| 1  | <b>Supplementary Information</b>                                                                                                                 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                                                  |
| 3  | Metal chalcogenide electron extraction layers for <i>nip</i> -type tin-based                                                                     |
| 4  | perovskite solar cells                                                                                                                           |
| 5  | Tianpeng Li <sup>1,†</sup> , Bin Li <sup>2,†</sup> , Yingguo Yang <sup>3,4</sup> , Zuoming Jin <sup>1</sup> , Zhiguo Zhang <sup>1</sup> , Peilin |
| 6  | Wang <sup>1</sup> , Liangliang Deng <sup>5</sup> , Yiqiang Zhan <sup>5</sup> , Qinghong Zhang <sup>2</sup> , Jia Liang <sup>1,*</sup>            |
| 7  |                                                                                                                                                  |
| 8  | <sup>1</sup> Department of Materials Science and State Key Laboratory of Photovoltaic Science                                                    |
| 9  | and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China                                                                        |
| 10 | <sup>2</sup> State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,                                                     |
| 11 | College of Materials Science and Engineering, Donghua University, Shanghai 201620,                                                               |
| 12 | China                                                                                                                                            |
| 13 | <sup>3</sup> School of Microelectronics, Fudan University, 220 Handan Road, Shanghai, 200433                                                     |
| 14 | China                                                                                                                                            |
| 15 | <sup>4</sup> Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research                                                          |
| 16 | Institute, Chinese Academy of Sciences, Shanghai, 201800 China                                                                                   |
| 17 | <sup>5</sup> Center of Micro-Nano System, School of Information Science and Technology,                                                          |
| 18 | Fudan University, 220 Handan Road, Shanghai 200433, China                                                                                        |
| 19 | <sup>†</sup> These authors contributed equally: Tianpeng Li, Bin Li.                                                                             |
| 20 | * Email: jialiang@fudan.edu.cn                                                                                                                   |

| 22 | Contents                 |
|----|--------------------------|
| 23 | Supplementary Fig. 1     |
| 24 | Supplementary Fig. 2     |
| 25 | Supplementary Fig. 3     |
| 26 | Supplementary Fig. 4     |
| 27 | Supplementary Fig. 5     |
| 28 | Supplementary Fig. 6     |
| 29 | Supplementary Fig. 7 10  |
| 30 | Supplementary Fig. 8 11  |
| 31 | Supplementary Fig. 9     |
| 32 | Supplementary Fig. 10    |
| 33 | Supplementary Fig. 11    |
| 34 | Supplementary Fig. 12    |
| 35 | Supplementary Fig. 13    |
| 36 | Supplementary Fig. 14 17 |
| 37 | Supplementary Fig. 15    |
| 38 | Supplementary Fig. 16    |
| 39 | Supplementary Fig. 17    |
| 40 | Supplementary Fig. 18    |
| 41 | Supplementary Fig. 19    |
| 42 | Supplementary Fig. 20    |
| 43 | Supplementary Fig. 21    |
| 44 | Supplementary Fig. 22    |
| 45 | Supplementary Fig. 23    |
| 46 | Supplementary Fig. 24    |
| 47 | Supplementary Fig. 25    |
| 48 | Supplementary Table 1    |
| 49 | Supplementary Table 2    |
| 50 | Supplementary Table 3    |
| 51 | Supplementary Table 4    |
| 52 | Supplementary Table 5    |

| 53 | Supplementary References | 36 |
|----|--------------------------|----|
| 54 |                          |    |
| 55 |                          |    |



57 Supplementary Fig. 1. Comparison between theorectical and experimental results.

58 Statistics of the recently reported  $V_{OC}$  and PCE of *nip*-type TPSCs. The theoretical

59 values were also listed here for comparison.



62 Supplementary Fig. 2. XPS spectra. High-resolution XPS sepctum in the Ti 2p region

63 of the  $TiO_2$  ETL.

64



Supplementary Fig. 3. XPS spectra. High-resolution XPS spectra in the a, C 1s and
b, Ti 2p regions of the Sn-based perovskite films deposited on the TiO<sub>2</sub> ETL. The
concentration of presursor solution of the Sn-based perovskite is 0.1 M.



Supplementary Fig. 4. XPS spectra. High-resolution XPS spectra in the Sn 3d region
 of fresh Sn-based perovskite layers deposited on a, ITO and b, ITO/TiO<sub>2</sub> substrates.



Supplementary Fig. 5. UPS spectra. UPS spectra of VBM onset and photoemission
cutoff energy boundary of a, Sn-based perovskites and b, TiO<sub>2</sub> ETLs.



Supplementary Fig. 6. UV-vis absorption spectra. UV–vis absorption spectra of a, the perovskite layer and c, the TiO<sub>2</sub> ETL. The tauc plots of b, the perovskite layer and d, the TiO<sub>2</sub> ETL derived from the corresponding UV-vis absorption spectra. e, Energy level diagram of the *nip*-type TPSCs with the structure of FTO/ETL/Sn-based perovskite/PTAA/Ag, utilizing TiO<sub>2</sub>, SnS<sub>2</sub>, and Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> films as ETLs, which shows the maximum attainable photovoltage is determined by the quasi-Fermi level splitting of the ETL and hole-transport layer (HTL).

86



88 Supplementary Fig. 7. Fabrication process. Schematic diagram of the synthetic

- 89 process of the metal mixed-chalcogenide ETL  $(Sn(S_xSe_y)_2)$  and the fabrication process
- 90 of the corresponding *nip*-type TPSCs.
- 91



Supplementary Fig. 8. Compositions of metal chalcogenide ETLs. High resolution
XPS spectra of the metal chalcogenide ETLs (SnS<sub>2</sub> and Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub>) in the a, Sn 3d,
b, S 2P, and c, Se 3d regions. Transmission electron microscope (TEM) energy
dispersive X-ray spectroscopy (EDS) elemental mapping images of d, Sn, e, S, and f,
Se elements in the Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> ETL.



101 Supplementary Fig. 9. XRD patterns. Typical XRD patterns of  $SnS_2$  and

 $Sn(S_{0.92}Se_{0.08})_2$  ETLs.



Supplementary Fig. 10. UV-vis absorption spectra of metal chalcogenide ETLs.
UV-vis absorption spectra of a, the SnS<sub>2</sub> ETL and c, the Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> ETL. The tauc
plots of b, the SnS<sub>2</sub> ETL and d, the Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> ETL derived from the corresponding
UV-vis absorption spectra.





111 Supplementary Fig. 11. Morphologies of metal chalcogenide ETLs. Top-view SEM

- images of **a**, TiO<sub>2</sub>, **b**, SnS<sub>2</sub> and **c**, Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> ETLs. The scalebars are 500 nm. AFM
- images of **d**, TiO<sub>2</sub>, **e**, SnS<sub>2</sub> and **f**, Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> ETLs. The scalebars are 1 um.
- 114



116 Supplementary Fig. 12. Conductivities of metal chalcogenide ETLs. *I–V* 

117 characteristics of the TiO<sub>2</sub>, SnS<sub>2</sub> and Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> ETLs. The Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> ETL

reveals the highest conductivity of  $13.8 \times 10^{-3}$  S cm<sup>-1</sup> among the three types of ETLs.



121 Supplementary Fig. 13. Mobilities of metal chalcogenide ETLs. SCLC spectra of

- 122 the device with the structure of FTO/Ag/ETL/Ag, the ETLs are  $\mathbf{a}$ , TiO<sub>2</sub>,  $\mathbf{b}$ , SnS<sub>2</sub> and  $\mathbf{c}$ ,
- $Sn(S_{0.92}Se_{0.08})_2$  films respectively.



Supplementary Fig. 14. DFT results. The adsorption energy of the Sn-based
 perovskites reacting with a, O<sub>2</sub>, b, SnS<sub>2</sub> and c, Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> molecules, respectively.



- **Supplementary Fig. 15.** Schematic diagram of the testing mode of illuminating from
- 131 the back side of the Sn-based perovskite films deposited on PEN/ITO/ETL substrates.



134 Supplementary Fig. 16. XPS spectra. High-resolution XPS spectra in Sn 3d regions

- 135 of 2 weeks-aged Sn-based perovskite films deposited on different ETLs, including **a**,
- 136 TiO<sub>2</sub>, **b**, SnS<sub>2</sub> and **c**, Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> ETLs.

| Simi                                                        |                                                                                | 中国以町<br>R际至以<br>地図<br>TESTING       |
|-------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|
| est and Calibrati<br>hanghai Institute<br>hinese Academy of | on Center of New Energy Dev<br>of Microsystem and Informat<br>Sciences (SIMIT) | ice and Module,<br>tion Technology, |
|                                                             | Measurement Re                                                                 | port                                |
|                                                             | Report No. 23TR101301                                                          | <u>_</u>                            |
| Client Name                                                 | Fudan University                                                               |                                     |
| Client Address                                              | Handan Rd.220, 200433, Shangh                                                  | ai, China                           |
| Sample                                                      | Se-SnS <sub>2</sub> /Sn perovskite solar cell                                  |                                     |
| Manufacturer                                                | FDU, Jia Liang Group                                                           |                                     |
| Measurement Date                                            | 13 <sup>th</sup> October, 2023                                                 |                                     |
|                                                             |                                                                                | ALASA                               |
| Performed by:                                               | Qiang Shi Qiang Shi                                                            | Dates B 17 200                      |
| Reviewed by:                                                | Wenjie Zhao We aju Shu                                                         | Date:                               |
| Approv <mark>ed by:</mark>                                  | Yucheng Liu Yuchery live                                                       | Date: 13/10/2023                    |
| Address: No.235 Chengbei                                    | Road, Jiading, Shanghai                                                        | Post Code:201800                    |
| E-mail: solarcel@mail.sim                                   | .ac.cn                                                                         | Tel: +86-021-69976921               |



## Report No. 23TR101301

| Sample Information      |                                               |  |  |  |  |
|-------------------------|-----------------------------------------------|--|--|--|--|
| Sample Type             | Se-SnS <sub>2</sub> /Sn perovskite solar cell |  |  |  |  |
| Serial No.              | Se-SnS2-1#                                    |  |  |  |  |
| Lab Internal No.        | 23101301-1#                                   |  |  |  |  |
| Measurement item        | I-V characteristic                            |  |  |  |  |
| Measurement Environment | 24.8±2.0°C,46.9±5.0%R.H                       |  |  |  |  |

| Reference cell                                              | PVM 1121                                                                |             |
|-------------------------------------------------------------|-------------------------------------------------------------------------|-------------|
| Reference cell Type                                         | mono-Si, WPVS, calibrated by NREL (Certificate No. ISO 2075)            |             |
| Calibration Value/Date of<br>Calibration for Reference cell | 144.53mA/ Feb. 2023                                                     |             |
|                                                             | Standard Test Condition (STC):                                          |             |
| Measurement Conditions                                      | Spectral Distribution: AM1.5 according to IEC 60904-3 Ed.3,             |             |
|                                                             | Irradiance: 1000±50W/m², Temperature: 25±2°C                            |             |
|                                                             | AAA Steady State Solar Simulator (YSS-T155-2M) / July.2023              | EB          |
| Measurement Equipment/ Date                                 | IV test system (ADCMT 6246) / June. 2023                                | 九门园         |
| of Calibration                                              | SR Measurement system (CEP-25ML-CAS) / April 2023                       | No. of Land |
|                                                             | Measuring Microscope (MF-B2017C) / July.2023                            | Ĩ.          |
|                                                             | I-V Measurement:                                                        | 34          |
|                                                             | Logarithmic sweep in both directions (Isc to Voc and Voc to Isc) during | PH 2        |
| Measurement Method                                          | one flash based on IEC 60904-1:2020;                                    | 1 1         |
|                                                             | Spectral Mismatch factor was calculated according to IEC 60904-7 and    |             |
|                                                             | I-V correction according to IEC 60891;                                  |             |
|                                                             | Area: 1.0%(k=2); lsc: 1.9%(k=2); Voc: 1.0%(k=2);                        |             |
| Measurement Uncertainty                                     | Pmax: 2.3%(k=2); Eff: 2.5%(k=2)                                         |             |

2/3



Supplementary Fig. 17. Photovoltaic performance. Certified performance of the niptype TPSC with the  $Sn(S_{0.92}Se_{0.08})_2$  ETL. The certified efficiency is 10.57% under reverse scannign mode with short-circuit current (*Isc*) = 0.81 mA, *Voc* = 0.70 V and *FF* = 73.94%.



146 Supplementary Fig. 18. GIWAXS characterization. GIWAXS patterns of Sn-based

147 perovskite layers grown on **a**,  $TiO_2$ , **b**,  $SnS_2$ , and **c**,  $Sn(S_{0.92}Se_{0.08})_2$  ETLs.



Supplementary Fig. 19. SEM characterizations. Top-view SEM images of the
perovskite based on a, TiO<sub>2</sub>, c, SnS<sub>2</sub>, and e, Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> ETLs. The scalebars are
500 nm. Cross-sectional SEM images of *nip*-type TPSCs with b, TiO<sub>2</sub>, d, SnS<sub>2</sub>, and f,
Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> ETLs. The scalebars are 500 nm.



Supplementary Fig. 20. Photovoltaic performances. Photovoltaic performance of the *nip*-type TPSCs based on  $Sn(S_xSe_y)_2$  (x+y=1, y = 0.03, 0.05, 0.07, 0.08, 0.09, and 0.10). With the increase of the concentration of Se, the PCEs increased first and then decreased and the nip-type TPSC with the Sn(S0.92Se0.08)2 ETL shows the best

performance. 



164 Supplementary Fig. 21. UPS and UV-vis absorption spectra of the Sn(S<sub>0.90</sub>Se<sub>0.10</sub>)<sub>2</sub>

165 ETL. a, UPS spectra, b, UV-vis absorption spectra, and c, Tauc plot of the

166  $Sn(S_{0.90}Se_{0.10})_2$  ETL.



Supplementary Fig. 22. PL and TRPL spectra. a, PL and b, TRPL spectra of Snbased perovskite films deposited on Sn(S0.92Se0.08)2 ETLs and Sn(S0.90Se0.10)2 ETLs, respectively. These results indicate more pronounced nonradiative interfacial recombination between the Sn-based perovskite layer and the Sn(S0.90Se0.10)2 ETL, which suggests faster electron transfer in the structure of Sn-based perovskite films deposited on Sn(S0.92Se0.08)2 films.



177 Supplementary Fig. 23. Photovoltaic performance. The statistics of photovoltaic

- parameters of *nip*-type TPSCs, including **a**, PCE, **b**, *Voc*, **c**, FF, and **d**, *Jsc*.
- 179



**Supplementary Fig. 24.** Linear relationship of *Voc* to the light intensity of the *nip*-type

182 TPSCs with  $\mathbf{a}$ , TiO<sub>2</sub>,  $\mathbf{b}$ , SnS<sub>2</sub> and  $\mathbf{c}$ , Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> ETLs, respectively.



Supplementary Fig. 25. XRD patterns. XRD patterns of Sn-based perovskite layers
gown on a, TiO<sub>2</sub>, b, SnS<sub>2</sub> and c, Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> ETLs after aging a period of time in air.
The XRD patterns of Sn-based perovskite layers gown on d, TiO<sub>2</sub>, e, SnS<sub>2</sub> and f,
Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> ETLs after aging for 24 days were plotted individually.

## **Supplementary Table 1.** Photovoltaic parameter comparison of this work and existing *nip*-type TPSCs.

|                                                                                                                      | Voc   | $\mathbf{J}_{\mathbf{SC}}$            | FF    | PCE          |                                                                                                                                                               |      |     |
|----------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------|-------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| Devices                                                                                                              |       | (mA cm <sup>-</sup><br><sup>2</sup> ) | (%)   | ( <b>%</b> ) | Stability/Condition                                                                                                                                           |      | Ref |
| FTO/Se-SnS <sub>2</sub> / PEA <sub>0.15</sub> FA <sub>0.85</sub> SnI <sub>2.85</sub> Br <sub>0.15</sub> -AET/PTAA/Ag | 0.73  | 22.28                                 | 72.68 | 11.78        | Maintaining 95% of its initial PCE for 1600 h/in a N <sub>2</sub> glovebox                                                                                    |      |     |
| FTO/c-TiO2/mp- TiO2/MASnI3/Spiro-OMeTAD/Au                                                                           | 0.88  | 16.80                                 | 42.00 | 6.40         | —                                                                                                                                                             | 2014 | 1   |
| FTO/bl-TiO2/mp- TiO2/MASnI3/Spiro-OMeTAD/Au                                                                          | 0.68  | 16.30                                 | 48.00 | 5.23         | Maintaining 64% of its initial PCE for 24 h/in a N2 glovebox                                                                                                  | 2014 | 2   |
| FTO/c-TiO2/mp-TiO2/CsSnI3+SnF2/HTM/Au                                                                                | 0.24  | 22.70                                 | 37.00 | 2.02         | —                                                                                                                                                             | 2014 | 3   |
| FTO/bl-TiO2/mp-TiO2/FASnI3+SnF2/spiro-OMeTAD/Au                                                                      | 0.24  | 24.45                                 | 36.00 | 2.10         | —                                                                                                                                                             | 2015 | 4   |
| FTO/bl-TiO <sub>2</sub> /mp- TiO <sub>2</sub> /MASnI <sub>3</sub> /Au                                                | 0.32  | 21.40                                 | 46.00 | 3.15         | _                                                                                                                                                             | 2015 | 5   |
| FTO/bl-TiO <sub>2</sub> /mp-TiO <sub>2</sub> /FASnI <sub>3</sub> +SnF <sub>2</sub> +Pyrazine/spiro-<br>OMeTAD/Au     | 0.32  | 23.70                                 | 63.00 | 4.80         | Maintaining 98% of its initial PCE for 100 days/with encapsulation                                                                                            | 2016 | 6   |
| FTO/TiO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub> /CsSnIBr <sub>2</sub> +SnF <sub>2</sub> +HPA/Carbon             | 0.31  | 17.40                                 | 57.00 | 3.20         | No significant decay for 77 days/with encapsulation                                                                                                           | 2016 | 7   |
| FTO/c-TiO <sub>2</sub> /mp-TiO <sub>2</sub> /CsSnBr <sub>3</sub> +N <sub>2</sub> H <sub>4</sub> /PTAA/Au             | 0.38  | 19.92                                 | 51.73 | 3.89         | _                                                                                                                                                             | 2017 | 8   |
| $FTO/bl-TiO_2/mp-TiO_2/BA_2MA_3Sn_4I_{13} + TEP/PTAA/Au$                                                             | 0.23  | 24.10                                 | 45.7  | 2.53         | Maintaining 90% of its initial PCE for 30 days/with encapsulation                                                                                             | 2017 | 9   |
| FTO/c-TiO2/mp-TiO2/{en}FASnI3/PTAA/Au                                                                                | 0.48  | 22.54                                 | 65.96 | 7.14         | Maintaining 96% of its initial PCE for 1000 h/with encapsulation                                                                                              | 2017 | 10  |
| $FTO/c-TiO_2/mp-TiO_2/\{en\}MASnI_3/PTAA/Au$                                                                         | 0.43  | 24.28                                 | 63.72 | 6.63         | Maintaining $\sim 60\%$ of its initial efficiency for 10 min/constant illumination in air                                                                     | 2017 | 11  |
| FTO/c-TiO2/mp-TiO2/MASnIBr2+SnF2/spiro-OMeTAD/Au                                                                     | 0.45  | 13.77                                 | 59.58 | 3.70         | Maintaining 80% of its initial PCE for 60 days/in a N2 glovebox                                                                                               | 2018 | 12  |
| FTO/TiO2/HEA0.4FA0.6Sn0.67I2.33/Carbon                                                                               | 0.37  | 18.52                                 | 56.20 | 3.90         | No significant decay for 100 h/in a N2 glovebox                                                                                                               | 2018 | 13  |
| ITO/nanoporous TiO <sub>2</sub> ZrO <sub>2</sub> /carbon/ (4AMP) (FA) <sub>3</sub> Sn <sub>4</sub> I <sub>13</sub>   | 0.64  | 14.90                                 | 44.30 | 4.22         | Maintaining 91% of its initial PCE for 100 h/constant illumination in $N_2$ atmosphere at 45 °C                                                               | 2018 | 14  |
| FTO/ c-TiO <sub>2</sub> /mp-TiO <sub>2</sub> /MASnI <sub>3</sub> /PTAA/Au                                            | 0.49  | 22.91                                 | 64.00 | 7.13         |                                                                                                                                                               | 2019 | 15  |
| FTO/c-TiO2/mp-TiO2/{en}FASnI3/BDT-4D/Au                                                                              | 0.497 | 22.41                                 | 68.21 | 7.59         | _                                                                                                                                                             | 2019 | 16  |
| $FTO/bl-TiO_2/mp-TiO_2/BA_2(FA)_{n-1}Sn_nI_{3n+1}/PTAA/Au$                                                           | 0.42  | 23.98                                 | 40.21 | 4.04         | Maintaining 80% of its initial PCE for 14 days/in a N <sub>2</sub> glovebox                                                                                   | 2020 | 17  |
| FTO/c-TiO2/mp-TiO2/CsSnI3+MBAA/P3HT/Ag                                                                               | 0.45  | 24.85                                 | 67    | 7.5          | of their original value after being stored under an inert RT condition for 1440 h                                                                             | 2021 | 18  |
| FTO/bl-TiO2/mp-TiO2/Cs0.1FA0.9SnI3+ThMAI/PTAA/Au                                                                     | 0.52  | 24.12                                 | 72.02 | 9.06         | _                                                                                                                                                             | 2021 | 19  |
| FTO/bl-TiO <sub>2</sub> /mp-TiO <sub>2</sub> /FASnI <sub>3</sub> /spiro-OMeTAD:DPI-TPFB/Au<br>/Ag                    | 0.649 | 23.59                                 | 71.25 | 10.9         | The encapsulated device retained 86% of its initial PCE after storing for 2832 h at room temperature (RT) in the dark with a humidity level of $\approx 30\%$ | 2023 | 20  |

|                  | VBM (eV        | V) CBM (eV | 7) Bandgap (eV) |
|------------------|----------------|------------|-----------------|
| Perovs           | kite -5.14     | -3.73      | 1.41            |
| TiO <sub>2</sub> | -7.23          | -4.23      | 3.00            |
| $SnS_2$          | -6.62          | -3.98      | 2.64            |
| Sn(S0.9          | 2Se0.08) -6.43 | -3.83      | 2.60            |

Supplementary Table 2. The VBMs, CBMs, and bandgaps of the perovksite film, 

199 Supplementary Table 3. The conductivities and mobilities of TiO<sub>2</sub>, SnS<sub>2</sub> and

| Samples                                                        | TiO <sub>2</sub> | SnS <sub>2</sub> | 8%-Se-SnS <sub>2</sub> |
|----------------------------------------------------------------|------------------|------------------|------------------------|
| Conductivity (S cm $^{-1}$ x10 $^{-3}$ )                       | 8.41             | 12.7             | 13.8                   |
| Mobility $(x10^{-3} \text{ cm}^2 \text{v}^{-1} \text{s}^{-1})$ | 7.15             | 54.3             | 63.4                   |

200 Sn(S<sub>0.92</sub>Se<sub>0.08</sub>)<sub>2</sub> films, respectively.

| Sample        | TiO <sub>2</sub> /Perovskite | SnS <sub>2</sub> /Perovskite | Sn(S <sub>0.92</sub> Se <sub>0.08</sub> ) <sub>2</sub> /Perovskite |
|---------------|------------------------------|------------------------------|--------------------------------------------------------------------|
| $\tau_1$ (ns) | 8.32                         | 6.65                         | 3.51                                                               |

**Supplementary Table 4.** The fitted data of TRPL characterization.

204 Supplementary Table 5. Photovoltaic parameters of *nip*-type TPSCs based on TiO<sub>2</sub>,

| Samples                   |         | $V_{oc}$ (V)      | $J_{sc}$ (mA/cm <sup>2</sup> ) | FF (%)             | Efficiency (%)   |
|---------------------------|---------|-------------------|--------------------------------|--------------------|------------------|
| TiO <sub>2</sub>          | Best    | 0.48              | 20.47                          | 71.11              | 6.98             |
|                           | Average | $0.42 \pm 0.06$   | 21.21±0.72                     | $67.96 {\pm} 2.80$ | $6.03 \pm 0.86$  |
| $SnS_2$                   | Best    | 0.57              | 21.89                          | 72.88              | 9.03             |
|                           | Average | $0.54 \pm 0.02$   | $20.18 \pm 0.82$               | $72.48 \pm 0.99$   | 7.89±0.45        |
| $Sn(S_{0.97}Se_{0.03})_2$ | Best    | 0.61              | 20.12                          | 74.45              | 9.17             |
|                           | Average | $0.59{\pm}0.02$   | 20.24±0.33                     | 72.58±1.29         | 8.72±0.39        |
| $Sn(S_{0.95}Se_{0.05})_2$ | Best    | 0.65              | 20.02                          | 75.76              | 9.88             |
|                           | Average | $0.63 \pm 0.02$   | 20.25±0.51                     | 73.68±1.55         | 9.37±0.43        |
| $Sn(S_{0.93}Se_{0.07})_2$ | Best    | 0.68              | 20.43                          | 76.52              | 10.58            |
|                           | Average | $0.66 {\pm} 0.02$ | 20.33±0.29                     | 73.93±1.55         | 9.98±0.49        |
| $Sn(S_{0.92}Se_{0.08})_2$ | Best    | 0.73              | 22.28                          | 72.68              | 11.78            |
|                           | Average | $0.70{\pm}0.01$   | 20.73±0.88                     | 73.97±1.47         | $10.77 \pm 0.47$ |
| $Sn(S_{0.91}Se_{0.09})_2$ | Best    | 0.73              | 22.25                          | 71.54              | 11.60            |
|                           | Average | $0.70{\pm}0.02$   | 20.35±0.71                     | 73.14±1.85         | 10.45±0.56       |
| $Sn(S_{0.90}Se_{0.10})_2$ | Best    | 0.74              | 20.42                          | 74.56              | 11.31            |
|                           | Average | $0.71 {\pm} 0.02$ | 19.72±0.63                     | 72.89±1.35         | 10.24±0.55       |

205 SnS<sub>2</sub>, and Sn(S<sub>x</sub>Se<sub>y</sub>)<sub>2</sub> (y = 3%, 5%, 7%, 8%, 9% and 10%, x+y=1), respectively.

## 207 Supplementary References

- 1. Noel, N. K. et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications.
   *Energy Environ. Sci.* 7, 3061–3068 (2014).
- 210 2. Hao, F. et al. Lead-free solid-state organic-inorganic halide perovskite solar cells. *Nat. Photon.* 8,
- 489–494 (2014).
- 3. Kumar, M. H. et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. *Adv. Mater.* **26**, 7122–7127 (2014).
- 4. Koh, T. M. et al. Formamidinium tin-based perovskite with low Eg for photovoltaic applications.
- 215 J. Mater. Chem. A. 3, 14996–15000 (2015).
- 5. Hao, F. et al. Solvent-mediated crystallization of CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> Films for heterojunction depleted perovskite solar cells. *J. Am. Chem. Soc.* **137**, 11445–11452 (2015).
- 6. Lee, S. J. et al. Fabrication of efficient formamidinium tin iodide perovskite solar cells through
  SnF<sub>2</sub>-pyrazine complex. J. Am. Chem. Soc. 138, 3974–3977 (2016).
- 220 7. Li, W. et al. Addictive-assisted construction of all-inorganic CsSnIBr<sub>2</sub> mesoscopic perovskite 221 solar cells with superior thermal stability up to 473 K. *J. Mater. Chem. A.* **4**, 17104–17110 (2016).
- 8. Song, T. -B. et al. Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. *J. Am. Chem. Soc.* **139**, 836–842 (2017).
- 9. Cao, D. H. et al. Thin films and solar cells based on semiconducting two-dimensional
  Ruddlesden–Popper (CH<sub>3</sub>(CH<sub>2</sub>)<sub>3</sub>NH<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>NH<sub>3</sub>)<sub>n-1</sub>SnnI<sub>3n+1</sub> perovskites. *ACS Energy Lett.* 2, 982–
  990 (2017).
- 10. Ke, W. et al. Enhanced photovoltaic performance and stability with a new type of hollow 3D
  perovskite {en}FASnI<sub>3</sub>. Sci. Adv. 3, e1701293 (2017).
- 11. Ke, W. et al. Efficient lead-free solar cells based on hollow {en}MASnI<sub>3</sub> perovskites. J. Am.
  Chem. Soc. 139, 14800–14806 (2017).
- 12. Xiao, M. et al. Tin-based perovskite with improved coverage and crystallinity through tin fluoride-assisted heterogeneous nucleation. *Adv. Optical Mater.* 6, 1700615 (2018).
- 233 13. Tsai, C. -M. et al. Control of crystal structures and optical properties with hybrid formamidinium
- and 2-hydroxyethylammonium cations for mesoscopic carbon-electrode tin-based perovskite solar
   cells. *ACS Energy Lett.* 3, 2077–2085 (2018).
- 14. Chen, M. et al. Lead-free Dion–Jacobson tin halide perovskites for photovoltaics. *ACS Energy Lett.* 4, 276–277 (2019).
- 15. Li, F. et al. A cation-exchange approach for the fabrication of efficient methylammonium tin
  iodide perovskite solar cells. *Angew. Chem. Int. Ed.* 58, 6688–6692 (2019).
- 16. Vegiraju, S. et al. Benzodithiophene hole-transporting materials for efficient tin-based perovskite
  solar cells., *Adv. Funct. Mater.* 29, 1905393 (2019).
- 17. Li, F. et al. Effects of alkyl chain length on crystal growth and oxidation process of twodimensional tin halide perovskites. *ACS Energy Lett.* 5, 1422–1429 (2020).
- 18. Tao, Y. et al. Ambient-air-stable lead-free CsSnI<sub>3</sub> solar cells with greater than 7.5% efficiency.,
  J. Am. Chem. Soc. 143, 4319–4328 (2021)
- 246 19. Hu, M. et al. Regulating the surface passivation and residual strain in pure tin perovskite films.
- 247 ACS Energy Lett. 6, 3555–3562 (2021).
- 248 20. Hu, M. et al. Highly stable n-i-p structured formamidinium tin triiodide solar cells through the
- stabilization of surface  $Sn^{2+}$  cations. *Adv. Funct. Mater.* **33**, 2300693 (2023).
- 250