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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

In the manuscript titled "Decomposing causality into its synergistic, unique, and redundant 

components", the authors develop a novel causal inference method named SURD: Synergistic-

Unique-Redundant Decomposition. This method is based on information theory and decomposes 

causality into synergistic, unique, and redundant components, quantifying it as the information 

about future events obtained from observing variables. It effectively addresses many challenges 

present in current causal inference methods such as Granger causality, convergent cross mapping, 

transfer entropy, and others. The numerical results from the toy models and the example of energy 

cascade in turbulence demonstrate that SURD has great potential in revealing causality in various 

complex systems. The manuscript is very well-written, and the methods and results are generally 

interesting to the scientific community of many disciplines. The underlying idea is intuitive and 

effective. I enjoyed reading this paper and can recommend it to publish in Nature Communications 

after the following concerns being properly addressed: 

1. SURD is developed based on information theory, which is an essential part of the work. However, 

the introduction section contains only a brief discussion on the current progress of the application 

of information theory in causal inference. This makes the proposal of the method in the last 

paragraph somewhat abrupt. The authors should consider integrating parts of the content from the 

supplementary material into the main body. 

2. When the number of individuals in a system is large, using the SURD method to decompose 

causality requires breaking it down into a very large number of parts. How should the issue of the 

resulting dimensionality problem be addressed in such cases? 

3. In Sugihara et al. Science 2012, they claimed that data from nonlinear dynamical systems suffers 

from the non-separability, restricting the use of methods such as GC and from information theory. 

How the developed SURD overcomes the non-separability problem? 

4. In Table 1 of the manuscript, the authors mention that the SURD method can address the 

problem of synchronization of two variables in logistic maps. This claim seems strange because a 

common sense is that the causality can hardly be defined if two variables are completely 

synchronous or generalized synchronous. Therefore no method can deal with the synchronization 

problem. 

5. The authors mentioned that causality is often defined by confirming the results of a variable 

when intervening the other, which can usually not be realized in practice. How causality is defined 

mathematically in this manuscript? Does it denote coupling relationship of variables in the 

systems' equations? See "Continuity scaling: A rigorous framework for detecting and quantifying 

causality accurately, Research, 2022". If so, how the information-related methods can be used to 

infer this kind of causality? 

6. The application of SURD to the energy cascade in turbulence is an excellent example, but the 

data is still simulated using existing models. It would be better to include some experiments to test 

SURD on real-world time series data. 

7. The code provided in the manuscript requires an MIT account, which makes it inaccessible. The 

authors should find an alternative way to make the code available. 



Reviewer #1 (Remarks on code availability): 

The code provided in the manuscript requires an MIT account, which makes it inaccessible. 

Reviewer #2 (Remarks to the Author): 

In this paper, the authors present an exhaustive analysis of causality detection in physical systems 

following the formalism of information transfer. The authors take this formalism substantially 

further by decomposing information transfer into three well-defined and physically-motivated 

components (SURD). The causal relations detected with this method are then exhaustively 

compared with other causality-detection methods, providing strong and well-supported evidence 

of the ability of SURD to successfully detect and decompose causality in wide range of physical 

systems. The theoretical results of the paper are justified on physical and mathematical grounds, 

and 

the authors make a complex topic such as information transfer accessible to a wide audience. 

In general, this paper presents important advancements in the field of causal analysis and opens 

avenues to novel causal discovery in complex system. That is why I am happy to recommend its 

publication in Nature Communications after the following comments have been taken into 

account: 

1) The information transfer decomposition is very well explained in the supplemental material. This 

is the right place due to the heavy mathematical content. However, I miss a somewhat deeper 

explanation of the physical meaning of the decomposition in the main text. For instance, in the 

bullet point list in the second page the authors could extend briefly on the meaning of “common 

causality” and “the causality that cannot be obtained by any other individual variables” for instance 

in terms of uncertainty reduction or information gain. 

2) Sometimes across the text (also in the Supplemental Material), it is a little bit unclear what is 

uncertainty and what is information. For instance, the authors say “The information in Q+j is 

measured by the Shannon entropy, denoted by H(Q+j ), which represents the average number of 

bits required to unambiguously determine Q+j” . The way it is defined, H is an entropy and thus 

reflects lack of knowledge (typically, large entropy goes in the direction of large uncertainty). In fact, 

the reduction of H(Q+j) due to knowledge of the past, is then used in the SM to define a mutual 

information. Perhaps, the distinction is subjective in the sense that H is the uncertainty in the 

absence of measurements and also the information gained by reducing this totally reducing this 

uncertainty when a measurement is performed. Maybe these ideas are implicitly clear to the 

authors, but I think that perhaps the paper would gain in clarity for the general reader with more 

consistency. 

3) As I understand the paper, the information transfer method defines causality by how much a 

variable can be used to reduce the uncertainty of another variable in the future, i.e., how useful it is 

to predict. This is a strong point that connects the method with the fundamentals of scientific 



discovery (scientific theories are meant to predict nature), but also to more practical problems. 

From the point of view of temporal forecasting, could the authors discuss briefly (perhaps in the 

SM) on the meaning of their decomposition? Could it be used to construct minimal predictive 

models, for instance, of turbulent flows? Or to discard and select the appropriate variables with 

which to construct these models? 

4) The application of the method to the energy cascade is very interesting. I think the authors could 

connect their findings with the dissipative anomaly (dissipation does not vanish with vanishing 

viscosity) or Taylor’s surrogate dissipation, which point to the idea that large-scale dynamics 

determine small-scale dynamics. These are classical empirical observations which lack a 

convincing explanation beyond the phenomenological theory of the cascade. Why the cascade 

happens the way it does is, in my opinion, an open question which could potentially benefit from 

the analysis presented in this paper. In this direction, an important problem in turbulence is to 

determine what parts of the flow are relevant to the cascade, which is connected to intermittency 

and LES modelling. Maybe, the authors could briefly comment on this in the energy cascade 

section. 

5) Also in the energy cascade section, I think that the reason why CCM fails to detect causality in 

the forward energy cascade is because it is not well-suited for strongly synchronized variables such 

as the average interscale energy fluxes in turbulence (e.g. reference 106). This limitation of CCM 

was reported and corrected in a follow-up paper (Ye, H., Deyle, E., Gilarranz, L. et al.Sci Rep 5, 

14750 (2015)) in which time-lags are explicitly introduced in the method. In my personal 

experience, this method works fine to detect the causality of the forward cascade. I think this also 

means that the SURD is adequate for strongly synchronized systems. 



NCOMMS-24-21987 – Response to Reviewer 1
Decomposing causality into its synergistic, unique, and redundant components

Álvaro Mart́ınez-Sánchez1, Gonzalo Arranz1, and Adrián Lozano-Durán1

1Department of Aeronautics and Astronautics, Massachusetts Institute of Technology
Cambridge, MA 02139

We would like to thank the reviewer for taking the time to read our manuscript and for providing constructive
feedback on the work. As explained in this point-by-point response, we have addressed all the concerns of the
reviewer. Overall, we believe the modifications have improved the quality of the manuscript. The most significant
changes are highlighted in blue in the revised version of the manuscript, which also includes corrections suggested
by other referees.

R1: SURD is developed based on information theory, which is an essential part of the work. However,
the introduction section contains only a brief discussion on the current progress of the application
of information theory in causal inference. This makes the proposal of the method in the last
paragraph somewhat abrupt. The authors should consider integrating parts of the content from
the supplementary material into the main body.

A1: We agree with the referee. To address this concern, we have integrated more detailed content from the supple-
mentary material into the main body of the introduction section. We have also extended the introduction to
account for recent publications on information theory for causal inference. The new discussion is reproduced
below:
Information theory, the science of message communication [44], has also served as a framework for model-free
causality quantification. The success of information theory relies on the notion of information as a fundamental
property of physical systems, closely tied to the restrictions and possibilities of the laws of physics [45, 46]. The
grounds for causality as information are rooted in the intimate connection between information and the arrow of
time. Time-asymmetries present in the system at a macroscopic level can be leveraged to measure the causality
of events using information-theoretic metrics based on the Shannon entropy [44]. The initial applications of
information theory for causality were formally established through the use of conditional entropies, employing
what is known as directed information [47, 48]. Among the most recognized contributions is transfer entropy
(TE) [49], which measures the reduction in entropy about the future state of a variable by knowing the
past states of another. Various improvements have been proposed to address the inherent limitations of TE.
Among them, we can cite conditional transfer entropy (CTE) [50, 51, 52, 53], which stands as the nonlinear,
nonparametric extension of conditional GC [27]. Subsequent advancements of the method include multivariate
formulations of CTE [45] and momentary information transfer [54], which extends TE by examining the transfer
of information at each time step. Other information-theoretic methods, derived from dynamical system theory
[55, 56, 57, 58], quantify causality as the amount of information that flows from one process to another as
dictated by the governing equations.

R2: When the number of individuals in a system is large, using the SURD method to decompose
causality requires breaking it down into a very large number of parts. How should the issue of
the resulting dimensionality problem be addressed in such cases?

A2: We thank the reviewer for raising this important point. Defining redundant, unique, and synergistic causalities
indeed involves decomposing mutual information into multiple components. The definition proposed in SURD
is motivated by consistency with the properties presented in Section S1.2, as well as their interpretability. In
the literature, alternative definitions and decompositions of mutual information have been suggested, but these
often lack ease of interpretation and scale poorly with the number of variables involved. One of the most cited
decompositions of mutual information is from Williams & Beer [114], where the number of terms grows as the
Dedekind numbers. This yields an absolutely unreasonable number of terms. To give the reviewer an idea,
in the case of 9 variables, previous decompositions of mutual information, such as Williams & Beer, would
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result in over 1023 terms! Some decompositions do not even guarantee the nonnegativity of the redundant and
synergistic components, introducing difficulties in their interpretation.
In contrast, SURD is rooted in a new decomposition of mutual information that retains nonnegativity while
keeping the number of terms as low as possible. For instance, with 9 variables, SURD yields 512 terms,
which is a significantly lower number compared to other methods (recall 1023 terms). We understand that
512 might still be perceived as a large number, but this is the minimum number of terms needed to account
for all redundancies and synergies. In scenarios with a large number of variables, synergistic and redundant
causalities can be grouped by different orders or included in the causality leak. In summary, SURD offers a
decomposition of causality into unique, synergistic, and redundant components with a minimum number of
terms, which can additionally be grouped to facilitate interpretation when the number of variables is large.
The following discussion has been extended in the supplementary material:
It is worth noting that the problem of defining redundant, unique, and synergistic causalities can be generally
framed as the task of decomposing the mutual information I(Q+

j ;Q) into multiple components. The definitions
proposed above are motivated by their consistency with the properties presented in the following sections along
with the ease of interpretability. Alternative definitions are possible and other decompositions have been
suggested in the literature [114, 115, 116, 117, 118, 45, 119]; however, these do not comply with the properties
discussed next or result in an unmanageable number of terms. For instance, one of the most referenced
decompositions by Williams & Beer [114] results in a number of terms that grows as the Dedekind numbers.
In the case of 9 variables, this decomposition yields over 1023 terms, whereas SURD produces only 512 terms.
In scenarios with a large number of terms, synergistic and redundant causalities in SURD can be grouped by
different orders to facilitate interpretation. For example, for three variables, we can define ∆IS

2nd = ∆IS
12→1 +

∆IS
23→1 + ∆IS

13→1, which represents the second-order causal synergy to the target variable 1 (similarly for
other orders and redundancies). This is possible in SURD due to the additivity of its causal components.
Additionally, if synergistic causalities above a given order are not computed, they are accounted for by the
causality leak. In § S3.8, we apply SURD to a system of eight interacting species and calculate synergistic
causalities up to the fourth order. The remaining synergistic causalities are considered as causality leaks. This
approach effectively manages the challenge of dimensionality by focusing on lower-order synergistic interactions,
which are often sufficient for practical analyses.

R3: In Sugihara et al., Science 2012, they claimed that data from nonlinear dynamical systems suffers
from the non-separability, restricting the use of methods such as GC and from information theory.
How the developed SURD overcomes the non-separability problem?

A3: This is an interesting point. Similarly to CCM, SURD is also consistent with Takens’ embedding theorem as
it accounts for the flow of information among variables. We discuss this point in a new section included in the
supplementary material. We also demonstrate the robustness of SURD using the same example suggested by
Sugihara [36] to illustrate the problem of non-separability. The new section is reproduced below.
Effect of non-separability of the variables
One of the prevailing weaknesses in some of the previous methods for causal inference arises from the non-
separability of the variables [36]. The issue is a consequence of Takens’ embedding theorem, which states
that under the right conditions, the dynamics of a system can be captured by embedding a sequence of past
observations into a higher-dimensional space. In such cases, the future of a variable can be fully forecasted using
only its own past, without the need for any other variables. Consequently, methods for causal inference based
on predictability, such as Granger causality, might miss causal connections when including past observations
into the model. For example, consider a system where Q1 → Q2. By the Takens’ embedding theorem, Q2 could
be forecasted using only its own past regardless of Q1, leading to erroneous conclusions in Granger causality.
Takens’ embedding theorem can also be interpreted within the framework of information theory [46]. If the
variable Q1 is causal to Q2, then part of the past information from Q1 is encoded into Q2. Thus, from
an information-theoretic viewpoint, non-separability arises from the flow of information among interacting
variables. SURD is less susceptible to the issue of non-separability as it monitors all transfers of information
among variables within the system, even if redundant.
Here, we employ the example introduced by Sugihara [36] to illustrate the robustness of SURD under the effect
of multiple time lags with non-separable variables. The system is given by:

Q1(n + 1) = Q1(n) [r1 − r1Q1(n) − β2→1Q2(n)] , (R1a)
Q2(n + 1) = Q2(n) [r2 − r2Q2(n) − β1→2Q1(n)] , (R1b)
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Figure R1: Effect of non-separability. Performance of non-linear CGC and SURD for the target variables (a)
Q1 and (b) Q2. The results in the top row are for ∆n = 0 (Q = [Q1(n), Q2(n)]) and in the bottom row for
∆n = 1 (Q = [Q1, Q2] where Q1 = [Q1(n), Q1(n − 1)] and Q2 = [Q2(n), Q2(n − 1)]). The system is simulated
for the parameters [r1, r2, β2→1, β1→1] = [3.8, 3.5, 0.2, 0.01].

where the coupling from Q2 to Q1 is controlled through β2→1 and the coupling from Q1 to Q2, through β1→2.
In this simple system, we can recover algebraically the influence of Q1 on Q2 using Q2(n + 1) and Q2(n) (and
vice versa):

β2→1Q2(n) = 1 − Q1(n) − Q1(n + 1)
r1Q1(n) , (R2a)

β1→2Q1(n) = 1 − Q2(n) − Q2(n + 1)
r2Q2(n) . (R2b)

We can substitute Equation (R2a) into (R1b) and obtain an expression for Q2(n) as a function of Q1(n) and
Q1(n − 1):

Q2(n) = r2

β2→1

[
(1 − β1→2Q1(n − 1))

(
1 − Q1(n − 1) − Q1(n)

r1Q1(n − 1)

)
− 1

β2→1

(
1 − Q1(n − 1) − Q1(n)

r1Q1(n − 1)

)2
]

.

(R3)
Introducing Equation (R3) into (R1a), we obtain an expression for Q1 that is exclusively a function of its own

past, i.e. Q1(n) and Q1(n − 1):
Q1(n + 1) = f(Q1(n), Q1(n − 1)). (R4)

Methods for causal inference based on the predictability of Q1 might incorrectly conclude that Q2 does not
cause Q1 if the values Q1(n) and Q1(n − 1) are included in the predictive model. To address this, we assess
the causal connections to Q1 and Q2 using SURD and a non-linear version of CGC. We use a non-linear
implementation of CGC because its linear counterpart failed in all considered scenarios, which does not allow
us to demonstrate the problem of non-separability. The non-linear CGC consists of an artificial neural network
(ANN) trained to predict the target variables Q1(n + 1) and Q2(n + 1), given different sets of past instances
of Q1 and Q2. The model for Q1 (similarly for Q2) is

Q1(n + 1) = ANN1(Q1) + ε̂(n + 1), (R5a)
Q1(n + 1) = ANN12(Q1,Q2) + ε(n + 1), (R5b)

where vector of observables is defined as Q = [Q1,Q2] with Q1 =
[
Qn

1 , Qn−1
1 , · · · , Qn−∆n

1
]

(similarly for Q2)
and ∆n is the maximum lag considered. Note that, from the point of view of SURD, Q only contains two
variables (i.e., Q1 and Q2), although these are vectors. This differs from the discussion in §S1.3, where different
time lags are considered as different variables. The network architecture includes three hidden layers with 1024,
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512 and 256 neurons, respectively, and it is trained using an Adam optimizer with a maximum of 200 epochs
and an initial learning rate of 0.01, which is reduced by a factor of 0.3 with a period of 125 iterations.
Figure R1 displays the results from non-linear CGC and SURD using ∆n = 0 (Q = [Q1(n), Q2(n)]) and ∆n = 1
(Q = [Q1, Q2] where Q1 = [Q1(n), Q1(n − 1)] and Q2 = [Q2(n), Q2(n − 1)]). For ∆n = 0, both non-linear
CGC and SURD identify the coupling between Q1 and Q2. However, with an additional time lag for both
variables, non-linear CGC incorrectly determines that Q1 does not influence Q2 and vice versa, as these can be
completely determined by their own past. In contrast, SURD continues to show the causal dependency between
Q1 and Q2. The improved robustness of SURD is attributable to the fact that, under a statistical steady state,
the flow of information between variables remains unchanged. The main difference observed in SURD is an
increase in redundant causality due to duplicated information from the inclusion of additional time lags.

R4: In Table 1 of the manuscript, the authors mention that the SURD method can address the
problem of synchronization of two variables in logistic maps. This claim seems strange because
a common sense is that the causality can hardly be defined if two variables are completely
synchronous or generalized synchronous. Therefore no method can deal with the synchronization
problem.

A4: We completely agree with the reviewer and apologize for the misunderstanding. Identifying the directionality
of causality in the case of completely synchronous or generalized synchronous variables is not meaningful. Our
intention was not to claim otherwise but to highlight the ability of SURD to identify synchronization between
variables in such scenarios. More specifically, when two variables are fully synchronized, SURD detects this
through a prevalence of the redundant causality component. Thus, while directionality of causality cannot be
established, SURD effectively identifies the state of synchronization. This concept is discussed in § S3.5, where
we analyze the performance of SURD in logistic systems with synchronized variables. We have further clarified
this point. The discussion is reproduced below:
Strong coupling Q1 → Q2 (c1→2 = 1 and c12→3 = 0). Taking the limit c1→2 → ∞, it can be seen that
Q2 ≡ Q1. It is also known that even for lower values of c12→3 ∼ 1, Q1 and Q2 synchronize and both
variables exhibit identical dynamics. This is revealed in Figure S16(c), where the only non-zero causalities
are ∆IR

12→1 = ∆IR
12→2 ̸= 0. The identical redundant causalities along with the absence of any unique or

synergistic causality between Q1 and Q2, imply that both variables are fully synchronized. In this situation,
the directionality of the causality cannot be established, as Q1 and Q2 behave as a single variable, but SURD
still effectively identifies the state of synchronization. Similar to the two previous cases, Q3 remains unaffected
(∆IU

3→3 ̸= 0).

R5: The authors mentioned that causality is often defined by confirming the results of a variable
when intervening the other, which can usually not be realized in practice. How causality is
defined mathematically in this manuscript? Does it denote coupling relationship of variables
in the systems’ equations? See ”Continuity scaling: A rigorous framework for detecting and
quantifying causality accurately, Research, 2022”. If so, how the information-related methods
can be used to infer this kind of causality?

A5: This is a complicated yet interesting question that may even verge on the philosophical. Causality with
interventions is mentioned in the introduction as an intuitive definition of causality; however, we immediately
enumerate the many limitations and caveats of this approach. Overall, we avoid providing any “absolute”
definition of causality in mathematical terms, as this is not agreed upon within the causal inference community
(from there the myriad methods for causal inference). Nonetheless, we require that causality (however defined
by each method) must be at least consistent with the dependencies dictated by the governing equations of
the system. We believe the mathematical definition of causality given by SURD, although not absolute, offers
results consistent with the functional dependency of the variables in the multiple examples analyzed.
We also thank the reviewer for pointing out the new reference. In the revised version of the manuscript, we
have also included a citation to the continuity scaling method in the introduction.
An alternative approach, known as continuity scaling [43], directly assesses causal relationships by examining
the scaling laws governing the continuity of the system
We thank the reviewer again for bringing this new line of research to our attention. Interestingly, the concept of
SURD appears to be analogous to continuity scaling, where instead of examining volumes of variables in phase
space, we analyze volumes of conditional entropy in information space. As mentioned in one of the previous
responses, our group have established some connections between Takens’ embedding theorem and information
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theory [46]. We are currently working on providing rigorous connections between phase space and information
space and would be very interested in exploring “information-theoretic” continuity scaling in the future.

R6: The application of SURD to the energy cascade in turbulence is an excellent example, but the
data is still simulated using existing models. It would be better to include some experiments to
test SURD on real-world time series data.

A6: We appreciate the suggestion. Applying SURD to real-world experimental time series data would strengthen
the study. To that end, we have applied SURD to experimental data from a turbulent boundary layer in
the high Reynolds number wind tunnel at the University of Melbourne. The data is publicly available at
https://fluids.eng.unimelb.edu.au/. The new section, included in the main text, is reproduced below.
Application to experimental data from a turbulent boundary layer
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Figure R2: Causality between streamwise velocity motions in a turbulent boundary layer. (a)
Schematic of outer-layer and inner-layer streamwise velocity motions in a turbulent boundary and their in-
teractions via unique causality. The velocity signals uI(t) and uO(t) are experimentally measured at the
wall-normal locations yI and yO, respectively, and are shown in the panel below. The superscript ∗ denotes
the inner scaling with friction velocity, uτ , and kinematic viscosity, ν. (b) Redundant (R), unique (U), and
synergistic (S) causalities among velocity signals in the inner (I) and outer (O) layer of a turbulent boundary
layer. The gray bar is the causality leak. The results of CGC, CTE, CCM, and PCMCI are shown on the
right. Details about data are provided in Methods.

The interaction of turbulent motions of different size within the thin fluid layers immediately adjacent to
solid boundaries poses a significant challenge for both physical understanding and prediction. These layers
are responsible for nearly 50% of the aerodynamic drag on modern airliners and play a crucial role in the first
hundred meters of the atmosphere, influencing broader meteorological phenomena[94]. Here, we leverage SURD
to investigate the interaction between flow velocity motions in the outer layer (far from the wall) and inner layer
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(close to the wall) of a turbulent boundary layer. Figure R2(a) illustrates the configuration used to examine
the causal interactions between velocity motions. More specifically, the hypotheses under consideration are
either i) a dominant influence of motions far from the wall on those closer, indicating top-down causality (a.k.a.
Townsend’s outer-layer similarity hypothesis [105]), or ii) the opposite scenario, where influences move from
areas closer to the wall outward, suggesting bottom-up causality.
We use experimental data from a zero-pressure gradient turbulent boundary layer from the high Reynolds
number wind tunnel at the University of Melbourne[78, 79, 80]. The friction Reynolds number is Reτ =
uτ δ/ν = 14, 750, based on the thickness of the boundary layer δ, the kinematic viscosity ν, and the average
friction velocity at the wall uτ . The time signals consists of the streamwise velocity at two wall-normal locations
within the inner (I) and outer (O) layers, denoted by uI(t) and uO(t), respectively.
Figure R2(b) shows the redundant, unique, and synergistic causalities from SURD between the inner and
outer layers. We use the subindices I and O to refer to causalities from/to uI(t) or uO(t), respectively. The
primary observation is that the inner layer motions are predominantly influenced by the unique causality from
the outer layer, ∆IU

O→I . The redundant and synergistic causalities are lower, but they remain significant.
Curiously, the unique causality ∆IU

I→I is zero, implying that, at the time scale considered, the inner layer
motions are independent of their past history. For the outer-layer motions, most of the causality is self-induced
∆IU

O→O with no apparent influence from the inner layer. The results distinctly support the prevalence of top-
down interactions: causality flows predominantly from the outer-layer large-scale motions to the inner-layer
small-scale motions. The outcome is consistent with the modulation of near-wall scales by large-scale motions
reported in previous investigations [106, 107]. The lack of bottom-up causality from the inner to the outer layer
also aligns with Townsend’s outer-layer similarity hypothesis [105] and previous observations in the literature
[108, 109, 110, 111, 112, 113].
The causality leak, also shown in Fig. R2(b), is 99% for both uI and uO. Such a high value implies that
most of the causality determining the future of uI and uO is contained in other variables not considered in the
analysis. This high value is unsurprising since most of the millions of degrees of freedom in the turbulent flow
field have been neglected, and only two pointwise signals, uI and uO, are retained to evaluate the causality.
Finally, the results from SURD are contrasted with other methods. In this case, CCM and PCMCI do not
support the hypothesis of top-down interactions between velocity motions. The reason behind the failure of
these methods is unclear, but it might be related to the high causality leak. CGC and CTE are consistent with
the flow of causality from the outer-layer large-scale motions to the inner-layer small-scale motions. However,
as already highlighted in previous cases, none of these methods offer a detailed decomposition into redundant,
unique, and synergistic causality, nor they account for the effect of unobserved variables as quantified by the
causality leak in SURD.

R7: The code provided in the manuscript requires an MIT account, which makes it inaccessible. The
authors should find an alternative way to make the code available.

A7: We have made our code publicly available using a public GitHub repository, which can be now accessed at:
https://github.com/Computational-Turbulence-Group/SURD.
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NCOMMS-24-21987 – Response to Reviewer 2
Decomposing causality into its synergistic, unique, and redundant components

Álvaro Mart́ınez-Sánchez1, Gonzalo Arranz1, and Adrián Lozano-Durán1

1Department of Aeronautics and Astronautics, Massachusetts Institute of Technology
Cambridge, MA 02139

We would like to thank the reviewer for taking the time to read our manuscript and for providing constructive
feedback on the work. As explained in this point-by-point response, we have addressed all the concerns of the
reviewer. Overall, we believe the modifications have improved the quality of the manuscript. The most significant
changes are highlighted in blue in the revised version of the manuscript, which also includes corrections suggested
by other referees.

R1: The information transfer decomposition is very well explained in the supplemental material. This
is the right place due to the heavy mathematical content. However, I miss a somewhat deeper
explanation of the physical meaning of the decomposition in the main text. For instance, in the
bullet point list in the second page the authors could extend briefly on the meaning of “common
causality” and “the causality that cannot be obtained by any other individual variables” for
instance in terms of uncertainty reduction or information gain.

A1: We have expanded the explanations of redundant and unique causality to better convey their physical meanings
in terms of information. The additions are short, as we would like to keep the discussion as compact as possible.
The new descriptions are as follows:

• Redundant causality from Qi = [Qi1 , Qi2 , . . .] to Q+
j (denoted by ∆IR

i→j) is the common causality shared
among all the components of Qi, where Qi is a subset of Q. Redundant causality occurs when all the
variables in Qi contain the same amount of information about Q+

j . Therefore, any component of Qi offers
identical insight into the outcome of Q+

j .

• Unique causality from Qi to Q+
j (denoted by ∆IU

i→j) is the causality from Qi that cannot be obtained from
any other individual variable Qk ̸= Qi. This causality occurs when observing Qi yields more information
about some outcomes of Q+

j than observing any other isolated variable.

• Synergistic causality from Qi = [Qi1 , Qi2 , . . .] to Q+
j (denoted by ∆IS

i→j) is the causality arising from the
joint effect of the variables in Qi. This causality occurs when more information about Q+

j is gained by
observing a collection of variables simultaneously than by observing each variable individually.

• Causality leak represents the effect from unobserved variables that influence Q+
j but are not contained in

Q. This is the amount of information missing that would be required to unambiguously determine the
future of Qj after considering all observable variables collectively.

R2: Sometimes across the text (also in the Supplemental Material), it is a little bit unclear what is
uncertainty and what is information. For instance, the authors say “The information in Q+

j is
measured by the Shannon entropy, denoted by H(Q+

j ), which represents the average number of
bits required to unambiguously determine Q+

j ” . The way it is defined, H is an entropy and thus
reflects lack of knowledge (typically, large entropy goes in the direction of large uncertainty). In
fact, the reduction of H(Q+

j ) due to knowledge of the past, is then used in the SM to define a
mutual information. Perhaps, the distinction is subjective in the sense that H is the uncertainty
in the absence of measurements and also the information gained by reducing this totally reducing
this uncertainty when a measurement is performed. Maybe these ideas are implicitly clear to
the authors, but I think that perhaps the paper would gain in clarity for the general reader with
more consistency.
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A2: We agree that a comment about the relationship between uncertainty and information would improve the
clarity of the manuscript. We have added the following clarification in the main text after introducing the
Shannon entropy:
It is also useful to interpret Shannon entropy as a measure of uncertainty. Processes that are highly uncertain
(high entropy) are also the ones from which we gain the most information when their states are determined.
Conversely, uncertainty is zero when the process is completely deterministic, indicating no information is gained
when the outcome is revealed.

R3: As I understand the paper, the information transfer method defines causality by how much a
variable can be used to reduce the uncertainty of another variable in the future, i.e., how useful it
is to predict. This is a strong point that connects the method with the fundamentals of scientific
discovery (scientific theories are meant to predict nature), but also to more practical problems.
From the point of view of temporal forecasting, could the authors discuss briefly (perhaps in the
SM) on the meaning of their decomposition? Could it be used to construct minimal predictive
models, for instance, of turbulent flows? Or to discard and select the appropriate variables with
which to construct these models?

A3: This is a valuable observation raised by the reviewer. Indeed, SURD can be used in the context of predictive
modeling, including temporal forecasting. In response, we have incorporated a new section in the revised version
of our Supplementary Materials, where we illustrate the application of SURD to select the most effective input
variables for temporal forecasting in systems with synergistic and redundant causalities. This topic is very
rich and warrants a more in-depth analysis, which will be presented in a follow-up work. The new section is
included below:
Application of SURD to predictive modeling
SURD can also inform the development of predictive and/or reduced-order models of dynamical systems. By
leveraging knowledge of the causal structure of the system, SURD enables the construction of minimal models by
selecting the most effective input variables while disregarding those with irrelevant or duplicated information.
This section illustrates an application of SURD to temporal forecasting of variables in the synergistic and
redundant collider systems, as shown in Figures 4 and 5. The approach employs long-short-term memory
(LSTM) artificial neural networks trained to predict Q1(n + 1), using the exact values of Q1(n), Q2(n), and
Q3(n). Several models are trained using different sets of input variables. The network architecture includes
a sequence input layer with the corresponding number of input features, an LSTM layer with 200 hidden
units to capture temporal dependencies between the signals, and a fully connected layer to map the previous
layer to the output variable. The network is trained using an Adam optimizer with a maximum of 200
epochs and an initial learning rate of 0.01, which is reduced by a factor of 0.3 with a period of 125 iterations.

(a) (b)

Figure S1: Comparative performance of LSTM models for forecasting the future of Q1 using different input
variables for (a) system with a synergistic collider (where Q2 and Q3 collectively influence the future of Q1)
and (b) system with redundant collider (where Q2 and Q3 contain the same information about the future of
Q1). The legend indicates the variables used as input to the LSTM model. In panel (b), the prediction is
performed using Q2 for the first half of the temporal sequence, while Q3 is used for the second half.

In the first case (Figure 4), Q2 and Q3 synergistically influence Q1, as previously indicated by ∆IS
23→1. There-

fore, it is crucial for models to incorporate both variables as inputs to ensure accurate predictions. This
is illustrated in Figure S1(a), where the forecasting performance of the models using [Q2, Q3] significantly
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surpasses those that include either variable alone. This outcome is consistent with the synergistic causality
detected by SURD, where Q2 and Q3 collectively drive the future of Q1. Generally, accurate forecasting of
variables affected by synergistic causalities is achievable only when all synergistically interacting variables are
incorporated into the model.
In the second case (Figure 5), Q2 and Q3 exhibit redundant causality to Q1, as revealed by ∆IR

23→(·). Hence,
predictive models can use either Q2 or Q3 without compromising their predictive accuracy as shown in Figure
S1(b). In scenarios of high redundancy, minimal predictive models can be optimized by selecting the most
convenient variable from the redundant set. This interchangeability provides a strategic advantage in model
construction, allowing for the selection of variables based on practical considerations, such as measurement
ease or data availability. For a more detailed discussion on information-theoretic causality for reduced-order
modeling of chaotic dynamical systems, the reader is referred to Ref. [45].

R4: The application of the method to the energy cascade is very interesting. I think the authors
could connect their findings with the dissipative anomaly (dissipation does not vanish with
vanishing viscosity) or Taylor’s surrogate dissipation, which point to the idea that large-scale
dynamics determine small-scale dynamics. These are classical empirical observations which lack
a convincing explanation beyond the phenomenological theory of the cascade. Why the cascade
happens the way it does is, in my opinion, an open question which could potentially benefit from
the analysis presented in this paper. In this direction, an important problem in turbulence is to
determine what parts of the flow are relevant to the cascade, which is connected to intermittency
and LES modelling. Maybe, the authors could briefly comment on this in the energy cascade
section.

A4: We appreciate the suggestion by the reviewer. We have noted these observations in the revised version of the
manuscript. The new additions are reproduced below:
Curiously, no unique causality is observed from smaller to larger scales, and any causality from the backward
cascade arises solely through redundant relationships. In the context of SURD, this implies that no new
information is conveyed from the smaller scales to the larger scales, which is consistent with recent views
of the backward energy cascade in the literature [96, 97]. From the modeling perspective, this justifies the
success of subgrid-scale modeling in large-eddy simulation, as the information contained in the smaller scales is
redundant and does not constitute a key ingredient in solving the closure model problem. The results obtained
from SURD also provide support for classic hypotheses about the energy cascade from a new causal-effect
perspective. Among them, we can cite Taylor’s dissipation surrogate assumption [98] and the dissipation
anomaly [99]. The former posits that the dissipation rate can be determined by large-scale dynamics, even if
dissipation is formally a small-scale feature of the flow. SURD clearly supports this assumption due to the
lack of unique and synergistic causality from small to large scales. The results from SURD are also consistent
with the dissipation anomaly (i.e., the constant rate of energy dissipation despite decreasing viscosity), which
is enabled by the forward directionality of the energy cascade process.
Finally, in response to the last comment of the reviewer about which parts of the flow are relevant to the
cascade, we are developing an extended version of SURD specifically designed for analyzing three-dimensional
(3-D) fields, rather than being limited to time series data. The current version of SURD lays the groundwork
for the forthcoming 3-D extention. We anticipate that this extension will improve our understanding of the
3-D causal structure of the energy cascade. This, in turn, could support the validation of existing theories on
intermittency, among others, and contribute to the development of closure models for LES. While this aspect
will be the focus of future research, we recognize its importance and are excited about its potential to provide
deeper insights into the mechanisms of the energy cascade.

R5: Also in the energy cascade section, I think that the reason why CCM fails to detect causality in
the forward energy cascade is because it is not well-suited for strongly synchronized variables
such as the average interscale energy fluxes in turbulence (e.g. reference 106). This limitation
of CCM was reported and corrected in a follow-up paper (Ye, H., Deyle, E., Gilarranz, L. et
al. Sci Rep 5, 14750 (2015)) in which time-lags are explicitly introduced in the method. In my
personal experience, this method works fine to detect the causality of the forward cascade. I
think this also means that the SURD is adequate for strongly synchronized systems.

A5: We thank the reviewer for bringing to our attention the improved version of CCM. We have expanded the
discussion about the energy cascade to clarify that the new iterations of CCM can perform satisfactorily in
detecting causality within the energy cascade. The new addition is as follows:
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The formulation of CCM used in this study adheres to the original work by Sugihara et al. [36]. However,
more recent iterations of CCM, such as Extended CCM [39], which explicitly account for time delays, have
demonstrated efficacy in accurately detecting causality in systems with strongly synchronized variables. Hence,
these and other improved versions of CCM might be more suitable for analyzing the turbulent energy cascade,
where smaller scales are enslaved to the larger ones.
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

Thank the authors very much for considering and addressing my previous concerns. I find all my 

concerns have been addressed properly in the revised manuscript and I am now happy to 

recommend publication of this manuscript in NC. Moreover, as the authors mentioned that 

intervention-based causality inference method is important both in theory and practice, I suggest a 

recent work "Detecting dynamical causality via intervened reservoir computing", which 

demonstrates a representative method of this type. 

Reviewer #1 (Remarks on code availability): 

I have checked the provided link and code, and find it usable and useful for the readers. 

Reviewer #2 (Remarks to the Author): 

The authors have made a great work answering all my comments. I am happy to recommend the 

paper for publication. 
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