Figure S12 for one-way
coupling between variables and in Figure S13 for the two-way coupling case.

• One-way coupling Q2 → Q1: SURD identifies the causalities ∆IS
12→1 and ∆IU

1→1 as the most important
causalities driving Q1, whereas only ∆IU

2→2 is identified for Q2. This is consistent with the non-zero coupling
constant β2→1.

• One-way coupling Q1 → Q2: similar conclusions can be drawn from this case. SURD identifies the causalities
∆IS

12→2 and ∆IU
2→2 as the most important variables driving Q2, whereas only ∆IU

1→1 is identified for Q1. This
is consistent with the non-zero coupling constant β1→2.

• Two-way coupling β2→1 > β1→2: SURD identifies the causality ∆IU
2→2 for variable Q2, which implies that

Q2 is mostly self-causal. This is consistent with the low value of the coupling constant β1→2. There are also
redundant and synergistic contributions given by ∆IR

12→2 and ∆IS
12→2, respectively, although these are smaller

than the self-induced causality. In the case of Q1, the synergistic contribution dominates over the unique
causality ∆IU

1→1. This is agrees with the fact that the coupling parameter is significantly larger from Q2 → Q1
(i.e., β2→1) than from Q1 → Q2 (β1→2).
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Figure S12: Nonlinear logistic difference system with one-way coupled components [36] for (a) Q2 → Q1 and (b)
Q1 → Q2. Redundant (R), unique (U), and synergistic (S) causalities. The gray bar is the causality leak. The results
of CGC, CTE, PCMCI and CCM are depicted on the right. CGC and CTE use the same normalization as SURD.

• Two-way coupling β2→1 < β1→2: SURD identifies the causality ∆IU
1→1 for variable Q1, which implies that

Q1 is mostly self-causal. This is consistent with the low value of the coupling constant β1→2 from Q2 → Q1.
There are also redundant and synergistic contributions given by ∆IR

12→1 and ∆IS
12→1, respectively, although

these are smaller than the self-induced causality. In the case of Q2, the redundant and synergistic contributions
dominate over the unique causality from Q2 to Q2. This is consistent with the fact that the coupling parameter
is significantly larger from Q1 → Q2 than from Q2 → Q1 (i.e., β1→2 > β2→1).

Among the other methods, only CTE and CCM can identify all the functional dependencies between variables in
all cases. PCMCI correctly identifies self-causal links in all cases; however, it detects cross-induced causalities only
in the two-way coupling case, which are very low in intensity. It is also important to mention that these methods
fail to provide information on whether the coupling in the system is introduced by individual variables acting alone,
or whether it is the combined effect of multiple variables that drives the coupling. In these scenarios, SURD offers a
more comprehensive understanding of the system through the synergistic contribution ∆IS

12→j .

S3.4 Stochastic system with time-lagged dependencies

We examine bivariate stochastic systems with linear and nonlinear time-lagged dependencies previously studied in
[71] and [35], respectively. These cases demonstrate the performance of causal methods when the relationships are
introduced with different time lags. The notation for the observable vector is Q = [Q11 , Q12 , Q21 , Q22 ], where the
second subindex denotes the time lag, e.g., Q11 = Q1(n − 1) and Q12 = Q1(n − 2).

18



0 20 40 60 80
n

0

1
Q

1

0 20 40 60 80
n

0

1

Q
2

0.0

0.5

∆I(·)→1/I (Q+
1 ; Q)

0

1

∆I leak→1

H(Q+
1 )

R
12 U
1

U
2

S1
2

0.0

0.5

∆I(·)→2/I (Q+
2 ; Q)

0

1

∆I leak→2

H(Q+
2 )

0

1
CGC(·)→1

Q1 Q2

0

1
CGC(·)→2

0

1
CTE(·)→1

Q1 Q2

0

1
CTE(·)→2

0

1
CCM(·)→1

Q1 Q2

0

1
CCM(·)→2

0.0

0.4
PCMCI(·)→1

Q1 Q2

0.0

0.4
PCMCI(·)→2

(a) β2→1 = 0.2, β1→2 = 0.01
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Figure S13: Nonlinear logistic difference system with two-way coupled components [36] for (a) β2→1 > β1→2 and (b)
β2→1 < β1→2. Redundant (R), unique (U), and synergistic (S) causalities. The gray bar is the causality leak. The
results of CGC, CTE, PCMCI and CCM are depicted on the right. CGC and CTE use the same normalization as
SURD.

For the first case, the relationships between variables are linear and they are described as:

Q1(n + 1) = 0.95
√

2Q1(n) − 0.9025Q1(n − 1) + W1(n)
Q2(n + 1) = 0.5 · Q1(n − 1) + W2(n)

where Wi ∼ N (0, 1) represents a stochastic forcing following a Gaussian distribution with a mean of zero and a
variance of one. In this case, Q1(n) is self-caused at two different time lags, i.e., Q1(n − 1) and Q1(n − 2), while
Q1(n − 2) drives Q2(n). These relationships are well captured by the SURD, where the most significant causal
relationships are ∆IS

1112→1 and ∆IU
12→2, with the subscript indicating the time lag of the variable. Note that since

the relationships between the variables are linear, the functional dependencies of Q1 can also be expressed as a
function of Q2(n − 1). This is why SURD identifies synergistic causalities ∆IS

1121→1 and ∆IS
1122→1.

Among the other methods, we observe that only CGC and CTE can identify all causal relationships between
variables across all time lags. PCMCI clearly detects the links Q1(n − 1) → Q1(n) and Q1(n − 2) → Q2(n), but
depending on the threshold used the remaining identified connections exhibit lower intensity values compared to
these. The identification of these latter links depends on the confidence threshold used. For a strict threshold of
α = 0.01, only Q1(n − 1) → Q1(n) and Q1(n − 2) → Q2(n) are identified. For CCM, causality needs to be assessed
upon the convergence of the prediction skill to 1 as the length of the time series increases. In this system, the
prediction skill for Q2 using variable Q1(n − 2) is slightly higher than that for Q1(n − 1), implying that the manifold
associated with Q1(n − 2) enables a better reconstruction of the states of Q2(n) than the states of Q1(n − 1). A
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Figure S14: Stochastic systems with linear time-lagged dependencies [71]. Redundant (R), unique (U), and synergistic
(S) causalities in blue, orange and yellow, respectively. The subindex of the labels represents the time delay associated
with the variable. The gray bar is the causality leak. The results from CGC, CTE, CCM, and PCMCI are depicted
on the right. CGC and CTE use the same normalization as SURD.
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Figure S15: Stochastic systems with nonlinear time-lagged dependencies [35]. Redundant (R), unique (U), and
synergistic (S) causalities in blue, orange and yellow, respectively. The subindex of the labels represents the time
delay associated with the variable. The gray bar is the causality leak. The results from CGC, CTE, CCM, and
PCMCI are depicted on the right. CGC and CTE use the same normalization as SURD.

similar conclusion can be drawn for Q2, where the manifold associated with Q2(n−1) provides better reconstruction
of the states of Q1(n).

The second case is a system with non-linear relationships between variables. This system was previously studied
by Bueso et al. [35] for a single-lag dependency. In this work, we employ an extension of the system for multiple
time lags to demonstrate how SURD can also be applied to identify nonlinear relationships at multiple lags. The
equations describing the system are given by:

Q1(n + 1) = 3.4Q1(n)(1 − Q1(n)2) exp
(
−Q1(n − 1)2)+ W1(n)

Q2(n + 1) = 3.4Q2(n)(1 − Q2(n)2) exp
(
−Q2(n)2)+ Q1(n − 1)Q2(n)

2 + W2(n)

where the time-varying stochastic forcing Wi that affects each variable follows a Gaussian distribution with a mean
of zero and a variance of 0.4. For this model, Q1(n − 1) and Q1(n − 2) are common drivers of Q1(n), and Q2(n − 1)
and Q1(n − 2) for Q2(n).

The results are shown in Figure S15. The causal connections identified by SURD ∆IU
11→1, ∆IS

1112→1, ∆IU
21→2, and

∆IU
12→2 correctly capture the functional dependencies of the system. Since the relationships between variables are

highly nonlinear, CGC and CCM are no longer able to identify the causal connections between variables. PCMCI and
CTE are still capable of discerning the relationships [Q1(n−1), Q1(n−2)] → Q1(n) and [Q2(n−1), Q1(n−2)] → Q2(n)
in a consistent manner with the functional dependencies between variables.
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S3.5 Synchronization in logistic maps

The one-dimensional logistic map is a recurrence given by the relationship,

Q1(n + 1) = α1Q1(n)[1 − Q1(n)], (S42)

where n is the time step and α1 is a constant. Equation (S42) exhibits a chaotic behavior for α1 ≈ 3.57 − 4 [72]. We
consider the three logistic maps:

Q1(n + 1) = α1Q1(n)[1 − Q1(n)], (S43a)
Q2(n + 1) = α2f12[1 − f12], (S43b)
Q3(n + 1) = α3f123[1 − f123], (S43c)

which are coupled by

f12 = Q2(n) + c1→2Q1(n)
1 + c1→2

, (S44a)

f123 = Q3(n) + c12→3Q1(n) + c12→3Q2(n)
1 + 2c12→3

, (S44b)

where α1 = 3.68, α2 = 3.67, and α3 = 3.78 are constants, c1→2 is the parameter coupling Q2 with Q1, and c12→3
is the parameter coupling Q3 with Q2 and Q1. The clear directionality of the variables in this system for different
values of c1→2 and c12→3 offers a simple testbed to illustrate the behavior of the causality. The causal analysis for
SURD is performed for one time-step lag after integrating the system for 108 steps. The phase-space was partitioned
using 100 bins for each variables.

First, we consider three cases with different degrees of coupling between Q1 and Q2 while maintaining Q3
uncoupled. The results are shown in Figure S16.

• Uncoupled systems (c1→2 = c12→3 = 0). In this case, Q1, Q2, and Q3 are completely uncoupled and the only
non-zero causalities are the self-induced unique components ∆IU

1→1, ∆IU
2→2, and ∆IU

3→3, as shown by the left
panels in Figure S16(a).

• Intermediate coupling Q1 → Q2 (c1→2 = 0.1 and c12→3 = 0). In this case, the dynamics of Q2 are affected
by Q1. This is shown in Figure S16(b) by the non-zero terms ∆IR

12→2 ̸= 0, ∆IU
1→1 ̸= 0 and ∆IS

12→2 ̸= 0. The
latter is the synergistic causality due to the combined effect of Q1 and Q2, which is a manifestation of the
coupling term f1→2. We can also observe that ∆IR

12→1 ̸= 0. The latter redundant causality appears due to the
emerging synchronization between Q1 and Q2. However, note that there is no other contribution (unique or
synergistic) from Q2 to Q1. Hence, the redundant causality ∆IR

12→1 does not necessarily imply that conducting
an intervention on Q2 (e.g., a perturbation) will alter the value of Q1. Instead, it should be interpreted as Q2
being able to inform about the future of Q1, which is expected since Q1 is contained in the right-hand side
of the equation for Q2. The only non-zero causality for Q3 is again ∆IU

3→3, as it is uncoupled from Q1 and
Q2. This result also demonstrates that the detection power of SURD is not affected by the inclusion of new
independent variables in the analysis.

• Strong coupling Q1 → Q2 (c1→2 = 1 and c12→3 = 0). Taking the limit c1→2 → ∞, it can be seen that
Q2 ≡ Q1. It is also known that even for lower values of c12→3 ∼ 1, Q1 and Q2 synchronize and both
variables exhibit identical dynamics. This is revealed in Figure S16(c), where the only non-zero causalities
are ∆IR

12→1 = ∆IR
12→2 ̸= 0. The identical redundant causalities along with the absence of any unique or

synergistic causality between Q1 and Q2, imply that both variables are fully synchronized. In this situation,
the directionality of the causality cannot be established, as Q1 and Q2 behave as a single variable, but SURD
still effectively identifies the state of synchronization. Similar to the two previous cases, Q3 remains unaffected
(∆IU

3→3 ̸= 0).

Compared to other methods, SURD provides consistent results across the three coupling scenarios. While all methods
correctly identified links in the uncoupled case, introducing intermediate and strong coupling between Q1 and Q2
hindered the identification of causal relationships. In such cases, the synchronization of Q1 and Q2 can be observed
in SURD through redundant causality, a capability that other methods lack.

Next, we consider two additional cases in which Q3 is coupled with Q1 and Q2. The results are shown in
Figure S17.
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Figure S16: Logistic maps with none or one variables coupled. Redundant (R), unique (U) and synergistic (S)
causalities for Q1, Q2, Q3 in coupled logistic maps for (a) uncoupled variables, c1→2 = 0 and c12→3 = 0, (b)
intermediate coupling Q1 → Q2, c1→2 = 0.1 and c12→3 = 0 and (c) strong coupling Q1 → Q2 c1→2 = 1 and
c12→3 = 0. The results from CGC, CTE, CCM, and PCMCI are depicted on the right. CGC and CTE use the same
normalization as SURD.
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Figure S17: Logistic maps with two or three variables coupled. Redundant (R), unique (U) and synergistic (S)
causalities for Q1, Q2, Q3 for (a) uncoupled variables, c1→2 = 0 and c12→3 = 1, (b) strong coupling Q1 → Q2 and
[Q1, Q2] → Q3, c12→3 = 1 and c12→3 = 1. The results from CGC, CTE, CCM, and PCMCI are depicted on the
right. CGC and CTE use the same normalization as SURD.

• Strong coupling [Q2, Q1] → Q3 and no coupling Q1 → Q2 (c1→2 = 0 and c12→3 = 1). The results, included
in Figure S17(a), show that most of the causality to Q1 and Q2 is self-induced and unique (∆IU

1→1 ̸= 0 and
∆IU

2→2 ̸= 0, respectively). There is also a strong causality from Q1 and Q2 to Q3 in the form of synergistic
causality, being ∆IS

123→3 the dominant component consistent with the coupling term f123.

• Strong coupling [Q2, Q1] → Q3 and Q1 → Q2 (c1→2 = 1 and c12→3 = 1). In this case, the three variables
synchronize such that ∆IR

123→1 = ∆IR
123→2 = ∆IR

123→3 ̸= 0 (i.e., they can be interpreted as exact copies of each
other). The results are shown in Figure S17(b).

A summary of the results provided by other methods is provided in Table S1. We note that CCM is the only
method that can offer insights into the dynamics of the system, since the logistic maps analyzed in this section are
given by a deterministic dynamical system where the coupled variables are part of the same manifold. The only
case in which this method failed is the one of strong coupling between variables [Q1, Q2] → Q3, where the CCM did
not converge to a value of one for a relatively high number of samples. This is the case where synergistic effects are
important according to SURD and this might be playing a role in the identification of causalities from CCM.

CTE also provides consistent results for those cases in which the coupling between variables is inexistent or
intermediate. However, when the coupling is strong the method completely cases. For these cases, SURD identifies
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Case CGC CTE CCM PCMCI SURD
No coupling ✓ ✓ ✓ ✓ ✓
One-way intermediate coupling ✗ ✓ ✓ ✗ ✓
One-way strong coupling ✗ ✗ ✓ ✗ ✓

Two-way strong coupling ✓ ✓ ✗† ✗ ✓
Three-way strong coupling ✗ ✗ ✓ ✗ ✓

Table S1: Summary of the performance of the different methods for logistic maps with none to three coupled variables.
†The value of the prediction skill from CCM does not converge to a value of one.

significant redundant causalities, which implies those variables are fully synchronized and act as the same variables.
Therefore, introducing those variables into the conditioning set of CTE for a given variable hinders the identification
of causalities. A similar conclusion can be drawn for CGC and PCMCI, which only identified consistent causal
relationships for the case in which there is no coupling between variables and for [Q1, Q2] → Q3 in the CGC case.

S3.6 Coupled Rössler–Lorenz system

We study a coupled version of the Lorenz system [73] and the Rössler system [74]. The former was developed by
Lorenz as a simplified model of a viscous fluid flow. Rössler proposed a simpler version of the Lorenz’s equations in
order to facilitate the study of its chaotic properties. The governing equations are

dQ1

dt
= −6[Q2 + Q3], (S45a)

dQ2

dt
= 6[Q1 + 0.2Q2], (S45b)

dQ3

dt
= 6 [0.2 + Q3[Q1 − 5.7]] , (S45c)

dQ4

dt
= 10[Q5 − Q4], (S45d)

dQ5

dt
= Q4[28 − Q6] − Q5 + cQ2

2, (S45e)

dQ6

dt
= Q4Q5 − 8

3Q6, (S45f)

where [Q1, Q2, Q3] correspond to the Rössler system and [Q4, Q5, Q6] to the Lorenz system. The coupling is unidi-
rectional from the Rössler system to the Lorenz system from Q2 → Q5 via the parameter c. This coupled system has
previously been studied by [81] and [82]. We use this case to study the behavior of SURD in a continuous dynamical
system when some of the variables are hidden. The observable variables are Q = [Q1, Q2, Q5, Q6]. The system was
integrated for 106tref where tref is the time for which I(Q+

1 ; Q1)/I(Q1; Q1) = 0.5. The time-lag selected for causal
inference is ∆T ≈ tref and 50 bins per variable were used to partition the observed phase space.

The results for uncoupled systems (c = 0) are shown in Figure S18. The upper panel portrays typical tra-
jectories of the systems. Unsurprisingly, SURD shows that both systems are uncoupled. Moreover, the unique,
redundant and synergistic causal structure identified in the Rössler and Lorenz systems are consistent with structure
of Equation (S45a). The causality leak is roughly 25% due to the unobserved variables.

The results for the coupled system (c = 2) are shown in Figure S19. The left panel shows how the trajectory of
the Lorenz system is severely impacted by the coupling. The causalities in the Rössler system remain comparable
to the uncoupled case besides some small redundancies and synergies due to the effect of unobserved variables. On
the contrary, the causalities in the Lorenz system undergo deeper changes. This is evidenced by the emergence of
multiple synergistic causalities involving Q1 and Q2. This effect is consistent with the coupling of both systems.

Among the other methods, only the CTE and CCM provide insight into the dynamics of the system, given that
the system is given by a deterministic dynamical system where the group of variables [Q1, Q2] and [Q5, Q6] are
part of the same manifold, respectively, in the uncoupled Rössler–Lorenz system and [Q1, Q2, Q5, Q6] in the coupled
Rössler–Lorenz case. However, CCM cannot clearly identify that the coupling is from Q2 to Q5, since the prediction
skill of variables Q1 and Q2 using Q5 and Q6 is also very high, although lower than in the reverse case. For CTE,
the direction of this coupling is properly identified. Finally, the methods CGC and PCMCI completely fail in both
cases.
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Figure S18: Uncoupled Rössler-Lorenz system (c = 0). The top panels show excerpts of the trajectories pertaining to
Rössler systems [Q1, Q2, Q3] (left) and Lorenz system [Q4, Q5, Q6] (right). The bottom panels show the redundant
(R), unique (U), and synergistic (S) causalities among [Q1, Q2, Q5, Q6]. The causality leak for each variable is also
shown in the right-hand side bar. The results from CGC, CTE, CCM, and PCMCI are depicted on the right. CGC
and CTE use the same normalization as SURD.

S3.7 Three interacting species

We analyze causality in a system of three interacting species. The case, proposed by Leng et al. [40], validates
the Partial Cross Mapping (PCM) method –a variation of CCM that eliminates indirect causal influences. This
benchmark served as an example where other methods, including CGC, CTE, and CCM, failed to detect causal
links. The equations of the system are given by:

Q1(n + 1) = Q1(n) [α1 − α1Q1(n) − β2→1Q2(n)] + η1(n) (S46)
Q2(n + 1) = Q2(n) [α2 − α2Q2(n) − β1→2Q1(n) − β3→2Q3(n)] + η2(n) (S47)
Q3(n + 1) = Q3(n) [α3 − α3Q3(n) − β1→3Q3(n)] + η3(n) (S48)
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Figure S19: Coupled Rössler-Lorenz system (c = 2). The top panels show excerpts of the trajectories pertaining to
Rössler systems [Q1, Q2, Q3] (left) and Lorenz system [Q4, Q5, Q6] (right). The bottom panels show the redundant
(R), unique (U), and synergistic (S) causalities among [Q1, Q2, Q5, Q6]. The causality leak for each variable is also
shown in the right-hand side bar. The results from CGC, CTE, CCM, and PCMCI are depicted on the right. CGC
and CTE use the same normalization as SURD.

where α1 = 3.6, α2 = 3.72, α3 = 3.68, βi→j denotes the coupling constants between variables, and ηi represents white
noise with zero mean and a standard deviation of 0.005. Different choices of coupling parameters βi→j can lead to
various modes of interaction. We analyze the same combinations reported by Leng et al. [40], which represent three
possible interaction structures among three species: fan-in (Q1 → Q2), fan-out (Q1 → Q3 → Q2), and cascading
structures (Q1 → Q3 → Q2 → Q1).

The results, shown in Figure S20, demonstrate that SURD identifies links consistent with the governing equations
across all scenarios. CCM fails to identify correct causal links consistently as already reported by [40]. PCM (not
shown) operates successfully; however, it does not provide information about the strength of self-causal links, a feature
that SURD offers. CGC underperforms, while CTE can offer a good insight into the causal relationships between
variables. Nonetheless, CTE cannot distinguish between unique and synergistic causalities. This distinction is useful
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Figure S20: Three interacting species [40]. Redundant (R), unique (U) and synergistic (S) causalities for Q1, Q2, Q3
in coupled logistic maps for (a) fan-in with β1→2 = 0.35, (b) fan-out with β1→3 = β3→2 = 0.35, and (c) cascading
structures with β1→3 = β3→2 = β2→1 = 0.35. The results from CGC, CTE, CCM, and PCMCI are depicted on the
right. CGC and CTE use the same normalization as SURD.
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Figure S21: Eigth interacting species [40]. Redundant (R), unique (U) and synergistic (S) causalities for Qi with
i = 1, . . . , 8. Only the top N = 20 contributions, satisfying the condition ∆I(·)→j/I(Q+

j ;Q) ≥ 10−3, are represented
for each variable. The gray bar is the causality leak.

in these scenarios, as variables may be coupled through both cross-induced causal relationships and self-causal effects.

S3.8 Eight interacting species

We test the effectiveness of our method in a network model containing eight interacting species. This system was
proposed by Leng et al. [40] to demonstrate the power of the partial cross-mapping (PCM) method in accurately
reconstructing the underlying causal networks from multivariate time series of high dimensionality. The equations
of the system are given by:

Q1(n + 1) = Q1(n) [3.9 − 3.9Q1(n)] + η1(n), (S49a)
Q2(n + 1) = Q2(n) [3.5 − 3.5Q2(n)] + η2(n), (S49b)
Q3(n + 1) = Q3(n) [3.62 − 3.62Q3(n) − 0.35Q1(n)] + η3(n), (S49c)
Q4(n + 1) = Q4(n) [3.75 − 3.75Q4(n) − 0.35Q2(n)] + η4(n), (S49d)
Q5(n + 1) = Q5(n) [3.65 − 3.65Q5(n) − 0.35Q3(n)] + η5(n), (S49e)
Q6(n + 1) = Q6(n) [3.72 − 3.72Q6(n) − 0.35Q3(n)] + η6(n), (S49f)
Q7(n + 1) = Q7(n) [3.57 − 3.57Q7(n) − 0.35Q6(n)] + η7(n), (S49g)
Q8(n + 1) = Q8(n) [3.68 − 3.68Q8(n) − 0.35Q6(n)] + η8(n), (S49h)

where ηi(n) terms for i = 1, . . . , 8, are white noise of zero mean and standard deviation of 0.005. The results
provided in Figure S21 show the robustness of SURD to reconstruct all the causal links of the system according to
their governing equations. Additionally, SURD is able to identify those variables that individually and synergistically
cause the future of the target variables through unique and synergistic causalities, respectively. This validation case
demonstrates that SURD is able to identify causal relationships in a setting with a larger number of variables.
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Figure S22: System with instantaneous causal dependencies for (a) mediator and (b) synergistic collider variables.
Results from SURD with redundant (R), unique (U) and synergistic (S) causalities in blue, red and yellow, respec-
tively. The notation employed is such that the present variables Q4 = Q+

1 , Q5 = Q+
2 and Q6 = Q+

3 . The gray bar is
the causality leak.

S3.9 System with contemporaneous causal dependencies

We evaluate the performance of SURD in scenarios with contemporaneous causal links. In these cases, the vector
of observed variables can also include variables at time t + ∆T , excluding the target variable. For a system with N
variables and target Q+

i , the vector of observables is

Q = [Q1, Q2, . . . , QN , Q+
1 , . . . , Q+

i−1, Q+
i+1, . . . , Q+

N ]. (S50)

Note that Q+
i cannot be included in the vector of observed variables, since doing so would already reveal all the

information about the target variable. For example, to calculate the causalities to Q+
1 in a system with three

variables, the vector of observed variables is Q = [Q1, Q2, Q3, Q+
2 , Q+

3 ]. For simplicity, we use the notation Q4 = Q+
1 ,

Q5 = Q+
2 and Q6 = Q+

3 .
We use as test beds the systems with mediator and synergistic variables depicted in Figures 2 and 4. For the

system with mediator variables, we introduce an contemporaneous dependence of Q2 on Q1, i.e., Q+
2 → Q+

1 . The
equations of the system with mediator variables can be defined as follows:

Q1(n + 1) = sin [Q2(n + 1)] + 0.01W1(n) (S51a)
Q2(n + 1) = cos [Q3(n)] + 0.01W2(n) (S51b)
Q3(n + 1) = 0.5Q3(n) + 0.1W3(n). (S51c)

Figure S22(a) shows how SURD can identify the contemporaneous causal dependency of Q+
2 on Q+

1 through the
unique causality ∆IU

5→1, where the index 5 refers to variable Q+
2 . For variables Q+

2 and Q+
3 , the most relevant

causalities are consistent with their dependencies on Q3. However, a new synergistic causality, ∆IS
34→1, emerges in

Q+
2 due to its contemporaneous dependence on Q+

1 .
We also test the system with synergistic collider modified to include contemporaneous links. In this case, the
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Figure S23: Results from the multivariate version of the conditional transfer entropy (CTE) [45] for the systems with
(a) mediator, (b) confounder, (c) synergistic collider, and (d) redundant collider variables. Further details about
these systems are provided in the main text.

equations are given by:

Q1(n + 1) = sin [Q2(n + 1)Q3(n + 1)] + 0.001W1(n) (S52a)
Q2(n + 1) = 0.5Q2(n) + 0.1W2(n) (S52b)
Q3(n + 1) = 0.5Q3(n) + 0.1W3(n). (S52c)

Figure S22(a) shows that the most relevant causality for Q+
1 is the component ∆IS

56→1, where indices 5 and 6
represent variables Q+

2 and Q+
3 , respectively. Furthermore, as the dependency between them is instantaneous and

these variables are part of the observed vector, it is possible to write Q+
2 = f(Q+

1 , Q+
3 ) and Q+

3 = f(Q+
1 , Q+

2 ),
indicating that the components ∆IS

45→2 and ∆IS
45→3 also play a significant role in determining the variables Q+

2 and
Q+

3 , respectively.

S3.10 Causality from combination of variables in mediator, confounder, and collider cases

In this section, we compare the redundant and synergistic causalities from SURD with the multivariate versions
of CTE and CGC, referred to as MCTE and MVCG, respectively. The results are calculated for systems with
mediator, confounder, synergistic collider, and redundant collider variables. Although MCTE and MVCG can
quantify causality from combinations of variables (e.g., [Q1, Q2, Q3, . . . ] → Qj), we show here that the results are not
easily interpretable or may be directly erroneous. Figure S23 shows how MCTE yields negative values of causality
for cases in which synergistic effects play a major role, such as systems with confounder and synergistic collider
variables. For example, in the synergistic collider (Q2, Q3) → Q1, MCTE23→1 is strongly negative. The results from
MVGC (Figure S24) are constrained to be nonnegative; however, MVGC does not provide information about the
redundant or synergistic nature of the interactions. This makes it very challenging to interpret whether the identified
links due to combined variables are consistent with the relationships between variables. Returning to the case of
the synergistic collider (Q2, Q3) → Q1, SURD correctly detects ∆IS

23→1 > 0 as the main causality to Q1, whereas
MVCG identifies MVGC123→1, MVGC12→1, and MVGC13→1 as all equally important, while MVGC23→1 is zero.
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Figure S24: Results from the multivariate version of the multivariate Granger causality (MVGC) [28] for the systems
with (a) mediator, (b) confounder, (c) synergistic collider, and (d) redundant collider variables. Further details about
these systems are provided in the main text.

S3.11 Causal graphs for PCMCI in multivariate systems

The primary outcome of the PCMCI algorithm for the mediator, confounder, and collider is illustrated through the
causal graphs in Figure S25. In this visual representation, only the links that are statistically significant at a specified
threshold level are shown. Additionally, a measure of the causal strength is included for both cross-causal and self-
causal connections. This visualization facilitates a clear evaluation of the consistency of the causality analysis with
respect to the functional relationships of the systems. Among all cases, the redundant collider stands out as the case
where the summary graph lacks coherence. In this particular scenario, the approach identifies a fully interconnected
graph, failing to correctly pinpoint the effects of the duplicated variables Q2 and Q3 on Q1. This issue arises from
incorporating duplicated variables into the conditional set of variables. Additionally, in the case of the confounder
variable, although the causal connections across variables align with the interdependencies within the system, the
strength of the self-causal connections for variables Q1 and Q2 is weak.

Figure S26(a) shows the summary graph of the causality analysis from PCMCI for the turbulent energy cascade
(see Figure 6 in the main text). The most relevant causal links in the graph are ⟨Σ1⟩ → ⟨Σ2⟩+ and ⟨Σ1⟩ → ⟨Σ1⟩+.
The other detected relationships, except for ⟨Σ2⟩ → ⟨Σ1⟩+, are consistent with the hypothesis of forward propagation
of energy in turbulence, which have very weak causal strength. The weak causalities can be attributed to the high
importance of redundant causalities for variables other than ⟨Σ1⟩, as shown in the results from SURD in the main
text.

Additionally, the results for the Rössler-Lorenz system discussed in Figures S18 and S19 are provided in graph
format in Figures S26(b) and S26(c). For both cases, PCMCI fails to identify causal links that are consistent with the
equations of the systems. Specifically, in the uncoupled Rössler-Lorenz system (see Figure S18), the method cannot
identify a coupling between variables Q1 and Q2. In the coupled system (see Figure S19), the links provided by
PCMCI are more representative of the real connections between variables. However, the link Q5 → Q+

1 is inconsistent
with the coupling in the Rössler-Lorenz system, which occurs through Q2 → Q+

5 .

S3.12 PCMCI for different independence tests

We analyze the variability in the results of PCMCI for different independence tests. The optimal confidence interval
αPC for PCMCI is selected during the initial condition selection phase (PC phase) based on the Akaike Information

31



Q1

Q2

Q3

0.0 0.5
cross-MCI

0.0 0.5
auto-MCI

(a) Mediator variable

Q1

Q2

Q3

0.0 0.5
cross-MCI

0.0 0.5
auto-MCI

(b) Confounder variable

Q1

Q2

Q3

0.0 0.5
cross-MCI

0.0 0.5
auto-MCI

(c) Synergistic collider

Q1

Q2

Q3

0.0 0.5
cross-MCI

0.0 0.5
auto-MCI

(d) Redundant collider

Figure S25: Summary graph of the causality analysis performed using the PCMCI method for the systems with (a)
mediator, (b) confounder, (c) synergistic collider, and (d) redundant collider variables. Cross-causality is quantified
with the color intensity of the links, whereas self-causality is quantified with the color intensity of the variables nodes.
Both quantities range from 0 (light orange) to 0.5 (dark orange). The indices in the arrows represent the time lag
at which the causal links are identified.
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Figure S26: Summary graph of the causality analysis performed using the PCMCI method for the (a) turbulent
energy cascade, (b) uncoupled Rössler-Lorenz system, and (c) coupled Rössler-Lorenz system. Cross-causality is
quantified with the color intensity of the links, whereas self-causality is quantified with the color intensity of the
variables nodes. Both quantities range from 0 (light orange) to 0.5 (dark orange). The indices in the arrows represent
the time lag at which the causal links are identified for panels (b) and (c). In panel (a), an index of one is shown for
all links, although the time lag for identification of causality used in the analysis is different for each variable. These
values are consistent with the ones provided in the main text.

criterion [126] from a default list of values, i.e., αPC = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5]. Next, the significance level for
the momentary conditional independence phase (MCI phase) is set to αMCI = 0.01 to obtain the causal graph and
strengths. The independence tests analyzed are partial correlation (ParCorr), robust partial correlation (rParCorr),
Gaussian process regression and a distance correlation (GPDC), and conditional mutual information with a k-nearest
neighbor estimator (CMI). For a detailed discussion of these independence tests and their assumptions, the reader
is referred to Ref. [23].

The summary of the results for the other tests is compiled in Table S2. The results for the CMI test are the same
as those reported in the main text. The table shows that there is strong variability in the conclusions depending on
the independence test and the parameters used. The CMI test with the k-NN estimator might not be the best choice
in systems with fully deterministic dynamics, such as the Lotka-Volterra prey-predator model and nonlinear logistic
difference systems. In these cases, ParCorr and rParCorr offer a more consistent estimation of the causal graph.
Moreover, the GPDC test is the only test that identifies the causal relationships in the system with confounder
variables.

S4 Sensitivity of SURD

S4.1 Sensitivity of SURD to number of samples

SURD relies on the estimation of probability distributions, which becomes computationally intractable as the number
of dimensions increases. To address this limitation, we use the concept of transport maps[120] to estimate high-
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Case ParCorr rParCorr GPDC CMI
Mediator variable ✗ ✗ ✓ ✓
Confounder variable ✓ ✓ ✓ ✓
Synergistic collider variable ✗ ✗ ✓ ✓
Redundant collider variable ✗ ✗ ✗ ✗
Lotka-Volterra prey-predator model [68, 69] ✓ ✓ ✓ ✗
Three-interacting species system [40] ✗ ✓ ✗ ✗
Moran effect model [70] ✓ ✓ ✗ ✓
One-way coupling nonlinear logistic difference system [36] ✓ ✗ ✗ ✗
Two-way coupling nonlinear logistic difference system [36] ✗ ✗ ✓ ✗
Stochastic system with linear dependencies [71] ✓ ✓ ✓ ✓
Stochastic system with non-linear dependencies [35] ✓ ✗ ✗ ✓
Synchronization of two variables in logistic maps [72] ✓ ✓ ✗ ✓
Synchronization of three variables in logistic maps [72] ✗ ✗ ✗ ✗
Uncoupled Rössler-Lorenz system [73, 74] ✗ ✗ ✗ ✓
One-way coupled Rössler-Lorenz system [73, 74] ✗ ✗ ✗ ✓

Table S2: Summary of the performance of different independence tests for PCMCI. The markers ✓ and ✗ denote
consistent and inconsistent identification of causal links, respectively, according to the functional dependency of
variables within the system. The independence tests considered are partial correlation (ParCorr), robust partial
correlation (rParCorr), Gaussian process regression and a distance correlation (GPDC) and conditional mutual
information with a k-nearest neighbor estimator (CMI).

dimensional probability distributions. The method relies on the estimation of a parsimonious and interpretable
nonlinear transformation from a complex distribution π(x) defined by the set of samples of the vector of observed
variables to a simpler reference distribution η(z), e.g. a Gaussian distribution N (0, I), as shown in Figure S27.
Although there are infinitely many transformations that link these distributions, if π is absolutely continuous with
respect to η, there exists a unique lower triangular and monotone function S : Rd → Rd that pushes forward π
to η. This type of transformation is highly attractive since it provides a map that is differentiable along with a
differentiable inverse[120].

This transformation is a mere approximation of the real distribution, which depends on the class of functions
chosen. In this study, we used sixth-order polynomials to estimate the transport map. Figure S27 shows the results
for the evolution of the relative error with the number of samples for redundant, unique, and synergistic causalities
from the confounder example in Figure 3. We set the results estimated using the transport map with N = 106

samples as a reference. Using this method, we can obtain results with an error significantly lower than 5% by using
only a number of samples in the order of a few hundred. Furthermore, if we compare the reference results with those
obtained using the binning method with N = 108 samples, we obtain differences lower than 3% for all causalities.
Therefore, the approximation from the transport map method allows us to estimate SURD causalities with relatively
high accuracy when the number of samples is low. A more extensive analysis of the impact of sample size, partition
refinement, and order of the polynomials on the calculation of SURD is provided in the Supplementary Materials for
the binning and the transport map methods.

S4.2 Sensitivity of SURD to partition refinement

We investigate the sensitivity of SURD to the number of samples (Nsamples) and number of bins (Nbins) used to
partition the variables in situations where the binning method is employed to estimate the probability distributions.
The Lorenz system is used as a testbed:

dQ1

dt
= 10[Q2 − Q1], (S53a)

dQ2

dt
= Q1[28 − Q3] − Q2, (S53b)

dQ3

dt
= Q1Q2 − 8

3Q3. (S53c)

The system was integrated over time to collect Nsamples = 5×103, 5×104, 5×105, and 5×108 events after transients.
Probability distributions were calculated using uniform bins with Nbins = 10, 50, 100, and 200 per variable. Our
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Figure S27: (Left) Schematic representation of the construction process of the transport map S that transforms an
arbitrary distribution π(x) to a Gaussian distribution η(z) = N (0, I), where x and z denote samples from each of
the distributions. (Right) Evolution of the relative error with the number of samples for three different causalities
from the confounder validation case. The results estimated using the transport map with N = 106 samples and
sixth-order polynomials are set as the ground truth. The error bars represent the variance of the relative error using
different sets of random samples, which in total are equivalent to the number of samples used in the reference case.

primary focus is on causalities to Q1, but the conclusions drawn also apply to Q2 and Q3.
The sensitivity to Nsamples is displayed in Figure S28(a), where Nsamples varies while maintaining Nbins = 50

constant. For Nsamples > 5 × 103, the changes in causality remain within a few percentage points of difference. The
sensitivity to the size of the partition is assessed in Figure S28(b), where Nbins varies while Nsamples is held constant
at Nsamples = 5 × 105. The causalities exhibit quantitative resemblance for all partitions, with the exception of
Nbins = 10, which may be too coarse to capture the continuous dynamics of the variables.

S4.3 Sensitivity of SURD to polynomia order

We investigate the sensitivity of SURD to the number of samples (Nsamples) and the order of polynomials (Norder)
used to estimate the probability distributions using transport maps. The case considered for testing the results is
the system with a confounder variable, as defined in the main text, but with bimodal stochastic forcing. The latter
follows a bimodally distributed random variable W = αX + (1 − α)Y , where X = N (−2, 1) and Y = N (2, 1) are
unimodal random variables following a Gaussian distribution and α = 0.3 represents the mixture coefficient. The
system was integrated over time to collect Nsamples = 5 × 101, 5 × 102, 5 × 103, and 5 × 104 events after transients.
The probability distributions were estimated using the transport map method with Norder = 4, 6, 8, and 10. Our
primary focus is on causalities to Q1, but the conclusions drawn also apply to Q2 and Q3.

The impact of the number of samples on the causalities estimated with the transport map method is depicted
in Figure S29(a), where Nsamples is varied while keeping Norder = 6 constant. For Nsamples > 5 × 102, the changes
in causality only differ within a few percent and are limited to synergistic contributions, which are linked to higher-
order probability distributions. Figure S29(b) assesses the sensitivity to polynomial order, with Norder varying while
Nsamples is fixed at Nsamples = 200. The causalities show similar quantitative values for all polynomial orders.
Once again, the slight percentage differences noticed when increasing the polynomial order are associated with
synergistic causalities. In conclusion, transport mapping theory provides an accurate estimation of the probability
distribution when the number of samples is small or the number of variables is high. However, these estimates are
only approximations of the true distribution, which might become more challenging in more complex distributions.

S5 Effect of non-separability of the variables

One of the prevailing weaknesses in some of the previous methods for causal inference arises from the non-separability
of the variables [36]. The issue is a consequence of Takens’ embedding theorem, which states that under the right
conditions, the dynamics of a system can be captured by embedding a sequence of past observations into a higher-
dimensional space. In such cases, the future of a variable can be fully forecasted using only its own past, without the
need for any other variables. Consequently, methods for causal inference based on predictability, such as Granger
causality, might miss causal connections when including past observations into the model. For example, consider
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Figure S28: Sensitivity of SURD in the Lorenz system for (a) number of samples Nsamples used to estimate the
probability distributions using the binning method for Nbins = 50 held constant and (b) the number of bins Nbins
used to partition values of the variables for Nsamples = 105.

a system where Q1 → Q2. By the Takens’ embedding theorem, Q2 could be forecasted using only its own past
regardless of Q1, leading to erroneous conclusions in Granger causality.

Takens’ embedding theorem can also be interpreted within the framework of information theory [46]. If the
variable Q1 is causal to Q2, then part of the past information from Q1 is encoded into Q2. Thus, from an information-
theoretic viewpoint, non-separability arises from the flow of information among interacting variables. SURD is less
susceptible to the issue of non-separability as it monitors all transfers of information among variables within the
system, even if redundant.

Here, we employ the example introduced by Sugihara et al. [36] to illustrate the robustness of SURD under the
effect of multiple time lags with non-separable variables. The system is given by:

Q1(n + 1) = Q1(n) [r1 − r1Q1(n) − β2→1Q2(n)] , (S54a)
Q2(n + 1) = Q2(n) [r2 − r2Q2(n) − β1→2Q1(n)] , (S54b)

where the coupling from Q2 to Q1 is controlled through β2→1 and the coupling from Q1 to Q2, through β1→2. In this
simple system, we can recover algebraically the influence of Q1 on Q2 using Q2(n + 1) and Q2(n) (and vice versa):

β2→1Q2(n) = 1 − Q1(n) − Q1(n + 1)
r1Q1(n) , (S55a)

β1→2Q1(n) = 1 − Q2(n) − Q2(n + 1)
r2Q2(n) . (S55b)

We can substitute Equation (S55a) into (S54b) and obtain an expression for Q2(n) as a function of Q1(n) and
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Figure S29: Sensitivity of causality in the system with confounder variables and bimodal stochastic forcing for (a)
number of samples Nsamples used to estimate the approximated probability distributions with the transport map
method for Norder = 6 held constant and (b) the order of polynomials Norder used to partition values of the variables
for Nsamples = 200. The causalities are ordered from left to right according to Nα

i→1.

Q1(n − 1):

Q2(n) = r2

β2→1

[
(1 − β1→2Q1(n − 1))

(
1 − Q1(n − 1) − Q1(n)

r1Q1(n − 1)

)
− 1

β2→1

(
1 − Q1(n − 1) − Q1(n)

r1Q1(n − 1)

)2
]

.

(S56)
Introducing Equation (S56) into (S54a), we obtain an expression for Q1 that is exclusively a function of its own

past, i.e. Q1(n) and Q1(n − 1):
Q1(n + 1) = f(Q1(n), Q1(n − 1)). (S57)

Methods for causal inference based on the predictability of Q1 might incorrectly conclude that Q2 does not cause
Q1 if the values Q1(n) and Q1(n − 1) are included in the predictive model. To address this, we assess the causal
connections to Q1 and Q2 using SURD and a non-linear version of CGC. We use a non-linear implementation of
CGC because its linear counterpart failed in all considered scenarios, which does not allow us to demonstrate the
problem of non-separability. The non-linear CGC consists of an artificial neural network (ANN) trained to predict
the target variables Q1(n + 1) and Q2(n + 1), given different sets of past instances of Q1 and Q2. The model for Q1
(similarly for Q2) is

Q1(n + 1) = ANN1(Q1) + ε̂(n + 1), (S58a)
Q1(n + 1) = ANN12(Q1,Q2) + ε(n + 1), (S58b)

where vector of observables is defined as Q = [Q1,Q2] with Q1 =
[
Qn

1 , Qn−1
1 , · · · , Qn−∆n

1
]

(similarly for Q2) and
∆n is the maximum lag considered. Note that, from the point of view of SURD, Q only contains two variables
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Figure S30: Effect of non-separability. Performance of non-linear CGC and SURD for the target variables (a) Q1
and (b) Q2. The results in the top row are for ∆n = 0 (Q = [Q1(n), Q2(n)]) and in the bottom row for ∆n = 1
(Q = [Q1, Q2] where Q1 = [Q1(n), Q1(n − 1)] and Q2 = [Q2(n), Q2(n − 1)]). The system is simulated for the
parameters [r1, r2, β2→1, β1→1] = [3.8, 3.5, 0.2, 0.01].

(i.e., Q1 and Q2), although these are vectors. This differs from the discussion in §S1.3, where different time lags
are considered as different variables. The network architecture includes three hidden layers with 1024, 512 and
256 neurons, respectively, and it is trained using an Adam optimizer with a maximum of 200 epochs and an initial
learning rate of 0.01, which is reduced by a factor of 0.3 with a period of 125 iterations.

Figure S30 displays the results from non-linear CGC and SURD using ∆n = 0 (Q = [Q1(n), Q2(n)]) and ∆n = 1
(Q = [Q1, Q2] where Q1 = [Q1(n), Q1(n − 1)] and Q2 = [Q2(n), Q2(n − 1)]). For ∆n = 0, both non-linear CGC and
SURD identify the coupling between Q1 and Q2. However, with an additional time lag for both variables, non-linear
CGC incorrectly determines that Q1 does not influence Q2 and vice versa, as these can be completely determined
by their own past. In contrast, SURD continues to show the causal dependency between Q1 and Q2. The improved
robustness of SURD is attributable to the fact that, under a statistical steady state, the flow of information between
variables remains unchanged. The main difference observed in SURD is an increase in redundant causality due to
duplicated information from the inclusion of additional time lags.

S6 Application of SURD to predictive modeling

SURD can also inform the development of predictive and/or reduced-order models of dynamical systems. By leverag-
ing knowledge of the causal structure of the system, SURD enables the construction of minimal models by selecting
the most effective input variables while disregarding those with irrelevant or duplicated information. This section
illustrates an application of SURD to temporal forecasting of variables in the synergistic and redundant collider
systems, as shown in Figures 4 and 5. The approach employs long-short-term memory (LSTM) artificial neural
networks trained to predict Q1(n + 1), using the exact values of Q1(n), Q2(n), and Q3(n). Several models are
trained using different sets of input variables. The network architecture includes a sequence input layer with the
corresponding number of input features, an LSTM layer with 200 hidden units to capture temporal dependencies
between the signals, and a fully connected layer to map the previous layer to the output variable. The network is
trained using an Adam optimizer with a maximum of 200 epochs and an initial learning rate of 0.01, which is reduced
by a factor of 0.3 with a period of 125 iterations.

In the first case (Figure 4), Q2 and Q3 synergistically influence Q1, as previously indicated by ∆IS
23→1. Therefore,

it is crucial for models to incorporate both variables as inputs to ensure accurate predictions. This is illustrated
in Figure S31(a), where the forecasting performance of the models using [Q2, Q3] significantly surpasses those that
include either variable alone. This outcome is consistent with the synergistic causality detected by SURD, where
Q2 and Q3 collectively drive the future of Q1. Generally, accurate forecasting of variables affected by synergistic
causalities is achievable only when all synergistically interacting variables are incorporated into the model.

In the second case (Figure 5), Q2 and Q3 exhibit redundant causality to Q1, as revealed by ∆IR
23→(·). Hence,

predictive models can use either Q2 or Q3 without compromising their predictive accuracy as shown in Figure S31(b).
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(a) (b)

Figure S31: Comparative performance of LSTM models for forecasting the future of Q1 using different input variables
for (a) system with a synergistic collider (where Q2 and Q3 collectively influence the future of Q1) and (b) system with
redundant collider (where Q2 and Q3 contain the same information about the future of Q1). The legend indicates
the variables used as input to the LSTM model. In panel (b), the prediction is performed using Q2 for the first half
of the temporal sequence, while Q3 is used for the second half.

In scenarios of high redundancy, minimal predictive models can be optimized by selecting the most convenient variable
from the redundant set. This interchangeability provides a strategic advantage in model construction, allowing for
the selection of variables based on practical considerations, such as measurement ease or data availability. For a more
detailed discussion on information-theoretic causality for reduced-order modeling of chaotic dynamical systems, the
reader is referred to Ref. [45].
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