Supplemental Online Content

Liu HY, Eso A, Cook N, O'Neill H, Albarqouni L. Effect of meal timing on anthropometric and metabolic outcomes: a systematic review and meta-analysis. *JAMA Netw Open*. 2024;7(11):e2442163. doi:10.1001/jamanetworkopen.2024.42163

eTable 1. Search strategy and key concepts/MeSH

eTable 2. Notable studies excluded with reasoning

eTable 3. Included studies

eTable 4. Details of Intervention Delivery

eTable 5. Adherence outcomes

eTable 6. Hunger outcomes

eTable 7. Satiety outcomes

eTable 8. Notable clinical trials excluded

eFigure 1. Risk of summary for included studies

eFigure 2. Risk of bias graph for included studies

eFigure 3. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on weight (kg), grouped by baseline BMI status

eFigure 4. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating interventions on weight (kg), grouped by eating window

eFigure 5. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on BMI (kg/m2), grouped by intervention type

eFigure 6. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on BMI (kg/m2), grouped by baseline BMI status

eFigure 7. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on lean mass (kg), grouped by the nature of the meal timing intervention

eFigure 8. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on waist circumference (cm), grouped by meal timing intervention

eFigure 9. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on lean mass (kg), grouped by gender proportion

eFigure 10. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on lean mass (kg), grouped by baseline BMI status **eFigure 11.** Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on lean mass (kg), grouped by energy prescription

eFigure 12. Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on lean mass (kg), grouped by follow duration

eFigure 13. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on lean mass (kg), grouped by health status

eFigure 14. Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on lean mass (kg), grouped by eating window

eFigure 15. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on lean mass (kg), grouped by delivery personnel

eFigure 16. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on lean mass (kg), grouped by frequency of contact

eFigure 17. Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on lean mass (kg), grouped by resource provision

eFigure 18. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on lean mass (kg), grouped by risk of bias

eFigure 19. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on waist circumference (cm), grouped by gender proportion

eFigure 20. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on waist circumference (cm), grouped by baseline BMI status

eFigure 21. Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on waist circumference (cm), grouped by health status

eFigure 22. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on waist circumference (cm), grouped by energy prescription

eFigure 23. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on waist circumference (cm), grouped by follow duration

eFigure 24. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on waist circumference (cm), grouped by eating window

eFigure 25. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on waist circumference (cm), grouped by frequency of contact

eFigure 26. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on waist circumference (cm), grouped by delivery personnel

eFigure 27. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on waist circumference (cm), grouped by resource provision

eFigure 28. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on waist circumference (cm), grouped by risk of bias **eFigure 29.** Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on HbA1c (%), grouped by the meal timing intervention

eFigure 30. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on fasting plasma glucose (mg/dL), grouped by the meal timing intervention

eFigure 31. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on HbA1c (%), grouped by gender proportion

eFigure 32. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on HbA1c (%), grouped by delivery personnel

eFigure 33. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on LDL (mg/dL), grouped by the meal timing intervention

eFigure 34. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on LDL (mg/dL), grouped by gender proportion

eFigure 35. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on LDL (mg/dL), grouped by baseline BMI status

eFigure 36. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on LDL (mg/dL), grouped by health status

eFigure 37. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on LDL (mg/dL), grouped by energy prescription

eFigure 38. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on LDL (mg/dL), grouped by follow duration

eFigure 39. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on LDL (mg/dL), grouped by eating window

eFigure 40. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on LDL (mg/dL), grouped by frequency of contact

eFigure 41. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on LDL (mg/dL), grouped by delivery personnel

eFigure 42. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on LDL (mg/dL), grouped by resource provision

eFigure 43. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on LDL (mg/dL), grouped by risk of bias

eFigure 44. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on energy intake (kcal/day), grouped by the meal timing intervention

eFigure 45. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on energy intake (kcal/day), grouped by energy prescription

eFigure 46. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on systolic blood pressure (mmHg), grouped by the meal timing intervention

eFigure 47. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on diastolic blood pressure (mmHg), grouped by the meal timing intervention

eFigure 48. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on systolic blood pressure (mmHg), grouped by gender proportion

eFigure 49. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on systolic blood pressure (mmHg), grouped by baseline BMI status

eFigure 50. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on systolic blood pressure (mmHg), grouped by health status

eFigure 51. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on systolic blood pressure (mmHg), grouped by energy prescription

eFigure 52. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on systolic blood pressure (mmHg), grouped by follow duration

eFigure 53. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on systolic blood pressure (mmHg), grouped by eating window

eFigure 54. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on systolic blood pressure (mmHg), grouped by frequency of contact

eFigure 55. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on systolic blood pressure (mmHg), grouped by delivery personnel

eFigure 56. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on systolic blood pressure (mmHg), grouped by resource provision

eFigure 57. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on systolic blood pressure (mmHg), grouped by risk of bias

eFigure 58. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on diastolic blood pressure (mmHg), grouped by gender proportion

eFigure 59. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on diastolic blood pressure (mmHg), grouped by baseline BMI status

eFigure 60. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on diastolic blood pressure (mmHg), grouped by health status

eFigure 61. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on Diastolic blood pressure (mmHg), grouped by energy prescription

eFigure 62. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on Diastolic blood pressure (mmHg), grouped by follow duration

eFigure 63. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on Diastolic blood pressure (mmHg), grouped by eating window

eFigure 64. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on Diastolic blood pressure (mmHg), grouped by frequency of contact **eFigure 65.** Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on Diastolic blood pressure (mmHg), grouped by delivery personnel

eFigure 66. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on Diastolic blood pressure (mmHg), grouped by resource provision

eFigure 67. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on Diastolic blood pressure (mmHg), grouped by risk of bias

eFigure 68. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m2), grouped by health status

eFigure 69. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m2), grouped by intervention intensity

eFigure 70. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on weight (kg), grouped by gender proportion

eFigure 71. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on weight (kg), grouped by health status

eFigure 72. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on weight (kg), grouped by energy prescription

eFigure 73. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on weight (kg), grouped by follow duration

eFigure 74. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on weight (kg), grouped by frequency of contact

eFigure 75. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on weight (kg), grouped by delivery personnel

eFigure 76. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on weight (kg), grouped by resource provision

eFigure 77. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on weight (kg), grouped by risk of bias

eFigure 78. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on weight (kg), grouped by gender proportion

eFigure 79. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on weight (kg), grouped by baseline BMI status

eFigure 80. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on weight (kg), grouped by health status

eFigure 81. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on weight (kg), grouped by follow duration

eFigure 82. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on weight (kg), grouped by intervention intensity

eFigure 83. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on weight (kg), grouped by frequency of contact

eFigure 84. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on weight (kg), grouped by delivery personnel

eFigure 85. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on weight (kg), grouped by baseline BMI status

eFigure 86. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on weight (kg), grouped by health status

eFigure 87. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on weight (kg), grouped by delivery personnel

eFigure 88. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on weight (kg), grouped by resource provision

eFigure 89. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m2), grouped by gender proportion

eFigure 90. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m2), grouped by health status

eFigure 91. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m2), grouped by energy prescription

eFigure 92. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m2), grouped by follow duration

eFigure 93. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m2), grouped by eating window

eFigure 94. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m2), grouped by frequency of contact

eFigure 95. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m2), grouped by delivery personnel

eFigure 96. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m2), grouped by resource provision

eFigure 97. Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m2), grouped by risk of bias

eFigure 98. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m2), grouped by gender proportion

eFigure 99. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m2), grouped by baseline BMI status

eFigure 100. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m2), grouped by follow duration

eFigure 101. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m2), grouped by frequency of contact

eFigure 102. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m2), grouped by delivery personnel

eFigure 103. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m2), grouped by resource provision

eFigure 104. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on BMI (kg/m2), grouped by baseline BMI status

eFigure 105. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on BMI (kg/m2), grouped by health status

eFigure 106. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on BMI (kg/m2), grouped by delivery personnel

eFigure 107. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on BMI (kg/m2), grouped by resource provision

eFigure 108. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on lean mass (kg), grouped by gender proportion

eFigure 109. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on lean mass (kg), grouped by follow duration

eFigure 110. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on lean mass (kg), grouped by intervention intensity

eFigure 111. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on lean mass (kg), grouped by frequency of contact

eFigure 112. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on lean mass (kg), grouped by resource provision

eFigure 113. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on waist circumference (cm), grouped by gender proportion

eFigure 114. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on waist circumference (cm), grouped by baseline BMI status

eFigure 115. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on waist circumference (cm), grouped by health status

eFigure 116. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on waist circumference (cm), grouped by intervention intensity

eFigure 117. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on waist circumference (cm), grouped by delivery personnel

eFigure 118. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on waist circumference (cm), grouped by baseline BMI status

eFigure 119. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on waist circumference (cm), grouped by health status

eFigure 120. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on waist circumference (cm), grouped by delivery personnel

eFigure 121. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on waist circumference (cm), grouped by resource provision

eFigure 122. Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on energy intake (kcal/day), grouped by gender proportion

eFigure 123. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on energy intake (kcal/day), grouped by baseline BMI status

eFigure 124. Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on energy intake (kcal/day), grouped by health status

eFigure 125. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on energy intake (kcal/day), grouped by follow duration

eFigure 126. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on energy intake (kcal/day), grouped by eating window

eFigure 127. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on energy intake (kcal/day), grouped by frequency of contact

eFigure 128. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on energy intake (kcal/day), grouped by delivery personnel

eFigure 129. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on energy intake (kcal/day), grouped by resource provision

eFigure 130. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on energy intake (kcal/day), grouped by risk of bias

eFigure 131. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on HbA1c (%), grouped by baseline BMI status

eFigure 132. Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on HbA1c (%), grouped by health status

eFigure 133. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on HbA1c (%), grouped by energy prescription

eFigure 134. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on HbA1c (%), grouped by follow duration

eFigure 135. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on HbA1c (%), grouped by eating window

eFigure 136. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on HbA1c (%), grouped by frequency of contact **eFigure 137.** Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on HbA1c (%), grouped by resource provision

eFigure 138. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on HbA1c (%), grouped by risk of bias

eFigure 139. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on HbA1c (%), grouped by gender proportion

eFigure 140. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on HbA1c (%), grouped by baseline BMI status

eFigure 141. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on HbA1c (%), grouped by intervention intensity

eFigure 142. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on HbA1c (%), grouped by frequency of contact

eFigure 143. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on HbA1c (%), grouped by delivery personnel

eFigure 144. Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on fasting glucose (mg/dL), grouped by gender proportion

eFigure 145. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on fasting glucose (mg/dL), grouped by baseline BMI status

eFigure 146. Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on fasting glucose (mg/dL), grouped by health status

eFigure 147. Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on fasting glucose (mg/dL), grouped by energy prescription

eFigure 148. Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on fasting glucose (mg/dL), grouped by follow duration

eFigure 149. Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on fasting glucose (mg/dL), grouped by eating window

eFigure 150. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on fasting glucose (mg/dL), grouped by frequency of contact

eFigure 151. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on fasting glucose (mg/dL), grouped by delivery personnel

eFigure 152. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on fasting glucose (mg/dL), grouped by resource provision

eFigure 153. Meta-analysis of difference in mean difference (95% CIs) for the effect of timerestricted eating on fasting glucose (mg/dL), grouped by risk of bias

eFigure 154. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on fasting glucose (mg/dL), grouped by gender proportion

eFigure 155. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on fasting glucose (mg/dL), grouped by baseline BMI status

eFigure 156. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on fasting glucose (mg/dL), grouped by health status

eFigure 157. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on fasting glucose (mg/dL), grouped by follow duration

eFigure 158. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on fasting glucose (mg/dL), grouped by intervention intensity

eFigure 159. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on fasting glucose (mg/dL), grouped by frequency of contact

eFigure 160. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on fasting glucose (mg/dL), grouped by delivery personnel

eFigure 161. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on fasting glucose (mg/dL), grouped by baseline BMI status

eFigure 162. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on fasting glucose (mg/dL), grouped by health status

eFigure 163. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on fasting glucose (mg/dL), grouped by delivery personnel

eFigure 164. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on fasting glucose (mg/dL), grouped by resource provision

eFigure 165. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on LDL (mg/dL), grouped by gender proportion

eFigure 166. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on LDL (mg/dL), grouped by baseline BMI status

eFigure 167. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on LDL (mg/dL), grouped by health status

eFigure 168. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on LDL (mg/dL), grouped by follow duration

eFigure 169. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on LDL (mg/dL), grouped by intervention intensity

eFigure 170. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on LDL (mg/dL), grouped by frequency of contact

eFigure 171. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on LDL (mg/dL), grouped by delivery personnel

eFigure 172. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on LDL (mg/dL), grouped by resource provision

eFigure 173. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on LDL (mg/dL), grouped by baseline BMI status

eFigure 174. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on LDL (mg/dL), grouped by health status

eFigure 175. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on LDL (mg/dL), grouped by delivery personnel

eFigure 176. Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on LDL (mg/dL), grouped by resource provision

eFigure 177. Funnel plots for weight (TRE vs control)

eFigure 178. Funnel plots for BMI (TRE vs control)

eFigure 179. Funnel plots for lean mass (TRE vs control)

eFigure 180. Funnel plots for energy intake (TRE vs control)

eFigure 181. Funnel plots for HbA1c (TRE vs control)

- eFigure 182. Funnel plots for fasting glucose (TRE vs control)
- eFigure 183. Funnel plots for LDL (TRE vs control)
- eFigure 184. Funnel plots for systolic blood pressure (TRE vs control)
- eFigure 185. Funnel plots for diastolic blood pressure (TRE vs control)

This supplemental material has been provided by the authors to give readers additional information about their work.

eTable 1: Search strategy and key concepts/MeSH

Medline (via Ovid)

(((Meal adj3 Frequency) or (meal adj3 timing) or "time-restricted eating" or "time-restricted feeding").tw. or exp "intermittent fasting"/ or "intermittent fasting".tw. or (breakfast adj3 skipping).tw. or "no breakfast".tw. or (morning adj3 fasting).tw. or (morning adj3 fast).tw. or "time restricted fasting".tw. or "time restricted diet".tw. or "delayed eating".tw. or (meal adj3 regularity).tw. or (breakfast adj3 omission).tw. or (omitting adj3 breakfast).tw. or (skipping adj3 meal).tw. or (skipping adj3 meals).tw. or "three-meal diet".tw. or "six meal".tw. or "six meals".tw. or "chrono nutrition".tw. or chrono-nutrition.tw. or "High-calorie breakfast".tw.) and (exp "body weight"/ or "body weight".tw. or exp "body mass index"/ or overweight.tw. or obesity.tw. or "weight loss".tw.)

Cochrane CENTRAL

(((Meal:ti,ab NEAR/3 Frequency:ti,ab) OR (meal:ti,ab NEAR/3 timing:ti,ab) OR "time-restricted eating":ti,ab OR "time-restricted feeding":ti,ab) OR [mh "intermittent fasting"] OR "intermittent fasting":ti,ab OR (breakfast:ti,ab NEAR/3 skipping:ti,ab) OR "no breakfast":ti,ab OR (morning:ti,ab NEAR/3 fasting:ti,ab) OR (morning:ti,ab NEAR/3 fasted:ti,ab) OR (morning:ti,ab NEAR/3 fast:ti,ab) OR "time restricted fasting":ti,ab OR "time restricted diet":ti,ab OR "delayed eating":ti,ab OR (meal:ti,ab NEAR/3 regularity:ti,ab) OR (breakfast:ti,ab NEAR/3 omission:ti,ab) OR (omitting:ti,ab NEAR/3 breakfast:ti,ab) OR (skipping:ti,ab NEAR/3 meals:ti,ab) OR (skipping:ti,ab NEAR/3 meals:ti,ab) OR "three-meal diet":ti,ab OR "six meal":ti,ab OR "six meals":ti,ab OR "chrono nutrition":ti,ab OR chrono-nutrition:ti,ab OR "High-calorie breakfast":ti,ab OR on the sign of "body weight"] OR "body weight":ti,ab OR [mh "body mass index"] OR overweight:ti,ab OR obesity:ti,ab OR "weight loss":ti,ab)

CINAHL

((((TI Meal OR AB Meal) N3 (TI Frequency OR AB Frequency)) OR ((TI meal OR AB meal) N3 (TI timing OR AB timing)) OR (TI "time-restricted eating" OR AB "time-restricted eating") OR (TI "time-restricted feeding" OR AB "time-restricted feeding")) OR (MH "intermittent fasting+") OR (TI "intermittent fasting" OR AB "intermittent fasting") OR ((TI breakfast OR AB breakfast) N3 (TI skipping OR AB skipping)) OR (TI "no breakfast" OR AB "no breakfast") OR ((TI morning OR AB morning) N3 (TI fasting OR AB fasting)) OR ((TI morning OR AB morning) N3 (TI fasted OR AB fasted)) OR ((TI morning OR AB morning) N3 (TI fast OR AB fast)) OR (TI "time restricted fasting" OR AB "time restricted fasting") OR (TI "time restricted diet" OR AB "time restricted diet") OR (TI "delayed eating" OR AB "delayed eating") OR ((TI meal OR AB meal) N3 (TI regularity OR AB regularity)) OR ((TI breakfast OR AB breakfast) N3 (TI omission OR AB omission)) OR ((TI omitting OR AB omitting) N3 (TI breakfast OR AB breakfast)) OR ((TI skipping OR AB skipping) N3 (TI meal OR AB meal)) OR ((TI skipping OR AB skipping) N3 (TI meals OR AB meals)) OR (TI "three-meal diet" OR AB "three-meal diet") OR (TI "six meal" OR AB "six meal") OR (TI "six meals" OR AB "six meals") OR (TI "chrono nutrition" OR AB "chrono nutrition") OR (TI chrono-nutrition OR AB chrono-nutrition) OR (TI "High-calorie breakfast" OR AB "High-calorie breakfast")) AND ((MH "body weight+") OR (TI "body weight" OR AB "body weight") OR (MH "body mass index+") OR (TI overweight OR AB overweight) OR (TI obesity OR AB obesity) OR (TI "weight loss" OR AB "weight loss"))

Embase

(((meal NEAR/3 frequency):ti,ab) OR ((meal NEAR/3 timing):ti,ab) OR 'time-restricted eating':ti,ab OR 'timerestricted feeding':ti,ab OR 'intermittent fasting'/exp/mj OR 'intermittent fasting' OR 'intermittent fasting':ti,ab OR ((breakfast NEAR/3 skipping):ti,ab) OR 'no breakfast':ti,ab OR ((morning NEAR/3 fasting):ti,ab) OR ((morning NEAR/3 fasted):ti,ab) OR ((morning NEAR/3 fast):ti,ab) OR 'time restricted fasting':ti,ab OR 'time restricted diet':ti,ab OR 'delayed eating':ti,ab OR ((meal NEAR/3 regularity):ti,ab) OR ((breakfast NEAR/3 omission):ti,ab) OR ((omitting NEAR/3 breakfast):ti,ab) OR ((skipping NEAR/3 meals):ti,ab) OR ((skipping NEAR/3 meals):ti,ab) OR 'three-meal diet':ti,ab OR 'six meal':ti,ab OR 'six meals':ti,ab OR 'chrono nutrition':ti,ab OR 'high-calorie breakfast':ti,ab) AND ('body weight'/exp OR 'body weight' OR 'body weight':ti,ab OR 'body mass'/exp/mj OR 'body mass index' OR overweight:ti,ab OR obesity:ti,ab)

Note. eTable 1 shows the exact search strategies used for each of the mentioned databases

Alencar, 2015Wrong intervention durationBantle, 2022No anthropometric measurementsCrimarco, 2019Wrong intervention durationErdem, 2022Wrong comparatorPapamichou, 2022Study protocolWhite, 2023Study protocolIsenmann, 2021Wrong intervention durationAstbury, 2011Wrong intervention durationAstbury, 2011Wrong intervention durationAstbury, 2022Study protocolBao, 2022Study protocolBao, 2022Wrong intervention durationPala, 2022Study protocolMoro, 2021Wrong interventionObermayer, 2022Wrong interventionObermayer, 2023Wrong interventionSuthutvoravut, 2022Study protocolYang, 2023Wrong interventionFerrocino, 2022Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong interventionMunsters, 2012Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong study designGodin Jeneta, 2016Wrong study designGodin Jeneta, 2016Wrong study designGodin Jeneta, 2011Wrong study designAgyeopa, 2021Wrong intervention durationYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention dur	Author, Date	Reason for Exclusion
Crimarco, 2019Wrong intervention durationErdem, 2022Wrong comparatorPapamichou, 2022Study protocolWhite, 2023Study protocolIsenmann, 2021Wrong intervention durationAstbury, 2011Wrong intervention durationNowak, 2021Wrong interventionGabel, 2022Study protocolBao, 2022Wrong intervention durationPala, 2022Study protocolMoro, 2021Wrong comparatorObermayer, 2022Wrong interventionSuthutvoravut, 2022Study protocolYang, 2023Wrong interventionFerrocino, 2022Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong interventionMunsters, 2012Wrong interventionOpstad, 2021Wrong interventionGodlin Jeneta, 2016Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designYildiran, 2017Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Alencar, 2015	Wrong intervention duration
Erdem, 2022Wrong comparatorPapamichou, 2022Study protocolWhite, 2023Study protocolIsenmann, 2021Wrong intervention durationAstbury, 2011Wrong intervention durationNowak, 2021Wrong interventionGabel, 2022Study protocolBao, 2022Wrong intervention durationPala, 2022Study protocolMoro, 2021Wrong comparatorObermayer, 2022Wrong interventionObermayer, 2023Wrong interventionSuthutvoravut, 2022Study protocolYang, 2023Wrong interventionFerrocino, 2021Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong interventionMunsters, 2012Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationGodlin Jeneta, 2016Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designYildiran, 2017Wrong intervention durationYong, 1972Wrong intervention duration	Bantle, 2022	No anthropometric measurements
Papamichou, 2022Study protocolWhite, 2023Study protocolIsenmann, 2021Wrong intervention durationAstbury, 2011Wrong intervention durationNowak, 2021Wrong interventionGabel, 2022Study protocolBao, 2022Wrong intervention durationPala, 2022Study protocolMoro, 2021Wrong interventionObermayer, 2022Wrong interventionObermayer, 2023Wrong interventionSuthutvoravut, 2022Study protocolYang, 2023Wrong interventionFerrocino, 2022Wrong study designKanaley, 2014Wrong interventionMunsters, 2012Wrong interventionMunsters, 2012Wrong interventionGolfin Jeneta, 2016Wrong study designGodlin Jeneta, 2016Wrong study designGyrego, 2021Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designYildiran, 2017Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Crimarco, 2019	Wrong intervention duration
White, 2023Study protocolIsenmann, 2021Wrong intervention durationAstbury, 2011Wrong intervention durationNowak, 2021Wrong interventionGabel, 2022Study protocolBao, 2022Wrong intervention durationPala, 2022Study protocolMoro, 2021Wrong interventionObermayer, 2022Wrong interventionObermayer, 2023Wrong interventionSuthutvoravut, 2022Study protocolYang, 2023Wrong interventionFerrocino, 2022Wrong study designKanaley, 2014Wrong interventionMunsters, 2012Wrong interventionMunsters, 2012Wrong interventionGolfin Jeneta, 2016Wrong study designGodlin Jeneta, 2016Wrong study designGabel, 2021Wrong study designYildiran, 2019Wrong study designYildiran, 2019Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Erdem, 2022	Wrong comparator
Isenmann, 2021Wrong intervention durationAstbury, 2011Wrong intervention durationNowak, 2021Wrong interventionGabel, 2022Study protocolBao, 2022Wrong intervention durationPala, 2022Study protocolMoro, 2021Wrong comparatorObermayer, 2022Wrong interventionObermayer, 2023Wrong interventionSuthutvoravut, 2022Study protocolYang, 2023Wrong interventionFerrocino, 2022Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationGedlin Jeneta, 2016Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designYildiran, 2017Wrong study designYoung, 1972Wrong intervention duration	Papamichou, 2022	Study protocol
Astbury, 2011Wrong intervention durationNowak, 2021Wrong interventionGabel, 2022Study protocolBao, 2022Wrong intervention durationPala, 2022Study protocolMoro, 2021Wrong comparatorObermayer, 2022Wrong interventionObermayer, 2023Wrong interventionSuthutvoravut, 2022Study protocolYang, 2023Wrong interventionFerrocino, 2022Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationGedlin Jeneta, 2016Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designYildiran, 2017Wrong study designYoung, 1972Wrong intervention duration	White, 2023	Study protocol
Nowak, 2021Wrong interventionGabel, 2022Study protocolBao, 2022Wrong intervention durationPala, 2022Study protocolMoro, 2021Wrong comparatorObermayer, 2022Wrong interventionObermayer, 2023Wrong interventionSuthutvoravut, 2022Study protocolYang, 2023Wrong interventionFerrocino, 2022Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationGopstad, 2021Wrong interventionGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	lsenmann, 2021	Wrong intervention duration
Gabel, 2022Study protocolBao, 2022Wrong intervention durationPala, 2022Study protocolMoro, 2021Wrong comparatorObermayer, 2022Wrong interventionObermayer, 2023Wrong interventionSuthutvoravut, 2022Study protocolYang, 2023Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationGodlin Jeneta, 2016Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designYoshimura, 2017Wrong study designYoung, 1972Wrong intervention duration	Astbury, 2011	Wrong intervention duration
Bao, 2022Wrong intervention durationPala, 2022Study protocolMoro, 2021Wrong comparatorObermayer, 2022Wrong interventionObermayer, 2023Wrong interventionSuthutvoravut, 2022Study protocolYang, 2023Wrong interventionFerrocino, 2022Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationOpstad, 2021Wrong intervention durationGodlin Jeneta, 2016Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Nowak, 2021	Wrong intervention
Pala, 2022Study protocolMoro, 2021Wrong comparatorObermayer, 2022Wrong interventionObermayer, 2023Wrong interventionSuthutvoravut, 2022Study protocolYang, 2023Wrong interventionFerrocino, 2022Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationOpstad, 2021Wrong intervention durationGodlin Jeneta, 2016Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Gabel, 2022	Study protocol
Moro, 2021Wrong comparatorObermayer, 2022Wrong interventionObermayer, 2023Wrong interventionSuthutvoravut, 2022Study protocolYang, 2023Wrong interventionFerrocino, 2022Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationOpstad, 2021Wrong interventionGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Bao, 2022	Wrong intervention duration
Obermayer, 2022Wrong interventionObermayer, 2023Wrong interventionSuthutvoravut, 2022Study protocolYang, 2023Wrong interventionFerrocino, 2022Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong interventionMunsters, 2012Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationOpstad, 2021Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoung, 1972Wrong intervention duration	Pala, 2022	Study protocol
Obermayer, 2023Wrong interventionSuthutvoravut, 2022Study protocolYang, 2023Wrong interventionFerrocino, 2022Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong interventionMunsters, 2012Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationOpstad, 2021Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoung, 1972Wrong intervention duration	Moro, 2021	Wrong comparator
Suthutvoravut, 2022Study protocolYang, 2023Wrong interventionFerrocino, 2022Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong interventionMunsters, 2012Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationOpstad, 2021Wrong interventionGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Obermayer, 2022	Wrong intervention
Yang, 2023Wrong interventionFerrocino, 2022Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong interventionMunsters, 2012Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationOpstad, 2021Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Obermayer, 2023	Wrong intervention
Ferrocino, 2022Wrong study designKanaley, 2014Wrong study designGriffiths, 2016Wrong interventionMunsters, 2012Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationOpstad, 2021Wrong interventionGodlin Jeneta, 2016Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Suthutvoravut, 2022	Study protocol
Kanaley, 2014Wrong study designGriffiths, 2016Wrong interventionMunsters, 2012Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationOpstad, 2021Wrong interventionGodlin Jeneta, 2016Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Yang, 2023	Wrong intervention
Griffiths, 2016Wrong interventionMunsters, 2012Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationOpstad, 2021Wrong interventionGodlin Jeneta, 2016Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Ferrocino, 2022	Wrong study design
Munsters, 2012Wrong intervention durationLee, 2023Study protocolCorreia, 2021Wrong intervention durationOpstad, 2021Wrong interventionGodlin Jeneta, 2016Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Kanaley, 2014	Wrong study design
Lee, 2023Study protocolCorreia, 2021Wrong intervention durationOpstad, 2021Wrong interventionGodlin Jeneta, 2016Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Griffiths, 2016	Wrong intervention
Correia, 2021Wrong intervention durationOpstad, 2021Wrong interventionGodlin Jeneta, 2016Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Munsters, 2012	Wrong intervention duration
Opstad, 2021Wrong interventionGodlin Jeneta, 2016Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Lee, 2023	Study protocol
Godlin Jeneta, 2016Wrong study designGabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Correia, 2021	Wrong intervention duration
Gabel, 2019Wrong study designYildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Opstad, 2021	Wrong intervention
Yildiran, 2019Wrong study designAgyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Godlin Jeneta, 2016	Wrong study design
Agyepong, 2021Wrong study designMoore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Gabel, 2019	Wrong study design
Moore, 2022Wrong study designYoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Yildiran, 2019	Wrong study design
Yoshimura, 2017Wrong intervention durationYoung, 1972Wrong intervention duration	Agyepong, 2021	Wrong study design
Young, 1972 Wrong intervention duration	Moore, 2022	Wrong study design
	Yoshimura, 2017	Wrong intervention duration
Zimmermann, 2023Wrong intervention duration	Young, 1972	Wrong intervention duration
	Zimmermann, 2023	Wrong intervention duration

eTable 2: Notable studies excluded with reasoning

Zhang, 2022 Vondra, 1976 Wrong intervention duration

Wrong study design

Note. eTable 2 details each of the full text articles excluded from the review with the excluded reason.

eTable 3: Includ Study	Reports					
Che 2021	1. Che T, Yan C, Tian D, Zhang X, Liu X, Wu Z. Time-restricted feeding improves blood glucose and insulin sensitivity in overweight patients with type 2 diabetes: a randomised controlled trial. <i>Nutrition & Metabolism</i> . 2021;18(1)doi:10.1186/s12986-021-00613-9					
Chow 2020	1. Bantle A, Alvear A, Knights D, Chow L, Johnson A. Weight Loss Associated With Time Restricted Eating Is Not Reflected in Changes in the Human Gut Microbiome. <i>Current Developments in Nutrition</i> . 2022;6doi:10.1093/cdn/nzac069.003					
	2. Chow LS, Manoogian E, Alvear AC, Wang Q, Panda S, Mashek DG. Time restricted eating (TRE) promotes weight loss, alters body composition, and improves metabolic parameters in overweight humans. 2019;68doi:10.2337/db19-2076-P					
	3. Chow LS, Manoogian ENC, Alvear A, et al. Time-Restricted Eating Effects on Body Composition and Metabolic Measures in Humans who are Overweight: A Feasibility Study. <i>Obesity (19307381)</i> . 2020;28(5)doi:10.1002/oby.22756					
	4. Crose A, Alvear A, Singroy S, et al. Time-Restricted Eating Improves Quality of Life Measures in Overweight Humans. <i>Nutrients</i> . 2021;13(5)doi:10.3390/nu13051430					
	 Hibbing PR, Shook RP, Panda S, Manoogian ENC, Mashek DG, Chow LS. Predicting energy intake with an accelerometer-based intake-balance method. 2022;doi:10.1017/S0007114522003312 					
	6. Mehfooz A, Lee YL, Wang Q, Chow LS. Time-Restricted Eating Did Not Alter Glycemic Variability in Humans Who Are Overweight and without Diabetes. <i>Diabetes</i> . 2022;71doi:10.2337/db22-699-P					
	 Simon SL, Fleischer JG, Manoogian EN, Panda S, Mashek DG, Chow L. Objectively-measured sleep following a time restricted eating intervention in adults with obesity. 2020;43(SUPPL 1)doi:10.1093/sleep/zsaa056.1025 					
de Oliveira Maranhao Pureza 2021	1. de Oliveira Maranhão Pureza IR, da Silva Junior AE, Silva Praxedes DR, et al. Effects of time-restricted feeding on body weight, body composition and vital signs in low-income women with obesity: A 12-month randomized clinical trial. <i>Clinical</i> <i>Nutrition</i> . 2021;40(3)doi:10.1016/j.clnu.2020.06.036					
Dhurandhar 2014	1. Dhurandhar EJ, Dawson J, Alcorn A, et al. The effectiveness of breakfast recommendations on weight loss: a randomized controlled trial. <i>American Journal of Clinical Nutrition</i> . 2014;100(2)doi:10.3945/ajcn.114.089573					
Jamshed 2022	 Hanick C, Jamshed H, Bryan D, et al. Effects of time-restricted eating on appetite, eating behaviors, and physical activity in adults. 2020;28(SUPPL 2)doi:10.1002/oby.23063 					

	 Hanick C, Steger F, Jamshed H, et al. Early Time-Restricted Eating for Weight Loss and Metabolic Health: a Secondary Per-Protocol Analysis. 2022;30doi:10.1002/oby.23626
	 Jamshed H, Steger FL, Bryan DR, et al. Effectiveness of Early Time-Restricted Eating for Weight Loss, Fat Loss, and Cardiometabolic Health in Adults With Obesity: A Randomized Clinical Trial. <i>JAMA Internal Medicine</i>. 2022;182(9)doi:10.1001/jamainternmed.2022.3050
	 Steger F, Jamshed H, Bryan D, et al. Effect of time-restricted eating on weight, fat loss and cardiometabolic risk in adults with obesity. 2020;28(SUPPL 2)doi:10.1002/oby.23057
	5. Steger FL, Jamshed H, Bryan DR, et al. Early time-restricted eating affects weight, metabolic health, mood, and sleep in adherent completers: a secondary analysis. 2023;31 Suppl 1(Suppl 1)doi:10.1002/oby.23614
	 Steger FL, Jamshed H, Martin CK, et al. Impact of early time-restricted eating on diet quality, meal frequency, appetite, and eating behaviors: a randomized trial. 2023;31 Suppl 1(Suppl 1)doi:10.1002/oby.23642
Kunduraci 2020	1. Kunduraci YE, Ozbek H. Does the Energy Restriction Intermittent Fasting Diet Alleviate Metabolic Syndrome Biomarkers? A Randomized Controlled Trial. <i>Nutrients</i> . 2020;12(10)doi:10.3390/nu12103213
Lin 2023	1. Lin S, Cienfuegos S, Ezpeleta M, et al. Time-Restricted Eating Without Calorie Counting for Weight Loss in a Racially Diverse Population: A Randomized Controlled Trial. <i>Annals of Internal Medicine</i> . 2023;176(7)doi:10.7326/M23-0052
Liu 2022	 Liu D, Huang Y, Huang C, et al. Calorie Restriction with or without Time- Restricted Eating in Weight Loss. <i>New England Journal of Medicine</i>. 2022;386(16)doi:10.1056/NEJMoa2114833
Lowe 2020	 Lowe DA, Wu N, Rohdin-Bibby L, et al. Effects of Time-Restricted Eating on Weight Loss and Other Metabolic Parameters in Women and Men With Overweight and Obesity: The TREAT Randomized Clinical Trial. <i>JAMA Internal Medicine</i>. 2020;180(11)doi:10.1001/jamainternmed.2020.4153
Manoogian 2022	 Manoogian ENC, Zadourian A, Lo HC, et al. Feasibility of time-restricted eating and impacts on cardiometabolic health in 24-h shift workers: The Healthy Heroes randomized control trial. <i>Cell Metabolism</i>. 2022;34(10)doi:10.1016/j.cmet.2022.08.018
Montero 2023	 Montero MD. Effects of three 8-hour time-restricted eating schedules on visceral adipose tissue, body composition and cardiometabolic health in men and women with overweight/obesity: A multicenter randomized controlled trial. University of Granada; 2023. https://digibug.ugr.es/bitstream/handle/10481/84704/89159.pdf?sequence=4&isAllowed=y

Pavlou 2023	1.Pavlou V, Cienfuegos S, Lin S, et al. Effect of Time-Restricted Eating onWeight Loss in Adults With Type 2 Diabetes: A Randomized Clinical Trial. JAMA NetwOpen. Oct 2 2023;6(10):e2339337. doi:10.1001/jamanetworkopen.2023.39337						
Philips 2021	1. Papageorgiou M, Biver E, Mareschal J, et al. The Effects Of Time-Restricted Eating (Tre) And Weight Loss On Bone Metabolism And Health: an Exploratory Analysis In A 6-Month Randomised Controlled Trial. 2023;54doi:10.1016/j.clnesp.2022.09.296						
	2. Papageorgiou M, Biver E, Mareschal J, et al. The effects of time-restricted eating and weight loss on bone metabolism and health: a 6-month randomized controlled trial. 2023;31 Suppl 1(Suppl 1)doi:10.1002/oby.23577						
	3. Phillips NE, Mareschal J, Schwab N, et al. The Effects of Time-Restricted Eating versus Standard Dietary Advice on Weight, Metabolic Health and the Consumption of Processed Food: A Pragmatic Randomised Controlled Trial in Community-Based Adults. <i>Nutrients</i> . 2021;13(3)doi:10.3390/nu13031042						
Roman 2020	1. Roman SN, Fitzgerald KC, Beier M, Mowry EM. Safety and feasibility of various fasting-mimicking diets among people with multiple sclerosis. <i>Multiple Sclerosis and Related Disorders</i> . 2020;42doi:10.1016/j.msard.2020.102149						
Suthutvoravut 2023	1. Suthutvoravut U, Anothaisintawee T, Boonmanunt S, et al. Efficacy of Time- Restricted Eating and Behavioral Economic Intervention in Reducing Fasting Plasma Glucose, HbA1c, and Cardiometabolic Risk Factors in Patients with Impaired Fasting Glucose: A Randomized Controlled Trial. 2023;15(19). doi:10.3390/nu15194233						
Thomas 2022	1. Thomas EA, Zaman A, Sloggett KJ, et al. Early time-restricted eating compared with daily caloric restriction: A randomized trial in adults with obesity. <i>Obesity</i> (19307381). 2022;30(5)doi:10.1002/oby.23420						
	2. Zaman A, Grau L, Jeffers R, et al. The effects of early time restricted eating plus daily caloric restriction compared to daily caloric restriction alone on continuous glucose levels. <i>Obesity Science and Practice</i> . 2023;doi:10.1002/osp4.702						
Wei 2023	1. Wei X, Lin B, Huang Y, et al. Effects of Time-Restricted Eating on Nonalcoholic Fatty Liver Disease: The TREATY-FLD Randomized Clinical Trial. <i>JAMA Network Open</i> . 2023;6(3)doi:10.1001/jamanetworkopen.2023.3513						
Bachman 2012	1. Bachman JL, Raynor HA. Effects of manipulating eating frequency during a behavioral weight loss intervention: a pilot randomized controlled trial. <i>Obesity (Silver Spring, Md)</i> . 2012;20(5)doi:https://dx.doi.org/10.1038/oby.2011.360						
Forslund 2008	1. Forslund HB, Klingström S, Hagberg H, Löndahl M, Torgerson JS, Lindroos AK. Should snacks be recommended in obesity treatment? A 1-year randomized clinical trial. <i>European Journal of Clinical Nutrition</i> . 2008;62(11)doi:10.1038/sj.ejcn.1602860						
Grangeiro 2021	 Grangeiro É, Trigueiro MS, Siais LO, et al. Hypocaloric diet with lower meal frequency did not affect weight loss, body composition and insulin responsiveness, but improved lipid profile: a randomized clinical trial. 2021;12(24)doi:10.1039/d1fo00484k 						

Jakubowicz 20191.Jakubowicz D, Froy O, Tsameret S, et al. Three meals diet with high energy
breakfast is an effective strategy for weight loss, reduction of glucose variability and of
total daily insulin dose in type 2 diabetes. 2018;61doi:10.1007/s00125-018-4693-0

2. Jakubowicz D, Froy O, Tsameret S, et al. High energy breakfast diet is an effective strategy for weight loss and reduction of the total daily insulin dose in type 2 diabetes. 2018;39(2)

3. Jakubowicz D, Landau Z, Tsameret S, et al. Reduction in Glycated Hemoglobin and Daily Insulin Dose Alongside Circadian Clock Upregulation in Patients With Type 2 Diabetes Consuming a Three-Meal Diet: A Randomized Clinical Trial. *Diabetes Care*. 2019;42(12)doi:10.2337/dc19-1142

Kahleova 20141.Belinova L, Kahleova H, Hajek M, Dezortova M, Hill M, Pelikanova T. The effect
of frequency of meals on hepatic fat content in patients with type 2 diabetes.
Diabetologia. 2012;55doi:10.1007/s00125-012-2688-9

2. Belinova L, Kahleova H, Malinska H, et al. The effect of meal frequency in a reduced-energy regimen on the gastrointestinal and appetite hormones in patients with type 2 diabetes: a randomised crossover study. 2017;12(4)doi:10.1371/journal.pone.0174820

3. Kahleova H, Belinova L, Hajek M, Dezortova M, Hill M, Pelikanova T. Prolonged fasting reduces hepatic fat content in patients with type 2 diabetes. *Diabetes*. 2012;61doi:10.2337/db12-2763-2907

4. Kahleova H, Belinova L, Hill M, Pelikanova T. The effect of frequency of meals on body weight, HbA1c and resting energy expenditure in patients with type 2 diabetes. *Diabetologia*. 2012;55doi:10.1007/s00125-012-2688-9

5. Kahleova H, Belinova L, Hill M, Pelikanova T. Two meals a day are better than six for patients with type 2 diabetes. *Diabetes*. 2012;61doi:10.2337/db12-656-835

6. Kahleova H, Belinova L, Malinska H, et al. Meal frequency and type 2 diabetes. 2015;8doi:10.1159/000382140

 Kahleova H, Belinova L, Malinska H, et al. Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study.
 2014;57(8)doi:10.1007/s00125-014-3253-5

Kahleova H, Belinova L, Tura A, et al. The effect of frequency of meals on beta cell function in subjects with type 2 diabetes. *Diabetologia*.
 2013;56doi:10.1007/s00125-013-3012-z

9. Kahleova H, Malinska H, Kazdova L, Belinova L, Hill M, Pelikanova T. The effect of meal frequency on fatty acid composition in serum phospholipids in patients with type 2 diabetes. *Diabetologia*. 2014;57(1)doi:10.1007/s00125-014-3355-0

Papakonstantino1.Papakonstantinou E, Kechribari I, Mitrou P, et al. Effect of meal frequency on
glucose levels in women with polycystic ovary syndrome: a randomized trial.
2015;8doi:10.1159/000382140

	2. Papakonstantinou E, Kechribari I, Mitrou P, et al. Effect of meal frequency on glucose and insulin levels in women with polycystic ovary syndrome: a randomised trial. 2016;70(5)doi:10.1038/ejcn.2015.225				
Papakonstantino u 2018	1. Papakonstantinou E, Kontogianni MD, Mitrou P, et al. Effects of 6 vs 3 eucaloric meal patterns on glycaemic control and satiety in people with impaired glucose tolerance or overt type 2 diabetes: A randomized trial. <i>Diabetes Metab</i> . Jun 2018;44(3):226-234. doi:10.1016/j.diabet.2018.03.008				
	 Papakonstantinou E, Mitrou P, Kontogianni MD, Dimitriadis G. Effect of meal frequency on glucose and insulin responses in obese people with impaired glucose tolerance and with type 2 diabetes: a randomised trial. 2017;60(1)doi:10.1007/s00125-017-4350-z 				
Zargaran 2014	1. Zargaran ZH, Salehi M, Taghi Heydari S, Babajafari S. The effects of 6 Isocaloric Meals on Body Weight, Lipid Profiles, Leptin, and Adiponectin in Overweight Subjects (BMI > 25). 2014;8(2)				
Jakubowicz 2013	1. Jakubowicz D, Bar Dayan Y, Wainstein J. Differential effect of high calorie breakfast vs. high calorie dinner diet on weight loss and glucose metabolism in women with metabolic syndrome. 2013;5doi:10.1111/1753-0407.12032				
	 Jakubowicz D, Barnea M, Wainstein J, Froy O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. 2013;21(12)doi:10.1002/oby.20460 				
	3. Jakubowicz D, Boaz M, Bar-Dayan Y, Wainstein J. Comparison of the effect of high calorie breakfast diet vs high calorie dinner diet on weight loss, ghrelin, lipids and appetite scores in obese non diabetic women. 2012;33(3)				
	4. Jakubowicz D, Wainstein J, Froy O. High-calorie breakfast improves weight loss and metabolism vs. isocaloric meal at dinner in obese women with metabolic syndrome. 2013;62doi:10.2337/db13-1395-1677				
Lombardo 2014	1. Lombardo M, Bellia A, Padua E, et al. Morning meal more efficient for fat loss in a 3-month lifestyle intervention. <i>J Am Coll Nutr</i> . 2014;33(3):198-205. doi:10.1080/07315724.2013.863169				
Madjd 2016	1. Madjd A, Taylor MA, Delavari A, Malekzadeh R, Macdonald IA, Farshchi HR. Beneficial effect of high energy intake at lunch rather than dinner on weight loss in healthy obese women in a weight-loss program: a randomized clinical trial. <i>Am J Clin</i> <i>Nutr</i> . Oct 2016;104(4):982-989. doi:10.3945/ajcn.116.134163				
Madjd 2021	1. Madjd A, Taylor MA, Delavari A, Malekzadeh R, Macdonald IA, Farshchi HR. Effects of consuming later evening meal v. earlier evening meal on weight loss during a weight loss diet: a randomised clinical trial. <i>Br J Nutr</i> . Aug 28 2021;126(4):632-640. doi:10.1017/s0007114520004456				

eTable 4: Details of Intervention Delivery

Author, year	Instructions given	Energy/macro- nutrient prescription	Personalisation	Intervention maintenance	Frequency of contact	Mode of delivery	Intervention provider
Time-restricted	d eating						
Che 2021 ³³	C: Usual diet, no time restriction	Ad libitum	None	Supervisor meetings	Weekly	Face-to- face	Research supervisor
	l₁: 10h TRE, 8 am - 6 pm						Nutritionist
	Guidance on how to estimate portion sizes and keep detailed food records to obtain accurate dietary intake						
Chow 2020 ³⁴	C: Usual diet, no time restriction	Ad libitum	None	Phone call, email or text	Weekly	Online	Not stated
	I1: 8h TRE (self- selected)			reminders			
de Oliveira Maranhao	C: Daily energy restriction	Energy restriction	Energy goal: 500- 1000 kcal	Nutrition counselling	Monthly	Face-to- face	Dietitian
Pureza 2021 ³⁵	I₁: 12h TRE (self- selected eating window)		subtracted from total energy expenditure				
			Meal plan based on Brazilian				

			guideline on obesity and habitual food consumption				
Dhurandhar 2014 ³⁶	C: General good nutrition habits	None	None	Phone calls	Weeks 4, 8 and 12	Hybrid	Study coordinators
	l₁: Ate breakfast before 10 am						
	l₂: No energy intake before 11 am						
	Received a USDA pamphlet "Let's Eat for the Health of It" and a summary handout						
Erdem 2022 ²⁹	I ₁ : 6h TRE (1-7 pm)	Ad libitum	None	None	/	Face-to- face	Researcher
	I ₂ : 8h TRE (1-9 pm)						
	Initial visit: portion size training						
Jamshed 2022⁴⁰	C: Self-selected ≥12h eating window	Energy restriction = REE – 500kcal/day	None	Nutrition counselling	Baseline, weeks 2, 6 and 10	Face-to- face	Dietitian
	l₁: 8h TRE (7 am - 3 pm)			Group classes	≥3 times a month	Hybrid	

i	Encouraged to increased exercise to 75-150 minutes/week						
	C: Daily energy restriction	Energy restriction	Energy goal: 25% reduction from	Phone calls and compliance	Weekly	Hybrid	Clinician & Dietitian
5	I1: 8h TRE (Self- selected eating window)		habitual energy intake	interviews			
(Instructions to fill out food diaries and fasting log		Macro- and micro-nutrient distribution				
Ę	given		Meal plan based on Turkey National Dietary Guidelines (Mediterranean Diet)				
١	C: Maintained weight, physical	Ad libitum	None	Nutrition counselling	Weekly for first 12 weeks	Online	Dietitian
	activity habits & 10h+ baseline eating window				Fortnightly for next 12 weeks		
	I₁: 8h TRE (12-8 pm). At 26 weeks, eating window widened to 10h				Monthly for the final 6 months		
	C: No time restriction	Energy restriction = 1500-1800	None	Phone calls/app messages	Twice a week then monthly in	Hybrid	Trained health coach

	l₁: 8h TRE (8am - 4pm)	kcal/d for men & 1			the last 6 months		
	Encouraged to weigh food to ensure accuracy of intake	200-1500 kcal/d for women Macronutrient distribution (40- 55% carbohydrate, 15- 20% protein, 20- 30% fat)		Nutrition counselling	Fortnightly then monthly in the last 6 months		
	1 protein shake per day for first 6 months			Health education sessions	Monthly		
	Written dietary information booklets with food portion advice and sample menus						
	Mobile app for daily food log with pictures and mealtimes						
Lowe 2020 ⁴⁵	C: 3 meals daily (7-11 am, 11 am-3 pm, 4-10 pm) Snacking between meals was permitted.	Ad libitum	None	App reminders	Three times a day	Remote	Not stated

I_1	: 8h TRE (12-8
р	m)

	Mobile app with Bluetooth scale connected for weight and blood pressure measurements, surveys and message reminders						
Manoogian 2022 ⁴⁶	C: No time restriction	Ad libitum	None	App reminders	Not stated	Remote	Dietitian
	I1: 10h TRE (self- selected eating window) Mediterranean Diet cookbook	Mediterranean Diet (60% carbohydrates, 15% protein and 25% fat)		Nutrition counselling	Week 6		
	Mobile app for food log						
Montero 2023 ¹⁸	Received an educational program	No energy restriction	None	None	N/A	N/A	N/A

C: Usual care

	I1: 8h TRE (starting by 10:00am) I2: 8h TRE (starting by 12:00pm)	Education on Mediterranean diet					
	I3: 8h TRE (self- selected eating window)						
Pavlou 2023 ¹⁹	Instructed to maintain their weight ad usual eating and	No energy restriction	None	Recorded adherence, weight changes, etc. TRE groups were taught about healthy food choices.	Weekly until 3 months, bi- weekly thereafter.	Telephone/z oom	Dietitian
	exercise habits C: Usual care	General healthy eating instructions					
	I1:8h TRE (Ad libitum 12-8pm)						

Philips 2021 ⁴⁹	C: Usual care (10- minute nutritional counselling at randomisation and a leaflet summarising food pyramid and Swiss dietary advice)	Ad libitum	None	Phone calls and email	After 2 weeks of observation, and after 2 and 4 months of intervention	Remote	Not stated
	I₁: 12h TRE (self- selected eating window with no nutritional advice)						

	Mobile app for food log						
Roman 2020⁵⁰	C: Usual diet	Ad libitum	None	SMS message	Twice a week	Remote	Not stated
	I1: 8h TRE (self- selected eating window)						
Suthutvoravu	C: Usual care	Ad libitum	None	None	1	/	Not stated
t 2023 ²⁰	l₁: 9h TRE (8 am - 5 pm)						
Thomas 2022 ^{₅1}	C: No time restriction	Energy restriction = REE - 10%	Energy goal	Group-based program based	Weekly first 12 weeks then	Cohort 1 & 2: Face-to-	Dietitian
	I ₁ : 10h TRE (starting within 3 h			on PreventT2 curriculum	monthly during weeks 13-39	face	
	of waking)					Cohort 3: Face-to- face then	
	Encouraged to perform 150min/week of moderate activity					remote from week 6 due to COVID	
Wei 2023 ²¹	C: No time restriction	Energy restriction = 1500-1800	Energy goal	Phone calls/app messages	Twice a week then monthly in	Hybrid	Trained nutritionist
	l₁: 8h TRE (8 am - 4 pm)	kcal/d for men & 1200-1500 kcal/d for women			the last 6 months		
	Encouraged to weigh food to	Macronutrient composition		Nutrition counselling			

ensure accuracy of intake

1 protein shake per day for first 6 months (40% to 55% carbohydrate, 15% to 20% protein, and 20% to 30% fat)

Health education sessions Fortnightly then monthly in the last 6 months

Monthly

Written dietary information booklets with food portion advice and sample menus

Mobile app for daily dietary log with pictures and mealtimes

Meal Frequency

Bachman 2012 ³²	I₁: 3 meals per day I₂: Grazing group - ≥100kcal every 2- 3 h. Distribution of energy recommended to follow typical diet for Americans (75% energy from	Isocaloric energy and fat restriction	Encouraged to decide how they wanted to divide their energy intake between the 3 meals. Guidelines in form of meal plan provided. Asked	Meetings At each meeting, participants were weighed, homework was discussed, and a behavioural	Weekly for 4 months then bimonthly for remaining 2 months	Face-to- face	Study principle investigator (Masters level training in nutrition, registered dietitian, and training in exercise physiology and
-------------------------------	---	--	---	--	---	------------------	---

	meals). Provided a list of snack ideas. Participants with a body weight ≤200 lbs were prescribed 1,200 kcals/day and participants with body weight >200 lbs were prescribed 1,500 kcals/ day. Intake of fat was restricted to <30% energy from fat. Encouraged to build up physical activity.		to create individual eating schedule, schedules reviewed and adjusted if needed.	lesson. Self- monitoring records were turned in at each meeting and individualized feedback on program goals was provided.			behavioural psychology)
I	I1: 3 meals per day. Recommended daily energy distribution: 30% Breakfast, 35% Lunch, 35% Dinner.	Isocaloric energy restriction	Instruction about eating frequency and individualized diet plan provided. Energy needs calculated; participants given personal energy restriction 30%	Meetings	Every 2 weeks for first 12 weeks then every four weeks until week 52	Face-to- face?	Local dietician, physician and nurse

less than needs.

I₂: 3 snacks + 3 meals per day.

© 2024 Liu HY et al. JAMA Network Open.

Forslund 2008³⁷

Recommended	
daily energy distribution: 20% Breakfast, 25% lunch, 25% dinner + 3 snacks 10% each	All diets followed the Swedish Nutrition Recommendation s

meals: breakfast (20%-25%TEE), lunch (35%–40% TEE), and dinner (35%–40% TEE)

Isocaloric energy Personal dietary Every 2 weeks Jakubowicz I1: 3 meal diet Isocaloric energy Face-to-Dietitian 2019³⁹ restriction by counselling by face? restriction I₂: 6 meal diet subtracting 500 dietitian kcal from the individual 3 meal diet calculated Harris 10-15 minute consisted of a Phone Benedict conversation Twice a week large breakfast of equation. 700 kcal, a medium-sized lunch of 600 kcal, and a small dinner Appointment for of 200 kcal; 6 insulin titration Face-tomeal diet Physician Biweekly face? consisted of six meals (breakfast, lunch, dinner, and three snacks) with relatively uniform daily caloric distribution in the meals plus 150 kcal in each one of the three snacks.

All participants were asked to eat breakfast before 0930, lunch between 1200-1500, and dinner between 1800-2000. Additional three snacks at 1100, 1700, and 2200.

For both - same macronutrient composition of fat, protein, and carbohydrates (35:25:40%, respectively)

Kahleova 2014 ⁴¹	I₁: 6 meal diet (3 main meals (breakfast, lunch, dinner) + 3 smaller snacks in between)	Isocaloric energy restriction	Restriction of 500 kcal/day from resting energy expenditure (REE) of individuals measured by indirect calorimetry	Four day diet tutorial with follow up meetings (lectures + cooking classes)	Initial tutorial followed by 1 hour weekly for entire study duration	Face-to- face	Unspecified Dietitian assessed dietary records
--------------------------------	--	----------------------------------	--	--	--	------------------	--

Diet records

I₂: 2 meal diet (Breakfast and Lunch)

Followed

Weeks 0, 12 and 24 (3-day record)

Diabetes and Nutrition of the European Association for the Study of Diabetes guidelines. Total daily energy breakdown: 50– 55% carbohydrates, 20–25% protein

and less than 30% fat with 30–40 grams of fibre.

Meals provided for a randomised ½ of study participants.

Papakonstant $I_1: 3 \text{ meal diet}$ inou 201647

I1: 3 meal diet Energy maintenance I2: 6 meal diet Instructions provided on how to record food Energy intake Daily records

Face-to-

face??

Participants kept food records Macronutrient breakdown: 40% carbohydrates, 25% protein and

35% fat.

Monitored and Biweekly adjusted food records Dietitians checked food records

Three-meal pattern carbohydrate distribution

pattern was 20% at breakfast, 50% at lunch and 30% at dinner.

The six-meal carbohydrate breakdown was 20% at breakfast, 10% at morning snack, 30% at lunch, 10% at afternoon snack, 20% at dinner and 10% at before bedtime

snack.

Papakonstant inou 2018a ⁴⁸	I ₁ : 3 meal diet I ₂ : 6 meal diet Macronutrient breakdown: 45% carbohydrates,	Energy maintenance Dietary plans provided with guidance foods to eat and meal	For each 12-week intervention, five 7-day food diaries were used to check compliance with the dietary plan. Detailed	Food records daily Education sessions and structured interviews where	Reviewed every 2-weeks	??	Kept by participants, reviewed by dietitian
	20% protein and 35% fat. Three-meal pattern carbohydrate distribution pattern was 20% at breakfast, 50%	Caloric requirements calculated using Schofield equation.	instructions were given on how to record the quantity of food consumed, using standard household weights and measures.	changes were proposed			
	at lunch and 30% at lunch and 30% at dinner. The six-meal carbohydrate breakdown was 20% at breakfast, 10% at morning snack, 30% at lunch, 10% at afternoon snack,						

20% at dinner and 10% at bedtime

snack.

Papakonstant inou 2018b ⁴⁸	I ₁ : 3 meal dietI ₂ : 6 meal diet Macronutrient breakdown: 45% carbohydrates, 20% protein and 35% fat. Three-meal pattern carbohydrate	Energy maintenance Dietary plans provided with guidance foods to eat and meal preparation. Caloric requirements calculated using Schofield	For each 12-week intervention, five 7-day food diaries were used to check compliance with the dietary plan. Detailed instructions were given on how to record the quantity of food consumed, using standard household	Food records daily Education sessions and structured interviews where changes were proposed	Reviewed every 2-weeks	??	Kept by participants, reviewed by dietitian
	distribution pattern was 20% at breakfast, 50% at lunch and 30% at dinner. The six-meal carbohydrate breakdown was 20% at breakfast, 10% at morning	equation.	weights and measures.				

snack, 30% at lunch, 10% at afternoon snack, 20% at dinner and 10% at bedtime

snack.

Zargaran 2014 ⁵²	C: Normal diet (mostly three meals and two snacks) I ₁ :6 meal diet (iso- caloric meals)	Energy restriction	Weight loss diet written for both groups. Energy intake planned for each subject was 400 kcal less energy	Training sessions	2 sessions (control), 4 sessions (intervention)	N/A	N/A
	The control group was trained only about healthy nutrition in 2 sessions.		needed for weight maintenance. Macronutrient percentage was the same in both groups.				
	6 iso-caloric meals, energy is divided into six equal parts (one meal every three hours), instead of their previous meal pattern. The intervention						

group was trained on how to divide daily energy into 6 isocaloric meals in 4 sessions.

Meal Distribution

Jakubowicz 2013 ³⁸	 I1: High-calorie breakfast with a small dinner I2: high-calorie dinner (D) with a small breakfast 	Total daily energy of 1400 +/- 25 kcal with identical macronutrient content and composition between groups.	Meal plans provided and proper food replacement choices for each item allowed for variation	Weekly 3-day food record Bi-weekly Nutrition consults	Weekly	Face-to- face	Research supervisor, Dietitian
	Meal times: Breakfast: 6:00-9:00, lunch: 12:00-15:00, dinner: 18:00- 21:00.	BF meal plan: a large breakfast (700 kcal, 50%), medium- sized lunch (500 kcal, 36%), and a small dinner (200 kcal, 14%)					
		Dinner plan was opposite above					

Lombardo 2014 ⁴⁴	C: Even energy distribution 55% energy breakfast to lunch, 45% energy afternoon tea to dinner)	Ad libitum	Mediterranean- style diet tailored to individual	3-day diet diary each week Weekly nutrition counselling	Weekly	Face-to- Face, Phone	Dietitian
	 I1: Front loading energy 70% energy breakfast to lunch, 30% energy afternoon tea to dinner 			As needed phone support consultation service			
Madjd 2016 ¹⁶	 I1: Large Lunch group: Energy distribution 15% breakfast 15% snacks, 50% lunch, 20% dinner I2: Large Dinner group Energy distribution same as above with lunch (20%) and 	Hypoenergetic diet designed for 7-10% weight loss over 12 weeks 17% of energy from protein, 23% from fat (10% from saturated fat), and 60% from carbohydrate,	Individualised diet programs in line with food record and preferences with gradual modification to NovinDiet protocol	Nutrition counselling Nutrition resources (booklets) Access to a website, weekly internet magazines	Bi-weekly	Phone, Face-to- Face	Dietitian, physician

	dinner (50%) swapped	with 400 g fruit and vegetables		Physician support			
Madjd 2021 ¹⁷	I1: Early dinner group	2092–2184 kJ (500–1000 kcal)	Individualised diet program	Nutrition counselling	Bi-Weekly	Phone, Face-to- Face	Dietitian
	Evening meal between 7 pm- 7:30 pm	based on EER	based on food diary and preferences				
	I2: Late Dinner group Evening meal between 10:30 pm – 11 pm	Energy distribution both groups 15 % breakfast 15% snacks, 50 % lunch,					
		20 % dinner					
		17% of energy from protein, 23 % from fat (<10 % from saturated fat) and 60 % from carbohydrate – with at least 400 g/d fruits and					

vegetables

eTable 5: Adherence outcomes

Study	Definition	Mean (SD)						
Time-restricte	Time-restricted eating							
Che 2021	Daily self-reported eating window adherence (no. of days/week)	l ₁ : 6.59 (0.95)						
Chow 2020	(a) Daily self-reported logging adherence	C: (a) 90.9% (8.3)						
	 (b) Eating window compliance within ±15 minutes, ±30 minutes, and ±60 minutes via 	l ₁ : (a) 83.1% (13.4)						
	myCircadianClock (mCC) app over 12 weeks	(b) ±15 minutes: 55.5% (22.4)						
		±30 minutes: 60% (23)						
		±60 minutes: 66.3% (20.7)						
Dhurandhar 2014	Self-reported percentage of days complying with the breakfast skipping recommendation over 16 weeks	I: 92.40%						
Jamshed	Daily self-reported eating window adherence (no. of	C: 6.3 (0.8)						
2022	days/week) via REDCap (Research Electronic Data Capture) surveys	I ₁ : 6.0 (0.8)						
Lin 2023	Control: Percentage of participants adhering to energy	C: 61%						
	restriction from food record data	l₁: 6.1 (0.8)						
	TRE: Daily self-reported eating window adherence via app (no. of days/week)							
Liu 2022	Mean percentage of days adhering to the assigned diet	C: 83.8% (12.6)						
	assessed from daily dietary log, food pictures, and the eating window noted via app over 12 months	l ₁ : 84.0% (16.1)						
Lowe 2020	Percentage of days adhering to protocol reported on daily	C: 92.10%						
	adherence surveys	I ₁ : 83.50%						
Manoogian	Logging adherence (number of days out of 14 days) via	C: 10.07 (2.67)						
2022	myCircadianClock (mCC) app over 12 weeks	I ₁ : 10.23 (2.71)						
Roman	Self-reported percentage of study days with a calorie intake	C: 29.7% (13.87)						
2020	interval (CII) <8 hours duration	I₁: 64.61% (19.80)						
Thomas 2022	Self-reported adherence (no. of days/week) via	C: (a) 3.9 (1.5)						
2022	questionnaires over 12 weeks	I ₁ : (a) 4.4 (1.6)						
	(a) Energy restriction(b) Eating window	(b) 5.5 (1.2)						
Wei 2023	Percentage of days adhering to the diet program via dietary	C: 85.0% (10.7)						
	log, food pictures and mealtimes via app over 12 months	l ₁ : 85.7% (9.4)						

Meal frequency Bachman (a) Percentage of self-monitoring diaries submitted I_1 : 2012 (b) Percentage of attendance (a) 78.8% (23.4) (b) 91.2% (14.1) I_2 : (a) 69.2% (31.1) (b) 81.2% (23.0) Grangeiro I1: 76.80% (16.96) Average percentage of stipulated meals consumed 2021 assessed from the periodic food record assessed three I2: 70.81% (16.78) times over 12 weeks Meal distribution Jakubowicz Self-reported weekly three-day diet record Higher compliance in BF 2013 group than D group Noncompliance: a deviation of 10% or more from the recommended energy intake Percentage of days following dinner time recommendation Madjd 2021 I₁: 91.80% from self-reported diary log I₂: 93.20%

Note. eTable 5 details the reported mean (SD) for adherence to the prescribed intervention over the duration of the study based on how each study reported adherence. SD = Standard deviation, C = control group, I_1 = first intervention group, I_2 = second intervention group, BF = Breakfast, D = Dinner

eTable	6: Hunger	outcomes
--------	-----------	----------

Study	Measuring tool	Timepoints extracted	Mean (SD)
Time-restricted eating			
Jamshed 2022 (Steger	VAS (0-100 mm)	Baseline & 14 weeks	C: -18 (38.34)
2023)			l ₁ : -3 (53.85)
Thomas 2022	VAS (0-100 mm)	Baseline & 12 weeks	C: 0.3 (4.27)
			l ₁ : -2.5 (3.75)
	TFEQ (0-14)	Baseline & 12 weeks	C: -1.1 (0.89)
			l ₁ : -1.0 (0.84)
Meal frequency			
Bachman 2012	VAS (0-100 mm)	Baseline & 26 weeks	l1: no significant difference
			l2: significant decrease (p<0.05)
Jakubowicz 2019	VAS (0-100 mm)	Baseline & 12 weeks	l ₁ : -18 (3)

			l ₂ : 2 (1.7)
Papakonstantinou	VAS (0-10)	Biweekly average for 12	l₁: 3.1 (0.35)
2016		weeks	l ₂ : 2.3 (0.30)
Papakonstantinou 2018	VAS (0-10)	Biweekly average for 12 weeks	l₁: 3.30 (2.12) l₂: 2.54 (1.65)
Meal distribution			
Jakubowicz 2013	VAS (0-100 mm)	Week 2	Mean daily hunger levels in BF group were 28% lower than D group (p<0.0001)

Note. eTable 6 details the reported mean (SD) for hunger as measured using the detailed measuring tool. SD = Standard deviation, C = control group, I_1 = first intervention group, I_2 = second intervention group

eTable 7: Satiety outcomes							
Study	Measuring tool	Timepoints extracted	Mean (SD)				
Time-restricted eating							
Jamshed 2022 (Steger	VAS (0-100 mm)	Baseline & 14 weeks	C: -20 (38.34)				
2023)			l ₁ : -6 (32.31)				
Thomas 2022	VAS (0-100 mm)	Baseline & 12 weeks	C: -0.3 (5.24)				
			I ₁ : -2.4 (4.5)				
Meal frequency							
Papakonstantinou	VAS (0-10)	Biweekly average	I ₁ : 8.0 (0.22)				
2016			l ₂ : 8.3 (0.24)				
Papakonstantinou	VAS (0-10)	Biweekly average	l ₁ : 7.84 (1.58)				
2018			l ₂ : 7.72 (1.99)				
Meal distribution							
Jakubowicz 2013	VAS (0-100 mm)	Week 2	Mean daily satiety levels in BF group were 31% higher than D group (p<0.0001)				

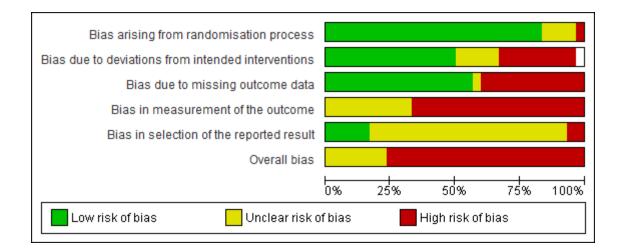
Note. eTable 7 details the reported mean (SD) for satiety as measured using the detailed measuring tool. SD = Standard deviation, C = control group, I_1 = first intervention group, I_2 = second intervention group

eTable 8: Notable clin	ical trials exclu	ded		
Clinical Trial Number	Intervention	Year	Stage of completion	Notes
ACTRN12620000453987	Time-restricted eating	2020	Completed	Full text not found
	caung			No anthropometric measurements

ACTRN12613000935730	Time-restricted	2013	Completed	Full text found
	eating			Wrong comparator
ChiCTR2000032048	Time-restricted eating	2020	Not yet recruiting	Full text not found
ChiCTR1800016271	Intermittent fasting	2018	Recruiting	Full text not found
ChiCTR2200058929	Breakfast skipping	2022	Not yet recruiting	Full text not found
ChiCTR2100052582	Time-restricted eating	2021	Recruiting	Full text not found
ChiCTR2100052876	Time-restricted eating	2021	Recruiting	Full text not found
ChiCTR2100051792	Time-restricted eating	2021	Recruitment completed	Full text not found
ChiCTR2000029797	Time-restricted	2020	Completed	Full text found
	eating			Wrong intervention duration
ChiCTR1800016104	Intermittent fasting	2018	Not yet recruiting	Full text not found
ChiCTR1900025424	Intermittent fasting	2019	Not approved	Full text not found
ChiCTR2000039115	Time-restricted eating	2020	Recruiting	Wrong intervention duration
ChiCTR2200056363	Time-restricted eating	2022	Not yet recruiting	Full text not found
ChiCTR2300067375	Time-restricted eating	2023	Not yet recruiting	Full text not found
ChiCTR2300074846	Time-restricted eating	2023	Not yet recruiting	Full text not found
CTRI/2022/02/040292	Time-restricted eating	2022	Open to recruitment	Full text not found
CTRI/2022/06/043312	Time-restricted eating	2022	Open to recruitment	Wrong comparator
CTRI/2022/11/047684	Time-restricted eating	2022	Not yet recruiting	Full text not found
CTRI/2022/07/044356	Time-restricted eating	2022	Closed to recruitment	Wrong comparator

DRKS00031928	Time-restricted eating	2023	Recruiting	Full text not found
DRKS00028261	Time-restricted eating	2022	Recruiting	Full text not found
IRCT2012102911307N1	Meal frequency	2012	Completed	Full text included (Zargaran 2014)
KCT0005390	Time-restricted eating	2020	Recruiting	Full text not found
NCT02525419	High-protein intermittent fasting	2015	Completed	Full text found Wrong intervention
NCT05742165	Time-restricted eating	2023	Recruiting	Full text not found
NCT02948517	Time-restricted	2016	Completed	Full text found
	eating			Wrong study design
NCT05581862	Meal frequency	2022	Completed	Full text not found
NCT03571048	Time-restricted eating	2018	Completed	Full text included (Thomas 2022)
NCT03745612	Time-restricted eating	2018	Completed	Full text included (Liu 2022)
NCT03792282	Time-restricted eating	2019	Completed	Full text not found
	Cating			Wrong comparator
NCT04692532	Time-restricted eating	2021	Enrolling by invitation	Full text not found
NCT05548517	Time-restricted eating	2022	Recruiting	Full text not found
NCT04916730	Time-restricted eating	2021	Recruiting	Full text not found
NCT05870982	Time-restricted eating	2023	Not yet recruiting	Full text not found
NCT05880095	Time-restricted eating	2023	Recruiting	Full text not found
NCT05629858	Time-restricted eating	2023	Enrolling by invitation	Full text not found
NCT04127994	Meal frequency	2019	Recruiting	Full text not found
NCT01178723	Meal distribution	2010	Unknown status	Full text not found

NCT03689608	Intermittent	2018	Completed	Full text found
	fasting			Wrong intervention
NCT04155619	Time-restricted eating	2019	Recruiting	No anthropometric measurements
NCT04997486	Time-restricted eating	2021	Active, not recruiting	No anthropometric measurements
NCT04243746	Time-restricted eating	2020	Completed	Full text not found
NCT04057339	Time-restricted eating	2019	Active, not recruiting	Full text not found
NCT05220956	Time-restricted eating	2022	Recruiting	No anthropometric measurements
NCT04502329	Time-restricted eating	2020	Completed	Full text included (Kunduraci 2020)
NCT01277471	Meal frequency	2011	Completed	Full text included (Kahleova 2014)
NCT01781780	Breakfast skipping	2013	Completed	Full text included (Dhurandhar 2014)
NCT03393195	Time-restricted eating	2018	Completed	Full text included (Lowe 2020)
NCT03459703	Time-restricted eating	2018	Completed	Full text included (Jamshed 2022)
NCT03802253	Time-restricted eating	2019	Recruiting	Full text not found
NCT04062773	Time-restricted eating	2019	Unknown status	Full text not found
NCT04131647	Intermittent	2019	Recruiting	Full text not found
	fasting			Wrong intervention
NCT04534985	Time-restricted eating	2020	Active, not recruiting	Full text not found
NCT04557540	Intermittent fasting	2020	Recruiting	Wrong comparator
NCT05126199	Time-restricted eating	2021	Recruiting	Full text not found


NCT05225337	Time-restricted eating	2022	Completed	Full text included (Pavlou 2023)
NCT05229835	Time-restricted eating	2022	Active, not recruiting	No anthropometric measurements
NCT05230160	Intermittent fasting	2022	Not yet recruiting	Wrong intervention
NCT05290246	Time-restricted eating	2022	Recruiting	Wrong comparator
NCT05310721	Time-restricted eating	2022	Completed	Full text included (Montero 2023)
NCT05549362	Time-restricted eating	2022	Recruiting	No anthropometric measurements
NCT05730231	Time-restricted eating	2022	Active, not recruiting	Full text not found
NCT05860413	Time-restricted eating	2022	Recruiting	Wrong comparator
NCT06018415	Time-restricted eating	2023	Not yet recruiting	Full text not found
NL9756	Time-restricted eating	2021	NA	Trial not found
PACTR202301674821174	Time-restricted eating	2023	Recruitment completed	Full text not found
RBR-3p8346g	Meal frequency	2021	Not yet recruiting	Full text not found
RBR-45fpgqh	Time-restricted eating	2023	Recruiting	Full text not found
SLCTR/2018/001	Time-restricted eating	2018	Pending	Full text not found
TCTR20230131002	Time-restricted eating	2023	Recruitment completed	Not yet published
TCTR20210520002	Time-restricted eating	2021	Completed	Full text included (Suthutvoravut 2023)
UMIN000045481	Breakfast skipping	2021	Recruitment suspended	Full text not found

Note. eTable 8 details the clinical trials excluded from the review at full text screening with current stage of completion and reason for exclusion.

eFigure 1: Risk of summary for included studies.

Note. eFigure 1 details the individual risk of each study included in the review by domain. green = low risk, yellow = some caution, red = high risk

eFigure 2: Risk of bias graph for included studies.

Note. eFigure 2 details the overall risk of bias for all studies included in the review.

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI	Weight%
Obese I												1.1		
Montero 2023 (Spain)	48	30	FT=8h	Metabolic	12	148	-4.54	3.25	49	-1.80	3.29		-2.74 [-3.80; -1.68]	8.1
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-8.27	5.09	33	-5.80	3.74		-2.47 [-4.65; -0.29]	4.6
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-3.60	1.92	9	-1.50	2.33		-2.10 [-4.00; -0.20]	5.3
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.00	6.62	70	-6.20	6.62		-1.80 [-4.00; 0.40]	4.5
Thomas 2022 (USA)	38	34	FT=10h	Healthy	12	33	-6.20	4.10	27	-5.10	3.20		-1.10 [-2.95; 0.75]	5.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.46	43	-7.80	6.46		-0.60 [-3.30; 2.10]	3.5
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	59	-1.17	2.80	57	-0.76	2.80		-0.41 [-1.43; 0.61]	8.2
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.58	4.44	27	-0.53	4.44		-0.05 [-2.34; 2.24]	4.3
Dhurandhar 2014 (USA)	42		No Breakfast	Healthy	16	90	-0.66	1.17	98	-0.61	1.16		-0.05 [-0.38; 0.29]	10.3
Overall Effect				1000 C		518			413			•	-1.21 [-2.11; -0.31]	54.1
Heterogeneity: $l^2 = 75\%$, $\tau^2 = 1.1595$, $\chi^2_8 = 31.8$	32 (p -	< 0.01)											
Obese II														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-3.49	5.45	30	1.12	5.45		-4.61 [-7.37; -1.85]	3.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.52	4.83	25	-1.07	4.83		-3.45 [-6.13; -0.77]	3.5
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-6.30	3.39	45	-4.00	3.39		-2.30 [-3.70; -0.90]	6.8
Overall Effect Heterogeneity: $l^2 = 15\%$, $\tau^2 = 0.2222$, $\chi^2_2 = 2.34$	(p =	0.31)				100			100			-	-3.00 [-4.29; -1.70]	13.8
Overweight														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-2.98	3.33	60	-0.83	2.48		-2.15 [-3.20; -1.10]	8.1
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49		13.12					-1.01 [-7.61; 5.59]	0.8
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.94	2.18	66	-0.43	2.07		-0.51 [-1.23; 0.21]	9.3
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.60	3.23		-1.10	3.23		-0.50 [-2.40; 1.40]	5.3
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.42	1.12	12	0.06	1.12	-	-0.48 [-1.38; 0.42]	8.6
Overall Effect						216			180			•	-0.91 [-1.67; -0.16]	32.1
Heterogeneity: $l^2 = 47\%$, $\tau^2 = 0.3080$, $\chi^2_4 = 7.52$	2 (p =	0.11)												
Overall Effect						834			693			•	-1.38 [-2.00; -0.76]	100.0
Heterogeneity: $l^2 = 73\%$, $\tau^2 = 0.9355$, $\chi^2_{16} = 59$.	81 (p	< 0.0	1)											
Test for overall effect: z = -4.39 (p < 0.01)			10									-6 -4 -2 0 2 4 6		
Test for subgroup differences: $\chi^2_2 = 7.59$, df = 2	(p =	0.02)									Eavor	urs Intervention Favours Contro	i l	

eFigure 3: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time-restricted eating on weight (kg), grouped by baseline BMI status.

							Interve	ntion		C	ontrol			
Author Year (Country)	Age	BM	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI M	ean Difference, 95%CI V	Veight%
Feeding time is > 8 hours														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-2.98	3.33	60	-0.83	2.48		-2.15 [-3.20; -1.10]	8.1
Thomas 2022 (USA)	38	34	FT=10h	Healthy	12	33	-6.20	4.10	27	-5.10	3.20		-1.10 [-2.95; 0.75]	5.4
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	0.86	13.12	22	1.87	13.12		-1.01 [-7.61; 5.59]	0.8
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.94	2.18	66	-0.43	2.07		-0.51 [-1.23; 0.21]	9.3
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.60	3.23	20	-1.10	3.23		-0.50 [-2.40; 1.40]	5.3
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.58	4.44	27	-0.53	4.44		-0.05 [-2.34; 2.24]	4.3
Dhurandhar 2014 (USA)	42		No Breakfast	Healthy	16	90	-0.66	1.17	98	-0.61	1.16	m	-0.05 [-0.38; 0.29]	10.3
Overall Effect						358			320			•	-0.71 [-1.42; -0.00]	43.5
Heterogeneity: $I^2 = 61\%$, $\tau^2 = 0.4136$, $\chi^2_6 = 15.3$	1 (p =	= 0.02	2)											
Feeding time is ≤ 8 hours														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-3.49	5.45	30	1.12	5.45		-4.61 [-7.37; -1.85]	3.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.52	4.83		-1.07	4.83		-3.45 [-6.13; -0.77]	3.5
Montero 2023 (Spain)	48	*	FT=8h	Metabolic	12	148	-4.54	3.25	49	-1.80	3.29		-2.74 [-3.80; -1.68]	8.1
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12		-8.27	5.09		-5.80	3.74		-2.47 [-4.65; -0.29]	4.6
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-6.30	3.39		-4.00	3.39		-2.30 [-3.70; -0.90]	6.8
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-3.60	1.92	9	-1.50	2.33		-2.10 [-4.00; -0.20]	5.3
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.00	6.62	70	-6.20	6.62		-1.80 [-4.00; 0.40]	4.5
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.46		-7.80	6.46		-0.60 [-3.30; 2.10]	3.5
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26		-0.42	1.12	12	0.06	1.12		-0.48 [-1.38; 0.42]	8.6
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	59	-1.17	2.80	57	-0.76	2.80	-	-0.41 [-1.43; 0.61]	8.2
Overall Effect						476			373			•	-1.88 [-2.72; -1.04]	56.5
Heterogeneity: $t^2 = 63\%$, $\tau^2 = 1.0222$, $\chi^2_9 = 24.3$	i5 (p <	0.0	1)											
Overall Effect						834			693			•	-1.38 [-2.00; -0.76]	100.0
Heterogeneity: $l^2 = 73\%$, $\tau^2 = 0.9355$, $\chi^2_{16} = 59$.	81 (p	< 0.0	1)											
Test for overall effect: $z = -4.39 (p < 0.01)$												-6 -4 -2 0 2 4 6		
Test for subgroup differences: $\chi_1^2 = 4.37$, df = 1	(p =	0.04)									Favou	urs Intervention Favours Control		

eFigure 4: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating interventions on weight (kg), grouped by eating window.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							erventio		Con				
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No M	lean Sl) No	Mean	SD	Mean Difference, 95% Cl	Mean Difference, 95%CI V	eight%
Time Restricted Eating													
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30 -1	1.29 2.0	2 30	0.40 2	2.02		-1.69 [-2.71; -0.67]	6.9
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25 -	1.78 1.8	25	-0.37 1	.80		-1.41 [-2.41; -0.41]	7.0
Che 2021 (China)	48		FT=10h	Metabolic	12	60 -	1.64 2.9	1 60	-0.42 1	.86		-1.22 [-2.10; -0.34]	7.8
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32 -3	3.06 1.5	4 33	-2.13 1	.32		-0.93 [-1.63; -0.23]	9.2
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11 -(0.90 2.7	18	-0.10 2	2.90		-0.80 [-3.37; 1.77]	2.0
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69 -2	2.90 2.4	1 70	-2.20 2	2.41		-0.70 [-1.50; 0.10]	8.4
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22 -0	0.52 0.7	1 24	-0.19 0).71		-0.33 [-0.74; 0.08]	11.3
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45 -3	3.10 2.3	9 43	-2.80 2	2.39		-0.30 [-1.30; 0.70]	7.0
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25 -0	0.50 1.2	20	-0.30 1	.13		-0.20 [-0.88; 0.48]	9.3
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12 -0	0.17 0.4	12	0.02 0	.44	-	-0.19 [-0.55; 0.16]	11.7
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70 -0	0.26 0.8	1 67	-0.09 0	0.81	-	-0.17 [-0.44; 0.10]	12.2
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52		0.25 1.8		-0.16 1	.84		-0.09 [-1.04; 0.86]	7.3
Overall Effect						432		419			•	-0.52 [-0.78; -0.26]	100.0
Heterogeneity: $I^2 = 48\%$, $\tau^2 = 0.0844$, $\chi^2_{11} = 21$.	.1 (p =	0.03)										
Meal frequency													
Zargaran 2014 (Iran)		31	3M+2S vs 6M	Healthy	12	45 (0.70 1.1) 45	1.90 0	0.90		-1.20 [-1.62; -0.78]	23.7
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13		0.75 2.0		1.83 1	.85		-1.08 [-2.28; 0.12]	12.3
Bachman 2012 (USA)	51	36	3M vs 10S	Healthy	26		5.90 1.8					-0.90 [-1.96; 0.16]	14.0
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12				-0.82 0			-0.41 [-0.61; -0.21]	26.2
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12		0.23 0.8		-0.12 1	.03	-	-0.11 [-0.52; 0.30]	23.8
Overall Effect						185		184			-	-0.65 [-1.09; -0.21]	100.0
Heterogeneity: $l^2 = 76\%$, $\tau^2 = 0.1632$, $\chi_4^2 = 16.6$	63 (p <	0.01)										
Meal distribution											_		
Jakubowicz 2013 (Israel)	46	32	HCB vs HCD	Metabolic	12				-1.40 0			-1.70 [-1.93; -1.47]	31.1
Lombardo 2014 (Italy)	46	36	FL vs EED	Healthy	12		3.10 1.7		-1.80 1			-1.30 [-2.47; -0.13]	15.1
Madjd 2021 (Iran)	35	33	ED vs LD	Healthy	12				-1.87 0			-0.73 [-1.38; -0.08]	24.0
Madjd 2016 (Iran)	34	32	ML vs BL	Healthy	12		2.21 0.7		-1.68 0).75		-0.53 [-0.86; -0.20]	29.8
Overall Effect						136		136				-1.06 [-1.82; -0.30]	100.0
Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.4994$, $\chi_3^2 = 35$.	12 (p <	0.01)										
											-3 -2 -1 0 1 2 3	5	
									F	avou	irs Intervention Favours Con	rol	

eFigure 5: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on BMI (kg/m²), grouped by intervention type.

Author Year (Country)		DM	Intervention	Comorbidity	Duration			entior			ontrol		Mean Difference, 95%CI	Malah 10/
Author fear (Country)	Age	DIVI	intervention	Comorbiality	Duration	NO	mea	n su	NO	mea	n 30	Rate Ratio, 95% CI	Mean Difference, 95%CI	weight%
Obese I												5 F		
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-3.0	6 1.54	33	-2.1	3 1.32		-0.93 [-1.63; -0.23]	8.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.9	0 2.7	8	-0.1	0 2.90		-0.80 [-3.37; 1.77]	1.0
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-2.9	0 2.4	70	-2.2	0 2.41		-0.70 [-1.50; 0.10]	7.2
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.5	2 0.7	24	-0.1	9 0.71		-0.33 [-0.74; 0.08]	14.1
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-3.1	0 2.39	43	-2.8	0 2.39		-0.30 [-1.30; 0.70]	5.2
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.2	5 1.84	27	-0.1	6 1.84		-0.09 [-1.04; 0.86]	5.7
Overall Effect						210			205			*	-0.46 [-0.75; -0.17]	41.7
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_5^2 = 3.22$ ($p = 0$	1.67)													
Obese II														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.2	9 2.02	30	0.4	0 2 02		-1.69 [-2.71; -0.67]	5.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26			8 1.80		-0.3	7 1.80		-1.41 [-2.41; -0.41]	5.2
Overall Effect						55			55				-1.55 [-2.26: -0.83]	10.3
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_1^2 = 0.15$ (p = 0	.70)													
Overweight														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-16	4 2.94	60	-0.4	2 1.86		-1.22 [-2.10; -0.34]	6.3
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26			0 1.20			0 1.13		-0.20 [-0.88; 0.48]	8.8
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26			7 0 44			2 0.44		-0.19 [-0.55: 0.16]	15.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12			6 0.8			9 0.81		-0.17 [-0.44; 0.10]	17.5
Overall Effect		2.0		riculuty		167	0.14	0 0.0	159	0.0		-	-0.28 [-0.58; 0.01]	48.0
Heterogeneity: $I^2 = 41\%$, $\tau^2 = 0.0365$, $\chi_3^2 = 5.09$) (p =	0.17)												
Overall Effect						432			419			•	-0.52 [-0.78; -0.26]	100.0
Heterogeneity: $l^2 = 48\%$, $\tau^2 = 0.0844$, $\chi^2_{11} = 21$.	10 (p	= 0.0	3)											
Test for overall effect: $z = -3.86 (p < 0.01)$											-	-3 -2 -1 0 1 2 3		
Test for subgroup differences: χ^2_2 = 10.23, df =	2 (p •	0.01)								Favo	ours Intervention Favours Contro	bl	

eFigure 6: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on BMI (kg/m²), grouped by baseline BMI status.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

						1	ntervent	tion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Mean Difference, 95% CI	Mean Difference, 95%CI V	Veight%
Time Restricted Eating														
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-1.40 1	1.25	9	-0.10	1.21		-1.30 [-2.38; -0.22]	7.9
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-2.71 5	5.10	33	-1.57	4.70		-1.14 [-3.53; 1.25]	1.8
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.81 8	3.94	24	-0.69	8.94 -		-1.12 [-6.29; 4.05]	0.4
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-0.98 2	2.66	49	0.00	2.74		-0.98 [-1.86; -0.10]	11.3
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.41 1	1.99	30	0.39	1.99		-0.81 [-1.81; 0.20]	8.9
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.97 2	2.45	25	-0.59	2.45		-0.38 [-1.74; 0.98]	5.2
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-1.70 2	2.41	70	-1.40	2.41		-0.30 [-1.10; 0.50]	13.2
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-2.10 2	2.15	43	-1.80	2.15		-0.30 [-1.20; 0.60]	10.8
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-1.50 1	1.94	45	-1.40	1.94		-0.10 [-0.90; 0.70]	13.2
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	18	-0.30 0	0.80	25	-0.20	1.30		-0.10 (-0.73; 0.53)	19.2
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	30	-1.20 2	2.30	30	-1.50	1.80		0.30 [-0.75; 1.35]	8.3
Overall Effect						475			383			•	-0.39 [-0.69; -0.10]	100.0
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{10} = 8$	3.66 ()	p = 0.	56)										* 1	
Meal frequency														
Bachman 2012 (USA)	51	36	3M vs 10S	Healthy	26	25	-0.90 5	5.29	26	-2.00	5.85		1.10 [-1.96; 4.16]	25.6
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	1.00 2	2.72	19	-0.43	2.96		1.43 [-0.34; 3.20]	74.4
Overall Effect						46			45				1.35 [-0.18; 2.88]	100.0
Heterogeneity: $l^2 = 0\%$, $r^2 = 0$, $\chi_s^2 = 0$.03 (p	= 0.8	5)											
											10		7	
											-4	6 -4 -2 0 2 4	6	
											Favou	rs Intervention Favours Con	trol	

eFigure 7: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on lean mass (kg), grouped by the nature of the meal timing intervention.

						In	nterve	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mea	n SD	Mean Difference, 95% CI	Mean Difference, 95%CI V	Neight%
Time Restricted Eating												1 ¹⁷		
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-6.44	6.15	30	-1.4	6 6.15		-4.98 [-8.09; -1.87]	12.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-3.92	4.09	25	-0.4	8 4.09		-3.44 [-5.71; -1.17]	15.7
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.67	6.12	27	-0.1	0 6.12		-2.57 [-5.73; 0.59]	12.2
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.80	6.62	70	-7.0	0 6.62		-1.80 [-4.00; 0.40]	16.0
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.30	5.81	45	-3.8	0 5.81		-1.50 [-3.90; 0.90]	15.2
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.49	43	-7.8	0 6.17		-0.60 [-3.25; 2.05]	14.2
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.50	4.42	20	-2.1	0 4.42		0.60 [-2.00; 3.20]	14.3
Overall Effect						270			260			-	-1.96 [-3.24; -0.68]	100.0
Heterogeneity: $J^2 = 42\%$, $\tau^2 = 1.2343$, $\chi^2_6 = 10.3$	s (p =	0.11)												
Meal frequency														
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-5.14	2.34	54	-1.3	7 2.34		-3.77 [-4.65; -2.89]	41.3
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-3.86	5 1.20	40	-4.2	5 1.31		0.39 [-0.16; 0.94]	42.9
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	5.23	9.00	19	3.3	0 5.63		1.93 [-2.68; 6.54]	15.9
Overall Effect						115			113				-0.83 [-4.34; 2.68]	100.0
Heterogeneity: $t^2 = 07\%$, $\tau^2 = 8.2226$, $\chi^2_2 = 62.5$	i6 (p -	< 0.01)											
Meal distribution														
Jakubowicz 2013 (Israel)	46	32	FL vs BL	Metabolic	12	38	-8.70	6.02	36	-4.8	0 6.02		-3.90 [-6.64; -1.16]	19.2
Lombardo 2014 (Italy)	46	36	FL vs ML	Healthy	12	18	-7.00	2.70	18	-5.0	0 2.70		-2.00 [-3.76; -0.24]	24.8
Madjd 2021 (Iran)	35	33	ML vs BL	Healthy	12	40	-8.00	3.25	42	-6.0	0 3.05		-2.00 [-3.37; -0.63]	27.0
Madjd 2016 (Iran)	34	32	ML vs BL	Healthy	12	40	-5.33	3 2.10	40	-4.6	0 2.10		-0.73 [-1.65; 0.19]	29.1
Overall Effect						136			136			-	-1.77 [-2.89; -0.65]	100.0
Heterogeneity: $I^2 = 53\%$, $\tau^2 = 0.6613$, $\chi^2_3 = 6.41$	(p =	0.09)												
												1 1		
												-5 0 5		
											Favou	rs Intervention Favours Cor	itrol	

eFigure 8: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on waist circumference (cm), grouped by meal timing intervention.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

<80% of participants were Women Kunduraci & Ozbek 2020 (Turkey) 48	35 33	Intervention FT=8h		Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI	Neight%
Kunduraci & Ozbek 2020 (Turkey) 48		FT=8h									Rate Ratio, 50% Of	mean Difference, so wor i	in a start in the
Kunduraci & Ozbek 2020 (Turkey) 48		FT=8h											
	33		Metabolic	12	32	-2.71	5.10	33	-1.57 4	1.70		-1.14 [-3.53; 1.25]	1.5
Lowe 2020 (USA) 46		FT=8h	Healthy	12	22	-1.81	8.94	24	-0.69 8	3.94 -		-1.12 [-6.29; 4.05]	0.3
Montero 2023 (Spain) 48	1.5070	FT=8h	Metabolic	12	148	-0.98	2.66	49	0.00 2	2.74		-0.98 [-1.86; -0.10]	11.1
Pavlou 2023 (USA) 55	39	FT=8h	Metabolic	26	25	-0.97	2.45	25	-0.59 2	2.45		-0.38 [-1.74; 0.98]	4.6
Liu 2022 (China) 32	32	FT=8h	Healthy	52	69	-1.70	2.41	70	-1.40 2	2.41		-0.30 [-1.10; 0.50]	13.4
Wei 2023 (China) 32	32	FT=8h	Metabolic	52	45	-2.10	2.15	43	-1.80 2	2.15		-0.30 [-1.20; 0.60]	10.6
Philips 2021 (Switzerland) 40	28	FT=12h	Metabolic	26	18	-0.30	0.80	25	-0.20 1	1.30	-	-0.10 [-0.73; 0.53]	21.6
Overall Effect					359			269			•	-0.38 [-0.75; -0.01]	63.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_0^2 = 3.09$ (p	= 0.8	80)											
≥80% of participants were Women													
Chow 2020 (USA) 46	34	FT=8h	Healthy	12	11	-1.40	1.25	9	-0.10 1	1.21		-1.30 [-2.38; -0.22]	7.3
Lin 2023 (USA) 44	38	FT=8h	Healthy	52	30	-0.41	1.99	30	0.39 1	1.99		-0.81 [-1.81; 0.20]	8.5
Jamshed 2022 (USA) 43	40	FT=8h	Healthy	14	45	-1.50	1.94	45	-1.40 1	1.94	-	-0.10 [-0.90; 0.70]	13.4
Thomas 2022 (USA) 38	34	FT=10h	Healthy	39	30	-1.20	2.30	30	-1.50 1	1.80		0.30 [-0.75; 1.35]	7.8
Overall Effect					116			114			-	-0.45 [-1.11; 0.22]	37.0
Heterogeneity: $l^2 = 46\%$, $\tau^2 = 0.2101$, $\chi_3^2 = 0.2101$	5.58 (p = 0.14)											
Overall Effect Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{10} = 8.66$ (μ	o = 0	56)			475			383		L.		-0.39 [-0.69; -0.10]	100.0
Test for overall effect: $z = -2.64$ ($p < 0.01$)										-6	-4 -2 0 2 4	6	
Test for subgroup differences: $\chi_1^2 = 0.03$, df	= 1 (p = 0.87)							F	avours	Intervention Favours Co	ntrol	

eFigure 9: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on lean mass (kg), grouped by gender proportion.

						1	nterver	ntion		Co	ntrol										
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	R	ate Rati	o, 95%	6 CI		Mean Dif	ferenc	e, 95	5%CI	Weight%
Obese I																					
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-1.40	1.25	9	-0.10	1.21						-1.	30 [-2.3	38; -	0.22]	7.3
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-2.71	5.10	33	-1.57	4.70	-		-			-1.	.14 [-3.5	53;	1.25]	1.5
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.81	8.94	24	-0.69	8.94				_		-1.	.12 [-6.2	29;	4.05]	0.3
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-0.98	2.66	49	0.00	2.74						-0.	98 [-1.8	86; -	0.10]	11.1
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-1.70	2.41	70	-1.40	2.41		-	-			-0.	.30 [-1.	10;	0.50]	13.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-2.10	2.15	43	-1.80	2.15		-	-			-0.	.30 [-1.2	20; 1	0.60]	10.6
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	30	-1.20	2.30	30	-1.50	1.80		-	-			0.	.30 [-0.1	75;	1.35]	7.8
Overall Effect						357			258				-				-0.	53 [-0.9	94; -	0.11]	52.0
Heterogeneity: $l^2 = 4\%$, $\tau^2 = 0.0133$,	$\chi_6^2 = 6$	25 (p	0 = 0.40																		
Obese II																					
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.41	1.99	30	0.39	1.99		-				-0.	.81 [-1.8	81; 1	0.20]	8.5
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.97	2.45	25	-0.59	2.45		-	-			-0.	.38 [-1.1	74; 1	0.98]	4.6
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-1.50	1.94	45	-1.40	1.94		-	-			-0.	10 [-0.9	90;	0.70]	13.4
Overall Effect						100			100				-	-			-0.	38 [-0.9	34; 1	0.19]	26.4
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_2^2 = 1$.17 (p	0.5	56)																		
Overweight																					
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	18	-0.30	0.80	25	-0.20	1.30		-	ł.			-0	.10 [-0.7	73; 1	0.53]	21.6
Overall Effect						475			383			_					-0.3	39 [-0.6	59; -	0.10]	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{10} = 8$			56)										1.1		1						
Test for overall effect: $z = -2.64$ ($p < -2.64$											-	6 -4	-2 () 2	4	6					
Test for subgroup differences: $\chi_2^2 = 1$.	23, di	f = 2 (p = 0.54)								Favou	rs Inter	vention	Favo	urs C	ontrol					

-

eFigure 10: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on lean mass (kg), grouped by baseline BMI status.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

						I	nterve	ntion		Co	ntrol				
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% Cl	Mean Difference, 95	5%CI W	/eight%
TRE+ad libitum vs No TRE+ad li	bitun	n										1			
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-1.40	1.25	9	-0.10	1.21		-1.30 [-2.38; -0	0.22]	7.3
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.81	8.94	24	-0.69	8.94		-1.12 [-6.29; 4	4.05]	0.3
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-0.98	2.66	49	0.00	2.74		-0.98 [-1.86; -0	0.10]	11.1
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.41	1.99	30	0.39	1.99		-0.81 [-1.81; (0.20]	8.5
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.97	2.45	25	-0.59	2.45		-0.38 [-1.74; 0	0.98]	4.6
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	18	-0.30	0.80	25	-0.20	1.30	-	-0.10 [-0.73; (0.531	21.6
Overall Effect						254			162			•	-0.59 [-1.00; -0	0.191	53.4
Heterogeneity: $l^2 = 1\%$, $\tau^2 = 0.0031$,	$\chi_5^2 = 5$.06 (p	= 0.41)												
TRE+DCR vs DCR															
Kunduraci & Ozbek 2020 (Turkey)		35	FT=8h	Metabolic	12		-2.71			-1.57			-1.14 [-3.53; 1		1.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-1.70	2.41	70	-1.40	2.41		-0.30 [-1.10; (0.50]	13.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-2.10	2.15	43	-1.80	2.15		-0.30 [-1.20; (0.60]	10.6
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-1.50	1.94	45	-1.40	1.94	-#	-0.10 [-0.90; (0.70]	13.4
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	30	-1.20	2.30	30	-1.50	1.80		0.30 [-0.75;	1.35]	7.8
Overall Effect						221			221			*	-0.17 [-0.60; 0	0.26]	46.6
Heterogeneity: $l^2 = 0\%$, $v^2 = 0$, $\chi_4^2 = 1$	62 (p	= 0.8	30)												
Overall Effect						475			383			•	-0.39 [-0.69; -0	0.10]	100.0
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{10} = 1$		p = 0.	56)												
Test for overall effect: $z = -2.64$ ($p < 2$												6 -4 -2 0 2	4 6		
Test for subgroup differences: $\chi_1^2 = 1$	99, df	1=1(p = 0.16)								Favou	irs Intervention Favours	Control		

eFigure 11: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on lean mass (kg), grouped by energy prescription.

						h	nterver	ntion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI	Weight%
Follow duration <6 months												1		
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-1.40	1.25	9	-0.10	1.21		-1.30 [-2.38; -0.22]	7.3
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-2.71	5.10	33	-1.57	4.70		-1.14 [-3.53; 1.25]	1.5
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.81	8.94	24	-0.69	8.94 -		-1.12 [-6.29; 4.05]	0.3
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-0.98	2.66	49	0.00	2.74		-0.98 [-1.86; -0.10]	11.1
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-1.50	1.94	45	-1.40	1.94		-0.10 [-0.90; 0.70]	13.4
Overall Effect						258			160			•	-0.71 [-1.21; -0.20]	33.6
Heterogeneity: $t^2 = 0\%$, $\tau^2 = 0$, $\chi_d^2 = 3$.	89 (p	= 0,4	2)											
Follow duration ≥6 months														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.41	1.99	30	0.39	1.99		-0.81 [-1.81; 0.20]	8.5
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.97	2.45	25	-0.59	2.45		-0.38 [-1.74; 0.98]	4.6
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-1.70	2.41	70	-1.40	2.41		-0.30 [-1.10; 0.50]	13.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-2.10	2.15	43	-1.80	2.15		-0.30 [-1.20; 0.60]	10.6
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	18	-0.30	0.80	25	-0.20	1.30	-	-0.10 [-0.73; 0.53]	21.6
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	30	-1.20	2.30	30	-1.50	1.80		0.30 [-0.75; 1.35]	7.8
Overall Effect Heterogeneity: $t^2 = 0\%$, $\tau^2 = 0$, $\chi_8^2 = 2$.	.52 (p	= 0.7	7)			217			223			•	-0.23 [-0.59; 0.12]	66.4
Overall Effect						475			383			•	-0.39 [-0.69; -0.10]	100.0
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{10} = 8$		0 = 0.	56)								1			
Test for overall effect: $z = -2.64$ ($p < 0$											-6	i -4 -2 0 2 4	6	
Test for subgroup differences: $\chi_1^2 = 2$.	25, df	= 1 ()	p = 0.13)								Favour	s Intervention Favours Co	ntrol	

eFigure 12: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on lean mass (kg), grouped by follow duration.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

						h	nterven	tion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	Veight%
Healthy														
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-1.40	1.25	9	-0.10	1.21		-1.30 [-2.38; -0.22]	7.3
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.81	8.94	24	-0.69	8.94		-1.12 [-6.29; 4.05]	0.3
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.41	1.99	30	0.39	1.99		-0.81 [-1.81; 0.20]	8.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-1.70	2.41	70	-1.40	2.41		-0.30 [-1.10; 0.50]	13.4
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-1.50	1.94	45	-1.40	1.94	-	-0.10 [-0.90; 0.70]	13.4
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	30	-1.20	2.30	30	-1.50	1.80		0.30 [-0.75; 1.35]	7.8
Overall Effect						207			208				-0.40 [-0.85; 0.05]	50.7
Heterogeneity: $l^2 = 12\%$, $\tau^2 = 0.0386$	$\chi^2_5 =$	5.69 (p = 0.34)											
Metabolic														
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-2.71	5.10	33	-1.57	4.70		-1.14 [-3.53; 1.25]	1.5
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-0.98	2.66	49	0.00	2.74		-0.98 [-1.86; -0.10]	11.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.97	2.45	25	-0.59	2.45		-0.38 [-1.74; 0.98]	4.6
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-2.10	2.15	43	-1.80	2.15		-0.30 [-1.20; 0.60]	10.6
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	18	-0.30	0.80	25	-0.20	1.30	-	-0.10 [-0.73; 0.53]	21.6
Overall Effect						268			175			•	-0.40 [-0.81; 0.02]	49.3
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_4^2 = 2$.96 (p	= 0.5	i6)										4	
Overall Effect						475			383			•	-0.39 [-0.69; -0.10]	100.0
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{10} = l$	B.66 ()	p = 0.	56)											
Test for overall effect: z = -2.64 (p <	0.01)		-04725									6 -4 -2 0 2 4	6	
Test for subgroup differences: $\chi_1^2 = 0$.	00, df	f = 1 ()	p = 1.00								Favou	rs Intervention Favours Co	ntrol	

eFigure 13: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on lean mass (kg), grouped by health status.

						1	nterve	ntion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI	Neight%
Feeding time is > 8 hours												1		
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	18	-0.30	0.80	25	-0.20	1.30	-	-0.10 [-0.73; 0.53]	21.6
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	30	-1.20	2.30	30	-1.50	1.80		0.30 [-0.75; 1.35]	7.8
Overall Effect						48			55			*	0.01 [-0.53; 0.55]	29.4
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_1^2 = 0$.41 (p	= (), 5	52)											
Feeding time is ≤ 8 hours														
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-1.40	1.25	9	-0.10	1.21		-1.30 [-2.38; -0.22]	7.3
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-2.71	5.10	33	-1.57	4.70		-1.14 [-3.53; 1.25]	1.5
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.81	8.94	24	-0.69	8.94 -		-1.12 [-6.29; 4.05]	0.3
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-0.98	2.66	49	0.00	2.74		-0.98 [-1.86; -0.10]	11.1
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.41	1.99	30	0.39	1.99		-0.81 [-1.81; 0.20]	8.5
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.97	2.45	25	-0.59	2.45		-0.38 [-1.74; 0.98]	4.6
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-1.70	2.41	70	-1.40	2.41		-0.30 [-1.10; 0.50]	13.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-2.10	2.15	43	-1.80	2.15		-0.30 [-1.20; 0.60]	10.6
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-1.50	1.94	45	-1.40	1.94		-0.10 [-0.90; 0.70]	13.4
Overall Effect						427			328			•	-0.56 [-0.91; -0.21]	70.6
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_0^2 = 5$	25 (p	= 0.7	73)											
Overall Effect						475			383			•	-0.39 [-0.69; -0.10]	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{10} = 1$		p = 0.	56)								- 1			
Test for overall effect: z = -2.64 (p <	0.01)										-6	6 -4 -2 0 2 4 6		
Test for subgroup differences: $\chi_1^2 = 3$.00, di	f = 1 (p = 0.08)								Favour	rs Intervention Favours Control	bl	
Test for overall effect: z = -2.64 (p <	0.01)										-(Favou	6 -4 -2 0 2 4 6 rs Intervention Favours Contro	bl	

eFigure 14: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on lean mass (kg), grouped by eating window.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

						1	nterve	ntion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Any health professional												1		
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-1.40	1.25	9	-0.10	1.21		-1.30 [-2.38; -0.22]	7.3
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-2.71	5.10	33	-1.57	4.70		-1.14 [-3.53; 1.25]	1.5
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.81	8.94	24	-0.69	8.94		-1.12 [-6.29; 4.05]	0.3
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-0.98	2.66	49	0.00	2.74		-0.98 [-1.86; -0.10]	11.1
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-1.70	2.41	70	-1.40	2.41		-0.30 [-1.10: 0.50]	13.4
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	18	-0.30	0.80	25	-0.20	1.30	-	-0.10 [-0.73; 0.53]	21.6
Overall Effect						300			210			•	-0.54 [-0.96; -0.12]	55.2
Heterogeneity: $l^2 = 7\%$, $\tau^2 = 0.0203$,	$\chi_{5}^{2} = 5$.37 (p	= 0.37)										4. A.	
Trained specifically in nutrition														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.41	1.99	30	0.39	1.99	-8-	-0.81 [-1.81; 0.20]	8.5
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.97	2.45	25	-0.59	2.45		-0.38 [-1.74; 0.98]	4.6
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-2.10	2.15	43	-1.80	2.15		-0.30 [-1.20; 0.60]	10.6
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-1.50	1.94	45	-1.40	1.94	-#-	-0.10 [-0.90; 0.70]	13.4
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	30	-1.20	2.30	30	-1.50	1.80		0.30 [-0.75; 1.35]	7.8
Overall Effect				-		175			173				-0.24 [-0.68; 0.20]	44.8
Heterogeneity: $l^2 = 0\%$, $v^2 = 0$, $\chi_4^2 = 2$,43 (p	= 0,6	6)											
Overall Effect			50)			475			383			•	-0.39 [-0.69; -0.10]	100.0
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{10} = 0$		p = 0.	56)										2	
Test for overall effect: $z = -2.64$ ($p < 1$												6 -4 -2 0 2 4	6	
Test for subgroup differences: $\chi_1^2 = 0$.	94, di	f = 1 (p = 0.33)								Favou	rs Intervention Favours Con	trol	

eFigure 15: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on lean mass (kg), grouped by delivery personnel.

						1	nterve	ntion		Co	ntrol					
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate	Ratio, 95% CI	Mean Difference, 95	%CI W	/eight%
Intervention involved < 1 sessio	n per	wee	k										1			
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-1.40	1.25	9	-0.10	1.21			-1.30 [-2.38; -0	.22]	7.3
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.81	8.94	24	-0.69	8.94		•	-1.12 [-6.29; 4	.05]	0.3
Montero 2023 (Spain)	48	32	FT=8h	Metabolic	12	148	-0.98	2.66	49	0.00	2.74			-0.98 [-1.86; -0	.10]	11.1
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.41	1.99	30	0.39	1.99		-	-0.81 [-1.81; 0	.20]	8.5
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.97	2.45	25	-0.59	2.45		-	-0.38 [-1.74; 0	.98]	4.6
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-1.70	2.41	70	-1.40	2.41			-0.30 [-1.10; 0	.50]	13.4
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	18	-0.30	0.80	25	-0.20	1.30			-0.10 [-0.73; 0	.53]	21.6
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	30	-1.20	2.30	30	-1.50	1.80			0.30 [-0.75; 1	.35]	7.8
Overall Effect Heterogeneity: $l^2 = 8\%$, $\tau^2 = 0.0230$,	$\chi_{7}^{2} = 7$,64 (r	o = 0.37)			353			262				•	-0.46 [-0.82; -0	.10]	74.6
Intervention involved ≥ 1 sessio	n per	wee	k													
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-2.71	5.10	33	-1.57	4.70		•	-1.14 [-3.53; 1	.25]	1.5
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-2.10	2.15	43	-1.80	2.15			-0.30 [-1.20; 0	.60]	10.6
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-1.50	1.94	45	-1.40	1.94			-0.10 [-0.90; 0	.70]	13.4
Overall Effect Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_2 = 0$).68 (p	o = 0.1	71)	000000000		122			121				•	-0.24 [-0.82; 0	.34]	25.4
Overall Effect Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\gamma_{10}^2 =$	8 66 (o = 0	56)			475			383		r		•	-0.39 [-0.69; -0	.10]	100.0
Test for overall effect: z = -2.64 (p <											-6	6 -4 -2	0 2 4	6		
Test for subgroup differences: $\chi_1^2 = 0$			p = 0.54								Favour	rs Intervent	ion Favours Co	introl		
· · · · · · · · · · · · · · · · · · ·																

eFigure 16: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on lean mass (kg), grouped by frequency of contact.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

						h	nterven	tion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI	Weight%
Additional resources were provi	ded											1		
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-2.71	5.10	33	-1.57	4.70		-1.14 [-3.53; 1.25]	1.5
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.97	2.45	25	-0.59	2.45		-0.38 [-1.74; 0.98]	
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-1.70	2.41	70	-1.40	2.41		-0.30 [-1.10; 0.50]	13.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-2.10	2.15	43	-1.80	2.15		-0.30 [-1.20; 0.60]	
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	18	-0.30	0.80	25	-0.20	1.30	-	-0.10 [-0.73; 0.53]	21.6
Overall Effect						189			196			-	-0.25 [-0.65; 0.16]	
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_4^2 = 0$	81 (p	= 0.9	14)											
Resources were not provided														
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-1.40	1.25	9	-0.10	1.21		-1.30 [-2.38; -0.22]	7.3
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.81	8.94	24	-0.69	8.94 -		-1.12 [-6.29; 4.05]	0.3
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-0.98	2.66	49	0.00	2.74		-0.98 [-1.86; -0.10]	11.1
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.41	1.99	30	0.39	1.99		-0.81 [-1.81; 0.20]	8.5
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-1.50	1.94	45	-1.40	1.94		-0.10 [-0.90; 0.70]	13.4
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	30	-1.20	2.30	30	-1.50	1.80		0.30 [-0.75; 1.35]	7.8
Overall Effect						286			187			•	-0.56 [-1.07; -0.05]	48.4
Heterogeneity: $l^2 = 27\%$, $\tau^2 = 0.1062$.	$\chi^2_6 =$	6.83 (p = 0.23)											
Overall Effect						475			383			•	-0.39 [-0.69; -0.10]	100.0
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{10} = 8$	3.66 ()	p = 0.	56)								F			
Test for overall effect: z = -2.64 (p < 0	0.01)										-6	-4 -2 0 2 4	6	
Test for subgroup differences: $\chi_1^2 = 0$.	89, df	f = 1 ()	p = 0.35							1	Favours	Intervention Favours C	ontrol	

eFigure 17: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on lean mass (kg), grouped by resource provision.

						h	ntervent	tion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
High												1		
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-1.40	1.25	9	-0.10	1.21		-1.30 [-2.38; -0.22]	7.3
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-2.71 5	5.10	33	-1.57	4.70		-1.14 [-3.53; 1.25]	1.5
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.81 8	8.94	24	-0.69	8.94 -	•	-1.12 [-6.29; 4.05]	0.3
Montero 2023 (Spain)	48	+3	FT=8h	Metabolic	12	148	-0.98	2.66	49	0.00	2.74		-0.98 [-1.86; -0.10]	11.1
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	18	-0.30 (08.0	25	-0.20	1.30	-	-0.10 [-0.73; 0.53]	21.6
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	30	-1.20 2	2.30	30	-1.50	1.80		0.30 [-0.75; 1.35]	7.8
Overall Effect						261			170			•	-0.51 [-1.08; 0.05]	49.6
Heterogeneity: $l^2 = 32\%$, $\tau^2 = 0.1463$,	$\chi_5^2 =$	7.33 (p = 0.20)											
Unclear														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.41	1.99	30	0.39	1.99		-0.81 [-1.81; 0.20]	8.5
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.97	2.45	25	-0.59	2.45		-0.38 [-1.74; 0.98]	4.6
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-1.70 2	2.41	70	-1.40	2.41		-0.30 [-1.10; 0.50]	13.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-2.10 2	2.15	43	-1.80	2.15		-0.30 [-1.20; 0.60]	10.6
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-1.50	1.94	45	-1.40	1.94		-0.10 [-0.90; 0.70]	13.4
Overall Effect				0.0000000000000000000000000000000000000		214			213			•	-0.34 [-0.75; 0.07]	50.4
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_4^2 = 1$	2 (p.=	= 0.88	() ()											
Overall Effect						475			383			*	-0.39 [-0.69; -0.10]	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{10} = 8$		0 = 0.9	56)											
Test for overall effect: z = -2.64 (p <)											-6	5 -4 -2 0 2 4	6	
Test for subgroup differences: $\chi_1^2 = 0$.	24, df	= 1 ()	0 = 0.62)								Favour	s Intervention Favours Co	ntrol	

eFigure 18: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on lean mass (kg), grouped by risk of bias.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.


						l.	nterve	ntion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
<80% of participants were Women												- E F		
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-3.92	4.09	25	-0.48	4.09		-3.44 [-5.71; -1.17]	16.6
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.80	6.62	70	-7.00	6.62		-1.80 [-4.00; 0.40]	17.1
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.49	43	-7.80	6.17		-0.60 [-3.25: 2.05]	14.0
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.50	4.42	20	-2.10	4.42		0.60 [-2.00; 3.20]	14.3
Overall Effect						164			158				-1.41 [-3.09; 0.28]	61.9
Heterogeneity: $I^2 = 49\%$, $\tau^2 = 1.4318$, $\chi^2_3 = 5.83$	(p =	0.12)												
≥80% of participants were Women														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-6.44	6.15	30	-1.46	6.15 -		-4.98 [-8.09; -1.87]	11.4
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.67	6.12	27	-0.10	6.12		-2.57 [-5.73; 0.59]	11.1
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.30	5.81	45	-3.80	5.81		-1.50 [-3.90; 0.90]	15.6
Overall Effect						106			102				-2.84 [-4.88: -0.81]	38.1
Heterogeneity: $I^2 = 34\%$, $\tau^2 = 1.1060$, $\chi^2_2 = 3.03$	l (p =	0.22)												
Overall Effect	-					270			260			•	-1.96 [-3.24; -0.68]	100.0
Heterogeneity: $I^2 = 42\%$, $\tau^2 = 1.2343$, $\chi_6^2 = 10.3$	10 (p	= 0.11)											
Test for overall effect: $z = -3.00 (p < 0.01)$												-5 0 5		
Test for subgroup differences: $\chi_1^2 = 1.13$, df = 1	(p =	0.29)									Favour	s Intervention Favours Co	ntrol	

eFigure 19: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on waist circumference (cm), grouped by gender proportion.

							nterver				ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Obese I														
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.67	6.12	27	-0.10	6.12		-2.57 [-5.73; 0.59]	11.1
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.80	6.62	70	-7.00	6.62		-1.80 [-4.00; 0.40]	17.1
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.49	43	-7.80	6.17		-0.60 [-3.25; 2.05]	14.0
Overall Effect						145			140				-1.59 [-3.08; -0.10]	42.2
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_2 = 0.94$ ($\rho = 0$.62)													
Obese II														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-6.44	6.15	30	-1.46	6.15 -		-4.98 [-8.09; -1.87]	11.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-3.92	4.09	25	-0.48	4.09		-3.44 [-5.71; -1.17]	16.6
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.30	5.81	45	-3.80	5.81		-1.50 [-3.90; 0.90]	15.6
Overall Effect						100			100				-3.14 [-5.00; -1.27]	43.5
Heterogeneity: $l^2 = 37\%$, $\tau^2 = 1.0216$, $\chi^2_2 = 3.16$) (p =	0.20)												
Overweight														
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.50	4.42	20	-2.10	4.42	-	0.60 [-2.00; 3.20]	14.3
Overall Effect						270			260			-	-1.96 [-3.24; -0.68]	100.0
Heterogeneity: $l^2 = 42\%$, $\tau^2 = 1.2343$, $\chi_8^2 = 10.3$ Test for overall effect: $z = -3.00 (p < 0.01)$	30 (p =	= 0.11)											
		0.071									F	-5 0 5		
Test for subgroup differences: χ^2_2 = 5.30, df = 2	(p =	0.07)									Favour	s Intervention Favours Co	ntroi	

eFigure 20: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on waist circumference (cm), grouped by baseline BMI status.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

eFigure 21: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on waist circumference (cm), grouped by health status.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

TRE+ad libitum vs No TRE+ad libitum Lin 2023 (USA) 44 36 Pavlou 2023 (USA) 55 32 Philips 2021 (Switzerland) 40 26 Overall Effect Heterogeneity / $t^2 = 77\%$, $\tau^2 = 5.9351$, $\chi^2_3 = 8.56$ ($p = 0.07$ TRE+DCR vs DCR de Oliveira Maranhao Pureza 2021 (Brazil) 31 33		Healthy 52							
Pavlou 2023 (ÚSA) 55 36 Philips 2021 (Switzerland) 40 26 Overall Effect Heterogeneity: $l^2 = 77\%$, $\tau^2 = 5.9351$, $\chi^2_2 = 8.56$ ($p = 0.01$ TRE+DCR vs DCR de Oliveira Maranhao Pureza 2021 (Brazil) 31 33				30 -6.44 6.15	20	-1.46 6.15 -		4 09 5 8 00, 4 971	11.4
		Metabolic 26		25 -3.92 4.09		-0.48 4 09		-4.98 [-8.09; -1.87] -3.44 [-5.71; -1.17]	16.6
Overall Effect Heterogeneity: $t^2 = 77\%$, $t^2 = 5.9351$, $\chi^2_2 = 8.56$ ($p = 0.01$ TRE+DCR vs DCR de Oliveira Maranhao Pureza 2021 (Brazil) 31 33		Metabolic 26		25 -1.50 4.42		-2.10 4.42		0.60 [-2.00; 3.20]	14.3
de Oliveira Maranhao Pureza 2021 (Brazil) 31 33		Wetabolic 20		80	75	-2.10 4.42	-	-2.55 [-5.71; 0.60]	42.2
	3 FT=12h	Healthy 52	2 :	31 -2.67 6.12	27	-0.10 6.12		-2.57 [-5.73; 0.59]	11.1
Liu 2022 (China) 32 32	2 FT=8h	Healthy 52	2 1	69 -8.80 6.62	70	-7.00 6.62		-1.80 [-4.00; 0.40]	17.1
Jamshed 2022 (USA) 43 40) FT=8h	Healthy 14	4 .	45 -5.30 5.81	45	-3.80 5.81		-1.50 [-3.90; 0.90]	15.6
Wei 2023 (China) 32 32	2 FT=8h	Metabolic 52	2 .	45 -8.40 6.49	43	-7.80 6.17		-0.60 [-3.25; 2.05]	14.0
Overall Effect Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_3 = 0.95$ ($\rho = 0.81$)			1	90	185		•	-1.56 [-2.83; -0.30]	57.8
Overall Effect Heterogeneity: $I^2 = 42\%$, $\tau^2 = 1.2343$, $\chi^2_{\mu} = 10.30$ ($p = 0.1$			2	70	260		-	-1.96 [-3.24; -0.68]	100.0
Heterogeneity: $T = 42\%$, $\tau = 1.2343$, $\chi_6 = 10.30$ ($p = 0.1$ Test for overall effect: $z = -3.00$ ($p < 0.01$)	11)						E 0 E		
Test for subgroup differences: $\chi^2_{+} = 0.32$, df = 1 (p = 0.57)	-					Fourier	Intervention Favours Cor	atrol	

eFigure 22: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on waist circumference (cm), grouped by energy prescription.

Author Vers (Country)		-	Internet and	Comothidity	Duration		nterver				ntrol	Data Datia OFM OL	Mean Difference, 95%CI V	V-1-1-0/
Author Year (Country)	Age	DINI	intervention	Comorbidity	Duration	NO	weatt	30	NO	wean	30	Rate Ratio, 95% CI	Mean Difference, 95%Cr W	veight%
Follow duration <6 months														
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.30	5.81	45	-3.80	5.81		-1.50 [-3.90; 0.90]	15.6
Follow duration ≥6 months														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-6.44	6.15	30	-1.46	6.15 -		-4.98 [-8.09; -1.87]	11.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-3.92	4.09	25	-0.48	4.09		-3.44 [-5.71; -1.17]	16.6
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.67	6.12	27	-0.10	6.12		-2.57 [-5.73; 0.59]	11.1
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.80	6.62	70	-7.00	6.62		-1.80 [-4.00; 0.40]	17.1
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.49	43	-7.80	6.17		-0.60 [-3.25; 2.05]	14.0
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.50	4.42	20	-2.10	4.42		0.60 [-2.00; 3.20]	14.3
Overall Effect						225			215			-	-2.06 [-3.58; -0.53]	84.4
Heterogeneity: $l^2 = 51\%$, $\tau^2 = 1.8228$, $\chi^2_5 = 10.1$	5 (p =	0.07											and all a comparison of	
Overall Effect Heterogeneity: $l^2 = 42\%$, $\tau^2 = 1.2343$, $\gamma_e^2 = 10.3$	0 (n =	= 0 11	1			270			260			-	-1.96 [-3.24; -0.68]	100.0
Test for overall effect: $z = -3.00 (p < 0.01)$	o (p -	V.11	/									-5 0 5		
Test for subgroup differences: $\gamma_{\pi}^2 = 0.15$, df = 1	(n =	0 70)								3	Favour	s Intervention Favours Co	introl	

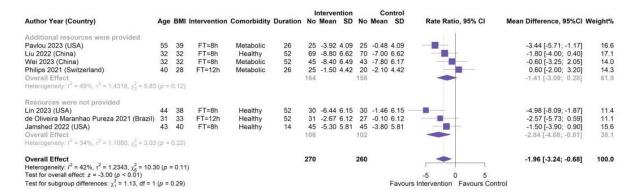
eFigure 23: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on waist circumference (cm), grouped by follow duration.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

						h	nterve	ntion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Feeding time is > 8 hours														
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.67	6.12	27	-0.10	6.12		-2.57 [-5.73; 0.59]	11.1
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.50	4.42	20	-2.10	4.42		0.60 [-2.00; 3.20]	14.3
Overall Effect						56			47				-0.85 [-3.95; 2.24]	25.4
Heterogeneity: $l^2 = 57\%$, $\tau^2 = 2.8449$, $\chi_1^2 = 2.31$	(p =	0.13)												
Feeding time is ≤ 8 hours														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-6.44	6.15	30	-1.46	6.15 -		-4.98 [-8.09; -1.87]	11.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-3.92	4.09	25	-0.48	4.09		-3.44 [-5.71; -1.17]	16.6
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.80	6.62	70	-7.00	6.62		-1.80 [-4.00; 0.40]	17.1
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.30	5.81	45	-3.80	5.81		-1.50 [-3.90; 0.90]	15.6
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.49	43	-7.80	6.17		-0.60 [-3.25; 2.05]	14.0
Overall Effect						214			213			-	-2.35 [-3.72; -0.98]	74.6
Heterogeneity: $I^2 = 34\%$, $\tau^2 = 0.8165$, $\chi_4^2 = 6.03$	3 (p =	0.20)												
Overall Effect Heterogeneity: $l^2 = 42\%$, $\tau^2 = 1.2343$, $\chi_a^2 = 10.3$	0 (n	= 0 11				270			260			-	-1.96 [-3.24; -0.68]	100.0
Test for overall effect: $z = -3.00 (p < 0.01)$	in the	0.11	/									-5 0 5		
Test for subgroup differences: $\chi_1^2 = 0.75$, df = 1	(p =	0.39)									Favour	s Intervention Favours Con	ntrol	
	Mr.											Faroaro com		

eFigure 24: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on waist circumference (cm), grouped by eating window.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration			ntion SD	No	Co Mean	ntrol SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Intervention involved < 1 session per we	ek											1		
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-6.44	6.15	30	-1.46	6.15 -		-4.98 [-8.09; -1.87]	11.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-3.92	4.09	25	-0.48	4.09		-3.44 [-5.71; -1.17]	16.6
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.6	6.12	27	-0.10	6.12		-2.57 [-5.73; 0.59]	11.1
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.80	6.62	70	-7.00	6.62		-1.80 [-4.00; 0.40]	17.1
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.50	4.42	20	-2.10	4.42		0.60 [-2.00; 3.20]	14.3
Overall Effect						180			172				-2.35 [-4.10; -0.61]	70.4
Heterogeneity: $t^2 = 55\%$, $r^2 = 2.1345$, $\chi_4^2 = 8.83$	(p =	0.07)												
Intervention involved ≥ 1 session per wee	⊧k													
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.30	5.81	45	-3.80	5.81		-1.50 [-3.90; 0.90]	15.6
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.49	43	-7.80	6.17		-0.60 [-3.25; 2.05]	14.0
Overall Effect Heterogeneity: $\ell^2=0\%, \tau^2=0, \chi_1^2=0.24$ (p = 0	62)					90			88			-	-1.09 [-2.87; 0.68]	29.6
Overall Effect Heterogeneity: $y^2 = 42\%$, $\tau^2 = 1.2343$, $\gamma_e^2 = 10.3$	0 (p =	= 0.11)			270			260			-	-1.96 [-3.24; -0.68]	100.0
Test for overall effect: $z = -3.00 (p < 0.01)$,									-5 0 5		
Test for subgroup differences: $\chi_{\pm}^2 = 0.99$, df = 1	(p =	0.32)									Favours	s Intervention Favours Co	ontrol	


eFigure 25: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on waist circumference (cm), grouped by frequency of contact.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		nterver Mean				ntrol SD	Rate Ratio, 95% Cl	Mean Difference, 95%C	Weight%
Any health professional Liu 2022 (China) Philips 2021 (Switzerland) Overall Effect Heterogeneity: $J^2 = 48\%$, $\tau^2 = 1.3702$, $\chi_1^2 = 1.91$	32 40	32 28 0.17)	FT=8h FT=12h	Healthy Metabolic	52 26	69 25 94	-8.80 -1.50			-7.00 -2.10		-	-1.80 [-4.00; 0.40 0.60 [-2.00; 3.20 -0.70 [-3.05; 1.64	14.3
Trained specifically in nutrition Lin 2023 (USA) Pavlou 2023 (USA) de Oliveira Maranhao Pureza 2021 (Brazil) Jamshed 2022 (USA) Wei 2023 (China) Overall Effect Heterogeneity: $I^2 = 30\%$, $\tau^2 = 0.8123$, $\tau^2_A = 5.75$	43 32	38 39 33 40 32	FT=8h FT=8h FT=12h FT=8h FT=8h	Healthy Metabolic Healthy Healthy Metabolic	52 26 52 14 52	31	-3.92 -2.67 -5.30 -8.40	4.09 6.12 5.81	25 27 45	-1.46 -0.48 -0.10 -3.80 -7.80	4.09 6.12 5.81	1	-4.98 [-8.09; -1.87 -3.44 [-5.71; -1.17] -2.57 [-5.73; 0.59 -1.50 [-3.90; 0.90 -0.60 [-3.25; 2.05 -2.53 [-3.96; -1.09]	16.6 11.1 15.6 14.0
Overall Effect Heterogeneity: $l^2 = 42\%$, $\tau^2 = 1.2343$, $\chi_0^2 = 10.3$ Test for overall effect: $z = -3.00$ ($p < 0.01$) Test for subgroup differences: $\chi_1^2 = 1.69$, df = 1)			270			260		Favour	-5 0 5 s Intervention Favours Co	-1.96 [-3.24; -0.68]	100.0

eFigure 26: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on waist circumference (cm), grouped by delivery personnel.

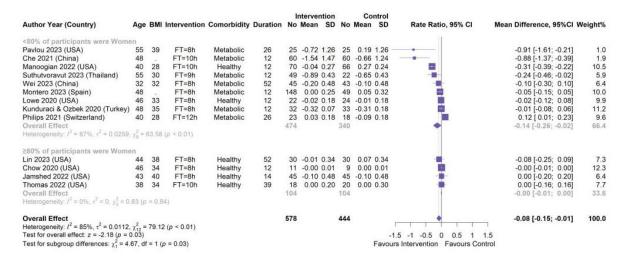
BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

eFigure 27: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on waist circumference (cm), grouped by resource provision.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		nterver Mean		No	Cor Mean	ntrol SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	Veight%
High Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.50	4.42	20	-2.10	4.42		0.60 [-2.00; 3.20]	14.3
Unclear			FT 01		50			0.45					1001000 107	
Lin 2023 (USA)	44	38 39	FT=8h FT=8h	Healthy	52 26	30				-1.46		-	-4.98 [-8.09; -1.87]	11.4
Pavlou 2023 (USA)	55			Metabolic			0.01			10000			-3.44 [-5.71; -1.17]	16.6
de Oliveira Maranhao Pureza 2021 (Brazil)		33	FT=12h	Healthy	52	31	-2.67			-0.10			-2.57 [-5.73; 0.59]	11.1
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69				-7.00			-1.80 [-4.00; 0.40]	17.1
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.30	5.81	45	-3.80	5.81		-1.50 [-3.90; 0.90]	15.6
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.49	43	-7.80	6.17		-0.60 [-3.25; 2.05]	14.0
Overall Effect Heterogeneity: $t^2 = 17\%$, $\tau^2 = 0.3632$, $\chi_5^2 = 6.05$	i (p =	0.30)				245			240			•	-2.36 [-3.52; -1.21]	85.7
Overall Effect Heterogeneity: $l^2 = 42\%$, $\tau^2 = 1.2343$, $\gamma_e^2 = 10.3$	10 (p :	= 0.11)			270			260			-	-1.96 [-3.24; -0.68]	100.0
Test for overall effect: z = -3.00 (p < 0.01)												-5 0 5		
Test for subgroup differences: χ_1^2 = 4.16, df = 1	(p =	0.04)								F	Favour	s Intervention Favours Con	itrol	

eFigure 28: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on waist circumference (cm), grouped by risk of bias.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.


Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		ntervei Mean		No		ntrol SD	Mean Difference, 95% Cl	Mean Difference, 95%CI V	Veight%
Time Restricted Eating												1 I I I I I I I I I I I I I I I I I I I		
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-3.76	5.41	30	1.11	5.41		-4.87 [-7.61; -2.13]	8.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.28	4.26	25	-0.72	4.26		-3.56 [-5.92; -1.20]	9.7
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-4.69	3.06	49	-1.85	3.14		-2.84 [-3.85; -1.83]	17.6
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.70	2.90	45	-4.20	2.90		-1.50 [-2.70; -0.30]	16.3
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-9.45	4.00	70	-7.99	4.03		-1.46 [-2.79; -0.13]	15.5
Thomas 2022 (USA)	38	34	FT=10h	Healthy	12	33	-5.20	5.90	27	-4.70	5.70		-0.50 [-3.45; 2.45]	7.4
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	59	-1.17	2.80	57	-0.76	2.80		-0.41 [-1.43; 0.61]	17.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.77	5.39	27	-0.69	5.39		-0.08 [-2.86; 2.70]	8.0
Overall Effect						440			330			-	-1.82 [-2.81: -0.83]	100.0
Heterogeneity: $l^2 = 66\%$, $\tau^2 = 1.1854$, $\chi^2_7 = 20.7$	6 (p ·	< 0.01)											
											Favou	-6 -4 -2 0 2 4 6 rs Intervention Favours Con	rol	

eFigure 29: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on percentage of weight loss (%), grouped by the meal timing intervention.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interventio Mean SI		C Mean	Control SD	Mean Difference, 95% CI	Mean Difference, 95%Cl W	/eight%
Time Restricted Eating Che 2021 (China) Philips 2021 (Switzerland) Wei 2023 (China) Suthutvoraut 2023 (Chailand) Lin 2023 (USA) Kunduraci & Ozbek 2020 (Turkey) Montero 2023 (Spain) Jamshed 2022 (USA) Lowe 2020 (USA) Chow 2020 (USA) Thomas 2022 (USA) Pavlou 2023 (USA) Liu 2022 (China) Manoogian 2022 (USA) Overall Effect Heterogeneity, /² = 0x, x²= 0, x²= 1	48 40 32 55 44 48 48 43 46 38 55 32 40	28 32 30 38 35 40 33 34 34 39 32 28 (p = 0	FT=10h FT=2h FT=8h FT=8h FT=8h FT=8h FT=8h FT=8h FT=8h FT=8h FT=10h FT=8h FT=10h	Metabolic Metabolic Metabolic Healthy Metabolic Healthy Healthy Healthy Healthy Healthy Healthy Healthy	12 26 52 12 52 12 12 14 12 26 52 12	23 45 49 30	-4.54 7.6 2.82 11.7 -15.47 37.7 -1.92 9.4 -8.00 16.9	2 14 7 43 3 23 6 34 0 33 0 49 4 44 4 24 4 24 1 1 20 21 6 23 4 70	3 -0.80 2 0.20 0 6.26 3 -13.12 9 0.34 5 -6.00 4 0.29 9 -7.00 0 3.20 5 0.19 0 -2.90 6 0.14	10.22 17.47 7.63 11.76 28.40		$\begin{array}{c} -12.44 \ [-23.96; \ -0.92] \\ -5.23 \ [-11.53; \ 1.08] \\ -5.10 \ [-12.40; \ 2.20] \\ -4.74 \ [-8.56; \ -0.90] \\ -3.44 \ [-9.39; \ 2.51] \\ -2.35 \ [-16.86; \ 1.03.91] \\ -2.26 \ [-5.34; \ 0.82] \\ -2.00 \ [-9.00; \ 5.00] \\ -1.35 \ [-5.25; \ 2.55] \\ -1.00 \ [-11.31; \ 9.31] \\ -1.00 \ [-11.31; \ 9.99; \ 7.69] \\ -0.91 \ [-1.61; \ -0.21] \\ -0.60 \ [-6.10; \ 4.90] \\ -0.60 \ [-6.10; \ 4.90] \\ -0.55 \ [-2.30; \ 2.40] \\ -1.15 \ [-1.77; \ -0.53] \end{array}$	5.4 7.4 7.0 8.2 7.5 3.9 8.4 7.1 8.2 5.8 6.4 8.7 7.6 8.5 100.0
Meal frequency Jakubowicz 2019 (sraet) Kahleova 2014 (Czeck Rep.) Papakonstantinou 2018a (Greece) Grangeiro 2021 (Brazil) Papakonstantinou 2016 (Greece) Porslund 2006 (Sweden) Overall Effect Heterogenetik, / ² = 100%, z ² = 249.66	30 27 52 39		3M vs 6M 2M vs 6M 3M vs 6M 3M vs 6M 3M vs 6M 3M vs 6M 3M vs 3M+3S 88.36 (p < 0.01	Metabolic Metabolic Metabolic Healthy Metabolic Metabolic Healthy	12 12 13 12 12 12 52		-14.18 7.0 -3.06 7.2 2.59 14.9 -3.61 0.8	7 5 1 3 8 1 3 4 9 1	5 -0.54 9 2.82 0 -3.61 2 -5.77 0 -5.95	7.25 3.78 15.52 1.45		-32.00 [-33.61; -30.39] -5.71 [-8.41; -30.1] -2.52 [-5.22; 0.16] -0.23 [-9.70; 9.24] 0.00 [-0.52; 0.52] 0.18 [-3.43; 3.79] 3.07 [-0.75; 6.89] -5.40 [-17.22; 6.42]	15.2 14.9 14.9 10.8 15.4 14.5 14.4 100.0
Meal distribution Jakubowicz 2013 (Israel) Lombardo 2014 (Italy) Madjd 2021 (Iran) Madjd 2014 (Iran) Overall Effect Heterogeneity: / ² = 95%, r ² = 12.7997	46 46 35 34 7, χ ₃ ² =	36 33 32	HCB vs HCD FL vs EED ED vs LD ML vs BL 9 (p < 0.01)	Metabolic Healthy Healthy Healthy	12 12 12 12		-8.29 3.2	0 1	8 0.72 2 -7.21 0 -6.31	5.00 3.96 2.97	-30 -20 -10 0 10 20 30 urs Intervention Favours Contr		25.5 23.8 25.3 25.4 100.0

eFigure 30: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on fasting plasma glucose (mg/dL), grouped by the meal timing intervention.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

eFigure 31: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on HbA1c (%), grouped by gender proportion.

						1	ntervent	tion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	/eight%
Any health professional														
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-0.89 (0.43	22	-0.65	0.43		-0.24 [-0.46; -0.02]	5.9
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	0.00 0	0.25	49	0.05	0.32		-0.05 [-0.15; 0.05]	10.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.02 (0.18	24	-0.01	0.18	100	-0.02 [-0.12; 0.08]	9.9
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-0.32 (0.07	33	-0.31	0.18		-0.01 [-0.08; 0.06]	11.2
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.00 0	0.01	9	0.00	0.01		-0.00 [-0.01; 0.00]	12.3
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	23	0.03 0	0.18	18	-0.09	0.18		0.12 [0.01; 0.23]	9.6
Overall Effect						285			155			•	-0.01 [-0.05; 0.04]	58.9
Heterogeneity: $l^2 = 52\%$, $\tau^2 = 0.0013$,	$\chi_5^2 =$	10.41	(p = 0.08)										1000 COL 8 COLD CV 0700004	
Trained specifically in nutrition														
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72	1.26	25	0.19	1.26	· · · · ·	-0.91 [-1.61; -0.21]	1.0
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-1.54	1.47	60	-0.66	1.24		-0.88 [-1.37; -0.39]	1.9
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.04 0	0.27	66	0.27	0.24	1	-0.31 [-0.39; -0.22]	10.5
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-0.20 0	0.48	43	-0.10	0.48	-	-0.10 [-0.30; 0.10]	6.4
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.01 0	0.34	30	0.07	0.34		-0.08 [-0.25; 0.09]	7.3
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-0.10 0	0.48	45	-0.10	0.48		0.00 [-0.20; 0.20]	6.4
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18	0.00 0	0.20	20	0.00	0.30	-	0.00 [-0.16; 0.16]	7.7
Overall Effect						293			289			-	-0.20 [-0.37; -0.03]	41.1
Heterogeneity: $l^2 = 80\%$, $\tau^2 = 0.0348$,	$\chi_6^2 = 1$	30.02	(p < 0.01)											
Overall Effect	2	70.4				578			444			· · · · · · · · · · · · · · · · · · ·	-0.08 [-0.15; -0.01]	100.0
Heterogeneity: $I^2 = 85\%$, $\tau^2 = 0.0112$, Test for overall effect: $z = -2.18$ ($p = 0$	$\chi_{12} = 0.03$	79.1.	2 (p < 0.01)									15 -1 -0 5 0 0 5 1 1	5	
Test for subgroup differences: $\chi_1^2 = 4$.		- 1 /	0.02)									urs Intervention Favours Cont		

eFigure 32: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on HbA1c (%), grouped by delivery personnel.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interver				ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Mean Difference, 95% CI	Mean Difference, 95%CI	Weight%
Time Restricted Eating														
Che 2021 (China)	48	1.1	FT=10h	Metabolic	12	60	-16.24 3	38.96	60	-8.12	38.96		-8.12 [-22.06; 5.82]	6.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-12.50 2	24.64	43	-8.20	24.64		-4.30 [-14.60; 6.00]	8.6
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.86 2	20.73	30	2.36	20.73		-3.22 [-13.71; 7.27]	8.5
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-17.00 1	13.10	33	-15.97	14.05		-1.03 [-7.63; 5.57]	11.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.40 2	27.07	70	-8.90	27.07		0.50 [-8.50; 9.50]	9.6
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	0.60 1	19.52	24	-2.24	19.52		2.84 [-8.45; 14.13]	8.0
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69	0.75 1	18.70	66	-2.61	18.70		3.36 [-2.95; 9.67]	11.7
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.23 2	26.37	25	-4.86	26.37		4.63 [-9.99; 19.25]	6.1
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00 3	31.46	45	-10.00	31.46		5.00 [-8.00; 18.00]	6.9
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	6.04 2	24.12	49	0.08	24.51		5.96 [-1.93; 13.85]	10.5
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	14.75 3	35.07	22	6.98	35.07		7.77 [-9.87; 25.41]	4.8
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	9.00 4	18.25	9	1.00	7.01		8.00 [-20.88; 36.88]	2.2
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-0.18 2	23.11	34	-8.88	43.33		8.70 [-7.71; 25.11]	5.2
Overall Effect						641			510			*	1.51 [-1.30; 4.32]	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{12} =$	7.93 (p = 0.	79)											
Meal frequency														
Forslund 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-3.86 1	19.31	70	-3.09	23.17		-0.77 [-7.84; 6.30]	22.5
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-3.86 2	21.86	40	-4.25	22.82		0.39 [-9.40; 10.18]	18.2
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-2.32	7.07	54	-3.09	9.89		0.77 [-2.47; 4.01]	28.2
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	18	21	5.35 3	34.74	19	2.66	35.92		2.69 [-19.25; 24.63]	7.0
Zargaran 2014 (Iran)		31	3M+2S vs 6M	Healthy	12	45	-7.70 1	15.30	45	-24.40	14.50		16.70 [10.54; 22.86]	24.0
Overall Effect						230			228			-	4.27 [-3.34; 11.87]	100.0
Heterogeneity: $I^2 = 82\%$, $\tau^2 = 54.021$	$2, \chi_4^2$	= 22.1	4 (p < 0.01)											
Meal distribution														
Madjd 2021 (Iran)	35	33	ML vs BL	Healthy	12	40	-20.85 1	10.42	42	-5.41	9.65	-	-15.44 [-19.79; -11.09]	24.1
Lombardo 2014 (Italy)	46	36	FL vs ML	Healthy	12	18	-5.00	7.00	18	-1.30	5.00		-3.70[-7.67: 0.27]	24.6
Madid 2016 (Iran)	34	32	ML vs BL	Healthy	12	40	-14.29	7.06	40	-12.36	7.06		-1.93 [-5.03; 1.16]	25.6
Jakubowicz 2013 (Israel)	46	32	FL vs BL	Metabolic	12	38	-2.50	6.07		-7.30	6.71		4.80 [1.88; 7.72]	25.7
Overall Effect						136			136			-	-3.95 [-11.67; 3.77]	100.0
Heterogeneity: $l^2 = 95\%$, $\tau^2 = 58.671$	6, 23	= 58.1	6 (p < 0.01)											
and the second sec														
												-30 -20 -10 0 10 20 30		
											Enviro	in Intervention Equeurs Centre	1	

Favours Intervention Favours Control

eFigure 33: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on LDL (mg/dL), grouped by the meal timing intervention.

							Interv	ention		Co	ontrol			
Author Year (Country)	Age	BMI Inter	vention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
<80% of participants were Wome	in .											- 1		
Che 2021 (China)	48	FT	=10h	Metabolic	12	60	-16.24	38.96	60	-8.12	38.96		-8.12 [-22.06: 5.82]	4.1
Wei 2023 (China)	32		T=8h	Metabolic	52	45	-12.50	24.64	43	-8.20	24.64		-4.30 [-14.60: 6.00]	7.4
Kunduraci & Ozbek 2020 (Turkey)	48	35 F1	T=8h	Metabolic	12	32	-17.00	13.10	33	-15.97	14.05		-1.03 [-7.63: 5.57]	18.1
Liu 2022 (China)	32	32 FT	T=8h	Healthy	52	69	-8.40	27.07	70	-8.90	27.07	-	0.50 [-8.50; 9.50]	9.7
Lowe 2020 (USA)	46	33 F1	T=8h	Healthy	12	22	0.60	19.52	24	-2.24	19.52		2.84 [-8.45; 14.13]	6.2
Manoogian 2022 (USA)	40		=10h	Healthy	12	69	0.75	18 70	66	-2.61			3.36 [-2.95; 9.67]	19.8
Pavlou 2023 (USA)	55		T=8h	Metabolic	26	25	-0.23	26.37	25	-4.86			4.63 [-9.99; 19.25]	3.7
Montero 2023 (Spain)	48		T=8h	Metabolic	12	148		24.12	49	0.08			5.96 [-1.93, 13,85]	12.7
Suthutvoravut 2023 (Thailand)	55		T=9h	Metabolic	12	49		35.07	22	6.98			7.77 [-9.87: 25.41]	2.5
Overall Effect			1-211	metabolic		519	14.10		392	0.00	00.01		1.40 [-1.66; 4.46]	84.1
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_0^2 = 5$	93 (p	= 0.65)												
280% of participants were Wome	n													
Lin 2023 (USA)	44	38 F1	T=8h	Healthy	52	30	-0.86	20.73	30	2.36	20.73		-3.22 [-13.71; 7.27]	7.2
Jamshed 2022 (USA)	43	40 F1	T=8h	Healthy	14	45	-5.00	31.46	45	-10.00	31.46		5.00 [-8.00; 18.00]	4.7
Chow 2020 (USA)	46	34 F1	T=8h	Healthy	12	11	9.00	48.25	9	1.00	7.01		8.00 [-20.88; 36.88]	0.9
Thomas 2022 (USA)	38	34 FT	=10h	Healthy	39	36	-0.18	23.11	34	-8.88	43.33	-	8.70 [-7.71; 25.11]	2.9
Overall Effect						122			118				2.12 [-4.96; 9.21]	15.7
Heterogeneity; $J^2 = 0$ %, $\tau^2 = 0$, $\chi_0^2 = 1$.	98 (p	= 0.58)											1000 A 1000 A 1000 A	
Overall Effect						641			510			*	1.51 [-1.30; 4.32]	100.0
Heterogeneity: $I^2 = 0\%$, $z^2 = 0$, $\chi^2_{12} = 7$		p = 0.79												
Test for overall effect: z = 1.05 (p = 0												30 -20 -10 0 10 20 3		
Test for subgroup differences: $\chi_1^2 = 0$.	03, df	= 1 (p = 0.8)	85)								Favours	Intervention Favours Cor	Introl	

eFigure 34: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on LDL (mg/dL), grouped by gender proportion.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interv	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% Cl M	an Difference, 95%CI V	Veight%
Obese I														
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-12.50	24.64	43	-8.20	24.64		-4.30 [-14.60; 6.00]	7.4
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-17.00	13.10	33	-15.97	14.05		-1.03 [-7.63; 5.57]	18.1
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.40	27.07	70	-8.90	27.07		0.50 [-8.50; 9.50]	9.7
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	0.60	19.52	24	-2.24	19.52	-	2.84 [-8.45; 14.13]	6.2
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	6.04	24.12	49	0.08	24.51		5.96 [-1.93; 13.85]	12.7
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	9.00	48.25	9	1.00	7.01		8.00 [-20.88; 36.88]	0.9
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-0.18	23.11	34	-8.88	43.33		8.70 [-7.71; 25.11]	2.9
Overall Effect						363			262			*	1.39[-2.30; 5.07]	58.0
Heterogeneity: $t^2 = 0\%$, $\tau^2 = 0$, $\chi_0^2 = 4$.04 (p	= 0.8	17)											
Obese II														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.86	20.73	30	2.36	20.73		-3.22 [-13.71; 7.27]	7.2
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.23	26.37	25	-4.86	26.37		4.63 [-9.99; 19.25]	3.7
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	31.46	45	-10.00	31.46		5.00 [-8.00; 18.00]	4.7
Overall Effect	102	135	20105203			100	102022		100	10000	1267123	-	1.12[-6.01; 8.24]	15.5
Heterogeneity: $t^2 = 0\%$, $z^2 = 0$, $\chi_2^2 = 1$	22 (p	= 0.5	54)											
Overweight														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-16.24	38.96	60	-8.12	38.96		-8.12 [-22.06; 5.82]	4.1
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69	0.75	18,70	66	-2.61	18,70	-	3.36 [-2.95; 9.67]	19.8
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	14.75	35.07	22	6.98	35.07		7.77 [-9.87; 25.41]	2.5
Overall Effect						178			148			-	1.46 [-5.85; 8.77]	26.4
Heterogeneity: $l^2 = 23\%$, $t^2 = 11.800$	$6, \chi_2^2$	2.61	(p = 0.27)											
Overall Effect						641			510			+	1.51 [-1.30; 4.32]	100.0
Heterogeneity: $I^2 = 0\%$, $z^2 = 0$, $\chi^2_{12} =$		p = 0.	79)									the start of the start of the		
Test for overall effect: $z = 1.05$ ($p = 0$		5 - 20									-	-30 -20 -10 0 10 20 30		
Test for subgroup differences: $\chi_2^2 = 0$	01, d	1=2($\rho = 1.00$								Favor	ars Intervention Favours Control		

eFigure 35: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on LDL (mg/dL), grouped by baseline BMI status.

							Interv	ention		C	ontrol			
Author Year (Country)	Age	BMI I	ntervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Healthy														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.86	20.73	30	2.36	20.73		-3.22 [-13.71; 7.27]	7.2
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.40	27.07	70	-8.90	27.07		0.50 [-8.50; 9.50]	9.7
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	0.60	19.52	24	-2.24	19.52		2.84 [-8.45; 14.13]	6.2
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69	0.75	18.70	66	-2.61	18.70		3.36 [-2.95; 9.67]	19.8
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	31.46	45	-10.00	31.46		5.00 [-8.00; 18.00]	4.7
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	9.00	48.25	9	1.00	7.01		8.00 [-20.88; 36.88]	0.9
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-0.18	23.11	34	-8.88	43.33		8.70 [-7.71; 25.11]	2.9
Overall Effect						282			278			-	2.38 [-1.54; 6.29]	51.5
Heterogeneity: $I^2 = 0\%$, $z^2 = 0$, $\chi_6^2 = 2$	23 (p	= 0.90)											
Metabolic														
Che 2021 (China)	48	191	FT=10h	Metabolic	12	60	-16.24	38.96	60	-8.12	38.96		-8.12 [-22.06; 5.82]	4.1
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-12.50	24.64	43	-8.20	24.64		-4.30 [-14.60; 6.00]	7.4
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-17.00	13.10	33	-15.97	14.05		-1.03 [-7.63; 5.57]	18.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.23	26.37	25	-4.86	26.37		4.63 [-9.99; 19.25]	3.7
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	6.04	24.12	49	0.08	24.51		5.96 [-1.93; 13.85]	12.7
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	14.75	35.07	22	6.98	35.07		7.77 [-9.87; 25.41]	2.5
Overall Effect						359			232			+	0.59 [-3.64; 4.82]	48.5
Heterogeneity: $I^2 = 6\%$, $\tau^2 = 1.7266$,	$\chi_5^2 = 5$.31 (p =	0.38)											
Overall Effect						641			510			•	1.51 [-1.30; 4.32]	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{12} = 1$		p = 0.79))											
Test for overall effect: $z = 1.05$ ($p = 0$												-30 -20 -10 0 10 20 30		
Test for subgroup differences: $\chi_1^2 = 0$.	37, d	f = 1 (p	= 0.54)								Favour	s Intervention Favours Control		

eFigure 36: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on LDL (mg/dL), grouped by health status.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ntion		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
TRE+ad libitum vs No TRE+ad li	bitur	n										1		
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-16.24	38.96	60	-8.12	38.96		-8.12 [-22.06; 5.82]	4.1
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.86	20.73	30	2.36	20.73		-3.22 [-13.71; 7.27]	7.2
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	0.60	19.52	24	-2.24	19.52		2.84 [-8.45; 14.13]	6.2
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69	0.75	18.70	66	-2.61	18.70		3.36 [-2.95; 9.67]	19.8
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.23	26.37	25	-4.86	26.37		4.63 [-9.99; 19.25]	3.7
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	6.04	24.12	49	0.08	24.51		5.96 [-1.93; 13.85]	12.7
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	14.75	35.07	22	6.98	35.07		7.77 [-9.87; 25.41]	2.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	9.00	48.25	9	1.00	7.01		8.00 [-20.88; 36.88]	0.9
Overall Effect						414			285				2.59 [-1.12: 6.31]	57.1
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_7^2 = 4$	75 (p	0 = 0.6	59)											
TRE+DCR vs DCR														
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-12.50	24.64	43	-8.20	24.64		-4.30 [-14.60; 6.00]	7.4
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-17.00	13.10	33	-15.97	14.05		-1.03 [-7.63; 5.57]	18.1
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.40	27.07	70	-8.90	27.07		0.50 [-8.50; 9.50]	9.7
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	31.46	45	-10.00	31.46		5.00 [-8.00; 18.00]	4.7
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-0.18	23.11	34	-8.88	43.33		8.70 [-7.71; 25.11]	2.9
Overall Effect						227			225			*	0.07 [-4.22; 4.36]	42.9
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_4^2 = 2$	42 (p	0.0	56)											
Overall Effect Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{12} = 7$	1 02 /	0 = 0	70)			641			510				1.51 [-1.30; 4.32]	100.0
Test for overall effect: $z = 1.05$ ($p = 0$		p = 0.	.(5)									-30 -20 -10 0 10 20 30		
Test for subgroup differences: $\chi_1^2 = 0$.		1										s Intervention Favours Contro	E.	
rest for subgroup differences: $\chi_1 = 0$.	/o, a	- 1 (p = 0.58								Favour	s intervention Favours Contro	C	

eFigure 37: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on LDL (mg/dL), grouped by energy prescription.

							Interv	ention		C	ontrol			
Author Year (Country)	Age	BM	I Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	leight%
Follow duration <6 months												ũ.		
	48		FT=10h	Metabolic	12	60	-16.24	20 00	60	0 10	38.96		8 10 L 00 06: E 901	4.1
Che 2021 (China)		35		Metabolic	12		-17.00			-15.97			-8.12 [-22.06; 5.82]	18.1
Kunduraci & Ozbek 2020 (Turkey)		33				22		19.52	24		19.52		-1.03 [-7.63; 5.57]	
Lowe 2020 (USA)	46			Healthy	12	69		19.52	66				2.84 [-8.45; 14.13]	6.2
Manoogian 2022 (USA)	40	28 40		Healthy	12 14						18.70		3.36 [-2.95; 9.67]	19.8
Jamshed 2022 (USA)	43			Healthy		45		31.46		-10.00		and the second se	5.00 [-8.00; 18.00]	
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148		24.12	49		24.51		5.96 [-1.93; 13.85]	12.7
Suthutvoravut 2023 (Thailand)	55	30		Metabolic	12	49		35.07	22		35.07		7.77 [-9.87; 25.41]	2.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	9.00	48.25	9	1.00	7.01		8.00 [-20.88; 36.88]	0.9
Overall Effect						436			308			-	2.30 [-1.08; 5.68]	69.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_7^2 = 4$.75 (p	0 = 0.	69)											
Follow duration ≥6 months														
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-12.50	24 64	43	-8 20	24.64		-4.30 [-14.60; 6.00]	7.4
Lin 2023 (USA)	44	38		Healthy	52	30		20.73	30		20.73		-3.22 [-13.71; 7.27]	7.2
Liu 2022 (China)	32	32		Healthy	52	69		27.07	70		27.07		0.50 [-8.50; 9.50]	9.7
Pavlou 2023 (USA)	55	39		Metabolic	26	25		26.37	25		26.37		4.63 [-9.99; 19.25]	3.7
Thomas 2022 (USA)	38	34		Healthy	39	36		23.11	34		43.33		8.70 [-7.71; 25.11]	2.9
Overall Effect	00	04	11-1011	ricality	55	205	-0.10	20.11	202	-0.00	40.00	-	-0.25 [-5.29; 4.80]	31.0
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_1 = 2$	5 (0	= 0.6	4)			200			202				-0.20[-0.20, 4.00]	51.0
10101030101911 010,1 01,14	, o (jo	10110												
Overall Effect						641			510			+	1.51 [-1.30; 4.32]	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{12} = 1$	7.93 (p = 0	.79)										•	
Test for overall effect: $z = 1.05$ ($p = 0$		10 N	00010									-30 -20 -10 0 10 20 30		
Test for subgroup differences: $\chi_1^2 = 0$.		f = 1	(p = 0.41)								Favou	rs Intervention Favours Contro	d l	
• · · · · · · · · · · · · · · · · · · ·														

eFigure 38: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on LDL (mg/dL), grouped by follow duration.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BM	Intervention	Comorbidity	Duration	No	Interv Mean		No	C Mean	ontrol SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eiaht%
				· · · · · · · · · · · · · · · · · · ·										- g
Feeding time is > 8 hours														
Che 2021 (China)	48		FT=10h	Metabolic	12		-16.24		60		38.96		-8.12 [-22.06; 5.82]	4.1
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69		18.70	66		18.70	-	3.36 [-2.95; 9.67]	19.8
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49		35.07	22		35.07		7.77 [-9.87; 25.41]	2.5
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-0.18	23.11	34	-8.88	43.33		8.70 [-7.71; 25.11]	2.9
Overall Effect						214			182			-	2.62 [-2.99; 8.24]	29.3
Heterogeneity: $I^2 = 6\%$, $\tau^2 = 2.5763$,	$\chi_3^2 = 3$.19 (p	o = 0.36)											
Feeding time is ≤ 8 hours														
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-12.50	24.64	43	-8.20	24.64		-4.30 [-14.60; 6.00]	7.4
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.86	20.73	30	2.36	20.73		-3.22 [-13.71; 7.27]	7.2
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-17.00	13.10	33	-15.97	14.05		-1.03 [-7.63; 5.57]	18.1
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.40	27.07	70		27.07		0.50 [-8.50; 9.50]	9.7
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	0.60	19.52	24	-2.24	19.52		2.84 [-8.45; 14.13]	6.2
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.23	26.37	25	-4.86	26.37		4.63 [-9.99; 19.25]	3.7
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	31.46	45	-10.00	31.46		5.00 [-8.00; 18.00]	4.7
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	6.04	24.12	49	0.08	24.51		5.96 [-1.93; 13.85]	12.7
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	9.00	48.25	9	1.00	7.01		8.00 [-20.88; 36.88]	0.9
Overall Effect						427			328			+	1.02 [-2.32; 4.37]	70.7
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_8^2 = 4$.46 (p	= 0.8	31)											
Overall Effect						641			510			•	1.51 [-1.30; 4.32]	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{12} = 1$	7.93 (p = 0	79)											
Test for overall effect: $z = 1.05$ ($p = 0$).29)											-30 -20 -10 0 10 20 30		
Test for subgroup differences: $\chi_1^2 = 0$.	23, d	f = 1 (p = 0.63)								Favou	rs Intervention Favours Contro	bl	

eFigure 39: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on LDL (mg/dL), grouped by eating window.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No		ention SD	No	C Mean	ontrol SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Intervention involved < 1 session	n per	weel	k											
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.86	20.73	30	2.36	20.73		-3.22 [-13.71; 7.27]	7.2
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.40	27.07	70	-8.90	27.07		0.50 [-8.50; 9.50]	9.7
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	0.60	19.52	24	-2.24	19.52		2.84 [-8.45; 14.13]	6.2
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69	0.75	18.70	66	-2.61	18.70	-	3.36 [-2.95; 9.67]	19.8
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.23	26.37	25	-4.86	26.37		4.63 [-9.99; 19.25]	3.7
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	6.04	24.12	49	0.08	24.51		5.96 [-1.93; 13.85]	12.7
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	14.75	35.07	22	6.98	35.07		7.77 [-9.87; 25.41]	2.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	9.00	48.25	9	1.00	7.01		8.00 [-20.88; 36.88]	0.9
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-0.18	23.11	34	-8.88	43.33		8.70 [-7.71; 25.11]	2.9
Overall Effect						459			329			•	3.22 [-0.25; 6.68]	65.7
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_8^2 = 3$.09 (p	= 0.9	3)											
Intervention involved ≥ 1 session	n per	weel	k											
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-16.24	38.96	60	-8.12	38.96		-8.12 [-22.06; 5.82]	4.1
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-12.50	24.64	43	-8.20	24.64		-4.30 [-14.60; 6.00]	7.4
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-17.00	13.10	33	-15.97	14.05		-1.03 [-7.63; 5.57]	18.1
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	31.46	45	-10.00	31.46		5.00 [-8.00; 18.00]	4.7
Overall Effect				•		182			181			-	-1.76 [-6.56; 3.04]	34.3
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_3^2 = 2$.12 (p	= 0.5	55)											
Overall Effect Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{+2} = 7$	7.93 (p = 0.	79)			641			510			· · · · • · · · ·	1.51 [-1.30; 4.32]	100.0
Test for overall effect: $z = 1.05$ ($p = 0$			1000									-30 -20 -10 0 10 20 30		
Test for subgroup differences: $\chi_1^2 = 2$.	71, di	f = 1 (<i>p</i> = 0.10)								Favou	urs Intervention Favours Contro	N	

eFigure 40: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on LDL (mg/dL), grouped by frequency of contact.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BM	I Intervention	Comorbidity	Duration	No		vention 1 SD	No	C Mean	Control SD	Rate Ratio, 95% CI	Mean Difference, 95%Cl W	/eight%
Any health professional Kunduraci & Ozbek 2020 (Turkey) Liu 2022 (China) Lowe 2020 (USA) Montero 2023 (Spain) Suthutvoravut 2023 (Thailand) Chow 2020 (USA) Overall Effect Heterogenethy: $l^2 = 0\%$, $r^2 = 0$, $\chi^2_a = 2$.	32 46 48 55 46	35 32 33 30 34	FT=8h FT=8h FT=8h FT=9h FT=8h	Metabolic Healthy Healthy Metabolic Metabolic Healthy	12 52 12 12 12 12	32 69 22 148 49 11 331	-8.40 0.60 6.04 14.7	0 13.10 0 27.07 0 19.52 4 24.12 5 35.07 0 48.25	70 24	-8.90 -2.24 0.08 6.98	14.05 27.07 19.52 24.51 35.07 7.01	-	-1.03 [-7.63; 5.57] 0.50 [-8.50; 9.50] 2.84 [-8.45; 14.13] 5.96 [-1.93; 13.85] 7.77 [-9.87; 25.41] 8.00 [-20.88; 36.88] 2.12 [-1.84; 6.09]	18.1 9.7 6.2 12.7 2.5 0.9 50.2
Trained specifically in nutrition Che 2021 (China) Wei 2023 (China) Lin 2023 (USA) Manoogian 2022 (USA) Pavlou 2023 (USA) Jamshed 2022 (USA) Thomas 2022 (USA) Overall Effect Heterogeneiiy: $l^2 = 0\%$, $t^2 = 0$, $\chi^2_a = 5$.	48 32 44 40 55 43 38 26 (p	32 38 28 39 40 34	FT=8h FT=10h FT=8h FT=8h FT=10h	Metabolic Metabolic Healthy Healthy Metabolic Healthy Healthy	12 52 52 12 26 14 39		-12.50 -0.80 0.71 -0.23 -5.00	4 38.96 24.64 20.73 5 18.70 3 26.37 0 31.46 3 23.11	43 30 66 25	-8.20 2.36 -2.61 -4.86 -10.00	2 38.96 24.64 20.73 18.70 26.37 31.46 43.33		-8.12 [-22.06; 5.82] -4.30 [-14.60; 6.00] -3.22 [-13.71; 7.27] 3.36 [-2.95; 9.67] 4.63 [-9.99; 19.25] 5.00 [-8.00; 18.00] 8.70 [-7.71; 25.11] 0.89 [-3.09; 4.88]	4.1 7.4 7.2 19.8 3.7 4.7 2.9 49.8
Overall Effect Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_1 = 7$ Test for overall effect: $z = 1.05$ ($p = 0$ Test for subgroup differences: $\chi^2_1 = 0$.	.29)					641			510		Favou	-30 -20 -10 0 10 20 30 irs Intervention Favours Contro	1.51 [-1.30; 4.32]	100.0

eFigure 41: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time-restricted eating on LDL (mg/dL), grouped by delivery personnel.

							interv				ontroi			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
Additional resources were provi	ded													
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-12.50	24.64	43	-8.20	24.64		-4.30 [-14.60; 6.00]	7.4
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-17.00	13.10	33	-15.97	14.05		-1.03 [-7.63; 5.57]	18.1
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.40	27.07	70	-8.90	27.07		0.50 [-8.50; 9.50]	9.7
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.23	26.37	25	-4.86	26.37		4.63 [-9.99; 19.25]	3.7
Overall Effect						171			171			-	-0.74 [-5.23; 3.76]	39.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_3^2 = 1$,06 (p	= 0.7	79)											
Resources were not provided														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-16.24	38.96	60	-8.12	38.96		-8.12 [-22.06; 5.82]	4.1
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30		20.73	30		20.73		-3.22 [-13.71; 7.27]	7.2
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22		19.52			19.52		2.84 [-8.45; 14.13]	6.2
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69		18.70	66		18.70	-	3.36 [-2.95; 9.67]	19.8
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45		31.46		-10.00			5.00 [-8.00; 18.00]	4.7
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	6.04	24.12	49	0.08	24.51		5.96 [-1.93; 13.85]	12.7
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	14.75	35.07	22	6.98	35.07		7.77 [-9.87; 25.41]	2.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	9.00	48.25	9	1.00	7.01		8.00 [-20.88; 36.88]	0.9
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-0.18	23.11	34	-8.88	43.33		8.70 [-7.71; 25.11]	2.9
Overall Effect						470			339			*	2.95 [-0.65; 6.54]	61.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_8^2 = 5$.3 (p =	= 0.73	3)											
Overall Effect						641			510			•	1.51 [-1.30; 4.32]	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{12} = 1$		p = 0.	.79)											
Test for overall effect: $z = 1.05 (p = 0)$											-	-30 -20 -10 0 10 20 30		
Test for subgroup differences: $\chi_1^2 = 1$.	57, df	1 = 1 (p = 0.21)								Favou	rs Intervention Favours Contro	4	

eFigure 42: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on LDL (mg/dL), grouped by resource provision.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ntion		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI N	lean Difference, 95%CI V	Neight%
High														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-16.24	38.96	60	-8.12	38.96		-8.12 [-22.06; 5.82]	4.1
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-17.00	13.10	33	-15.97	14.05		-1.03 [-7.63; 5.57]	18.1
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	0.60	19.52	24	-2.24	19.52		2.84 [-8.45; 14.13]	6.2
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69	0.75	18.70	66	-2.61	18.70		3.36 [-2.95; 9.67]	19.8
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	6.04	24.12	49	0.08	24.51		5.96 [-1.93; 13.85]	12.7
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	14.75	35.07	22	6.98	35.07		7.77 [-9.87; 25.41]	2.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	9.00	48.25	9	1.00	7.01		8.00 [-20.88; 36.88]	0.9
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-0.18	23.11	34	-8.88	43.33		8.70 [-7.71; 25.11]	2.9
Overall Effect						427			297			-	2.39 [-1.03; 5.82]	67.3
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_7^2 = 5$.	17 (p	0 = 0.6	34)											
Unclear														
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-12.50	24.64	43	-8.20	24.64		-4.30 [-14.60; 6.00]	7.4
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.86	20.73	30	2.36	20.73		-3.22 [-13.71; 7.27]	7.2
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.40	27.07	70	-8.90	27.07		0.50 [-8.50; 9.50]	9.7
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.23	26.37	25	-4.86	26.37		4.63 [-9.99; 19.25]	3.7
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	31.46	45	-10.00	31.46		5.00 [-8.00; 18.00]	4.7
Overall Effect						214			213			+	-0.30 [-5.21; 4.61]	32.7
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_4^2 = 1$.	98 (p	0 = 0.7	(4)											
Overall Effect						641			510			· · · · · · · · · · · · · · · · · · ·	1.51 [-1.30; 4.32]	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{12} = 7$		p = 0.	(9)											
Test for overall effect: $z = 1.05$ ($p = 0$		1.000									-	-30 -20 -10 0 10 20 30		
Test for subgroup differences: $\chi_1^2 = 0$.	78, d	f = 1 (p = 0.38)								Favou	rs Intervention Favours Control		

eFigure 43: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on LDL (mg/dL), grouped by risk of bias.

							Inte	rvention			Control			
Author Year (Country)	Age	BM	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Mean Difference, 95% CI	Mean Difference, 95%CI	Weight%
Time Restricted Eating														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-531.00	790.09	60	-76.00	325.33		-455.00 [-671.20; -238.80]	8.5
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-425.00	531.00	30	0.00	685.00		-425.00 [-735.14; -114.86]	4.9
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-313.00	509.00	25	-16.00	439.00		-297.00 [-560.48; -33.52]	6.4
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-291.80	316.64	22	-109.61	316.64		-182.19 [-341.46; -22.92]	12.4
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-617.10	434.30	70	-479.60	434.30		-137.50 [-281.90; 6.90]	13.8
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-684.70	254.97	43	-586.90	230.38		-97.80 [-199.24; 3.64]	18.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69	-415.91	824.70	66	-318.69	824.70		-97.22 [-375.52; 181.08]	5.8
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-569.00	318.38	34	-480.00	65.76		-89.00 [-195.33; 17.33]	17.9
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-569.60	663.00	33	-523.98	606.00		-45.62 [-354.68; 263.44]	4.9
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	24	-579.00	430.29	21	-580.00	430.29		1.00 [-251.00; 253.00]	6.8
Overall Effect						439			404			*	-163.53 [-242.21; -84.85]	100.0
Heterogeneity: $l^2 = 45\%$, $\tau^2 = 6354.2$	301.7	$l_0^2 = 1$	6.22 (<i>p</i> = 0.06)											
Meal frequency														
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-1757.00	2037.02	54	-1590.00	1963.75		-167.00 [-921.66; 587.66]	10.3
Bachman 2012 (USA)	51	36	3M vs 10S	Healthy	26	25	-925.00	419.54	26	-938.00	364.52		13.00 [-203.05; 229.05]	89.7
Overall Effect						79			80			-	-0.64 [-208.34; 207.07]	100.0
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_1^2 = 0$.2 (p	= 0.68												
Meal distribution												100		
Madjd 2016 (Iran)	34	32	ML vs BL	Healthy	12	40	-383.00	98.86	40	-332.00	108.99		-51.00 [-96.60; -5.40]	100.0
												-500 0 500		
											Favou	rs Intervention Favours Con	trol	

eFigure 44: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on energy intake (kcal/day), grouped by the meal timing intervention.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Inter	vention		0	Control			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
TRE+ad libitum vs No TRE+ad li	bitun	n												
Che 2021 (China)	48	C 84	FT=10h	Metabolic	12	60	-531.00	790.09	60	-76.00	325.33		-455.00 [-671.20; -238.80]	8.7
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-425.00	531.00	30	0.00	685.00		-425.00 [-735.14; -114.86]	5.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-313.00	509.00	25	-16.00	439.00		-297.00 [-560.48; -33.52]	6.6
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-291.80	316.64	22	-109.61	316.64		-182.19 [-341.46; -22.92]	12.4
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69	-415.91	824.70	66	-318.69	824.70		-97.22 [-375.52; 181.08]	6.1
Overall Effect						233			203			-	-282.79 [-416.61; -148.96]	38,9
Heterogeneity: $I^2 = 38\%$, $\tau^2 = 8739.9$	211, 2	² ₄ = 6.4	$6 (\rho = 0.17)$											
TRE+DCR vs DCR														
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-617.10	434.30	70	-479.60	434.30		-137.50 [-281.90; 6.90]	13.7
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-684.70	254.97	43	-586.90	230.38		-97.80 [-199.24; 3.64]	17.8
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-569.00	318.38	34	-480.00	65.76		-89.00 [-195.33; 17.33]	17.3
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-569.60	663.00	33	-523.98	606.00		-45.62 [-354.68; 263.44]	5.2
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	24	-579.00	430.29	21	-580.00	430.29		1.00 [-251.00; 253.00]	7.0
Overall Effect						206			201			•	-94.04 [-156.08; -32.00]	61.1
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_4^2 = 1$	(p =)	0.91)												
Overall Effect						439			404			•	-163.53 [-242.21; -84.85]	100.0
Heterogeneity: /2 = 45%, τ2 = 6354.23	301, 2	$c_9^2 = 16.$	22 (p = 0.06)											
Test for overall effect: z = -4.07 (p < 0	0.01)	-										-600 -200 0 200 400 60	0	
Test for subgroup differences: $\chi_{\pm}^2 = 6$.	29, di	f = 1 (p	= 0.01)								Favou	rs Intervention Favours Cor	trol	

eFigure 45: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on energy intake (kcal/day), grouped by energy prescription.

							Interv	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Mean Difference, 95% CI	Mean Difference, 95%CI	Weight%
Time Restricted Eating														
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-8.40	15.98	22	-1.19	15.98		-7.21 [-15.25; 0.83]	5.2
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.45	14.23	25	1.53	14.23		-5.98 [-13.87; 1.91]	5.3
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-8.00	12.10	45	-4.00	12.10		-4.00 [-9.00; 1.00]	8.9
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-11.00	21.46	9	-8.00	11.48		-3.00 [-17.74; 11.74]	2.0
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-7.47	15.99	27	-4.59	15.99		-2.88 [-11.13; 5.37]	5.0
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-11.00	9.33	43	-8.50	9.33		-2.50 [-6.40; 1.40]	10.7
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.78	13.10	30	0.06	13.10		-1.84 [-8.47; 4.79]	6.6
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-1.87	8.69	67	-0.60	8.69		-1.27 [-4.18; 1.64]	12.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.10	10.23	70	-7.80	10.23		-0.30 [-3.70; 3.10]	11.6
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.69	9.25	24	-3.86	9.25		2.17 [-3.18; 7.52]	8.3
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-2.69	10.39	49	-5.86	10.68		3.17 [-0.26; 6.60]	11.5
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.30	11.29	20	-4.20	11.29		5.50 [-1.20; 12.20]	6.6
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-7.35	14.51	33	-13.00	16.35		5.65 [-1.86; 13.16]	5.7
Overall Effect Heterogeneity: $l^2 = 38\%$, $\tau^2 = 4.0069$, $\chi^2_{12} = 19$	3 (p =	80.0)			601			464			•	-0.54 [-2.42; 1.33]	100.0
Meal frequency														
Forslund 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-3.30	11.30	70	-4.00	12.70		0.70 [-3.28; 4.68]	100.0
Meal distribution														
Lombardo 2014 (Italy)	46	36	FL vs ML	Healthy	12	18		16.00			14.00	-	-10.00 [-19.82; -0.18]	20.2
Jakubowicz 2013 (Israel)	46	32	FL vs BL	Metabolic	12	38	-8.80	1.61	36	-4.50	1.80	-	-4.30 [-5.08; -3.52]	79.8
Overall Effect Heterogeneity: $l^2 = 22\%$, $\tau^2 = 3.6103$, $\chi^2_1 = 1.29$	e (p =	0.26)				56			54			-	-4.96 [-8.54; -1.38]	100.0
												-10 0 10		
											Favou	rs Intervention Favours Con	trol	

eFigure 46: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on systolic blood pressure (mmHg), grouped by the meal timing intervention.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Mean Difference, 95% CI	Mean Difference, 95%CI	Weight%
Time Restricted Eating												1		
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-6.15	8.53	22	-0.87	8.53		-5.28 [-9.57; -0.99]	7.4
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	9.68	45	-1.00	9.68		-4.00 [-8.00; -0.00]	8.1
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.82	10.36	30	2.85	7.34		-3.67 [-8.21; 0.87]	6.8
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-2.88	9.09	25	0.06	9.09		-2.94 [-7.98; 2.10]	5.8
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-7.40	7.66	43	-5.50	7.66		-1.90 [-5.10; 1.30]	10.8
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-5.10	8.42	70	-3.80	8.42		-1.30 [-4.10; 1.50]	12.5
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-4.08	9.66	24	-3.00	9.66		-1.08 [-6.67; 4.51]	4.9
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-2.00	8.09	67	-1.44	8.09		-0.56 [-3.27; 2.15]	12.9
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-2.41	7.40	49	-2.61	7.57		0.20 [-2.23; 2.63]	14.3
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-6.00	15.21	9	-7.00	7.25		1.00 [-9.16; 11.16]	1.7
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.22	10.47	27	-4.22	10.47		2.00 [-3.40; 7.40]	5.2
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-4.75	11.06	33	-8.21	14.14		3.46 [-2.70; 9.62]	4.2
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.90	8.76	20	-1.60	8.76		3.50 [-1.70; 8.70]	5.5
Overall Effect Heterogeneity: $l^2 = 22\%$, $\tau^2 = 1.1634$, $\chi^2_{12} = 15$.	46 (p	= 0.2	2)			601			464			•	-1.14 [-2.41; 0.14]	100.0
Meal frequency														
Forslund 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-2.40	10.30	70	-2.30	9.90	-	-0.10 [-3.45; 3.25]	100.0
Meal distribution														
Lombardo 2014 (Italy)	46	36	FL vs ML	Healthy	12	18	-6.00	17.00	18	4.00	13.00 -		-10.00 [-19.89; -0.11]	6.7
Jakubowicz 2013 (Israel)	46	32	FL vs BL	Metabolic	12	38	-6.00	1.26	36	-3.20	1.03	-	-2.80 [-3.32; -2.28]	93.3
Overall Effect Heterogeneity: $l^2 = 51\%$, $\tau^2 = 13.1622$, $\chi^2_1 = 2.0$)3 (p =	= 0.15				56			54			-	-4.64 [-10.79; 1.51]	100.0
titute and the titute of the titute of the	and an													
												-10 0 10		
											Favou	rs Intervention Favours Cont	rol	

eFigure 47: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal timing interventions on diastolic blood pressure (mmHg), grouped by the meal timing intervention.

							Interv	ention		Cont	rol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD Rate Ratio, 95	% CI Me	an Difference, 95%CI V	Veight%
<80% of participants were Women														
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-8.40	15.98	22	-1.19 15	98		-7.21 [-15.25; 0.83]	4.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.45	14.23	25	1.53 14	23		-5.98 [-13.87; 1.91]	4.5
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-11.00	9.33	43	-8.50 9	33		-2.50 [-6.40; 1.40]	11.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-1.87	8.69	67	-0.60 8	69 -		-1.27 [-4.18; 1.64]	14.7
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.10	10.23	70	-7.80 10	23 -		-0.30 [-3.70; 3.10]	13.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.69	9.25	24	-3.86 9	25	-	2.17 [-3.18; 7.52]	8.0
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148		10.39	49	-5.86 10	68		3.17 [-0.26; 6.60]	12.9
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.30	11.29	20	-4.20 11	29		5.50 [-1.20; 12.20]	5.8
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-7.35	14.51	33	-13.00 16	35		5.65 [-1.86; 13.16]	4.9
Overall Effect						484			353		+		0.10 [-2.18; 2.38]	79.7
Heterogeneity: $I^2 = 51\%$, $\tau^2 = 5.6211$, $\chi^2_8 = 16.3$	81 (p =	= 0.04)												
≥80% of participants were Women														
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45		12.10	45	-4.00 12	10		-4.00 [-9.00; 1.00]	8.7
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-11.00	21.46	9	-8.00 11			-3.00 [-17.74; 11.74]	1.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31		15.99		-4.59 15			-2.88 [-11.13; 5.37]	4.2
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.78	13.10		0.06 13	10		-1.84 [-8.47; 4.79]	5.9
Overall Effect						117			111		-		-3.14 [-6.64; 0.35]	20.3
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_3^2 = 0.27$ ($p = 0$.97)													
Overall Effect Heterogeneity: $l^2 = 38\%$, $\tau^2 = 4.0069$, $\chi^2_{12} = 19$.	30 (p	= 0.08	3)			601			464		· · · · • ·		-0.54 [-2.42; 1.33]	100.0
Test for overall effect: $z = -0.57$ ($p = 0.57$)											-15 -10 -5 0 5	10 15		
Test for subgroup differences: χ_1^2 = 2.32, df = 1	(p =	0.13)								Fa	avours Intervention Favo	ours Control		

eFigure 48: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on systolic blood pressure (mmHg), grouped by gender properties

proportion.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interv	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Obese I												1		
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-11.00	21 46	9	-8 00	11.48		-3.00 [-17.74; 11.74]	1.5
de Oliveira Maranhao Pureza 2021 (Brazil)		33	FT=12h	Healthy	52	31		15.99	27		15.99		-2.88 [-11.13; 5.37]	4.2
Wei 2023 (China)	32	32	FT=8h	Metabolic	52		-11.00		43	-8.50			-2.50 [-6.40; 1.40]	11.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69		10.23	70				-0.30 [-3.70; 3.10]	13.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.69		24	-3.86			2.17 [-3.18; 7.52]	8.0
Montero 2023 (Spain)	48	00	FT=8h	Metabolic	12	148		10.39	49		10.68		3.17 [-0.26; 6.60]	12.9
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32		14.51		-13.00			5.65 [-1.86; 13.16]	4.9
Overall Effect	40	00	11-011	metabolic	12	358	-1.00	14.01	255	-10.00	10.00	-	0.65 [-1.54; 2.84]	56.0
Heterogeneity: $I^2 = 23\%$, $\tau^2 = 1.9737$, $\chi^2_8 = 7.84$	(p =	0.25)				000			200				0.00 [1.04, 2.04]	0010
1111112														
Obese II														
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.45	14.23	25	1.53	14.23		-5.98 [-13.87; 1.91]	4.5
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-8.00	12.10	45	-4.00	12.10		-4.00 [-9.00; 1.00]	8.7
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.78	13.10	30	0.06	13.10		-1.84 [-8.47; 4.79]	5.9
Overall Effect						100			100			-	-3.78 [-7.34; -0.22]	19.1
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_2 = 0.64$ (p = 0	.73)													
Overweight														
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-8.40	15.98	22	-1.19	15.98		-7.21 [-15.25; 0.83]	4.4
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-1.87	8.69	67	-0.60	8.69	-	-1.27 [-4.18; 1.64]	14.7
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.30	11.29	20	-4.20	11.29		5.50 [-1.20; 12.20]	5.8
Overall Effect						143			109				-0.75 [-6.45; 4.95]	24.9
Heterogeneity: $I^2 = 66\%$, $\tau^2 = 16.6140$, $\chi^2_2 = 5.9$	33 (p =	= 0.05												
Overall Effect						601			464				-0.54 [-2.42; 1.33]	100.0
Heterogeneity: $I^2 = 38\%$, $\tau^2 = 4.0069$, $\chi^2_{12} = 19$.	30 (p	= 0.08	3)									1 1 1 1 1 1 1		
Test for subgroup differences: χ_2^2 = 4.32, df = 2	! (p =	0.12)									Favor	urs Intervention Favours Control		
Test for overall effect: $z = -0.57$ ($p = 0.57$) Test for subgroup differences: $\chi^2_2 = 4.32$, df = 2			,								Favo	-15 -10 -5 0 5 10 15 urs Intervention Favours Control		

eFigure 49: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on systolic blood pressure (mmHg), grouped by baseline BMI status.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interv		No	Co Mean	ontrol SD	Rate Ratio, 95% CI	lean Difference, 95%CI W	leight%
Addior real (Country)	Age	Divit	intervention	comorbiancy	Duration	NO	Weam	30	NO	Weall	30	Rate Ratio, 55% Ci	lean Difference, 55%Cr W	eight /o
Healthy												1		
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-8.00	12.10	45	-4.00	12.10		-4.00 [-9.00; 1.00]	8.7
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-11.00		9	-8.00			-3.00 [-17.74; 11.74]	1.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-7.47	15.99	27	-4.59	15.99		-2.88 [-11.13; 5.37]	4.2
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.78	13.10	30	0.06	13.10		-1.84 [-8.47; 4.79]	5.9
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-1.87	8.69	67	-0.60	8.69		-1.27 [-4.18; 1.64]	14.7
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.10	10.23	70	-7.80	10.23		-0.30 [-3.70; 3.10]	13.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.69	9.25	24	-3.86	9.25		2.17 [-3.18; 7.52]	8.0
Overall Effect						278			272			•	-1.11 [-2.88; 0.65]	56.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_B^2 = 3.24$ ($\rho = 0$.78)													
Metabolic														
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-8.40	15.98	22	-1.19	15.98		-7.21 [-15.25; 0.83]	4.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.45	14.23	25	1.53	14.23		-5.98 [-13.87; 1.91]	4.5
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-11.00	9.33	43	-8.50	9.33		-2.50 [-6.40; 1.40]	11.5
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-2.69	10.39	49	-5.86	10.68		3.17 [-0.26; 6.60]	12.9
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.30	11.29	20	-4.20	11.29		5.50 [-1.20; 12.20]	5.8
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-7.35	14.51	33	-13.00	16.35		5.65 [-1.86; 13.16]	4.9
Overall Effect						323			192			-	0.09 [-3.92; 4.09]	44.0
Heterogeneity: $I^2 = 66\%$, $\tau^2 = 15.3048$, $\chi_5^2 = 14$.67 (p	= 0.0	1)											
Overall Effect Heterogeneity: $l^2 = 38\%$, $\tau^2 = 4.0069$, $\chi^2_{12} = 19$.	.30 (p	= 0.08	3)			601			464			· · · · • • · · · · ·	-0.54 [-2.42; 1.33]	100.0
Test for overall effect: $z = -0.57$ ($p = 0.57$)	4- 4-											-15 -10 -5 0 5 10 15		
Test for subgroup differences: $\chi_1^2 = 0.29$, df = 1	(p =	0.59)									Favou	Intervention Favours Control		

eFigure 50: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on systolic blood pressure (mmHg), grouped by health status.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

					200 820			ention		1000	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI M	ean Difference, 95%CI W	Veight%
TRE+ad libitum vs No TRE+ad libitum												1		
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-8.40	15.98	22	-1.19	15.98		-7.21 [-15.25; 0.83]	4.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.45	14.23	25	1.53	14.23		-5.98 [-13.87; 1.91]	4.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-11.00	21.46	9	-8.00	11.48		-3.00 [-17.74; 11.74]	1.5
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.78	13.10	30	0.06	13.10		-1.84 [-8.47; 4.79]	5.9
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-1.87	8.69	67	-0.60	8.69		-1.27 [-4.18; 1.64]	14.7
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.69	9.25	24	-3.86	9.25		2.17 [-3.18; 7.52]	8.0
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-2.69	10.39	49	-5.86	10.68		3.17 [-0.26; 6.60]	12.9
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.30	11.29	20	-4.20	11.29		5.50 [-1.20; 12.20]	5.8
Overall Effect						379			246			-	-0.15 [-2.89; 2.59]	57.7
Heterogeneity: $I^2 = 46\%$, $\tau^2 = 6.3430$, $\chi^2_7 = 12.5$	95 (p	= 0.07)											
TRE+DCR vs DCR														
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45		12.10			12.10		-4.00 [-9.00; 1.00]	8.7
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-7.47	15.99	27	-4.59	15.99		-2.88 [-11.13; 5.37]	4.2
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-11.00	9.33	43	-8.50	9.33		-2.50 [-6.40; 1.40]	11.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.10	10.23	70	-7.80	10.23		-0.30 [-3.70; 3.10]	13.0
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-7.35	14.51	33	-13.00	16.35	-	5.65 [-1.86; 13.16]	4.9
Overall Effect						222			218			-	-1.27 [-3.81; 1.27]	42.3
Heterogeneity: $l^2 = 24\%$, $\tau^2 = 1.9964$, $\chi_4^2 = 5.25$	5 (p =	0.26)												
Overall Effect Heterogeneity: $l^2 = 38\%$, $\tau^2 = 4.0069$, $\chi^2_{12} = 19$.	20 (0	- 0.0	9)			601			464			· · · · · · · · · · · · · · · · · · ·	-0.54 [-2.42; 1.33]	100.0
Test for overall effect: $z = -0.57$ ($p = 0.57$)	30 (p	- 0.0	0)									-15 -10 -5 0 5 10 15		
Test for subgroup differences: $\gamma_1^2 = 0.37$ ($\beta = 0.37$)	(n =	0.56)									Envo	urs Intervention Favours Control		
Test for subgroup differences. $\chi_1 = 0.35$, df = 1	φ =	0.56)									Favor	ars intervention Favours Control		

eFigure 51: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on systolic blood pressure (mmHg), grouped by energy

prescription.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interv Mean	ention SD	No	Co Mean	ontrol SD	Rate Ratio, 95% Cl	Mean Difference, 95%CI W	/eight%
Follow duration <6 months Suthutvoravut 2023 (Thailand) Jamshed 2022 (USA) Chow 2020 (USA) Manoogian 2022 (USA) Lowe 2020 (USA) Montero 2023 (Spain) Kunduraci & Ozbek 2020 (Turkey) Overall Effect Heterogeneity: $l^2 = 52\%, \tau^2 = 7.1384, \chi_6^2 = 12.5$	55 43 46 40 46 48 48 3 (p	30 40 34 28 33 35 = 0.05	FT=9h FT=8h FT=8h FT=10h FT=8h FT=8h FT=8h	Metabolic Healthy Healthy Healthy Healthy Metabolic Metabolic	12 14 12 12 12 12 12	49 45 11 70 22 148 32 377	-8.00 -11.00 -1.87 -1.69 -2.69	15.98 12.10 21.46 8.69 9.25 10.39 14.51	22 45 9 67 24 49 33 249	-1.19 -4.00 -8.00 -0.60 -3.86 -5.86 -13.00	12.10 11.48 8.69 9.25 10.68		-7.21 [-15.25; 0.83] -4.00 [-9.00; 1.00] -3.00 [-17.74; 11.74] -1.27 [-4.18; 1.64] 2.17 [-3.18; 7.52] 3.17 [-0.26; 6.60] 5.65 [-1.86; 13.16] -0.13 [-3.05; 2.79]	4.4 8.7 1.5 14.7 8.0 12.9 4.9 55.1
Follow duration ≥6 months Pavlou 2023 (USA) de Oliveira Maranhao Pureza 2021 (Brazil) Wei 2023 (China) Lin 2023 (USA) Liu 2022 (China) Philips 2021 (Switzerland) Overall Effect Heterogeneity: / ² = 1.8%, x ² = 1.7352, x ² = 6.13	55 31 32 44 32 40 (p =	39 33 32 38 32 28 0.29)	FT=8h FT=12h FT=8h FT=8h FT=8h FT=12h	Metabolic Healthy Metabolic Healthy Healthy Metabolic	26 52 52 52 52 52 26	25 31 45 30 69 24 224	-7.47 -11.00 -1.78 -8.10	13.10 10.23 11.29	25 27 43 30 70 20 215	-4.59 -8.50	9.33 13.10 10.23		-5.98 [-13.87; 1.91] -2.88 [-11.13; 5.37] -2.50 [-6.40; 1.40] -1.84 [-8.47; 4.79] -0.30 [-3.70; 3.10] 5.50 [-1.20; 12.20] -1.11 [-3.55; 1.33]	4.5 4.2 11.5 5.9 13.0 5.8 44.9
Overall Effect Heterogeneity: $l^2 = 38\%$, $\tau^2 = 4,0069$, $\chi^2_{12} = 19.3$ Test for overall effect: $z = -0.57$ ($p = 0.57$) Test for subgroup differences: $\chi^2_1 = 0.25$, df = 1	30 (p	= 0.08				601			464		Favou	-15 -10 -5 0 5 10 15 irs Intervention Favours Control	-0.54 [-2.42; 1.33]	100.0

eFigure 52: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on systolic blood pressure (mmHg), grouped by follow duration.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve				ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	lean Difference, 95%CI V	Veight%
Feeding time is > 8 hours														
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-8.40	15.98	22	-1.19 1	15.98		-7.21 [-15.25; 0.83]	4.4
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-7.47	15.99	27	-4.59 1	15.99		-2.88 [-11.13; 5.37]	4.2
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-1.87	8.69	67	-0.60	8.69	-	-1.27 [-4.18; 1.64]	14.7
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.30	11.29	20	-4.20 1	11.29		5.50 [-1.20; 12.20]	5.8
Overall Effect						174			136				-1.11 [-5.45; 3.24]	29.1
Heterogeneity: $I^2 = 51\%$, $\tau^2 = 9.8190$, $\chi_3^2 = 6.14$	(p =	0.11)												
Feeding time is ≤ 8 hours														
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.45	14.23	25	1.53 1	4.23		-5.98 [-13.87; 1.91]	4.5
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-8.00	12.10	45	-4.00 1	12.10		-4.00 [-9.00; 1.00]	8.7
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-11.00	21.46	9	-8.00 1	11.48		-3.00 [-17.74; 11.74]	1.5
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-11.00	9.33	43	-8.50	9.33		-2.50 [-6.40; 1.40]	11.5
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.78	13.10	30	0.06 1	13.10		-1.84 [-8.47; 4.79]	5.9
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.10	10.23	70	-7.80 1	10.23		-0.30 [-3.70; 3.10]	13.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.69	9.25	24	-3.86	9.25		2.17 [-3.18; 7.52]	8.0
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-2.69		49	-5.86 1			3.17 [-0.26; 6.60]	12.9
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-7.35			-13.00 1	16.35		5.65 [-1.86; 13.16]	4.9
Overall Effect						427			328			+	-0.34 [-2.56; 1.89]	70.9
Heterogeneity: $I^2 = 37\%$, $\tau^2 = 3.9972$, $\chi^2_8 = 12.7$	'9 (p =	= 0.12												
Overall Effect						601			464				-0.54 [-2.42; 1.33]	100.0
Heterogeneity: $I^2 = 38\%$, $\tau^2 = 4.0069$, $\chi^2_{12} = 19$.	30 (p	= 0.08	3)											
Test for overall effect: $z = -0.57$ ($p = 0.57$)											_	-15 -10 -5 0 5 10 15		
Test for subgroup differences: $\chi_1^2 = 0.10$, df = 1	(p =	0.76)									Favou	urs Intervention Favours Control		

eFigure 53: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on systolic blood pressure (mmHg), grouped by eating window.

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BMI I	ntervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI M	ean Difference, 95%CI V	Weight%
Intervention involved < 1 session per we	ek											1		
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-8.40	15.98	22	-1.19	15.98		-7.21 [-15.25; 0.83]	4.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.45	14.23	25	1.53	14.23		-5.98 [-13.87; 1.91]	4.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-11.00	21.46	9	-8.00	11.48		-3.00 [-17.74; 11.74]	1.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-7.47	15.99	27	-4.59	15.99		-2.88 [-11.13; 5.37]	4.2
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.78	13.10	30	0.06	13.10		-1.84 [-8.47; 4.79]	5.9
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-1.87	8.69	67	-0.60	8.69		-1.27 [-4.18; 1.64]	14.7
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.10	10.23	70	-7.80	10.23		-0.30 [-3.70; 3.10]	13.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.69	9.25	24	-3.86	9.25		2.17 [-3.18; 7.52]	8.0
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-2.69	10.39	49	-5.86	10.68		3.17 [-0.26; 6.60]	12.9
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.30	11.29	20	-4.20	11.29		5.50 [-1.20; 12.20]	5.8
Overall Effect						479			343			-	-0.21 [-2.30; 1.87]	75.0
Heterogeneity: $l^2 = 33\%$, $\tau^2 = 3.3827$, $\chi^2_9 = 13.4$	9 (p =	= 0.14)												
Intervention involved ≥ 1 session per we	ek													
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-8.00	12.10	45	-4.00	12.10		-4.00 [-9.00; 1.00]	8.7
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-11.00	9.33	43	-8.50	9.33		-2.50 [-6.40; 1.40]	11.5
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-7.35	14.51	33	-13.00	16.35		5.65 [-1.86; 13.16]	4.9
Overall Effect						122			121				-1.14 [-5.77; 3.50]	25.0
Heterogeneity: $l^2 = 57\%$, $\tau^2 = 9.4474$, $\chi^2_2 = 4.65$	6 (p =	0.10)											· · · · · · · · · · · · · · · · · · ·	
Overall Effect Heterogeneity: $l^2 = 38\%$, $\tau^2 = 4.0069$, $\chi^2_{12} = 19$.	30 (n	= 0.08				601			464				-0.54 [-2.42; 1.33]	100.0
Test for overall effect: $z = -0.57$ ($p = 0.57$)	00 (þ	- 0.00										-15 -10 -5 0 5 10 15		
Test for subgroup differences: $\chi_1^2 = 0.07$ ($\beta = 0.07$)	(n =	0 72)									Favo	urs Intervention Favours Control		
reactor subgroup underlies. $\chi_1 = 0.15$, $\alpha = 1$	(P =)	0.12)									1 4000	and intervention Favours Control		

eFigure 54: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on systolic blood pressure (mmHg), grouped by frequency of contact.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

					Interventio				Control					
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	lean Difference, 95%CI W	/eight%
Any health professional												1		
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-8.40	15.98	22	-1.19	15.98		-7.21 [-15.25; 0.83]	4.4
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-11.00	21.46	9	-8.00	11.48		-3.00 [-17.74; 11.74]	1.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.10	10.23	70	-7.80	10.23		-0.30 [-3.70; 3.10]	13.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.69	9.25	24	-3.86	9.25		2.17 [-3.18; 7.52]	8.0
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-2.69	10.39	49	-5.86	10.68		3.17 [-0.26; 6.60]	12.9
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.30	11.29	20	-4.20	11.29		5.50 [-1.20; 12.20]	5.8
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-7.35	14.51	33	-13.00	16.35	-	5.65 [-1.86; 13.16]	4.9
Overall Effect						355			227			-	1.54 [-1.16; 4.23]	50.5
Heterogeneity: $I^2 = 37\%$, $\tau^2 = 4.4328$, $\chi_6^2 = 9.45$	i (p =	0.15)												
Trained specifically in nutrition														
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.45	14.23	25	1.53	14.23		-5.98 [-13.87; 1.91]	4.5
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-8.00	12.10	45	-4.00	12.10		-4.00 [-9.00; 1.00]	8.7
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-7.47	15.99	27	-4.59	15.99		-2.88 [-11.13; 5.37]	4.2
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-11.00	9.33	43	-8.50	9.33		-2.50 [-6.40; 1.40]	11.5
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30		13.10			13.10		-1.84 [-8.47; 4.79]	5.9
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-1.87	8.69	67	-0.60	8.69		-1.27 [-4.18; 1.64]	14.7
Overall Effect						246			237			•	-2.36 [-4.26; -0.46]	49.5
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_5^2 = 1.8$ ($\rho = 0.8$	38)													
Overall Effect		- Medician				601			464				-0.54 [-2.42; 1.33]	100.0
Heterogeneity: $l^2 = 38\%$, $\tau^2 = 4.0069$, $\chi^2_{12} = 19$. Test for overall effect: $z = -0.57$ ($p = 0.57$)	30 (p	= 0.08	3)									-15 -10 -5 0 5 10 15		
Test for subgroup differences: $\chi_1^2 = 5.37$, df = 1 ($p = 0.02$)											Favo	urs Intervention Favours Control		
reactor subgroup differences. $\chi_1 = 0.57$, di = 1	W =	0.02)									1 avot	and mervention Pavours Control		

eFigure 55: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on systolic blood pressure (mmHg), grouped by delivery personnel.

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
Additional resources were provided												1		
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4 45	14.23	25	1.53	14.23		-5.98 [-13.87; 1.91]	4.5
Wei 2023 (China)	32	32	FT=8h	Metabolic	52		-11.00		43	-8.50			-2.50 [-6.40; 1.40]	11.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69		10.23	70	-7.80		_	-0.30 [-3.70; 3.10]	13.0
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24		11.29	20	-4.20			5.50 [-1.20; 12.20]	5.8
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-7.35			-13.00			5.65 [-1.86; 13.16]	4.9
Overall Effect						195			191				0.15 [-3.37; 3.66]	39.7
Heterogeneity: $l^2 = 53\%$, $\tau^2 = 8.0011$, $\chi^2_4 = 8.5$	(p = 0	0.07)												
Resources were not provided														
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-8.40	15.98	22	-1.19	15.98		-7.21 [-15.25; 0.83]	4.4
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-8.00	12.10	45	-4.00	12.10		-4.00 [-9.00; 1.00]	8.7
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-11.00	21.46	9	-8.00	11.48		-3.00 [-17.74; 11.74]	1.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-7.47	15.99	27	-4.59	15.99		-2.88 [-11.13; 5.37]	4.2
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.78	13.10	30	0.06	13.10		-1.84 [-8.47; 4.79]	5.9
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-1.87	8.69	67	-0.60	8.69	-	-1.27 [-4.18; 1.64]	14.7
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.69	9.25	24	-3.86	9.25		2.17 [-3.18; 7.52]	8.0
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-2.69	10.39	49	-5.86	10.68		3.17 [-0.26; 6.60]	12.9
Overall Effect						406			273			-	-0.88 [-3.26; 1.50]	60.3
Heterogeneity: $l^2 = 35\%$, $\tau^2 = 3.7635$, $\chi^2_7 = 10.7$	78 (p =	= 0.15)										-		
Overall Effect Heterogeneity: $l^2 = 38\%$, $\tau^2 = 4.0069$, $\chi^2_{12} = 19$.	30 (0	- 0.08				601			464			· · · · · · · · · · · · · · · · · · ·	-0.54 [-2.42; 1.33]	100.0
Test for overall effect: $z = -0.57$ ($p = 0.57$)	30 (p	- 0.00	.)									-15 -10 -5 0 5 10 15		
Test for subgroup differences: $\chi_1^2 = 0.23$, df = 1	(p =	0.63)									Favou	urs Intervention Favours Contro	ונ	

eFigure 56: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on systolic blood pressure (mmHg), grouped by resource

provision.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Inter Mear			No	C Mean	ontrol SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
High															
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-8.40	15.9	98	22	-1.19	15.98		-7.21 [-15.25; 0.83]	4.4
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-11.00	21.4	46	9	-8.00	11.48		-3.00 [-17.74; 11.74]	1.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-1.8	7 8.6	69	67	-0.60	8.69		-1.27 [-4.18; 1.64]	14.7
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.69	9 9.3	25	24	-3.86	9.25		2.17 [-3.18; 7.52]	8.0
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148		9 10.3		49		10.68		3.17 [-0.26; 6.60]	12.9
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24		0 11.3		20	-4.20			5.50 [-1.20; 12.20]	5.8
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-7.3	5 14.5			-13.00	16.35		5.65 [-1.86; 13.16]	4.9
Overall Effect						356			- 2	224			-	1.23 [-1.70; 4.15]	52.2
Heterogeneity: $I^2 = 48\%$, $\tau^2 = 6.5884$, $\chi_6^2 = 11.5$	i6 (p =	= 0.07)												
Unclear															
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.4	5 14.3	23	25	1.53	14.23		-5.98 [-13.87; 1.91]	4.5
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45) 12.		45	-4.00			-4.00 [-9.00; 1.00]	8.7
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-7.4			27	-4.59			-2.88 [-11.13; 5.37]	4.2
Wei 2023 (China)	32	32	FT=8h	Metabolic	52		-11.00			43	-8.50	9.33		-2.50 [-6.40; 1.40]	11.5
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.78			30		13.10		-1.84 [-8.47; 4.79]	5.9
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.10	0 10.3		70	-7.80	10.23		-0.30 [-3.70; 3.10]	13.0
Overall Effect						245				240			-	-2.16 [-4.18; -0.14]	47.8
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_5^2 = 2.64$ ($p = 0$.76)														
Overall Effect Heterogeneity: $f^2 = 38\%$, $\tau^2 = 4.0069$, $\chi^2_{12} = 19$.	30 (p	= 0.08	3)			601			4	464			· · · · · · · · · · · · · · · · · · ·	-0.54 [-2.42; 1.33]	100.0
Test for overall effect: $z = -0.57$ ($p = 0.57$)			1991 - C										-15 -10 -5 0 5 10 15		
Test for subgroup differences: χ_1^2 = 3.48, df = 1	(p =	0.06)										Favou	Irs Intervention Favours Control	L.	

eFigure 57: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on systolic blood pressure (mmHg), grouped by risk of bias.

Author Year (Country)Age BMI Intervention Comorbidity DurationNo								Interve	ntion		Co	ontrol			
Suthuvoravut 2023 (Thailand) 55 30 FT=9h Metabolic 12 49 -6.15 8.53 22 -0.87 8.53 Pavlou 2023 (USA) 55 39 FT=8h Metabolic 12 49 -6.15 8.53 22 -0.87 8.53 Pavlou 2023 (USA) 55 39 FT=8h Metabolic 52 45 -7.40 7.66 43 -5.50 7.66 -1.90 [-5.10 1.30] 1.10 Liu 2022 (China) 32 32 FT=8h Healthy 12 22 -4.08 9.66 24 -3.00 9.66 -1.90 [-5.10 1.30] 1.10 Liu 2022 (USA) 46 33 FT=8h Healthy 12 27 -0.200 8.09 67 -1.44 8.09 -0.56 [-3.27; 2.15] 13.7 Montero 2023 (Spain) 48 . FT=8h Metabolic 12 32 -4.75 11.06 (33 -8.21 14.14 Philips 2021 (Switzerland) 40 28 FT=12h Metabolic 26 24 1.90 8.76 20 -1.60 8.76 $-0.56 [-3.27; 2.15]$ 13.6 Philips 2021 (Switzerland) 40 28 FT=12h Metabolic 26 24 1.90 8.76 20 -1.60 8.76 $-0.56 [-3.27; 2.15]$ 13.7 Publips 2021 (Switzerland) 40 28 FT=12h Metabolic 26 24 1.90 8.76 20 -1.60 8.76 $-0.56 [-3.27; 2.15]$ 13.7 Publips 2021 (Switzerland) 40 28 FT=8h Healthy 12 $-2.5 + 7.57 + 0.20 [-2.32] + 0.54 + 0.88 [-2.29; 0.54]$ 79.3 $-0.88 [-2.29; 0.54]$ 79.3 $-0.88 [-2.29; 0.54]$ 79.3 $-0.88 [-2.29; 0.54]$ 79.3 $-0.88 [-2.29; 0.54]$ 79.3 $-0.88 [-2.29; 0.54]$ 79.3 $-0.88 [-2.29; 0.54]$ 79.3 $-0.88 [-2.29; 0.54]$ 79.3 $-0.08 [-2.29; 0.54]$ 79	Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	lean Difference, 95%CI W	/eight%
Pavlou 2023 (USA) 55 39 FT=8h Metabolic 26 25 2.88 9.09 25 0.06 9.09 Wei 2023 (China) 32 32 FT=8h Metabolic 26 25 -2.88 9.09 25 0.06 9.09 Ui 2023 (China) 32 32 FT=8h Metabolic 12 45 -7.40 7.66 43 -5.50 7.66 -1.30 [-4.10, 1.50] 13.1 Lowe 2020 (USA) 46 33 FT=8h Healthy 12 22 4.08 9.66 24 -3.00 9.66 Manoogian 2022 (USA) 40 28 FT=8h Metabolic 12 148 -2.41 7.40 49 -2.61 7.57 Kunduraci & Ozbek 2020 (Turkey) 48 .5 FT=8h Metabolic 12 32 -4.75 11.06 3.82.1 14.14 Overall Effect 484 353 -50 0.68 5 -1.00 9.68 -3.67 -3.66 -2.29 0.88 -2.29 0.51 -3.67 -3.67 -3.64	<80% of participants were Women														
Wei 2023 (China) 32 32 32 32 FT=8h Metabolic 52 45 7.40 7.66 33 5.50 7.66 -1.90 -1.30 -1.30 1.10 Liu 2022 (China) 32 32 FT=8h Healthy 12 22 45 -7.40 7.66 43 -5.50 7.66 -1.30 <	Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-6.15	8.53	22	-0.87	8.53		-5.28 [-9.57; -0.99]	7.1
Liu 2022 (Čhina) Lowe 2020 (USA) Manoogian 2022 (USA) Manoogian 2022 (USA) Manoogian 2022 (USA) Manoogian 2022 (USA) Manoogian 2022 (USA) Mater 2023 (Spain) Mater 2024 (USA) Mater 2024 (USA) Mater 2024 (USA) Mater 2024 (USA) Mater 2024 (USA) Mater 2024 (Mater 2024 (Mater 2024) Mater 2024 (Mater 2024 (Mater 2024) Mater 2024 (Mater 2024) Mater 2024 (Mater 2024) Mater 2024 (Mater 2024 (Mater 2024) Mater 2024 (Mater 2024 (Mater 2024) Mater 2024	Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-2.88	9.09	25	0.06	9.09		-2.94 [-7.98; 2.10]	5.4
Lowe 2020 (USA) 46 33 FT=8h Healthy 12 22 4.08 9.66 24 -3.00 9.66 4.09 -2.61 7.57 Mancogian 2022 (USA) 40 28 FT=10h Healthy 12 70 -2.00 8.09 67 -1.44 8.09 $-2.61 7.57$ 70 -2.00 $-2.23 7.23$ 7.23 7.23 7.23 7.23 7.23 7.23 7.23 7.23	Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-7.40	7.66	43	-5.50	7.66		-1.90 [-5.10; 1.30]	11.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Liu 2022 (China)	32		FT=8h	Healthy		69	-5.10	8.42	70	-3.80	8.42		-1.30 [-4.10; 1.50]	13.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-4.08	9.66	24	-3.00	9.66		-1.08 [-6.67; 4.51]	4.5
Kunduraci & Ozbek 2020 (Turkey) 48 35 FT=8h Metabolic 12 32 4.75 11.06 33 -8.21 14.14 Philips 2021 (Switzerland) 40 28 FT=8h Metabolic 12 32 -4.75 11.06 33 -8.21 14.14 Overall Effect 40 28 FT=12h Metabolic 12 32 -4.75 11.06 33 -8.21 14.14 Jamshed 2022 (USA) 40 28 FT=8h Healthy 14 45 -5.00 9.68 -5.1.00 9.68 Lin 2023 (USA) 44 38 FT=8h Healthy 12 11 -0.00 12.0 9.700 7.25 de Oliveira Maranhao Pureza 2021 (Brazil) 31 33 FT=8h Healthy 12 11 -0.00 15.21 9.700 7.25 Overall Effect Healthy 12 13 -2.22 10.47 7.422 10.47 -4.00 [-6.05; 0.94] 20.7 Overall Effect Healthy 12 11 -0.08 2.22 0.57 -0 5 </td <td>Manoogian 2022 (USA)</td> <td>40</td> <td>28</td> <td>FT=10h</td> <td>Healthy</td> <td>12</td> <td>70</td> <td>-2.00</td> <td>8.09</td> <td>67</td> <td>-1.44</td> <td>8.09</td> <td></td> <td>-0.56 [-3.27; 2.15]</td> <td>13.7</td>	Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-2.00	8.09	67	-1.44	8.09		-0.56 [-3.27; 2.15]	13.7
Philips 2021 (Switzerland) 40 28 FT=12h Metabolic 26 24 1.90 8.76 20 -1.60 8.76 Overall Effect heterogeneety: $l^2 = 25\%$, $t^2 = 1.1159$, $\chi^2_a = 10.6$ ($p = 0.23$) 40 28 FT=12h Metabolic 26 24 1.90 8.76 20 -1.60 8.76 Jamshed 2022 (USA) 43 40 FT=8h Healthy 14 45 -5.00 9.68 45 -1.00 9.68 Lin 2023 (USA) 46 34 FT=8h Healthy 12 11 -0.082 10.36 30 2.85 7.34 de Oliveira Maranhao Pureza 2021 (IBrazil) 31 33 FT=12h Healthy 12 11 -0.00 7.9 -3.67 [6.21; 0.87] 6.4 Overall Effect 117 111 111 111 12.00 1.22 10.47 7.4.22 10.47 2.06 [-5.05; 0.94] 20.7 Overall Effect 601 464 464 -1.14 [-2.41; 0.14] 100.0 -10 -5 0 5 10 -1.14 [-2.41; 0.14] 100.0	Montero 2023 (Spain)	48		FT=8h	Metabolic		148	-2.41	7.40	49	-2.61	7.57		0.20 [-2.23; 2.63]	
Overall Effect 484 353 -0.88 [-2.29; 0.54] 79.3 280% of participants were Women 3amshed 2022 (USA) 43 40 FT=8h Healthy 14 45 -5.00 9.68 45 -1.00 9.68 -0.88 [-2.29; 0.54] 79.3 280% of participants were Women 3amshed 2022 (USA) 44 38 FT=8h Healthy 12 30 -0.82 10.36 30 2.85 7.34 -3.67 [-8.21; 0.87] 6.4 11 2023 (USA) 46 34 FT=8h Healthy 12 11 -6.00 15.21 9 -7.00 7.25 -3.67 [-8.21; 0.87] 6.4 0verall Effect 117 111 <t< td=""><td>Kunduraci & Ozbek 2020 (Turkey)</td><td>48</td><td>35</td><td>FT=8h</td><td>Metabolic</td><td>12</td><td>32</td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.46 [-2.70; 9.62]</td><td></td></t<>	Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32							3.46 [-2.70; 9.62]	
Heterogenetity: $l^2 = 25\%$, $r^2 = 1.159$, $\chi^2_2 = 10.6 (p = 0.23)$ 280% of participants were Women Jamshed 2022 (USA) 43 40 FT=8h Healthy 52 30 -0.82 10.36 30 2.85 7.34 Chow 2020 (USA) 46 34 FT=8h Healthy 52 30 -0.82 10.36 30 2.85 7.34 Chow 2020 (USA) 46 34 FT=8h Healthy 52 31 -2.22 10.47 27 -4.22 10.47 Heterogenetity: $l^2 = 23\%$, $r^2 = 2.1613$, $\chi^2_2 = 3.88 (p = 0.27)$ Overall Effect Heterogenetity: $l^2 = 22\%$, $r^2 = 1.1634$, $\chi^2_{12} = 15.48 (p = 0.22)$ Test for overall effect: Heterogenetity: $l^2 = 22\%$, $r^2 = 1.1634$, $\chi^2_{12} = 15.48 (p = 0.22)$ Test for overall effect: Heterogenetity: $l^2 = 22\%$, $r^2 = 1.1634$, $\chi^2_{12} = 15.48 (p = 0.22)$ Test for overall effect: Heterogenetity: $l^2 = 22\%$, $r^2 = 0.08$)	Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.90	8.76	20	-1.60	8.76		3.50 [-1.70; 8.70]	5.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							484			353			-	-0.88 [-2.29; 0.54]	79.3
Jamshed 2022 (USA) 43 40 FT=8h Healthy 14 45 5.00 9.68 45 -1.00 9.68 -4.00 6.00; -0.00] 7.9 Lin 2023 (USA) 46 34 FT=8h Healthy 12 11 -8.00 15.21 9 -7.00 7.25 -3.67 [-8.21; 0.87] 6.4 Chow 2020 (USA) 46 34 FT=8h Healthy 12 11 -0.00 7.25 -3.67 [-8.21; 0.87] 6.4 Ichow 2020 (USA) 46 34 FT=8h Healthy 12 11 -0.00 7.29 -3.67 [-8.21; 0.87] 6.4 Overall Effect 117 111 111 111 -2.22 10.47 7 -4.22 10.47 -2.06 [-5.05; 0.94] 20.7 Overall Effect 117 111 111 111 114 -2.06 [-5.05; 0.94] 20.7 Overall Effect 601 464 -1.14 [-2.41; 0.14] 100.0 -1.14 [-2.41; 0.14] 100.0 Test or overall effect: -1.054, χ_{12}^2 = 15.46 (p = 0.22) -10 -5 0 5	Heterogeneity: $I^2 = 25\%$, $\tau^2 = 1.1159$, $\chi_8^2 = 10.6$	6 (p =	0.23)												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
Chow 2020 (UŠA) 46 34 FT=8h Healthý 12 11 -0.00 15.21 9 -7.00 7.25 de Oliveira Maranhao Pureza 2021 (Brazil) 31 33 FT=12h Healthy 52 31 -2.22 10.47 27 -4.22 10.47 20.07 2.00 [-3.40; 7.40] 4.8 Overall Effect 117 111 111 601 464 -2.06 [-5.05; 0.94] 20.7 Overall Effect 601 464 -1.14 [-2.41; 0.14] 100.0 Test for overall effect: -10 -5 0 5 10		43													
de Oliveira Maranhao Pureza 2021 (Brazil) 31 33 FT=12h Healthy 52 31 -2.22 10.47 27 -4.22 10.47 $(111)^{-1}$ 111 $(2.00 [-3.40; 7.40])$ 4.8 -2.06 [-5.05; 0.94] 20.7 Overall Effect -1.12 (-2.06) (-2.05) (-2.06) (-2.05) (-2.06) (-2															
Overall Effect Heterogeneity: $l^2 = 23\%$, $t^2 = 2.1613$, $\chi_3^2 = 3.88$ ($p = 0.27$) 117 111 -2.06 [-5.05; 0.94] 20.7 Overall Effect Heterogeneity: $l^2 = 22\%$, $t^2 = 1.1634$, $\chi_{12}^2 = 15.46$ ($p = 0.22$) Test for overall effect: $z = -1.75$ ($p = 0.08$) 601 464 -1.14 [-2.41; 0.14] 100.0													•		
Heterogeneity: $l^2 = 23\%$, $t^2 = 2.1613$, $\chi_3^2 = 3.88$ ($p = 0.27$) Overall Effect Heterogeneity: $l^2 = 22\%$, $t^2 = 1.1634$, $\chi_{1/2}^2 = 15.46$ ($p = 0.22$) Test for overall effect: $z = -1.75$ ($p = 0.08$) -10 -5 0 5 10		31	33	FT=12h	Healthy	52		-2.22	10.47		-4.22	10.47			
Overall Effect heterogeneity: $l^2 = 22\%$, $t^2 = 1.1634$, $\chi^2_{12} = 15.46$ ($\rho = 0.22$) Test for overall effect: $z = -1.75$ ($\rho = 0.08$) -10 -50 5 10							117			111				-2.06 [-5.05; 0.94]	20.7
Heterogeneity: $I^2 = 22\%$, $\tau^2 = 1.1634$, $\chi^2_{12} = 15.46$ ($\rho = 0.22$) Test for overall effect: $z = -1.75$ ($\rho = 0.08$) -10 -5 0 5 10	Heterogeneity: $I^{c} = 23\%$, $\tau^{c} = 2.1613$, $\chi_{3}^{c} = 3.88$	(p =	0.27)												
Test for overall effect: z = -1.75 (p = 0.08) -10 -5 0 5 10		46 (p	= 0.22	2)			601			464			· · · · · · · · · · · · · · · · · · ·	-1.14 [-2.41; 0.14]	100.0
Test for subgroup differences: $\chi^2 = 0.49$, df = 1 ($\rho = 0.49$) Favours Intervention Favours Control													-10 -5 0 5 10		
	Test for subgroup differences: $\chi_1^2 = 0.49$, df = 1	(p =	0.49)									Favou	irs Intervention Favours Control		

eFigure 58: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on diastolic blood pressure (mmHg), grouped by gender

proportion.

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)		DM	Internetion	Comorbiditu	Duration		Interve			Co Mean	ontrol SD	Rate Ratio, 95% CI M	ean Difference, 95%CI W	(-:-b40/
Author Year (Country)	Age	DIVI	Intervention	Comorbidity	Duration	NO	mean	50	NO	wean	50	Rate Ratio, 95% CI M	lean Difference, 95%CI W	reight%
Obese I												3		
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-7.40	7.66	43	-5.50	7.66		-1.90 [-5.10; 1.30]	11.0
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-5.10	8.42	70	-3.80	8.42		-1.30 [-4.10; 1.50]	13.1
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-4.08	9.66	24	-3.00	9.66		-1.08 [-6.67; 4.51]	4.5
Montero 2023 (Spain)	48	•	FT=8h	Metabolic	12	148	-2.41	7.40	49	-2.61	7.57		0.20 [-2.23; 2.63]	15.6
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-6.00	15.21	9	-7.00	7.25		1.00 [-9.16; 11.16]	1.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.22	10.47	27	-4.22	10.47		2.00 [-3.40; 7.40]	4.8
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-4.75	11.06	33	-8.21	14.14		3.46 [-2.70; 9.62]	3.8
Overall Effect						358			255			-	-0.37 [-1.79; 1.05]	54.4
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_0^2 = 3.87$ ($p = 0$).69)													
Obese II														
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	9.68	45	-1.00	9.68		-4.00 [-8.00; -0.00]	7.9
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.82	10.36	30	2.85	7.34		-3.67 [-8.21; 0.87]	6.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-2.88	9.09	25	0.06	9.09		-2.94 [-7.98; 2.10]	5.4
Overall Effect						100			100				-3.62 [-6.20; -1.04]	19.8
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_2 = 0.11$ (p = 0	.95)													
Overweight														
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-6.15	8.53	22	-0.87	8.53		-5.28 [-9.57; -0.99]	7.1
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-2.00	8.09	67	-1.44	8.09		-0.56 [-3.27; 2.15]	13.7
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.90	8.76	20	-1.60	8.76		3.50 [-1.70; 8.70]	5.1
Overall Effect						143			109				-0.95 [-5.20; 3.30]	25.9
Heterogeneity: $l^2 = 71\%$, $\tau^2 = 9.8419$, $\chi^2_2 = 6.8$	(p = 0	.03)												
Overall Effect						601			464			•	-1.14 [-2.41; 0.14]	100.0
Heterogeneity: $l^2 = 22\%$, $\tau^2 = 1.1634$, $\chi^2_{12} = 15$.	46 (p	= 0.2	2)											
Test for overall effect: $z = -1.75$ ($p = 0.08$)												-10 -5 0 5 10		
Test for subgroup differences: $\chi_2^2 = 4.68$, df = 2	$p = (p = 1)^{2}$	0.10)									Favou	urs Intervention Favours Control		
	-													

eFigure 59: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on diastolic blood pressure (mmHg), grouped by baseline BMI

status.

							Interve	ention		C	ontrol				
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Rat	io, 95% Cl	Mean Difference, 95%CI \	Neight%
Healthy													Í.		
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	9.68	45	-1.00	9.68	-		-4.00 [-8.00; -0.00]	7.9
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.82	10.36	30	2.85	7.34	-		-3.67 [-8.21; 0.87]	6.4
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-5.10	8.42	70	-3.80	8.42	-	-	-1.30 [-4.10; 1.50]	13.1
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-4.08	9.66	24	-3.00	9.66			-1.08 [-6.67; 4.51]	4.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-2.00	8.09	67	-1.44	8.09	_	-	-0.56 [-3.27; 2.15]	13.7
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-6.00	15.21	9	-7.00	7.25			1.00 [-9.16; 11.16]	1.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.22	10.47	27	-4.22	10.47			2.00 [-3.40; 7.40]	4.8
Overall Effect						278			272					-1.39 [-2.88; 0.10]	52.0
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_6 = 4.71$ (p = 0	.58)														
Metabolic															
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-6.15	8.53	22	-0.87	8.53	-		-5.28 [-9.57; -0.99]	7.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-2.88	9.09	25	0.06	9.09	-		-2.94 [-7.98; 2.10]	5.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-7.40	7.66	43	-5.50	7.66		The Color	-1.90 [-5.10; 1.30]	11.0
Montero 2023 (Spain)	48	4	FT=8h	Metabolic	12	148	-2.41	7.40	49	-2.61	7.57	+		0.20 [-2.23; 2.63]	15.6
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-4.75	11.06	33	-8.21	14.14	-		3.46 [-2.70; 9.62]	3.8
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.90	8.76	20	-1.60	8.76	+	-	3.50 [-1.70; 8.70]	5.1
Overall Effect						323			192					-0.79 [-3.20; 1.62]	48.0
Heterogeneity: $t^2 = 52\%$, $t^2 = 4.4557$, $\chi_5^2 = 10.4$	15 (p :	= 0.06)												
Overall Effect Heterogeneity: $l^2 = 22\%$, $\tau^2 = 1.1634$, $\chi^2_{12} = 15$.	16 (0	- 0.2	2)			601			464					-1.14 [-2.41; 0.14]	100.0
Test for overall effect: $z = -1.75$ ($p = 0.08$)	40 (p	- 0.2.	e)									10 5	0 5	10	
Test for subgroup differences: $\chi^2_r = 0.17$, df = 1	10 =	(99.0									Eavou	urs Intervention	Favours Co		
reaction subgroup unreferices. $\chi_1 = 0.17$, of = 1	(p =	0.00)									Favou	uis intervention	Favours Co	nuor	

eFigure 60<mark>:</mark> Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on diastolic blood pressure (mmHg), grouped by health status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI	Weight%
TRE+ad libitum vs No TRE+ad libitum												11		
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-6.15	8.53	22	-0.87	8.53		-5.28 [-9.57; -0.99]	7.1
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.82	10.36	30	2.85	7.34		-3.67 [-8.21; 0.87]	6.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-2.88	9.09	25	0.06	9.09		-2.94 [-7.98; 2.10]	5.4
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-4.08	9.66	24	-3.00	9.66		-1.08 [-6.67; 4.51]	4.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-2.00	8.09	67	-1.44	8.09		-0.56 [-3.27; 2.15]	13.7
Montero 2023 (Spain)	48	1	FT=8h	Metabolic	12	148	-2.41	7.40	49	-2.61	7.57		0.20 [-2.23; 2.63]	15.6
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-6.00	15.21	9	-7.00	7.25		1.00 [-9.16; 11.16]	1.5
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.90	8.76	20	-1.60	8.76		3.50 [-1.70; 8.70]	5.1
Overall Effect						379			246			-	-1.16 [-2.92; 0.59]	59.3
Heterogeneity: $l^2 = 28\%$, $\tau^2 = 1.7296$, $\chi^2_7 = 9.71$	3 (p =	0.20)												
TRE+DCR vs DCR														
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	9.68		-1.00	9.68		-4.00 [-8.00; -0.00]	7.9
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-7.40	7.66	43	-5.50	7.66		-1.90 [-5.10; 1.30]	11.0
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-5.10	8.42	70	-3.80	8.42		-1.30 [-4.10; 1.50]	13.1
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.22	10.47	27	-4.22	10.47		2.00 [-3.40; 7.40]	4.8
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-4.75	11.06	33	-8.21	14.14		3.46 [-2.70; 9.62]	3.8
Overall Effect						222			218				-1.11 [-3.21; 0.99]	40.7
Heterogeneity: $l^2 = 29\%$, $z^2 = 1.6280$, $\chi_4^2 = 5.6$	(ρ =	0.23)												
Overall Effect Heterogeneity: $l^2 = 22\%$, $\tau^2 = 1.1634$, $\chi^2_{12} = 15$	46 (0	= 0.2	2)			601			464				-1.14 [-2.41; 0.14]	100.0
Test for overall effect: $z = -1.75$ ($p = 0.08$)	40.00	0.4.4	-7									-10 -5 0 5 10	1	
Test for subgroup differences: $\gamma_{e}^{2} = 0.00$, df = 1	(n = 1)	0.97)									Favou	irs Intervention Favours Cont		
The second subgroup differences. $\chi_1 = 0.00, 01 = 1$	W - 1										1 2000	Tavous Con		

eFigure 61: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on Diastolic blood pressure (mmHg), grouped by energy prescription

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI Mo	ean Difference, 95%CI W	/eight%
Follow duration <6 months														
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-6.15	8.53	22	-0.87	8.53		-5.28 [-9.57; -0.99]	7.1
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	9.68	45	-1.00	9.68		-4.00 [-8.00; -0.00]	7.9
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-4.08	9.66	24	-3.00	9.66		-1.08 [-6.67; 4.51]	4.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-2.00	8.09	67	-1.44	8.09		-0.56 [-3.27; 2.15]	13.7
Montero 2023 (Spain)	48	14	FT=8h	Metabolic	12	148	-2.41	7.40	49	-2.61	7.57		0.20 [-2.23; 2.63]	15.6
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-6.00	15.21	9	-7.00	7.25		1.00 [-9.16; 11.16]	1.5
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-4.75	11.06	33	-8.21	14.14		3.46 [-2.70; 9.62]	3.8
Overall Effect						377			249				-1.22 [-3.16; 0.72]	54.1
Heterogeneity: $I^2 = 35\%$, $\tau^2 = 2.1998$, $\chi^2_0 = 9.18$	8 (p =	0.16)												
Follow duration ≥6 months														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.82	10.36	30	2.85	7.34		-3.67 [-8.21; 0.87]	6.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-2.88	9.09	25	0.06	9.09		-2.94 [-7.98; 2.10]	5.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-7.40	7.66	43	-5.50	7.66		-1.90 [-5.10; 1.30]	11.0
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-5.10	8.42	70	-3.80	8.42		-1.30 [-4.10; 1.50]	13.1
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.22	10.47	27	-4.22	10.47		2.00 [-3.40; 7.40]	4.8
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.90	8.76	20	-1.60	8.76		3.50 [-1.70; 8.70]	5.1
Overall Effect						224			215			-	-1.09 [-2.95; 0.77]	45.9
Heterogeneity: $f^2 = 20\%$, $\tau^2 = 1.0981$, $\chi_5^2 = 6.23$	7 (p =	0.28)												
Overall Effect Heterogeneity: $l^2 = 22\%$, $\tau^2 = 1.1634$, $\chi^2_{12} = 15$	101-	- 0.0				601			464				-1.14 [-2.41; 0.14]	100.0
Test for overall effect: $z = -1.75$ ($p = 0.08$)	.46 (p	= 0.2	2)									-10 -5 0 5 10		
	10-	0.001									Faure			
Test for subgroup differences: $\chi_1^2 = 0.01$, df = 1	(p) =	0.92)									Favou	urs Intervention Favours Control		

eFigure 62: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on Diastolic blood pressure (mmHg), grouped by follow

duration

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ntion		Co	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Feeding time is > 8 hours														
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-6.15	8.53	22	-0.87	8.53		-5.28 [-9.57; -0.99]	7.1
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-2.00	8.09	67	-1.44	8.09		-0.56 [-3.27; 2.15]	13.7
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.22	10.47	27	-4.22	10.47		2.00 [-3.40; 7.40]	4.8
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.90	8.76	20	-1.60	8.76		3.50 [-1.70; 8.70]	5.1
Overall Effect						174			136				-0.36 [-3.80; 3.08]	30.7
Heterogeneity: $t^2 = 62\%$, $\tau^2 = 7.4291$, $\chi_3^2 = 7.85$	5 (p =	0.05)												
Feeding time is ≤ 8 hours														
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	9.68	45	-1.00	9.68		-4.00 [-8.00; -0.00]	7.9
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.82	10.36	30	2.85	7.34		-3.67 [-8.21; 0.87]	6.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-2.88	9.09	25	0.06	9.09		-2.94 [-7.98; 2.10]	5.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-7.40	7.66	43	-5.50	7.66		-1.90 [-5.10; 1.30]	11.0
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-5.10	8.42	70	-3.80	8.42		-1.30 [-4.10; 1.50]	13.1
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-4.08	9.66	24	-3.00	9.66		-1.08 [-6.67; 4.51]	4.5
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-2.41	7.40	49	-2.61	7.57		0.20 [-2.23; 2.63]	15.6
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-6.00	15.21	9	-7.00	7.25		1.00 [-9.16; 11.16]	1.5
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-4.75	11.06	33	-8.21	14.14		3.46 [-2.70; 9.62]	3.8
Overall Effect						427			328			-	-1.30 [-2.57; -0.02]	69.3
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_0 = 7.29$ ($p = 0$.51)													
Overall Effect		0.00	2017			601			464			•	-1.14 [-2.41; 0.14]	100.0
Heterogeneity: $l^2 = 22\%$, $\tau^2 = 1.1634$, $\chi^2_{12} = 15$.	46 (p	= 0.22	()											
Test for overall effect: $z = -1.75$ ($p = 0.08$)		0.001											0	
Test for subgroup differences: $\chi_1^2 = 0.25$, df = 1	(p =	0.62)									Favou	rs Intervention Favours Con	trol	

eFigure 63: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time-restricted eating on Diastolic blood pressure (mmHg), grouped by eating window

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	leight%
Intervention involved < 1 session per we	ek													
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-6.15	8.53	22	-0.87	8.53		-5.28 [-9.57; -0.99]	7.1
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.82	10.36	30	2.85	7.34		-3.67 [-8.21; 0.87]	6.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-2.88	9.09	25	0.06	9.09		-2.94 [-7.98; 2.10]	5.4
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-5.10	8.42	70	-3.80	8.42		-1.30 [-4.10; 1.50]	13.1
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-4.08	9.66	24	-3.00	9.66		-1.08 [-6.67; 4.51]	4.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-2.00	8.09	67	-1.44	8.09		-0.56 [-3.27; 2.15]	13.7
Montero 2023 (Spain)	48	-	FT=8h	Metabolic	12	148	-2.41	7.40	49	-2.61	7.57		0.20 [-2.23; 2.63]	15.6
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-6.00	15.21	9	-7.00	7.25		1.00 [-9.16; 11.16]	1.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.22	10.47	27	-4.22	10.47		2.00 [-3.40; 7.40]	4.8
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.90	8.76	20	-1.60	8.76		3.50 [-1.70; 8.70]	5.1
Overall Effect	2231					479			343			-	-0.95 [-2.35; 0.44]	77.3
Heterogeneity: $I^2 = 18\%$, $\tau^2 = 0.8893$, $\chi_9^2 = 10.5$	98 ()2 :	= 0,28												
Intervention involved ≥1 session per we	ek													
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	9.68	45	-1.00	9.68		-4.00 [-8.00; -0.00]	7.9
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-7.40	7.66	43	-5.50	7.66		-1.90 [-5.10; 1.30]	11.0
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-4.75	11.06	33	-8.21	14.14		3.46 [-2.70; 9.62]	3.8
Overall Effect						122			121				-1.49 [-4.96; 1.97]	22.7
Heterogeneity; $T^2 = 50\%$, $\tau^2 = 4.6190$, $\chi^2_T = 3.96$	3 (<i>p</i> =	0.14)												
Overall Effect	10 1-	- 0.00				601			464			•	-1.14 [-2.41; 0.14]	100.0
Heterogeneity: $I^2 = 22\%$, $\tau^2 = 1.1634$, $\chi^2_{12} = 15$. Test for overall effect: $z = -1.75$ ($p = 0.08$)	46 (p	= 0.22	:)									10 5 0 5 10		
		0.70									Faire	-10 -5 0 5 10	-1	
Test for subgroup differences: $\chi_1^2 = 0.08$, df = 1	(p =	0.78)									Favou	urs Intervention Favours Control	וכ	

eFigure 64: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on Diastolic blood pressure (mmHg), grouped by frequency of

contact

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	Veight%
Any health professional														
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-6.15	8.53	22	-0.87	8.53		-5.28 [-9.57; -0.99]	7.1
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-5.10	8.42	70	-3.80	8.42		-1.30 [-4.10; 1.50]	13.1
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-4.08	9.66	24	-3.00	9.66		-1.08 [-6.67; 4.51]	4.5
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-2.41	7.40	49	-2.61	7.57		0.20 [-2.23; 2.63]	15.6
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-6.00	15.21	9	-7.00	7.25		1.00 [-9.16; 11.16]	1.5
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-4.75	11.06	33	-8.21	14.14		3.46 [-2.70; 9.62]	3.8
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.90	8.76	20	-1.60	8.76		3.50 [-1.70; 8.70]	5.1
Overall Effect						355			227				-0.41 [-2.47; 1.64]	50.8
Heterogeneity: $l^2 = 36\%$, $\tau^2 = 2.5610$, $\chi^2_6 = 9.39$	(p =	0.15)												
Trained specifically in nutrition														
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	9.68	45	-1.00	9.68		-4.00 [-8.00; -0.00]	7.9
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.82	10.36	30	2.85	7.34		-3.67 [-8.21; 0.87]	6.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-2.88	9.09	25	0.06	9.09		-2.94 [-7.98; 2.10]	5.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-7.40	7.66	43	-5.50	7.66		-1.90 [-5.10; 1.30]	11.0
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-2.00	8.09	67	-1.44	8.09		-0.56 [-3.27; 2.15]	13.7
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.22	10.47	27	-4.22	10.47		2.00 [-3.40; 7.40]	4.8
Overall Effect Heterogeneity: $i^2 = 0\%$, $\tau^2 = 0$, $\chi^2_5 = 4.72$ ($\rho = 0$.45)			0.000		246			237			-	-1.76 [-3.31; -0.21]	49.2
Overall Effect						601			464			•	-1.14 [-2.41; 0.14]	100.0
Heterogeneity: $l^2 = 22\%$, $\tau^2 = 1.1634$, $\chi^2_{12} = 15.4$ Test for overall effect: $z = -1.75$ ($p = 0.08$)	46 (p	= 0.22	2)									10 5 0 5 10		
											-	-10 -5 0 5 10	202	
Test for subgroup differences: $\chi_1^2 = 1.05$, df = 1	(p = (1.30)									Favou	rs Intervention Favours Cont	101	

eFigure 65: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on Diastolic blood pressure (mmHg), grouped by delivery

personnel

							Interv	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI N	lean Difference, 95%CI V	Veight%
Additional resources were provided														
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-2.88	9.09	25	0.06	9.09		-2.94 [-7.98; 2.10]	5.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-7.40	7.66	43	-5.50	7.66		-1.90 [-5.10; 1.30]	11.0
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-5.10	8.42	70	-3.80	8.42		-1.30 [-4.10; 1.50]	13.1
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-4.75	11.06	33	-8.21	14.14		3.46 [-2.70; 9.62]	3.8
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.90	8.76	20	-1.60	8.76		3.50 [-1.70; 8.70]	5.1
Overall Effect						195			191			-	-0.52 [-2.72; 1.69]	38.5
Heterogeneity: $I^2 = 30\%$, $\tau^2 = 1.8901$, $\chi_4^2 = 5.73$	3 (p =	0.22)												
Resources were not provided														
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-6.15	8.53	22	-0.87	8.53		-5.28 [-9.57; -0.99]	7.1
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	9.68	45	-1.00	9.68		-4.00 [-8.00; -0.00]	7.9
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.82	10.36	30	2.85	7.34		-3.67 [-8.21; 0.87]	6.4
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-4.08	9.66	24	-3.00	9.66		-1.08 [-6.67; 4.51]	4.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-2.00	8.09	67	-1.44	8.09		-0.56 [-3.27; 2.15]	13.7
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-2.41	7.40	49	-2.61	7.57		0.20 [-2.23; 2.63]	15.6
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-6.00	15.21	9	-7.00	7.25		1.00 [-9.16; 11.16]	1.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.22	10.47	27	-4.22	10.47		2.00 [-3.40; 7.40]	4.8
Overall Effect				10/36/07/98		406			273			-	-1.50 [-3.18; 0.18]	61.5
Heterogeneity: $l^2 = 26\%$, $\tau^2 = 1.4741$, $\chi^2_{\gamma} = 9.49$	9 (p =	0.22)												
Overall Effect	10 /	- 0.0				601			464			· · · · · · · · · · · · · · · · · · ·	-1.14 [-2.41; 0.14]	100.0
Heterogeneity: $l^2 = 22\%$, $\tau^2 = 1.1634$, $\chi^2_{12} = 15$ Test for overall effect: $z = -1.75$ ($p = 0.08$)	46 (p	= 0.2.	2)									10 5 0 5 10		
												-10 -5 0 5 10		
Test for subgroup differences: $\chi_1^2 = 0.49$, df = 1	(p =	0.49)									Favor	urs Intervention Favours Control		

eFigure 66: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on Diastolic blood pressure (mmHg), grouped by resource

provision

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI	Weight%
High														
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-6.15	8.53	22	-0.87	8.53		-5.28 [-9.57; -0.99]	7.1
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-4.08	9.66	24	-3.00	9.66		-1.08 [-6.67; 4.51]	4.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-2.00	8.09	67	-1.44	8.09		-0.56 [-3.27; 2.15]	13.7
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-2.41	7.40	49	-2.61	7.57		0.20 [-2.23; 2.63]	15.6
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-6.00	15.21	9	-7.00	7.25		1.00 [-9.16; 11.16]	1.5
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-4.75	11.06	33	-8.21	14.14		3.46 [-2.70; 9.62]	3.8
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	24	1.90	8.76	20	-1.60	8.76		3.50 [-1.70; 8.70]	5.1
Overall Effect						356			224			-	-0.25 [-2.24; 1.74]	51.3
Heterogeneity: $l^2 = 33\%$, $\tau^2 = 2.2270$, $\chi^2_6 = 8.99$	(p =	0.17)												
Unclear														
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-5.00	9.68	45	-1.00	9.68		-4.00 [-8.00; -0.00]	7.9
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.82	10.36	30	2.85	7.34		-3.67 [-8.21; 0.87]	6.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-2.88	9.09	25	0.06	9.09		-2.94 [-7.98; 2.10]	5.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-7.40	7.66	43	-5.50	7.66		-1.90 [-5.10; 1.30]	11.0
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-5.10	8.42	70	-3.80	8.42		-1.30 [-4.10; 1.50]	13.1
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-2.22	10.47	27	-4.22	10.47		2.00 [-3.40; 7.40]	4.8
Overall Effect						245			240			-	-2.02 [-3.58; -0.45]	48.7
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_5^2 = 3.96$ (p = 0	55)													
Overall Effect						601			464			•	-1.14 [-2.41; 0.14]	100.0
Heterogeneity: $l^2 = 22\%$, $\tau^2 = 1.1634$, $\chi^2_{12} = 15.4$	46 (p	= 0.22	3											
Test for overall effect: $z = -1.75$ ($\rho = 0.08$)		226346									1211	-10 -5 0 5 10		
Test for subgroup differences: $\chi_1^2 = 1.88$, df = 1	(p = 1	0.17)									Favou	rs Intervention Favours Control		

eFigure 67: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time-restricted eating on Diastolic blood pressure (mmHg), grouped by risk of bias

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		Intervent Mean		No		SD	Rat	e Ratio,	95% CI	Mean	Difference, 95%CI V	Veight%
Healthy Zargaran 2014 (Iran) Grangeiro 2021 (Brazil) Bachman 2012 (USA) Overall Effect Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_2 =$	30 51 0.28 (31 35 36 p = 0	3M+2S vs 6M 3M vs 6M 3M vs 10S 87)	Healthy Healthy Healthy	12 13 26	45 21 25 91		2.02	45 19 26 90	1000010	0.90 1.85 2.03	++				-1.20 [-1.62; -0.78] -1.08 [-2.28; 0.12] -0.90 [-1.96; 0.16] -1.15 [-1.52; -0.78]	24.7 9.6 11.3 45.5
Metabolic Kahleova 2014 (Czech Rep) Papakonstantinou 2016 (Greece) Overall Effect Heterogeneity: $l^2 = 40\%$, $t^2 = 0.018$		27	2M vs 6M 3M vs 6M (p = 0.20)	Metabolic Metabolic	12 12		-1.23 (-0.23 (54 40 94	-0.82 -0.12						-0.41 [-0.61; -0.21] -0.11 [-0.52; 0.30] -0.31 [-0.59; -0.04]	29.5 24.9 54.5
Overall Effect Heterogeneity: $I^2 = 76\%$, $\tau^2 = 0.163$ Test for overall effect: $z = -2.87$ ($p < 76$ Test for subgroup differences: $\chi_1^2 = 100$	0.01))				185	l.		184		Favo	-2 -1 urs Interve	0 ntion F	1 2 avours Cont		-0.65 [-1.09; -0.21]	100.0

eFigure 68: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m²), grouped by health status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

						1	ntervent	ion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
2M vs 6M	-	141.87		autor or an over the t							100.00	_		
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-1.23 0	0.62	54	-0.82	0.44	-	-0.41 [-0.61; -0.21]	29.5
3M vs 10S														
Bachman 2012 (USA)	51	36	3M vs 10S	Healthy	26	25	-5.90 1	.83	26	-5.00	2.03		-0.90 [-1.96; 0.16]	11.3
3M vs 6M														
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	0.75 2	2.02	19	1.83	1.85		-1.08 [-2.28; 0.12]	9.6
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-0.23 0	.82	40	-0.12	1.03		-0.11 [-0.52; 0.30]	24.9
Overall Effect						61			59				-0.42 [-1.31; 0.47]	34.5
Heterogeneity: $l^2 = 56\%$, $\tau^2 = 0.261$	7. X1 =	2:25	(p = 0.13)											
3M+2S vs 6M												2.5.M		
Zargaran 2014 (Iran)	1	31	3M+2S vs 6M	Healthy	12	45	0.70 1	.10	45	1.90	0.90		-1.20 [-1.62; -0.78]	24.7
Overall Effect Heterogeneity: $I^2 = 76\%$, $\tau^2 = 0.1633$	2, $\chi_{4}^{2} =$	16.63) (p < 0.01)			185			184			· · · · · · · · · · · · · · · · · · ·	-0.65 [-1.09; -0.21]	100.0
Test for overall effect: z = -2.87 (p <	0.01)											-2 -1 0 1 2		
Test for subgroup differences: $\chi_3^2 = 1$	11.69,	df = 3	(p < 0.01)								Favou	rs Intervention Favours Contro	1	

eFigure 69: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m²), grouped by intervention intensity

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BM	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	leight%
<80% of participants were Women														
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.52	4.83	25	-1.07	4.83		-3.45 [-6.13; -0.77]	3.5
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-4.54	3.25	49	-1.80	3.29		-2.74 [-3.80; -1.68]	8.1
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-8.27	5.09	33	-5.80	3.74		-2.47 [-4.65; -0.29]	4.6
Che 2021 (China)	48	12	FT=10h	Metabolic	12	60	-2.98	3.33	60	-0.83	2.48		-2.15 [-3.20; -1.10]	8.1
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.00	6.62	70	-6.20	6.62	-	-1.80 [-4.00; 0.40]	4.5
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	0.86	13.12	22	1.87	13.12		-1.01 [-7.61: 5.59]	0.8
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.46	43	-7.80	6.46		-0.60 [-3.30; 2.10]	3.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.94	2.18	66	-0.43	2.07	-	-0.51 [-1.23; 0.21]	9.3
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.60	3.23	20	-1.10	3.23		-0.50 [-2.40; 1.40]	5.3
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	59	-1.17	2.80	57	-0.76	2.80		-0.41 [-1.43; 0.61]	8.2
Dhurandhar 2014 (USA)	42		No Breakfast	Healthy	16	90	-0.66	1.17	98	-0.61	1.16	100	-0.05 [-0.38; 0.29]	10.3
Overall Effect						672			543			•	-1.29 [-2.06; -0.52]	66.1
Heterogeneity: $I^2 = 77\%$, $z^2 = 0.9784$, $\chi^2_{10} = 42.1$	92 (p	< 0.0	1)											
≥80% of participants were Women														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-3.49	5.45	30	1.12	5.45		-4.61 [-7.37; -1.85]	3.4
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-6.30	3.39	45	-4.00	3.39		-2.30 [-3.70; -0.90]	6.8
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-3.60	1.92	9	-1.50	2.33		-2.10 [-4.00; -0.20]	5.3
Thomas 2022 (USA)	38	34	FT=10h	Healthy	12	33	-6.20	4.10	27	-5.10	3.20		-1.10 [-2.95; 0.75]	5.4
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.42	1.12	12	0.06	1.12		-0.48 [-1.38; 0.42]	8.6
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.58	4.44	27	-0.53	4.44		-0.05 [-2.34; 2.24]	4.3
Overall Effect				0.000000000		162			150			-	-1.57 [-2.66; -0.48]	33.9
Heterogeneity: $t^2 = 60\%$, $\tau^2 = 1.0382$, $\chi_5^2 = 12.5$	(p =	0.03)												
Overall Effect						834			693				-1.38 [-2.00; -0.76]	100.0
Heterogeneity: $I^2 = 73\%$, $\tau^2 = 0.9355$, $\chi^2_{16} = 59$.	81 (p	< 0.0	1)											
Test for overall effect: z = -4.39 (p < 0.01)			1.00									-6 -4 -2 0 2 4 6		
Test for subgroup differences: $\gamma_1^2 = 0.16$, df = 1	(p =	0.69)									Favou	irs Intervention Favours Cont	Inol	

eFigure 70: Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on weight (kg), grouped by gender proportion

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ntion		C	ontrol			
Author Year (Country)	Age	BM	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Healthy														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-3.49	5.45	30	1.12	5.45		-4.61 [-7.37; -1.85]	3.4
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-6.30	3.39	45	-4.00	3.39		-2.30 [-3.70; -0.90]	6.8
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-3.60	1.92	9	-1.50	2.33		-2.10 [-4.00; -0.20]	5.3
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.00	6.62	70	-6.20	6.62		-1.80 [-4.00; 0.40]	4.5
Thomas 2022 (USA)	38	34	FT=10h	Healthy	12	33	-6.20	4.10	27	-5.10	3.20		-1.10 [-2.95; 0.75]	5.4
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.94	2.18	66	-0.43	2.07		-0.51 [-1.23; 0.21]	9.3
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	59	-1.17	2.80	57	-0.76	2.80		-0.41 [-1.43; 0.61]	8.2
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.58	4.44	27	-0.53	4.44		-0.05 [-2.34; 2.24]	4.3
Dhurandhar 2014 (USA)	42		No Breakfast	Healthy	16	90	-0.66	1.17	98	-0.61	1.16	11	-0.05 [-0.38; 0.29]	10.3
Overall Effect						438			429			•	-1.07 [-1.79; -0.35]	57.5
Heterogeneity: $l^2 = 68\%$, $\tau^2 = 0.6409$, $\chi^2_0 = 25.6$	5 (p <	0.01)												
Metabolic														
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.52	4.83	25	-1.07	4.83		-3.45 [-6.13; -0.77]	3.5
Montero 2023 (Spain)	48	+	FT=8h	Metabolic	12	148		3.25	49	-1.80	3.29		-2.74 [-3.80; -1.68]	8.1
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-8.27	5.09	33	-5.80	3.74		-2.47 [-4.65; -0.29]	4.6
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-2.98	3.33	60	-0.83	2.48		-2.15 [-3.20; -1.10]	8.1
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	0.86	13.12	22	1.87	13.12	-	-1.01 [-7.61; 5.59]	0.8
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.46	43	-7.80	6.46		-0.60 [-3.30; 2.10]	3.5
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.60	3.23	20	-1.10	3.23		-0.50 [-2.40; 1.40]	5.3
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.42	1.12	12	0.06	1.12		-0.48 [-1.38; 0.42]	8.6
Overall Effect						396			264			•	-1.71 [-2.60; -0.82]	42.5
Heterogeneity: $l^2 = 55\%$, $\tau^2 = 0.7671$, $\chi_2^2 = 15.7$	12 (p	= 0.03	3}											
Overall Effect						834			693			•	-1.38 [-2.00; -0.76]	100.0
Heterogeneity: $l^2 = 73\%$, $\tau^2 = 0.9355$, $\chi^2_{16} = 59$.	81 (p	< 0.0	01)											
Test for overall effect: z = -4.39 (p < 0.01)												-6 -4 -2 0 2 4 6		
Test for subgroup differences: $\gamma_{1}^{2} = 1.20$, df = 1	(p =	0.27)									Favou	rs Intervention Favours Control	lo	

eFigure 71: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time restricted eating on weight (kg), grouped by health status

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
TRE+ad libitum vs No TRE+ad libitum												11		
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-3.49	5.45	30	1.12	5.45		-4.61 [-7.37; -1.85]	3.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.52	4.83	25	-1.07	4.83		-3.45 [-6.13; -0.77]	3.5
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-4.54	3.25	49	-1.80	3.29		-2.74 [-3.80; -1.68]	8.1
Che 2021 (China)	48	8. 8	FT=10h	Metabolic	12	60	-2.98	3.33	60	-0.83	2.48		-2.15 [-3.20; -1.10]	8.1
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-3.60	1.92	9	-1.50	2.33		-2.10 [-4.00; -0.20]	5.3
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	0.86	13.12	22	1.87	13.12		-1.01 [-7.61; 5.59]	0.8
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.94	2.18	66	-0.43	2.07		-0.51 [-1.23; 0.21]	9.3
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.60	3.23	20	-1.10	3.23		-0.50 [-2.40; 1.40]	5.3
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.42	1.12	12	0.06	1.12	-	-0.48 [-1.38: 0.42]	8.6
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	59	-1.17	2.80	57	-0.76	2.80		-0.41 [-1.43; 0.61]	8.2
Dhurandhar 2014 (USA)	42		No Breakfast	Healthy	16	90	-0.66	1.17	98	-0.61	1.16	100	-0.05 [-0.38; 0.29]	10.3
Overall Effect						579			448			•	-1.35 [-2.10; -0.59]	70.8
Heterogeneity: $l^2 = 80\%$, $\tau^2 = 1.0139$, $\chi^2_{10} = 49$.	59 (p	< 0.0	1)											
TRE+DCR vs DCR														
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-8.27	5.09	33	-5.80	3.74		-2.47 [-4.65; -0.29]	4.6
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-6.30	3.39	45	-4.00	3.39		-2.30 [-3.70; -0.90]	6.8
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.00	6.62	70	-6.20	6.62		-1.80 [-4.00; 0.40]	4.5
Thomas 2022 (USA)	38	34	FT=10h	Healthy	12	33	-6.20	4.10	27	-5.10	3.20		-1.10 [-2.95; 0.75]	5.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.46	43	-7.80	6.46		-0.60 [-3.30; 2.10]	3.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.58	4.44	27	-0.53	4.44		-0.05 [-2.34; 2.24]	4.3
Overall Effect						255			245			*	-1.60 [-2.41: -0.80]	29.2
Heterogeneity: $t^2 = 0\%$, $\tau^2 = 0$, $\chi_5^2 = 4.17$ ($p = 0$.52)												1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Overall Effect						834			693			*	-1.38 [-2.00; -0.76]	100.0
Heterogeneity: $l^2 = 73\%$, $\tau^2 = 0.9355$, $\chi^2_{10} = 59$.	81 (p	< 0.0	1)											
Test for overall effect: z = -4.39 (p < 0.01)			2.2									-6 -4 -2 0 2 4 6		
Test for subgroup differences: $\chi_1^2 = 0.20$, df = 1	(p =	0.65)									Favor	urs Intervention Favours Con	trol	

eFigure 72: Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on weight (kg), grouped by energy prescription

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ntion		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Follow duration <6 months												- 11		
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-4.54	3.25	49	-1.80	3.29		-2.74 [-3.80; -1.68]	8.1
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-8.27	5.09	33	-5.80	3.74		-2.47 [-4.65; -0.29]	4.6
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-6.30	3.39	45	-4.00	3.39		-2.30 [-3.70; -0.90]	6.8
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-2.98	3.33	60	-0.83	2.48		-2.15 [-3.20; -1.10]	8.1
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-3.60	1.92	9	-1.50	2.33		-2.10 [-4.00; -0.20]	5.3
Thomas 2022 (USA)	38	34	FT=10h	Healthy	12	33	-6.20	4.10	27	-5.10	3.20		-1.10 [-2.95; 0.75]	5.4
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	0.86	13.12	22	1.87	13.12		-1.01 [-7.61; 5.59]	0.8
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.94	2.18	66	-0.43	2.07	-	-0.51 [-1.23; 0.21]	9.3
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	59	-1.17	2.80	57	-0.76	2.80		-0.41 [-1.43; 0.61]	8.2
Dhurandhar 2014 (USA)	42	1	No Breakfast	Healthy	16	90	-0.66	1.17	98	-0.61	1.16		-0.05 [-0.38; 0.29]	10.3
Overall Effect						597			466			•	-1.40 [-2.19; -0.62]	66.8
Heterogeneity: $l^2 = 80\%$, $\tau^2 = 1.0487$, $\chi_3^2 = 46.0$	1 (p -	< 0.01)											
Follow duration ≥6 months														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-3.49	5.45	30	1.12	5.45		-4.61 [-7.37; -1.85]	3.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.52	4.83	25	-1.07	4.83		-3.45 [-6.13; -0.77]	3.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.00	6.62	70	-6.20	6.62		-1.80 [-4.00; 0.40]	4.5
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.46	43	-7.80	6.46		-0.60 [-3.30; 2.10]	3.5
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.60	3.23	20	-1.10	3.23		-0.50 [-2.40; 1.40]	5.3
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.42	1.12	12	0.06	1.12		-0.48 [-1.38; 0.42]	8.6
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.58	4.44	27	-0.53	4.44		-0.05 [-2.34; 2.24]	4.3
Overall Effect						237			227			-	-1.38 [-2.50; -0.27]	33.2
Heterogeneity: $l^2 = 52\%$, $\tau^2 = 1.0907$, $\chi^2_0 = 12.5$	7 (p =	= 0.05	i)											
Overall Effect						834			693			•	-1.38 [-2.00; -0.76]	100.0
Heterogeneity: $l^2 = 73\%$, $\tau^2 = 0.9355$, $\chi^2_{16} = 59.1$	81 (p	< 0.0	1)										Connector Contractor of 12 11 Per	
Test for overall effect: z = -4.39 (p < 0.01)	12107-											-6 -4 -2 0 2 4 6		
Test for subgroup differences: $\chi_1^2 = 0.00$, df = 1	(p =	0.98)									Favor	irs Intervention Favours Contro	bl	

eFigure 73: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time restricted eating on weight (kg), grouped by follow duration BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration:

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BM	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
Intervention involved < 1 session per we	ek											1		
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-3.49	5.45	30	1.12	5.45		-4.61 [-7.37; -1.85]	3.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.52	4.83	25	-1.07	4.83		-3.45 [-6.13; -0.77]	3.5
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-4.54	3.25	49	-1.80	3.29		-2.74 [-3.80; -1.68]	8,1
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-3.60	1.92	9	-1.50	2.33		-2.10 [-4.00; -0.20]	5.3
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.00	6.62	70	-6.20	6.62		-1.80 [-4.00; 0.40]	4.5
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	0.86	13.12	22	1.87	13.12		-1.01 [-7.61; 5.59]	0.8
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.94	2.18	66	-0.43	2.07		-0.51 [-1.23: 0.21]	9.3
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.60	3.23	20	-1.10	3.23		-0.50 [-2.40; 1.40]	5.3
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.42	1.12	12	0.06	1.12	-	-0.48 [-1.38; 0.42]	8.6
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	59	-1.17	2 80	57	-0.76	2.80		-0.41 [-1.43; 0.61]	8.2
de Oliveira Maranhao Pureza 2021 (Brazil)		33	FT=12h	Healthy	52	31	-0.58	4.44	27	-0.53	4.44		-0.05 [-2.34; 2.24]	4.3
Dhurandhar 2014 (USA)	42	1.52	No Breakfast	Healthy	16	90	-0.66	1.17	98	-0.61	1.16		-0.05 [-0.38; 0.29]	10.3
Overall Effect	100	355			0.5	619			485	1.200	1005	•	-1.18 [-1.88; -0.48]	71.6
Heterogeneity: $I^2 = 74\%$, $\tau^2 = 0.8384$, $\chi^2_{11} = 41$.	65 (p	< 0.0	1)										and a story story	
Intervention involved ≥ 1 session per we	ek													
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-8.27	5.09	33	-5.80	3.74		-2.47 [-4.65; -0.29]	4.6
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-6.30	3.39	45	-4.00	3.39	-8-	-2.30 [-3.70; -0.90]	6.8
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-2.98	3.33	60	-0.83	2.48		-2.15 [-3.20; -1.10]	8.1
Thomas 2022 (USA)	38	34	FT=10h	Healthy	12	33	-6.20	4.10	27	-5.10	3.20		-1.10 [-2.95; 0.75]	5.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.46	43	-7.80	6.46		-0.60 [-3.30; 2.10]	3.5
Overall Effect						215			208			•	-1.97 [-2.66; -1.27]	28.4
Heterogeneity: t^2 = 0%, τ^2 = 0, χ^2_4 = 2.37 (p = 0	.67)													
Overall Effect						834			693			*	-1.38 [-2.00; -0.76]	100.0
Heterogeneity: $l^2 = 73\%$, $\tau^2 = 0.9355$, $\chi^2_{10} = 59$.	81 (p	< 0.0	1)										-	
Test for overall effect: z = -4.39 (p < 0.01)			20.									-6 -4 -2 0 2 4 6		
Test for subgroup differences: $\gamma_1^2 = 2.44$, df = 1	(p =	0.12)									Favo	urs Intervention Favours Contro	1	

eFigure 74: Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on weight (kg), grouped by frequency of contact

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ntion		C	ontrol			
Author Year (Country)	Age	BM	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI \	Weight%
Any health professional												- 11		
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-4.54	3.25	49	-1.80	3.29		-2.74 [-3.80; -1.68]	8.1
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-8.27	5.09	33	-5.80	3.74		-2.47 [-4.65; -0.29]	4.6
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-3.60	1.92	9	-1.50	2.33		-2.10 [-4.00; -0.20]	5.3
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.00	6.62	70	-6.20	6.62		-1.80 [-4.00; 0.40]	4.5
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	0.86	13.12	22	1.87	13.12		-1.01 [-7.61; 5.59]	0.8
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.60	3.23	20	-1.10	3.23		-0.50 [-2.40; 1.40]	5.3
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.42	1.12	12	0.06	1.12		-0.48 [-1.38; 0.42]	8.6
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	59	-1.17	2.80	57	-0.76	2.80		-0.41 [-1.43; 0.61]	8.2
Dhurandhar 2014 (USA)	42	+	No Breakfast	Healthy	16	90	-0.66	1.17	98	-0.61	1.16	100 H	-0.05 [-0.38; 0.29]	10.3
Overall Effect						495			370			•	-1.15 [-1.97; -0.33]	55.6
Heterogeneity: $l^2 = 74\%$, $\tau^2 = 0.9121$, $\chi^2_0 = 31.2$	(4 (p	< 0.0	1)											
Trained specifically in nutrition														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30		5.45	30				-4.61 [-7.37; -1.85]	3.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.52	4.83		-1.07	4.83		-3.45 [-6.13; -0.77]	3.5
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45		3.39	45	-4.00	3.39		-2.30 [-3.70; -0.90]	6.8
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-2.98	3.33			2.48		-2.15 [-3.20; -1.10]	8.1
Thomas 2022 (USA)	38	34	FT=10h	Healthy	12	33	-6.20	4.10	27	-5.10	3.20		-1.10 [-2.95; 0.75]	5.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.46	43	-7.80	6.46		-0.60 [-3.30; 2.10]	3.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.94	2.18	66	-0.43	2.07		-0.51 [-1.23; 0.21]	9.3
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.58	4.44		-0.53	4.44		-0.05 [-2.34; 2.24]	4.3
Overall Effect Heterogeneity: $l^2 = 62\%$, $\tau^2 = 0.9835$, $\chi^2_7 = 18.6$	s (p <	0.01				339			323			•	-1.67 [-2.61; -0.73]	44.4
Overall Effect						834			693			•	-1.38 [-2.00; -0.76]	100.0
Heterogeneity: $l^2 = 73\%$, $\tau^2 = 0.9355$, $\chi^2_{16} = 59$.	81 (p	< 0.0	11)											
Test for overall effect: $z = -4.39 (p < 0.01)$											to allow the	-6 -4 -2 0 2 4 6		
Test for subgroup differences: $\chi_1^2 = 0.68$, df = 1	(p =	0.41)									Favou	urs Intervention Favours Cor	trol	

eFigure 75: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time restricted eating on weight (kg), grouped by delivery personnel

							Interve	ntion		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI	Weight%
Additional resources were provided														
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.52	4.83	25	-1.07	4.83		-3.45 [-6.13; -0.77]	3.5
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-8.27	5.09	33	-5.80	3.74		-2.47 [-4.65; -0.29]	4.6
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.00	6.62	70	-6.20	6.62		-1.80 [-4.00; 0.40]	4.5
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.46	43	-7.80	6.46		-0.60 [-3.30; 2.10]	3.5
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.60	3.23	20	-1.10	3.23		-0.50 [-2.40; 1.40]	5.3
Dhurandhar 2014 (USA)	42	19	No Breakfast	Healthy	16	90	-0.66	1.17	98	-0.61	1.16		-0.05 [-0.38; 0.29]	10.3
Overall Effect						286			289			-	-1.20 [-2.36; -0.04]	31.7
Heterogeneity: $I^2 = 61\%$, $\tau^2 = 1.1177$, $\chi^2_5 = 12.8$	85 (p	= 0:02	2)											
Resources were not provided														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-3.49	5.45	30	1.12	5.45		-4.61 [-7.37; -1.85]	3.4
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-4.54	3.25	49	-1.80	3.29		-2.74 [-3.80; -1.68]	8.1
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-6.30	3.39	45	-4.00	3.39		-2.30 [-3.70; -0.90]	6.8
Che 2021 (China)	48	1	FT=10h	Metabolic	12	60	-2.98	3.33	60	-0.83	2.48		-2.15 [-3.20; -1.10]	8.1
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-3.60	1.92	9	-1.50	2.33		-2.10 [-4.00; -0.20]	5.3
Thomas 2022 (USA)	38	34	FT=10h	Healthy	12	33	-6.20	4.10	27	-5.10	3.20		-1.10 [-2.95; 0.75]	5.4
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	0.86	13.12	22	1.87	13.12		-1.01 [-7.61; 5.59]	0.8
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.94	2.18	66	-0.43	2.07	-	-0.51 [-1.23; 0.21]	9.3
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.42	1.12	12	0.06	1.12		-0.48 [-1.38; 0.42]	8.6
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	59	-1.17	2.80	57	-0.76	2.80		-0.41 [-1.43; 0.61]	8.2
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.58	4.44	27	-0.53	4.44		-0.05 [-2.34; 2.24]	4.3
Overall Effect				1000		548			404			*	-1.47 [-2.19; -0.76]	68.3
Heterogeneity: $l^2 = 68\%$, $\tau^2 = 0.8192$, $\chi^2_{10} = 29$.	64 (p	< 0.0	1)											
Overall Effect						834			693			•	-1.38 [-2.00; -0.76]	100.0
Heterogeneity: $l^2 = 73\%$, $\tau^2 = 0.9355$, $\chi^2_{10} = 59$.	81 (p	< 0.0	1)											
Test for overall effect: z = -4.39 (p < 0.01)	000.000		2000									-6 -4 -2 0 2 4 6		
Test for subgroup differences: $\chi_1^2 = 0.15$, df = 1	(p =	0.70)									Favou	irs Intervention Favours Contro	1	

eFigure 76: Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on weight (kg), grouped by resource provision

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ntion		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI	Weight%
High												in the second se		
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-4.54	3.25	49	-1.80	3.29		-2.74 [-3.80; -1.68]	8.1
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-8.27	5.09	33	-5.80	3.74		-2.47 [-4.65; -0.29]	4.6
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-2.98	3.33	60	-0.83	2.48		-2.15 [-3.20; -1.10]	8.1
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-3.60	1.92	9	-1.50	2.33		-2.10 [-4.00; -0.20]	5.3
Thomas 2022 (USA)	38	34	FT=10h	Healthy	12	33	-6.20	4.10	27	-5.10	3.20		-1.10 [-2.95; 0.75]	5.4
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	0.86	13.12	22	1.87	13.12		-1.01 [-7.61; 5.59]	0.8
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.94	2.18	66	-0.43	2.07	-	-0.51 [-1.23; 0.21]	9.3
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-1.60	3.23	20	-1.10	3.23		-0.50 [-2.40; 1.40]	5.3
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.42	1.12	12	0.06	1.12	-	-0.48 [-1.38; 0.42]	8.6
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	59	-1.17	2.80	57	-0.76	2.80		-0.41 [-1.43; 0.61]	8.2
Dhurandhar 2014 (USA)	42		No Breakfast	Healthy	16	90	-0.66	1.17	98	-0.61	1.16		-0.05 [-0.38; 0.29]	10.3
Overall Effect				1000		589			453			•	-1.12 [-1.78; -0.46]	73.9
Heterogeneity: $t^2 = 75\%$, $\tau^2 = 0.7472$, $\chi^2_{10} = 40$.	07 (p	< 0.0	1)											
Unclear														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-3.49	5.45	30	1.12	5.45		-4.61 [-7.37; -1.85]	3.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-4.52	4.83	25	-1.07	4.83		-3.45 [-6.13; -0.77]	3.5
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-6.30	3.39	45	-4.00	3.39		-2.30 [-3.70; -0.90]	6.8
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-8.00	6.62	70	-6.20	6.62		-1.80 [-4.00; 0.40]	4.5
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-8.40	6.46	43	-7.80	6.46		-0.60 [-3.30; 2.10]	3.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.58	4.44	27	-0.53	4.44		-0.05 [-2.34; 2.24]	4.3
Overall Effect						245			240			-	-2.07 [-3.27; -0.87]	26.1
Heterogeneity: $l^2 = 42\%$, $\tau^2 = 0.9134$, $\chi_5^2 = 8.56$	(p =	0.13)												
Overall Effect						834			693			•	-1.38 [-2.00; -0.76]	100.0
Heterogeneity: $l^2 = 73\%$, $\tau^2 = 0.9355$, $\chi^2_{16} = 59$.	81 (0	< 0.0	1)									1 1 1 1 1 1		
Test for overall effect: z = -4.39 (p < 0.01)												-6 -4 -2 0 2 4 6		
Test for subgroup differences: $\chi_1^2 = 1.85$, df = 1	(p =	0.17)									Favou	rs Intervention Favours Contro	a	

eFigure 77: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time restricted eating on weight (kg), grouped by risk of bias

						I	ntervent	ion		Co	ntrol							
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	1	Rate Ra	tio, 95% Cl	Mean	Difference, 9	5%CI W	Veight%
<80% of participants were Wom	nen													1				
Jakubowicz 2019 (Israel)	69	32	3M vs 6M	Metabolic	12	14	-5.40 3	.37	14	0.30	1.12	-	-			-5.70 [-7.56; -	3.84]	20.2
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-3.70 1	.47	54	-2.30	1.47					-1.40 [-1.95; -	0.85]	25.8
Forslund 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-4.10 6	.10	70	-5.90	9.40		F	-		1.80 [-0.83;	4.43]	16.3
Overall Effect				1.0000000		138			138			-	-			-1.86 [-5.19;	1.461	62.3
Heterogeneity: $I^2 = 92\%$, $\tau^2 = 7.788!$	5, 7,2 =	25.6	2 (p < 0.01)											-				
≥80% of participants were Wom	en																	
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	2.01 4	.93	19	4.75	5.25			-		-2.74 [-5.91;	0.43]	13.9
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-1.00 3	.64	40	0.00	0.00		-	H		-1.00 [-2.13;	0.13]	23.8
Overall Effect						61			59				-			-1.22 [-2.34; -	0.09]	37.7
Heterogeneity: $t^2 = 3\%$, $t^2 = 0.0444$,	$\chi_1^2 =$	1.03 (p = 0.31)															
Overall Effect						199			197				-	-		-1.84 [-3.55; -	0.13]	100.0
Heterogeneity: /2 = 85%, t2 = 2.8634	$1, \chi_{1}^{2} =$	= 27.1	3 (p < 0.01)									- C.	1 1	1 1 1 1				
Test for overall effect: z = -2.11 (p =	0.04)										-6	4 -2	0 2 4 6				
Test for subgroup differences: $\chi_s^2 = 0$	0.13, 0	df = 1	(p = 0.72)							ŝ	Favo	urs Inte	rvention	Favours Cor	ntrol			

eFigure 78: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on weight (kg), grouped by gender proportion

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							ntervent				ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Obese I														
Jakubowicz 2019 (Israel)	69	32	3M vs 6M	Metabolic	12	14	-5.40 3	.37	14	0.30	1.12	- - -	-5.70 [-7.56; -3.84]	20.2
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-3.70 1	.47	54	-2.30	1.47		-1.40 [-1.95; -0.85]	25.8
Overall Effect						68			68				-3.45 [-7.66; 0.76]	46.0
Heterogeneity: $l^3 = 95\%$, $\tau^2 = 8.755$	2, _{X1} ² =	18.88	3 (p < 0.01)										C. 2000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 100	
Obese II														
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	2.01 4	.93	19	4.75	5.25		-2.74 [-5.91; 0.43]	13.9
Forslund 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-4.10 €	6.10	70	-5.90	9.40		1.80 [-0.83; 4.43]	16.3
Overall Effect						91			89				-0.38 [-4.83; 4.07]	30.2
Heterogeneity: $l^2 = 79\%$, $\tau^2 = 8.104$	9, χ ₁ ² =	4.68	(p = 0.03)											
Överweight														
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-1.00 3	.64	40	0.00	0.00	-	-1.00 [-2.13; 0.13]	23.8
Overall Effect						199			197			-	-1.84 [-3.55; -0.13]	100.0
Heterogeneity: /2 = 85%, 72 = 2.863	$4, \chi_{1}^{2} =$	27.13	3 (p < 0.01)											
Test for overall effect: z = -2.11 (p =	0.04)											-6 -4 -2 0 2 4 6		
Test for subgroup differences: $\chi_2^2 =$	1.33, c	if = 2	(p = 0.51)								Favou	ars Intervention Favours Contro	1	

eFigure 79: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on weight (kg), grouped by baseline BMI status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	вмі	Intervention	Comorbidity	Duration		nterver Mean		No	Co Mean	ontrol SD	Rate Ratio, 95% CI	Mean Difference, 95%Cl	Weight%
Healthy Grangeiro 2021 (Brazil) Forslund 2008 (Sweden) Overall Effect Heterogeneity: $l^2 = 79\%$, $\tau^2 = 8.1049$	30 39 θ, χ ² =	35 38 4.68	3M vs 6M 3M vs 3M+3S (p = 0.03)	Healthy Healthy	13 52	21 70 91	-4.10		19 70 89		5.25 9.40		-2.74 [-5.91; 0.43] 1.80 [-0.83; 4.43] -0.38 [-4.83; 4.07]	13.9 16.3 30.2
Metabolic Jakubowicz 2019 (Israel) Kahleova 2014 (Czech Rep) Papakonstantinou 2016 (Greece) Overall Effect Heterogeneity: $l^2 = 90\%$, $l^2 = 2.757l$		32 33 27 20.2	3M vs 6M 2M vs 6M 3M vs 6M 7 (p < 0.01)	Metabolic Metabolic Metabolic	12 12 12	54	-5.40 -3.70 -1.00	1.47	14 54 40 108	-2.30		-	-5.70 [-7.56; -3.84] -1.40 [-1.95; -0.85] -1.00 [-2.13; 0.13] -2.50 [-4.51; -0.49]	20.2 25.8 23.8 69.8
Overall Effect Heterogeneity: $l^2 = 85\%$, $\tau^2 = 2.863$ Test for overall effect: $z = -2.11$ ($p =$ Test for subgroup differences: $\chi_1^2 = 1$	0.04)					199			197		Favou	-6 -4 -2 0 2 4 irs Intervention Favours (-1.84 [-3.55; -0.13] 6 Control	100.0

eFigure 80: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on weight (kg), grouped by health status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

						h	nterven	tion		Cor	trol					
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio	, 95% CI	Mean Difference	, 95%CI V	Veight%
Follow duration <6 months												- H 1				
Jakubowicz 2019 (Israel)	69	32	3M vs 6M	Metabolic	12	14	-5.40	3.37	14	0.30	1.12			-5.70 [-7.5	6; -3.84]	20.2
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	2.01	4.93	19	4.75	5.25	-		-2.74 [-5.9	1; 0.43]	13.9
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-3.70	1.47	54	-2.30	1.47			-1.40 [-1.9	5; -0.85]	25.8
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-1.00	3.64	40	0.00	0.00			-1.00 [-2.1	3; 0.13]	23.8
Overall Effect Heterogeneity: $t^2 = 86\%$, $\tau^2 = 2.4556$	5, x ² =	20.74	4 (p < 0.01)			129			127			-		-2.52 [-4.2	8; -0.77]	83.7
Follow duration ≥6 months Forslund 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-4.10	6,10	70	-5.90	9.40	-		1.80 [-0.8	3; 4.43]	16.3
Overall Effect Heterogeneity: $I^2 = 85\%$, $\tau^2 = 2.8634$	$1, \chi_4^2 =$	= 27.13	3 (p < 0.01)			199			197					-1.84 [-3.5	5; -0.13]	100.0
Test for overall effect: z = -2.11 (p =												-6 -4 -2 0	2 4 6			
Test for subgroup differences: $\chi_1^2 = 7$.20, 0	df = 1	(p < 0.01)							F	avou	urs Intervention	Favours Cor	ntrol		

eFigure 81: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on weight (kg), grouped by follow duration

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		nterve Mean			Co Mean	ntrol SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
2M vs 6M Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-3.70	1.47	54	-2.30	1.47	-	-1.40 [-1.95; -0.85]	25.8
3M vs 3M+3S Forslund 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-4.10	6.10	70	-5.90	9.40		1.80 [-0.83; 4.43]	16.3
3M vs 6M Jakubowicz 2019 (Israel) Grangeiro 2021 (Brazil) Papakonstantinou 2016 (Greece)	69 30 27	32 35 27	3M vs 6M 3M vs 6M 3M vs 6M	Metabolic Healthy Metabolic	12 13 12	21	-5.40 2.01 -1.00	4.93		4.75	1.12 5.25 0.00		-5.70 [-7.56; -3.84] -2.74 [-5.91; 0.43] -1.00 [-2.13; 0.13]	20.2 13.9 23.8
Overall Effect Heterogeneity: $t^2 = 89\%$, $t^2 = 7.322$				metabolie		75		0.01	73	0.00	0.00		-3.12 [-6.41; 0.18]	57,9
Overall Effect Heterogeneity: $l^2 = 85\%$, $t^2 = 2.863$ Test for overall effect: $z = -2.11$ ($p =$ Test for subgroup differences: $\chi^2_2 = 6$	0.04)				199			197		Favou	-6 -4 -2 0 2 4 6 urs Intervention Favours Control	-1.84 [-3.55; -0.13]	100.0

eFigure 82: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on weight (kg), grouped by intervention intensity

						I	ntervent	ion		Cor	ntrol					
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate	Ratio	o, 95% Cl	Mean Difference, 95%CI	Weight%
Intervention involved < 1 session	n pe	r wee	ek										1			
Forslund 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-4.10 6	6.10	70	-5.90	9.40		-	-	1.80 [-0.83; 4.43]	16.3
Intervention involved ≥ 1 session	n pe	r wee	9k													
Jakubowicz 2019 (Israel)	69	32	3M vs 6M	Metabolic	12	14	-5.40 3	.37	14	0.30	1.12	-			-5.70 [-7.56; -3.84]	20.2
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	2.01 4	.93	19	4.75	5.25				-2.74 [-5.91; 0.43]	13.9
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-3.70 1	.47	54	-2.30	1.47				-1.40 [-1.95; -0.85]	25.8
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-1.00 3	.64	40	0.00	0.00		-		-1.00 [-2.13; 0.13]	23.8
Overall Effect						129			127			-			-2.52 [-4.28; -0.77]	83.7
Heterogeneity: $t^2 = 88\%$, $t^2 = 2.4556$	i, χ ₃ ² =	20.7	4 (p < 0.01)													
Overall Effect Heterogeneity: $I^2 = 85\%$, $\tau^2 = 2.8634$	2 -	. 27 1	3 (0 < 0.01)			199		i i	197				-		-1.84 [-3.55; -0.13]	100.0
			5 (p = 0.01)									6 4	2 0	2 4 6		
			(n < 0.01)							3	Favo			-	atrol	
Test for overall effect: $z = -2.11$ ($p = 7$ Test for subgroup differences: $\chi_1^2 = 7$			(p < 0.01)							1	Favo	-6 -4 urs Interven	-2 0 ition	2 4 6 Favours Cor	ntrol	

eFigure 83: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on weight (kg), grouped by frequency of contact

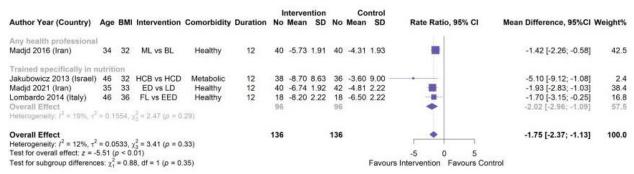
BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		nterven Mean		No	Con Mean		Rate Ratio, 95% CI M	lean Difference, 95%Cl W	Veight%
Any health professional Jakubowicz 2019 (Israel) Kahleova 2014 (Czech Rep) Overall Effect Heterogeneity: $t^2 = 95\%$, $\tau^2 = 8.755$	69 59	32 33	3M vs 6M 2M vs 6M 8 (p < 0.01)	Metabolic Metabolic	12 12		-5.40 3 -3.70		14 54 68	0.30		-	-5.70 [-7.56; -3.84] -1.40 [-1.95; -0.85] -3.45 [-7.66; 0.76]	20.2 25.8 46.0
Trained specifically in nutrition Grangeiro 2021 (Brazil) Papakonstantinou 2016 (Greece) Forslund 2008 (Sweden) Overall Effect Heterogeneity: $t^2 = 82\%$, $t^2 = 2.158$	30 27 39	35 27 38 5.33	3M vs 6M 3M vs 6M 3M vs 3M+3S (p = 0.07)	Healthy Metabolic Healthy	13 12 52		2.01 4 -1.00 3 -4.10 0	3.64	19 40 70 129	4.75 5 0.00 0 -5.90 9	0.00		-2.74 [-5.91; 0.43] -1.00 [-2.13; 0.13] 1.80 [-0.83; 4.43] -0.60 [-2.71; 1.51]	13.9 23.8 16.3 54.0
Overall Effect Heterogeneity: $l^2 = 85\%$, $\tau^2 = 2.8634$ Test for overall effect: $z = -2.11$ ($\rho =$ Test for subgroup differences: $\chi_1^2 = 1$	0.04					199			197	F	avou	-6 -4 -2 0 2 4 6 urs Intervention Favours Control	-1.84 [-3.55; -0.13]	100.0

eFigure 84: Meta-analysis of difference in mean difference (95% CIs) for the effect of

meal frequency on weight (kg), grouped by delivery personnel

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.


						1	nterver	ntion		Cor	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Obese I												1		
Jakubowicz 2013 (Israel)	46	32	HCB vs HCD	Metabolic	12	38	-8.70	8.63	36	-3.60	9.00 -	•	-5.10 [-9.12; -1.08]	2.4
Madjd 2021 (Iran)	35	33	ED vs LD	Healthy	12	40	-6.74	1.92	42	-4.81	2.22		-1.93 [-2.83; -1.03]	38.4
Madjd 2016 (Iran)	34	32	ML vs BL	Healthy	12	40	-5.73	1.91	40	-4.31	1.93		-1.42 [-2.26; -0.58]	42.5
Overall Effect Heterogeneity: $l^2 = 41\%$, τ^2	- 0.0	507	2 - 0.44 (n - 0	101		118			118			•	-1.83 [-2.75; -0.92]	83.2
Heterogeneity; / = 41/6, 1	= 0.2	387	$\chi_{0} = 3.41 \text{ (p} = 0$	-10)										
Obese II														
Lombardo 2014 (Italy)	46	36	FL vs EED	Healthy	12	18	-8.20	2.22	18	-6.50	2.22		-1.70 [-3.15; -0.25]	16.8
Overall Effect			2			136			136			•	-1.75 [-2.37; -1.13]	100.0
Heterogeneity: $I^2 = 12\%$, τ^2				.33)								100 mag		
Test for overall effect: z = -												-5 0 5		
Test for subgroup difference	es: x1	= 0.0	2, df = 1 ($p = 0$.88)							Favours	Intervention Favours Co	ontrol	

eFigure 85: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on weight (kg), grouped by baseline BMI status

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		nterver Mean		No	Cor Mean	ntrol SD	Rate Rati	o, 95% Cl	Mean Difference, 95%CI V	Veight%
Healthy Madjd 2021 (Iran) Lombardo 2014 (Italy)	35 46	33 36	ED vs LD FL vs EED	Healthy Healthy	12 12	40 18	-6.74 -8.20			-4.81 -6.50				-1.93 [-2.83; -1.03] -1.70 [-3.15; -0.25]	38.4 16.8
Madjd 2016 (Iran) Overall Effect Heterogeneity: 1 ² = 0%, ± ²	34 = 0, χ	32 1 = 0.6	ML vs BL	Healthy	12	40 98	-5.73	1.91	40 100	-4.31	1.93			-1.42 [-2.26; -0.58] -1.66 [-2.23; -1.10]	42.5 97.6
Metabolic Jakubowicz 2013 (Israel) 46	32	HCB vs HCD	Metabolic	12	38	-8.70	8.63	36	-3.60	9.00 —			-5.10 [-9.12; -1.08]	2.4
Overall Effect Heterogeneity: I ² = 12%, T Test for overall effect: z = Test for subgroup different	5.51	p < 0.	.01)			136			136		F	-5 () 5 Favours Co	-1.75 [-2.37; -1.13]	100.0

eFigure 86: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on weight (kg), grouped by health status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

eFigure 87: Meta-analysis of difference in mean difference (95% CIs) for the effect of

meal distribution on weight (kg), grouped by delivery personnel

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							nterve				ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Additional resources we	ere p	rovid	led									8.1		
Jakubowicz 2013 (Israel)	46	32	HCB vs HCD	Metabolic	12	38	-8.70	8.63	36	-3.60	9.00 -		-5.10 [-9.12; -1.08]	2.4
Madjd 2021 (Iran)	35	33	ED vs LD	Healthy	12	40	-6.74	1.92	42	-4.81	2.22		-1.93 [-2.83; -1.03]	38.4
Madjd 2016 (Iran)	34	32	ML vs BL	Healthy	12	40	-5.73	1.91	40	-4.31	1.93		-1.42 [-2.26; -0.58]	42.5
Overall Effect				110 2035 AC1450		118			118			-	-1.83 [-2.75; -0.92]	83.2
Heterogeneity: $l^2 = 41\%$, τ^2	= 0.2	2597,	$\chi_2^2 = 3.41 \ (p = 0)$.18)										
Resources were not pro	vide	d												
Lombardo 2014 (Italy)	46	36	FL vs EED	Healthy	12	18	-8.20	2.22	18	-6.50	2.22		-1.70 [-3.15; -0.25]	16.8
Overall Effect						136			136			•	-1.75 [-2.37; -1.13]	100.0
Heterogeneity: $I^2 = 12\%$, τ^2				.33)										
Test for overall effect: z = -	5.51 (p < 0	.01)									-5 0 5		
Test for subgroup difference	es: X	= 0.0	$p_{2}, df = 1 (p = 0)$.88)							Favours	s Intervention Favours C	ontrol	

eFigure 88: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on weight (kg), grouped by resource provision

						h	nterve	ntion		Co	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
<80% of participants were Women												1		
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-1.78	1.80	25	-0.37	1.80		-1.41 [-2.41; -0.41]	5.2
Che 2021 (China)	48	-	FT=10h	Metabolic	12	60	-1.64	2.94	60	-0.42	1.86		-1.22 [-2.10; -0.34]	6.3
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-3.06	1.54	33	-2.13	1.32		-0.93 [-1.63; -0.23]	8.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-2.90	2.41	70	-2.20	2.41		-0.70 [-1.50; 0.10]	7.2
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.52	0.71	24	-0.19	0.71		-0.33 [-0.74; 0.08]	14.1
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-3.10	2.39	43	-2.80	2.39		-0.30 [-1.30; 0.70]	5.2
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-0.50	1.20	20	-0.30	1.13		-0.20 [-0.88; 0.48]	8.8
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.26	0.81	67	-0.09	0.81		-0.17 [-0.44; 0.10]	17.5
Overall Effect						348			342			•	-0.53 [-0.84; -0.23]	72.8
Heterogeneity: $t^2 = 47\%$, $\tau^2 = 0.0796$, $\chi^2_7 = 13.2$	14 (p	= 0.07	7											
≥80% of participants were Women														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.29	2.02	30	0.40	2.02		-1.69 [-2.71; -0.67]	5.1
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.90	2.71	8	-0.10	2.90		-0.80 [-3.37; 1.77]	1.0
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.17	0.44	12	0.02	0.44	-	-0.19 [-0.55; 0.16]	15.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.25	1.84	27	-0.16	1.84		-0.09 [-1.04; 0.86]	5.7
Overall Effect						84			77			-	-0.58 [-1.34; 0.18]	27.2
Heterogeneity: $t^2 = 61\%$, $\tau^2 = 0.3319$, $\chi_3^2 = 7.76$	8 (p =	0.05)												
Overall Effect Heterogeneity: $I^2 = 48\%$, $\tau^2 = 0.0844$, $\gamma_{44}^2 = 21$.	10 (0	-00	3)			432			419			· · · · · · · · · · · · · · · · · · ·	-0.52 [-0.78; -0.26]	100.0
Test for overall effect: $z = -3.86$ ($p < 0.01$)	io (p	- 0.0	3)									3 3 1 0 1 3 3		
Test for subgroup differences: $\chi^2_1 = 0.02$, df = 1	10 -	0.901									Eavor	urs Intervention Favours Control		
reaction assign output intereffices. $\chi_1 = 0.02$, of = 1	(p) -	0.30)									avol	as mervenuon Pavouis Control		

eFigure 89: Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m²), grouped by gender proportion

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

								ntion			ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mear	SD	No	Mean	SD	Rate Ratio, 95% Cl	Mean Difference, 95%CI \	Neight%
Healthy												11		
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.29	2.02	30	0.40	2.02		-1.69 [-2.71; -0.67]	5.1
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.90	2.71	8	-0.10	2.90		-0.80 [-3.37; 1.77]	1.0
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-2.90	2.41	70	-2.20	2.41		-0.70 [-1.50; 0.10]	7.2
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.5	0.71	24	-0.19	0.71		-0.33 [-0.74; 0.08]	14.1
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.26	0.81	67	-0.09	0.81		-0.17 [-0.44; 0.10]	17.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.25	1.84	27	-0.16	1.84		-0.09 [-1.04; 0.86]	5.7
Overall Effect				100000000		233			226			-	-0.44 [-0.81; -0.08]	50.5
Heterogeneity: $l^2 = 46\%$, $\tau^2 = 0.0822$, $\chi_5^2 = 9.33$	3 (p =	0.10)												
Metabolic														
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-1.78	1.80	25	-0.37	1.80		-1.41 [-2.41; -0.41]	5.2
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-1.64	2.94	60	-0.42	1.86		-1.22 [-2.10; -0.34]	6.3
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-3.06	1.54	33	-2.13	1.32		-0.93 [-1.63; -0.23]	8.5
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-3.10	2.39	43	-2.80	2.39		-0.30 [-1.30; 0.70]	5.2
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-0.50	1.20	20	-0.30	1.13		-0.20 [-0.88; 0.48]	8.8
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.17	0.44	12	0.02	0.44		-0.19 [-0.55; 0.16]	15.5
Overall Effect						199			193			-	-0.62 [-1.05; -0.19]	49.5
Heterogeneity: $I^2 = 54\%$, $\tau^2 = 0.1460$, $\chi_5^2 = 10.5$	92 (p	= 0.05	5)											
Overall Effect	101011-1					432			419			•	-0.52 [-0.78; -0.26]	100.0
Heterogeneity: $l^2 = 48\%$, $\tau^2 = 0.0844$, $\chi^2_{11} = 21$.	.10 (p	= 0.0	3)											
Test for overall effect: $z = -3.86 (p < 0.01)$		1220									a - 1	-3 -2 -1 0 1 2	3	
Test for subgroup differences: $\chi_1^2 = 0.38$, df = 1	(p =	0.54)									Favou	rs Intervention Favours Co	ntrol	

eFigure 90: Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m²), grouped by health status

						h	nterve	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mear	SD	No	Mean	SD	Rate Ratio, 95% CI M	ean Difference, 95%CI V	Veight%
TRE+ad libitum vs No TRE+ad libitum												11		
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.29	2.02	30	0.40	2.02		-1.69 [-2.71; -0.67]	5.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-1.78	3 1.80	25	-0.37	1.80		-1.41 [-2.41; -0.41]	5.2
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-1.64	2.94	60	-0.42	1.86		-1.22 [-2.10; -0.34]	6.3
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.90	2.71	8	-0.10	2.90		-0.80 [-3.37; 1.77]	1.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.52	2 0.71	24	-0.19	0.71		-0.33 [-0.74; 0.08]	14.1
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-0.50	1.20	20	-0.30	1.13		-0.20 [-0.88; 0.48]	8.8
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.17	0.44	12	0.02	2 0.44		-0.19 [-0.55; 0.16]	15.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.26	5 0.81	67	-0.09	0.81		-0.17 [-0.44; 0.10]	17.5
Overall Effect						255			246			*	-0.53 [-0.86; -0.19]	73.4
Heterogeneity: $I^2 = 60\%$, $\tau^2 = 0.1115$, $\chi^2_7 = 17.4$	13 (p :	= 0,01)											
TRE+DCR vs DCR														
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32		5 1.54	33	-2.13	1.32		-0.93 [-1.63; -0.23]	8.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69		2.41		-2.20	2.41		-0.70 [-1.50; 0.10]	7.2
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-3.10	2.39	43	-2.80	2.39		-0.30 [-1.30; 0.70]	5.2
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.25	5 1.84		-0.16	5 1.84		-0.09 [-1.04; 0.86]	5.7
Overall Effect						177			173			-	-0.59 [-1.01; -0.18]	26.6
Heterogeneity: $t^2 = 0\%$, $\tau^2 = 0$, $\chi_3^2 = 2.37$ ($\rho = 0$	(.50)													
Overall Effect						432			419			•	-0.52 [-0.78; -0.26]	100.0
Heterogeneity: $I^2 = 48\%$, $\tau^2 = 0.0844$, $\chi^2_{11} = 21$.	10 (p	= 0.0	3)									1 = 1 = 1 = 1 = 1 = 1 = 1		
Test for overall effect: $z = -3.86 (p < 0.01)$		0.02777									22.9	-3 -2 -1 0 1 2 3		
Test for subgroup differences: $\chi_1^2 = 0.06$, df = 1	(p =	0.81)									Favou	urs Intervention Favours Control		

eFigure 91: Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m²), grouped by energy prescription

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

						Ir	nterve	ntion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI	Weight%
Follow duration <6 months												- 11		
Che 2021 (China)	48	1.32	FT=10h	Metabolic	12	60	-1.64	2.94	60	-0.42	1.86		-1.22 [-2.10; -0.34]	6.3
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-3.06	1.54	33	-2.13	1.32		-0.93 [-1.63; -0.23]	8.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.90	2.71	8	-0.10	2.90		-0.80 [-3.37; 1.77]	1.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.52	0.71	24	-0.19	0.71		-0.33 [-0.74; 0.08]	14.1
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.26	0.81	67	-0.09	0.81		-0.17 [-0.44; 0.10]	17.5
Overall Effect						195			192			-	-0.51 [-0.89; -0.13]	47.4
Heterogeneity: $I^2 = 51\%$, $\tau^2 = 0.0830$, $\chi^2_4 = 8.23$	2 (p =	0.08)												
Follow duration ≥6 months														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.29	2.02	30	0.40	2.02		-1.69 [-2.71; -0.67]	5.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-1.78	1.80	25	-0.37	1.80		-1.41 [-2.41; -0.41]	5.2
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-2.90	2.41	70	-2.20	2.41		-0.70 [-1.50; 0.10]	7.2
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-3.10	2.39	43	-2.80	2.39		-0.30 [-1.30; 0.70]	5.2
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-0.50		20	-0.30			-0.20 [-0.88; 0.48]	8.8
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.17		12			H	-0.19 [-0.55; 0.16]	15.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.25	1.84		-0.16	1.84		-0.09 [-1.04; 0.86]	5.7
Overall Effect						237			227			-	-0.56 [-0.99; -0.14]	52.6
Heterogeneity: $l^2 = 53\%$, $\tau^2 = 0.1581$, $\chi^2_0 = 12.6$	i9 (p	= 0.05	5)											
Overall Effect Heterogeneity: $l^2 = 48\%$, $\tau^2 = 0.0844$, $\chi^2_{11} = 21$	10 /-	- 0.0	2)			432			419			•	-0.52 [-0.78; -0.26]	100.0
Test for overall effect: $z = -3.86$ ($p < 0.01$)	10 (p	= 0.0	3)									-3 -2 -1 0 1 2 3		
Test for subgroup differences: $\gamma_{s}^{2} = 0.04$, df = 1	1	0.041									Faure	rs Intervention Favours Contro		
Test for subgroup differences. $\chi_1 = 0.04$, di =	(p =	0.04)									ravou	is intervention Pavours Contro	л	

eFigure 92: Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m²), grouped by follow duration

						h	terve	ntion		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
Feeding time is > 8 hours												1		
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-1.64	2.94	60	-0.42	1.86		-1.22 [-2.10; -0.34]	6.3
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-0.50	1.20	20	-0.30	1.13		-0.20 [-0.88; 0.48]	8.8
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.26	0.81	67	-0.09	0.81		-0.17 [-0.44; 0.10]	17.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.25	1.84	27	-0.16	1.84		-0.09 [-1.04; 0.86]	5.7
Overall Effect				and the second		186			174			-	-0.33 [-0.74; 0.08]	38.2
Heterogeneity: $t^2 = 41\%$, $\tau^2 = 0.0732$, $\chi_3^2 = 5.12$	2 (p =	0.16)												
Feeding time is ≤ 8 hours														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.29	2.02	30	0.40	2.02		-1.69 [-2.71; -0.67]	5.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-1.78	1.80	25	-0.37	1.80		-1.41 [-2.41; -0.41]	5.2
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-3.06	1.54	33	-2.13	1.32		-0.93 [-1.63; -0.23]	8.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.90	2.71	8	-0.10	2.90		-0.80 [-3.37; 1.77]	1.0
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-2.90	2.41	70	-2.20	2.41		-0.70 [-1.50; 0.10]	7.2
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.52	0.71	24	-0.19	0.71		-0.33 [-0.74; 0.08]	14.1
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-3.10	2.39	43	-2.80	2.39		-0.30 [-1.30; 0.70]	5.2
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.17	0.44	12	0.02	0.44		-0.19 [-0.55; 0.16]	15.5
Overall Effect						246			245			•	-0.65 [-1.02; -0.29]	61.8
Heterogeneity: $I^2 = 49\%$, $\tau^2 = 0.1157$, $\chi^2_7 = 13.0$	36 (p =	= 0.05	i)											
Overall Effect	10 /-					432			419			· · · · · · · · · · · · · · · · · · ·	-0.52 [-0.78; -0.26]	100.0
Heterogeneity: $l^2 = 48\%$, $\tau^2 = 0.0844$, $\chi^2_{11} = 21$ Test for overall effect: $z = -3.86$ ($\rho < 0.01$)	10 (p	= 0.0	3)									-3 -2 -1 0 1 2 3		
	1	0.051									Farmer		1	
Test for subgroup differences: $\chi_1^2 = 1.32$, df = 1	(p =	0.25)									ravou	urs Intervention Favours Contro	וכ	

eFigure 93: Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m²), grouped by eating window

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

						In	nterve	ntion		Co	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	Veight%
Intervention involved < 1 session per we	ek											11		
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.29	2.02	30	0.40	2.02		-1.69 [-2.71; -0.67]	5.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-1.78	1.80	25	-0.37	1.80		-1.41 [-2.41; -0.41]	5.2
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.90	2.71	8	-0.10	2.90		-0.80 [-3.37; 1.77]	1.0
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-2.90	2.41	70	-2.20	2.41		-0.70 [-1.50; 0.10]	7.2
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.52	0.71	24	-0.19	0.71		-0.33 [-0.74; 0.08]	14.1
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-0.50	1.20	20	-0.30	1.13		-0.20 [-0.88; 0.48]	8.8
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.17	0.44	12	0.02	0.44	-	-0.19 [-0.55; 0.16]	15.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.26	0.81	67	-0.09	0.81		-0.17 [-0.44; 0.10]	17.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.25	1.84	27	-0.16	1.84		-0.09 [-1.04; 0.86]	5.7
Overall Effect Heterogeneity: $t^2 = 45\%$, $\tau^2 = 0.0650$, $\chi^2_{b} = 14.5$	5 (p =	0.07)				295			283			•	-0.42 [-0.69; -0.14]	79.9
Intervention involved ≥ 1 session per we	ek													
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-1.64	2.94	60	-0.42	1.86		-1.22 [-2.10; -0.34]	6.3
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-3.06	1.54	33	-2.13	1.32		-0.93 [-1.63; -0.23]	8.5
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-3.10	2.39	43	-2.80	2.39		-0.30 [-1.30; 0.70]	5.2
Overall Effect Heterogeneity: $l^2 = 0\%$, $z^2 = 0$, $\chi^2_2 = 1.88$ (p = 0	.39)					137			136			•	-0.87 [-1.35; -0.39]	20.1
Overall Effect Heterogeneity: $I^2 = 48\%$, $\tau^2 = 0.0844$, $\gamma_{14}^2 = 21$.	10 /0	= 0.0	3)			432			419			· · · · · · · · · · · · · · · · · · ·	-0.52 [-0.78; -0.26]	100.0
Test for overall effect: $z = -3.86 (p < 0.01)$	10 (p	0.0	~,									3 -2 -1 0 1 2 3		
Test for subgroup differences: $\chi_1^2 = 2.59$, df = 1	(p =	0.11)									Favou	irs Intervention Favours Contr	ol	

eFigure 94: Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m²), grouped by frequency of contact

						I	nterve	ention		Co	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	n SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Any health professional												- 1 F		
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-3.00	6 1.54	33	-2.13	1.32		-0.93 [-1.63; -0.23]	8.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.90	0 2.71	8	-0.10	2.90		-0.80 [-3.37; 1.77]	1.0
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-2.90	0 2.41	70	-2.20	2.41		-0.70 [-1.50; 0.10]	7.2
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.5	2 0.71	24	-0.19	0.71		-0.33 [-0.74; 0.08]	14.1
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-0.50	0 1.20	20	-0.30	1.13		-0.20 [-0.88; 0.48]	8.8
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.1	7 0.44	12	0.02	0.44	-	-0.19 [-0.55; 0.16]	15.5
Overall Effect						171			167			*	-0.36 [-0.58; -0.13]	55.0
Heterogeneity: $l^2 = 0\%$, $t^2 = 0$, $\chi_5^2 = 4.46$ ($\rho = 0$	2,49)													
Trained specifically in nutrition														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.29	9 2.02	30	0.40	2.02		-1.69 [-2.71; -0.67]	5.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-1.78	8 1.80	25	-0.37	1.80		-1.41 [-2.41; -0.41]	5.2
Che 2021 (China)	48	1	FT=10h	Metabolic	12	60	-1.64	4 2.94	60	-0.42	1.86		-1.22 [-2.10; -0.34]	6.3
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-3.10	0 2.39	43	-2.80	2.39		-0.30 [-1.30; 0.70]	5.2
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.26	6 0.81	67	-0.09	0.81		-0.17 [-0.44; 0.10]	17.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.2	5 1.84	27	-0.16	1.84		-0.09 [-1.04; 0.86]	5.7
Overall Effect						261			252			-	-0.75 [-1.33; -0.17]	45.0
Heterogeneity: $l^2 = 70\%$, $\tau^2 = 0.3393$, $\chi_5^2 = 16.6$	61 (p	< 0.01)											
Overall Effect Heterogeneity: $l^2 = 48\%$, $\tau^2 = 0.0844$, $\chi^2_{11} = 21$.	10.10					432			419			•	-0.52 [-0.78; -0.26]	100.0
Test for overall effect: $z = -3.86$ ($p < 0.01$)	.10 (p	= 0.0	3)											
		0.00									Farmer	-3 -2 -1 0 1 2 .	3	
Test for subgroup differences: $\chi_1^2 = 1.54$, df = 1	(p) =	0.22)									Favou	urs Intervention Favours Con	troi	

eFigure 95: Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m²), grouped by delivery personnel

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

						h	nterve	ntion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% Cl	Mean Difference, 95%CI V	Veight%
Additional resources were provided												11		
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-1.78	1.80	25	-0.37	1.80		-1.41 [-2.41; -0.41]	5.2
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-3.06	1.54	33	-2.13	1.32		-0.93 [-1.63; -0.23]	8.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-2.90	2.41	70	-2.20	2.41		-0.70 [-1.50; 0.10]	7.2
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-3.10	2.39	43	-2.80	2.39		-0.30 [-1.30; 0.70]	5.2
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-0.50	1.20	20	-0.30	1.13		-0.20 [-0.88; 0.48]	8.8
Overall Effect						196			191			•	-0.67 [-1.08; -0.27]	35.0
Heterogeneity: $l^2 = 20\%$, $\tau^2 = 0.0424$, $\gamma_4^2 = 4.98$	(p =	0.29)											0.000 A 57,058 (2010,010,010)	
Resources were not provided												Constant and the		
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.29	2.02	30	0.40	2.02		-1.69 [-2.71; -0.67]	5.1
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-1.64	2.94	60	-0.42	1.86	-	-1.22 [-2.10; -0.34]	6.3
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.90	2.71	8	-0.10	2.90		-0.80 [-3.37; 1.77]	1.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.52	0.71	24	-0.19	0.71		-0.33 [-0.74; 0.08]	14.1
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.17	0.44	12	0.02	0.44		-0.19 [-0.55; 0.16]	15.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.26	0.81	67	-0.09	0.81		-0.17 [-0.44; 0.10]	17.5
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.25	1.84	27	-0.16	1.84		-0.09 [-1.04; 0.86]	5.7
Overall Effect						236			228			•	-0.43 [-0.76; -0.11]	65.0
Heterogeneity: $l^2 = 54\%$, $\tau^2 = 0.0823$, $\chi_0^2 = 12.5$	2 (0	= 0.04	E)											
Overall Effect Heterogeneity: $l^2 = 48\%$, $\tau^2 = 0.0844$, $\chi^2_{11} = 21$.	10.1-	- 0.0				432			419			• •	-0.52 [-0.78; -0.26]	100.0
Test for overall effect: $z = -3.86 (p < 0.01)$	10 (p	= 0.0	3)											
	1	0.901									Farmer		3 atral	
Test for subgroup differences: $\chi_1^2 = 0.82$, df = 1	(p =	0.36)									Favou	irs Intervention Favours Cor	httpi	

eFigure 96: Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m²), grouped by resource provision

						Ir	nterve	ntion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
High												1 I		
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-1.64	2.94	60	-0.42	1.86		-1.22 [-2.10; -0.34]	6.3
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-3.06	1.54	33	-2.13	1.32		-0.93 [-1.63; -0.23]	8.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.90	2.71	8	-0.10	2.90		-0.80 [-3.37; 1.77]	1.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.52	0.71	24	-0.19	0.71		-0.33 [-0.74; 0.08]	14.1
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	25	-0.50	1.20	20	-0.30	1.13		-0.20 [-0.88; 0.48]	8.8
Roman 2020 (USA)	42	25	FT=8h	Metabolic	26	12	-0.17	0.44	12	0.02	0.44	-	-0.19 [-0.55; 0.16]	15.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.26	0.81	67	-0.09	0.81		-0.17 [-0.44; 0.10]	17.5
Overall Effect						232			224			٠	-0.35 [-0.59; -0.12]	71.6
Heterogeneity: $t^2 = 32\%$, $\tau^2 = 0.0300$, $\chi_6^2 = 8.81$	(p =	0.18)												
Unclear														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-1.29	2.02	30	0.40	2.02		-1.69 [-2.71; -0.67]	5.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-1.78	1.80	25	-0.37	1.80		-1.41 [-2.41; -0.41]	5.2
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-2.90	2.41	70	-2.20	2.41		-0.70 [-1.50; 0.10]	7.2
Wei 2023 (China)	32	32	FT≃8h	Metabolic	52	45	-3.10	2.39	43	-2.80	2.39		-0.30 [-1.30; 0.70]	5.2
de Oliveira Maranhao Pureza 2021 (Brazil)	31	33	FT=12h	Healthy	52	31	-0.25	1.84	27	-0.16	1.84		-0.09 [-1.04; 0.86]	5.7
Overall Effect						200			195			-	-0.82 [-1.40; -0.24]	28.4
Heterogeneity: $t^2 = 47\%$, $\tau^2 = 0.2054$, $\chi^2_4 = 7.52$	(p =	0.11)												
Overall Effect						432			419			•	-0.52 [-0.78; -0.26]	100.0
Heterogeneity: $l^2 = 48\%$, $\tau^2 = 0.0844$, $\chi^2_{11} = 21$.	10 (p	= 0.0	3)											
Test for overall effect: $z = -3.86 (p < 0.01)$	821-8										100	-3 -2 -1 0 1 2	3	
Test for subgroup differences: $\chi_1^2 = 2.11$, df = 1	(p =	0.15)									Favou	rs Intervention Favours Con	itrol	

eFigure 97: Meta-analysis of difference in mean difference (95% CIs) for the effect of time restricted eating on BMI (kg/m²), grouped by risk of bias

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interver	ntion		Co	ntrol						
Author Year (Country)	Age	BM	I Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate	Ratio, 9	5% CI Me	ean Difference,	95%CI W	/eight%
<80% of participants were Won	nen												1				
Bachman 2012 (USA)	51	36	3M vs 10S	Healthy	26	25	-5.90	1.83	26	-5.00	2.03		-		-0.90 [-1.96;	0.16]	11.3
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-1.23	0.62	54	-0.82	0.44				-0.41 [-0.61;	-0.21]	29.5
Overall Effect						79			80				٠		-0.43 [-0.63;	-0.23]	40.8
Heterogeneity: $\varGamma^2=0\%,\tau^2=0,\chi_{\tau}^2=$	0.79 (<i>p</i> = 0	.37)														
≥80% of participants were Won	1011																
Zargaran 2014 (Iran)		31	3M+2S vs 6M	Healthy	12	45	0.70	1.10	45	1.90	0.90	-			-1.20 [-1.62;	-0.78]	24.7
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	0.75	2.02	19	1.83	1.85				-1.08 [-2.28;	0.12]	9.6
Papakonstantinou 2016 (Greece)) 27	27	3M vs 6M	Metabolic	12	40	-0.23	0.82	40	-0.12	1.03				-0.11 [-0.52;	0.30]	24.9
Overall Effect						106			104			-			-0.75 [-1.61;	0.10]	59.2
Heterogeneity: $I^2 = 86\%, t^2 = 0.451$	8, χ ₂ =	= 13.9)7 (p < 0.01)														
Overall Effect			1000 (100000)			185	6		184			-	-		-0.65 [-1.09;	-0.21]	100.0
Heterogeneity: $I^2 = 76\%$, $\tau^2 = 0.163$			i3 (p < 0.01)									Ares in		le lle			
Test for overall effect: z = -2.87 (p <												-2 -1	0	1 2			
Test for subgroup differences: $\chi_1^2 = 0$	0.53,	df = 1	(p = 0.47)								Favou	irs Interver	ntion Fav	vours Control			

eFigure 98: Meta-analysis of difference in mean difference (95% CIs) for the effect of

meal frequency on BMI (kg/m²), grouped by gender proportion

						1	ntervent	tion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
Obese I												11		
Zargaran 2014 (Iran)		31	3M+2S vs 6M	Healthy	12	45	0.70 1	1.10	45	1.90	0.90		-1.20 [-1.62; -0.78]	24.7
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-1.23 (0.62	54	-0.82	0.44		-0.41 [-0.61; -0.21]	29.5
Overall Effect						99			99				-0.78 [-1.56; -0.01]	54.3
Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.284$	2, 2,1 =	= 11.2	1 (p < 0.01)											
Obese II														
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	0.75 2	2.02	19	1.83	1.85		-1.08 [-2.28; 0.12]	9.6
Bachman 2012 (USA)	51	36	3M vs 10S	Healthy	26	25	-5.90 1	1.83	26	-5.00	2.03		-0.90 [-1.96; 0.16]	11.3
Overall Effect						46			45				-0.98 [-1.77; -0.18]	20.8
Heterogeneity; $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{\pm} =$	0.05 ($\rho = 0$	83)											
Overweight														
Papakonstantinou 2016 (Greece) 27	27	3M vs 6M	Metabolic	12	40	-0.23 (0.82	40	-0.12	1.03	-	-0.11 [-0.52; 0.30]	24.9
Overall Effect						185		2	184			-	-0.65 [-1.09; -0.21]	100.0
Heterogeneity: / ² = 76%, τ ² = 0.163	$2, \chi_4^2 =$	= 16.6	3 (p < 0.01)									1 1 1 1 1		
Test for overall effect: z = -2.87 (p -	< 0.01))										-2 -1 0 1 2		
Test for subgroup differences: $\chi_2^2 =$	4.92, 0	df = 2	(p = 0.09)								Favou	irs Intervention Favours Control		

eFigure 99: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m²), grouped by baseline BMI status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

						1	ntervent	ion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
Follow duration <6 months														
Zargaran 2014 (Iran)	1.47	31	3M+2S vs 6M	Healthy	12	45	0.70 1	1.10	45	1.90	0.90		-1.20 [-1.62; -0.78]	24.7
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	0.75 2	2.02	19	1.83	1.85 -		-1.08 [-2.28; 0.12]	9.6
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-1.23 0	0.62	54	-0.82	0.44	-	-0.41 [-0.61; -0.21]	29.5
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-0.23 0	0.82	40	-0.12	1.03		-0.11 [-0.52; 0.30]	24.9
Overall Effect						160		Sector Sector	158				-0.62 [-1.11; -0.13]	88.7
Heterogeneity: $I^2 = 81\%$, $\pi^2 = 0.1807$, 7,5 =	16.0	9 (0 < 0.01)											
Follow duration ≥6 months														
Bachman 2012 (USA)	51	36	3M vs 10S	Healthy	26	25	-5.90 1	.83	26	-5.00	2.03		-0.90 [-1.96; 0.16]	11.3
Overall Effect Heterogeneity: $I^2 = 76\%$, $\tau^2 = 0.1632$	y ² =	16.6	3 (p < 0.01)			185			184				-0.65 [-1.09; -0.21]	100.0
Test for overall effect: z = -2.87 (p <			- ()									-2 -1 0 1 2	2	
Test for subgroup differences: $\gamma_1^2 = 0$			(p = 0.64)									irs Intervention Favours Con	itrol	

eFigure 100: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m²), grouped by follow duration

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

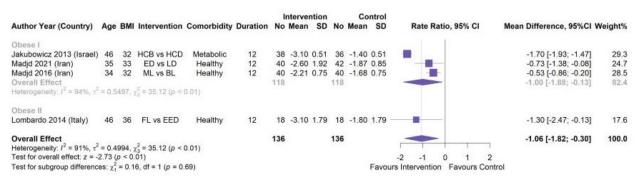
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	- 110	nterventi Mean		No	Cor Mean	ntrol SD	Rate Rat	io, 95% Cl	Mean	Difference, 95%CI	Weight%
Intervention involved < 1 session	n pe	r wee	ek													
Zargaran 2014 (Iran)		31	3M+2S vs 6M	Healthy	12	45	0.70 1	10	45	1.90	0.90				-1.20 [-1.62; -0.78]	24.7
Bachman 2012 (USA)	51	36	3M vs 10S	Healthy	26	25	-5.90 1	83	26	-5.00	2.03	-	-		-0.90 [-1.96; 0.16]	11.3
Overall Effect Heterogeneity: $t^2 = 0\%$, $\tau^2 = 0$, $\chi_1^2 = 0$	0.27 (p = 0	.61)			70			71			-			-1.16 [-1.55; -0.77]	36.0
Intervention involved ≥ 1 sessio	n pe	r wee	ek													
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	0.75 2	02	19	1.83	1.85	-	-		-1.08 [-2.28; 0.12]	9.6
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-1.23 0	62	54	-0.82	0.44				-0.41 [-0.61; -0.21]	29.5
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-0.23 0	82	40	-0.12	1.03		-		-0.11 [-0.52; 0.30]	24.9
Overall Effect Heterogeneity: 1 ² = 35%, x ² = 0.0256	2 .	3.06	(n = 0.22)			115		1	13			-			-0.35 [-0.64; -0.06]	64.0
The second s	1.62		(or other													
Overall Effect Heterogeneity: / ² = 76%, t ² = 0.1632	y ² =	= 16.6	3 (p < 0.01)			185		1	84				- r - 1		-0.65 [-1.09; -0.21]	100.0
Test for overall effect: z = -2.87 (p <			- u /									-2 -1	D 1 2	2		
Test for subgroup differences: $\chi_1^2 = 1$			1 (p < 0.01)								Favou	urs Intervention	Favours Con	trol		

eFigure 101: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m²), grouped by frequency of contact

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet

– 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	12001	nterventi Mean		ło	Contro Mean SD		Rate Ratio, 95%	CI Me	an Difference, 95%CI W	/eight%
Any health professional Zargaran 2014 (Iran) Kahleova 2014 (Czech Rep) Overall Effect Heterogeneity: $t^2 = 91\%$, $t^2 = 0.284$;	59 2, χ ² =	31 33	3M+2S vs 6M 2M vs 6M 1 (p < 0.01)	Healthy Metabolic	12 12	45 54 99	-1.23 0	62 4	45 54 99	1.90 0.90 -0.82 0.44		-		-1.20 [-1.62; -0.78] -0.41 [-0.61; -0.21] -0.78 [-1.56; -0.01]	24.7 29.5 54.3
Trained specifically in nutrition Grangeiro 2021 (Brazil) Bachman 2012 (USA) Papakonstantinou 2016 (Greece) Overall Effect Heterogeneity. $l^2 = 46\%$, $t^2 = 0.1644$	30 51 27	35 36 27 3.69	3M vs 6M 3M vs 10S 3M vs 6M (p = 0.16)	Healthy Healthy Metabolic	13 26 12		0.75 2. -5.90 1. -0.23 0.	83 2 82 4		1.83 1.85 -5.00 2.03 -0.12 1.03				-1.08 [-2.28; 0.12] -0.90 [-1.96; 0.16] -0.11 [-0.52; 0.30] -0.51 [-1.17; 0.15]	9.6 11.3 24.9 45.7
Overall Effect Heterogeneity: $I^2 = 76\%$, $\tau^2 = 0.163$; Test for overall effect: $z = -2.87$ ($p <$ Test for subgroup differences: $\chi_1^2 = 0$	0.01)		8 - A			185		18	84	Favo	-2 ours Ir	-1 0 1 itervention Favou	2 rs Control	-0.65 [-1.09; -0.21]	100.0


eFigure 102: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m²), grouped by delivery personnel

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		nterventi Mean		0	Con Mean	sD	Rate Ratio, 95% Cl	Mea	n Difference, 95%Cl V	Veight%
Additional resources were prov	ided											8 1			
Grangeiro 2021 (Brazil)	30		3M vs 6M	Healthy	13	21	0.75 2.	02 1	9	1.83	1.85	-		-1.08 [-2.28; 0.12]	9.6
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-1.23 0.	62 5	4	-0.82	0.44			-0.41 [-0.61: -0.21]	29.5
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-0.23 0	82 4	0	-0.12	1.03			-0.11 [-0.52; 0.30]	24.9
Overall Effect						115		11				-		-0.35 [-0.64; -0.06]	64.0
Heterogeneity: $l^2 = 35\%$, $\tau^2 = 0.0256$	3, 22=	= 3.08	$(\rho = 0.22)$												
Resources were not provided															
Zargaran 2014 (Iran)		31	3M+2S vs 6M	Healthy	12	45	0.70 1.	10 4	5	1.90	0.90			-1.20 [-1.62; -0.78]	24.7
Bachman 2012 (USA)	51	36	3M vs 10S	Healthy	26	25	-5.90 1.	83 2	6	-5.00 3	2.03			-0.90 [-1.96; 0.16]	11.3
Overall Effect						70		7	1			-		-1.16 [-1.55; -0.77]	36.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_3 = 1$	3.27 ($\rho = 0$.	61)												
Overall Effect						185		18	4			-		-0.65 [-1.09; -0.21]	100.0
Heterogeneity: /2 = 76%, τ2 = 0.1632	2, 24 =	= 16.63	3 (p < 0.01)									1 1 1			
Test for overall effect: z = -2.87 (p <	0.01)										-2 -1 0 1	2		
Test for subgroup differences: $\chi_1^2 = 1$	0.71	df = 1	l (p < 0.01)							F	avou	irs Intervention Favours	Control		

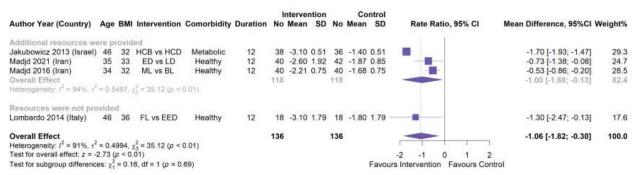
eFigure 103: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on BMI (kg/m²), grouped by resource provision

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

eFigure 104: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on BMI (kg/m²), grouped by baseline BMI status

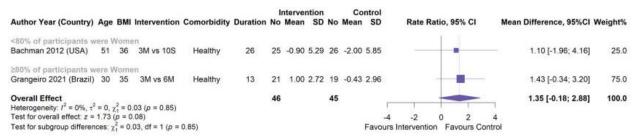
BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							nterve			10000	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI	Weight%
Healthy														
Lombardo 2014 (Italy)	46	36	FL vs EED	Healthy	12	18	-3.10	1.79	18	-1.80	1.79 -		-1.30 [-2.47; -0.13]	17.6
Madjd 2021 (Iran)	35	33	ED vs LD	Healthy	12	40	-2.60	1.92	42	-1.87	0.85		-0.73 [-1.38; -0.08]	24.7
Madjd 2016 (Iran)	34	32	ML vs BL	Healthy	12	40	-2.21	0.75	40	-1.68	0.75		-0.53 [-0.86; -0.20]	28.5
Overall Effect Heterogeneity: $I^2 = 0\%$, τ^2			1 4	1.0000000000000000000000000000000000000		98			100			-	-0.61 [-0.90; -0.33]	70.7
Heterogeneity, 7 = 0%, 1	- P. X.	2 = 1.7	(p = 0.43)											
Metabolic														
Jakubowicz 2013 (Israel) 46	32	HCB vs HCD	Metabolic	12	38	-3.10	0.51	36	-1.40	0.51	-	-1.70 [-1.93; -1.47]	29.3
Overall Effect Heterogeneity: / ² = 91%, τ	2-04	004	3-05-00-0-	0.041		136			136			-	-1.06 [-1.82; -0.30]	100.0
Test for overall effect: z =				0.01)								-2 -1 0 1	2	
Test for subgroup difference				0.01)							Eavou	rs Intervention Favours (
rescior subgroup difference	.es. χ ₁	- 33.	45, ui - 1 (p <	0.01)							ravou	is intervention Favours (Jonuol	

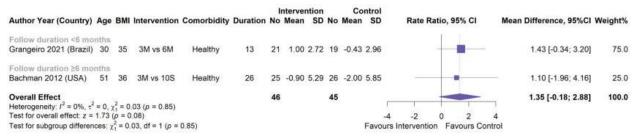

eFigure 105: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on BMI (kg/m²), grouped by health status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

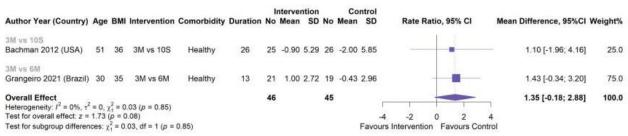
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		nterve Mear				ntrol SD	Rate Ratio, 95% 0	Mean Differen	ce, 95%CI V	Veight%
Any health professional Madid 2016 (Iran)	34	32	ML vs BL	Healthy	12	40	-2.21	0.75	40	-1.68	0.75		0.521.0	.86; -0.20]	28.5
Mauju 2016 (Iran)	34	32	WIL VS DL	Healthy	12	40	-2.2	0.75	40	-1,00	0.75	6 - N	-0.05 [-0	1.00, -0.20]	20.0
Trained specifically in n	utriti	ion													
Jakubowicz 2013 (Israel)	46	32	HCB vs HCD	Metabolic	12	38	-3.10	0.51	36	-1.40	0.51		-1.70 [-1	.93; -1.47]	29.3
Lombardo 2014 (Italy)	46	36	FL vs EED	Healthy	12	18	-3.10	1.79	18	-1.80	1.79		-1.30 [-2	.47; -0.13]	17.6
Madjd 2021 (Iran)	35	33	ED vs LD	Healthy	12	40	-2.60	1.92	42	-1.87	0.85		-0.73 [-1	.38; -0.08]	24.7
Overall Effect Heterogeneity: $l^2 = 75\%$, τ^2	= 0.2	773,	$\chi^2_2 = 7.85 \ (\rho = 0$.02)		96			96			-	-1.29 [-2	.00; -0.58]	71.5
Overall Effect Heterogeneity: $I^2 = 91\%$, τ^2	= 0.4	994	$v_{1}^{2} = 35.12 (n < 10)$	0.01)		136			136				-1.06 [-1	.82; -0.30]	100.0
Test for overall effect: z = -												-2 -1 0 1	2		
Test for subgroup differenc	es: x1	= 3.5	58, df = 1 (p = 0	.06)							Favou	rs Intervention Favour	s Control		


eFigure 106: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on BMI (kg/m²), grouped by delivery personnel

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.


eFigure 107: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on BMI (kg/m²), grouped by resource provision

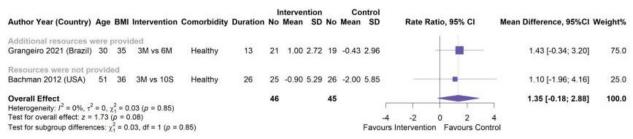
BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.


eFigure 108: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on lean mass (kg), grouped by gender proportion

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

eFigure 109: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on lean mass (kg), grouped by follow duration

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.



eFigure 110: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on lean mass (kg), grouped by intervention intensity

						1	nterve	ntion		Co	ntrol					
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate R	atio, 95%	CI M	ean Difference, 95%CI V	Veight%
Intervention involved	< 1 se	essio	n per week										1 1			
Bachman 2012 (USA)	51	36	3M vs 10S	Healthy	26	25	-0.90	5.29	26	-2.00	5.85				1.10 [-1.96; 4.16]	25.0
Intervention involved	: 1 se	essio	n per week													
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	1.00	2.72	19	-0.43	2.96		-		1.43 [-0.34; 3.20]	75.0
Overall Effect Heterogeneity: $l^2 = 0\%$, τ	² = 0,	$\gamma_{1}^{2} = 0$	0.03 (p = 0.85)			46			45		ŗ	1	-		1.35 [-0.18; 2.88]	100.0
Test for overall effect: z =	1.73	(p = 0	0.08)								-4	4 -2	0 2	2 4		
Test for subgroup differer	ices:	$\chi_1^2 = 0$.03, df = 1 (p =	0.85)							Favour	rs Interventio	n Favou	rs Control		

eFigure 111: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on lean mass (kg), grouped by frequency of contact

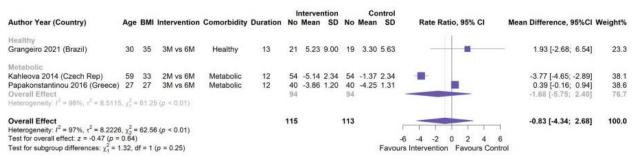
BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

eFigure 112: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on lean mass (kg), grouped by resource provision

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BM	Intervention	Comorbidity	Duration		nterver Mean		No		ntrol SD	Ra	te Ratio,	95% CI	Ме	an Difference	95%CI	Weight%
<80% of participants were Won Kahleova 2014 (Czech Rep)	nen 59	33	2M vs 6M	Metabolic	12	54	-5.14	2.34	54	-1.37	2.34					-3.77 [-4.65	; -2.89]	38.1
≥80% of participants were Won Papakonstantinou 2016 (Greece) Grangeiro 2021 (Brazil) Overall Effect Heterogeneity: <i>I</i> ² = 0%, <i>t</i> ² = 0, χ ² ₁ =) 27 30		3M vs 6M 3M vs 6M 52)	Metabolic Healthy	12 13	40 21 61	-3.86 5.23		40 19 59		00000		•			0.39 [-0.10 1.93 [-2.60 0.41 [-0.13	6.54]	38.6 23.3 61.9
Overall Effect Heterogeneity: $l^2 = 97\%$, $\tau^2 = 8.222$ Test for overall effect: $z = -0.47$ ($p =$ Test for subgroup differences: $\chi_1^2 =$	0.64)				115			113		Favou	-6 -4 Irs Interv	-2 0 ention F	2 4 Favours C	6 ontrol	-0.83 [-4.34	; 2.68]	100.0

eFigure 113: Meta-analysis of difference in mean difference (95% CIs) for the effect of


meal frequency on waist circumference (cm), grouped by gender proportion

Author Year (Country)	Age	BM	I Intervention	Comorbidity	Duration			rention In SD			ntrol SD	Rate Rati	o, 95% Cl	Mean Difference,	95%CI V	/eight%
Obese I Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-5.1	4 2.34	54	-1.37	2.34	-		-3.77 [-4.65;	-2.89]	38.1
Obese II Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	5.2	23 9.00	19	3.30	5.63	_		1.93 [-2.68;	6.54]	23.3
Overweight Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-3.8	36 1.20	40	-4.25	1.31			0.39 [-0.16;	0.94]	38.6
Overall Effect Heterogeneity: / ² = 97%, τ ² = 8.222			56 (p < 0.01)			115			113				-	-0.83 [-4.34;	2.68]	100.0
Test for overall effect: $z = -0.47$ ($p =$ Test for subgroup differences: $\chi^2_2 =$			2 (p < 0.01)								Favou	-6 -4 -2 (urs Intervention		6 trol		

Test for subgroup differences: χ^2_2 = 62.56, df = 2 (p < 0.01)

eFigure 114: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on waist circumference (cm), grouped by baseline BMI status

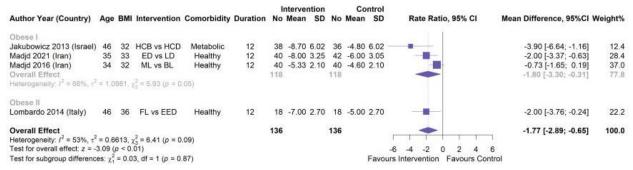
BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet - 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

eFigure 115: Meta-analysis of difference in mean difference (95% CIs) for the effect of

meal frequency on waist circumference (cm), grouped by health status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet - 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BM	I Intervention	Comorbidity	Duration		nterver Mean		No		ntrol SD	Rate Ratio, 95% (CI Mean Differen	ce, 9	5%CI V	Veight%
2M vs 6M Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-5.14	2.34	54	-1.37	2.34	•	-3.77 [-4	.65;	-2.89]	38.1
$\begin{array}{l} 3M \ vs \ 6M \\ \textbf{Papakonstantinou 2016 (Greece)} \\ Grangeiro 2021 (Brazil) \\ Overall Effect \\ Heterogeneity: I^2 = 0\%, \ \tau^2 = 0, \ \chi_1^2 = \end{array}$	30	27 35 p = 0	3M vs 6M 3M vs 6M 52)	Metabolic Healthy	12 13	40 21 61	-3.86 5.23		40 19 59	-4.25 3.30		+	0.39 [-0 1.93 [-2 0.41 [-0	.68;	6.54]	38.6 23.3 61.9
Overall Effect Heterogeneity: $l^2 = 97\%$, $\tau^2 = 8.222t$ Test for overall effect: $z = -0.47$ ($p =$ Test for subgroup differences: $\chi_1^2 = 0$	0.64	1	100			115			113			-6 -4 -2 0 2 urs Intervention Favour	-0.83 [-4 4 6 s Control	34;	2.68]	100.0


eFigure 116: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on waist circumference (cm), grouped by intervention intensity

Author Year (Country)	Age	BM	Intervention	Comorbidity	Duration			ventio an S		No		ntrol SD	R	ate F	Ratio,	95% CI	Меа	an Difference	ə, 9	5%CI V	/eight%
Any health professional Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-5.	14 2.	34	54	-1.37	2.34	-	H				-3.77 [-4.6	5; -	2.89]	38.1
Trained specifically in nutrition Papakonstantinou 2016 (Greece) Grangeiro 2021 (Brazil) Overall Effect Heterogeneity: $I^2 = 0\%$, $z^2 = 0$, $\chi^2_z = 0$	27 30	27 35 p = 0	3M vs 6M 3M vs 6M	Metabolic Healthy	12 13	40 21 61	- 0.53	86 1. 23 9.	2.20	1.1.1	-4.25 3.30				•	•		0.39 [-0.1 1.93 [-2.6 0.41 [-0.1	8;	6.54]	38.6 23.3 61.9
Overall Effect Heterogeneity: $l^2 = 97\%$, $\varepsilon^2 = 8.2226$ Test for overall effect: $z = -0.47$ ($p =$ Test for subgroup differences: $\chi_1^2 = 6$	0.64)	k				115			1	13			-6 -4	-2 venti	0 on Fi	2 4 avours (6 Control	-0.83 [-4.3	4;	2.68]	100.0

eFigure 117: Meta-analysis of difference in mean difference (95% CIs) for the effect of

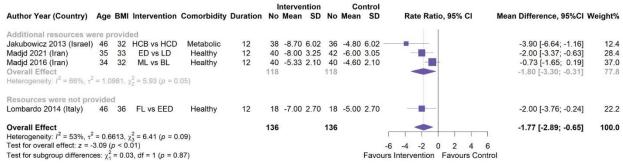
meal frequency on waist circumference (cm), grouped by delivery personnel

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

eFigure 118: Meta-analysis of difference in mean difference (95% CIs) for the effect of

meal distribution on waist circumference (cm), grouped by baseline BMI status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.


Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		nterve Mean		No		ntrol SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Healthy Lombardo 2014 (Italy) Madjd 2021 (Iran) Madjd 2016 (Iran)	46 35 34	36 33 32	FL vs EED ED vs LD ML vs BL	Healthy Healthy Healthy	12 12 12	40	-7.00 -8.00 -5.33	3.25	42		3.05		-2.00 [-3.76; -0.24] -2.00 [-3.37; -0.63] -0.73 [-1.65; 0.19]	22.2 28.4 37.0
Overall Effect Heterogeneity: 1 ² = 35%, 1				And the second second	12	98	-0.33	2.10	100	-4.00	2.10	*	-1.39 [-2.31; -0.46]	87.6
Metabolic Jakubowicz 2013 (Israel	16	27	HCB vs HCD	Metabolic	12	38	-8.70	6.00	36	-4.80	6.02		-3.90 [-6.64; -1.16]	12.4
Jakubowicz 2013 (Israel) 40	52	HUD VS HUD	Wetabolic	12	30	-0.70	0.02	30	-4.00	0.02		-3.30 [-0.04, -1.10]	12.4
Overall Effect Heterogeneity: $l^2 = 53\%$, τ Test for overall effect: $z =$ Test for subgroup difference	-3.09	p < 0	.01)			136			136		Favoi	-6 -4 -2 0 2 4 urs Intervention Favours 0	-1.77 [-2.89; -0.65] 6 Control	100.0

eFigure 119: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on waist circumference (cm), grouped by health status

	3	- 22			-		nterver			Cont					
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Differen	ce, 95%CI V	Weight%
Any health professional												L			
Madjd 2016 (Iran)	34	32	ML vs BL	Healthy	12	40	-5.33	2.10	40	-4.60 2	.10		-0.73 [-1	.65; 0.19]	37.0
Trained specifically in n	utriti	ion													
Jakubowicz 2013 (Israel)	46	32	HCB vs HCD	Metabolic	12	38	-8.70	6.02	36	-4.80 6	.02 -		-3.90 [-6	.64; -1.16]	12.4
Lombardo 2014 (Italy)	46	36	FL vs EED	Healthy	12	18	-7.00	2.70	18	-5.00 2	.70		-2.00 [-3	.76; -0.24]	22.2
Madjd 2021 (Iran)	35	33	ED vs LD	Healthy	12	40	-8.00	3.25	42	-6.00 3	.05		-2.00 [-3	.37; -0.63]	28.4
Overall Effect						96			96			-	-2.25 [-3.	26; -1.25]	63.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, χ	= 1.8	59 ($p = 0.45$)												
Overall Effect			2			136			136			-	-1.77 [-2.	.89; -0.65]	100.0
Heterogeneity: $I^2 = 53\%$, τ^2	= 0.6	613,	$\chi_3^2 = 6.41 \ (p = 0)$	0.09)											
Test for overall effect: z = -	3.09 (p < 0	.01)								-	6 -4 -2 0 2 4	6		
Test for subgroup differenc	es: y	= 4.8	df = 1 (p = 0)	.03)						Fa	avour	s Intervention Favours (Control		

eFigure 120: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on waist circumference (cm), grouped by delivery personnel

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

eFigure 121: Meta-analysis of difference in mean difference (95% CIs) for the effect of

meal distribution on waist circumference (cm), grouped by resource provision

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BM	Intervention	Comorbidity	Duration	No		ention SD	No	C Mean	ontrol SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
<80% of participants were Wom Che 2021 (China)	en 48		FT=10h	Metabolic	12	60	-531.00	790.09	60	-76.00	325.33		-455.00 [-671.20; -238.80]	8.7
Pavlou 2023 (USA) Suthutvoravut 2023 (Thailand)	55 55	39 30	FT=8h FT=9h	Metabolic Metabolic	26 12		-313.00			-16.00			-297.00 [-560.48; -33.52] -182.19 [-341.46; -22.92]	6.6 12.4
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-617.10	434.30	70	-479.60	434.30	-	-137.50 [-281.90; 6.90]	13.7
Wei 2023 (China) Manoogian 2022 (USA)	32 40	32 28	FT=8h FT=10h	Metabolic Healthy	52 12		-684.70			-586.90			-97.80 [-199.24; 3.64] -97.22 [-375.52; 181.08]	17.8
Kunduraci & Ozbek 2020 (Turkey)			FT=8h	Metabolic	12	32	-569.60		33	-523.98			-45.62 [-354.68; 263.44]	5.2
Overall Effect Heterogeneity: $I^2 = 43\%$, $\tau^2 = 6355.2$	599, ;	₆ ² = 1	0.52 (p = 0.10)			349			319				-179.25 [-272.97; -85.54]	70.5
≥80% of participants were Wom	en													
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-425.00	531.00	30	0.00	685.00		-425.00 [-735.14; -114.86]	5.1
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39		-569.00			-480.00			-89.00 [-195.33; 17.33]	17.3
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	24	-579.00	430.29	21	-580.00	430.29		1.00 [-251.00; 253.00]	7.0
Overall Effect Heterogeneity: $l^2 = 59\%$, $\tau^2 = 17193$.	0355,	χ ₂ ² =	4.85 (p = 0.09)			90			85				-140.34 [-333.46; 52.79]	29.5
Overall Effect Heterogeneity: $I^2 = 45\%$, $\tau^2 = 6354.2$	301,)	$\chi_{0}^{2} = 1$	6.22 (p = 0.06)			439			404			r-+++	-163.53 [-242.21; -84.85]	100.0
Test for overall effect: z = -4.07 (p <	0.01)											-600 -200 0 200 400 600		
Test for subgroup differences: $\chi_1^2 = 0$.13, d	f = 1 ((p = 0.72)								Favou	rs Intervention Favours Contro	<u>(</u>	

eFigure 122: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on energy intake (kcal/day), grouped by gender proportion

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet

– 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interv Mean	ention SD	No	Mean	Control SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Obese I Liu 2022 (China) Wei 2023 (China) Thomas 2022 (USA) Kunduraci & Ozbek 2020 (Turkey) Overall Effect Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_3^2 = 0$			FT=8h FT=8h FT=10h FT=8h	Healthy Metabolic Healthy Metabolic	52 52 39 12	45 36	-617.10 -684.70 -569.00 -569.60	254.97 318.38	43 34	-479.60 -586.90 -480.00 -523.98	230.38 65.76		-137.50 [-281.90; 6.90] -97.80 [-199.24; 3.64] -89.00 [-195.33; 17.33] -45.62 [-354.68; 263.44] -100.17 [-164.18; -36.16]	13.7 17.8 17.3 5.2 54.0
Obese II Lin 2023 (USA) Pavlou 2023 (USA) Jamshed 2022 (USA) Overall Effect Heterogeneity: / ² = 60%, r ² = 28869.	44 55 43 3451,	38 39 40 $\chi^2_2 = 4$	FT=8h FT=8h FT=8h 9.96 (p = 0.08)	Healthy Metabolic Healthy	52 26 14	25	-425.00 -313.00 -579.00	509.00	25		685.00 439.00 430.29		-425.00 [-735.14; -114.86] -297.00 [-560.48; -33.52] 1.00 [-251.00; 253.00] -229.30 [-478.46; 19.86]	5.1 6.6 7.0 18.8
Overweight Che 2021 (China) Suthutvoravut 2023 (Thailand) Manoogian 2022 (USA) Overall Effect Heterogeneity: / ² = 62%, τ ² = 19469.	48 55 40 8698,	$\frac{30}{28}$ $\chi_2^2 = 5$	FT=10h FT=9h FT=10h	Metabolic Metabolic Healthy	12 12 12	49	-531.00 -291.80 -415.91	316.64		-76.00 -109.61 -318.69	316.64	-1- 	-455.00 [-671.20; -238.80] -182.19 [-341.46; -22.92] -97.22 [-375.52; 181.08] -250.25 [-451.13; -49.37]	8.7 12.4 6.1 27.2
Overall Effect Heterogeneity: $l^2 = 45\%$, $\tau^2 = 6354.2$ Test for overall effect: $z = -4.07$ ($p <$ Test for subgroup differences: $\chi^2_2 = 2$	0.01)	•0				439			404		Favor	-600 -200 0 200 400 600 urs Intervention Favours Cont		100.0

eFigure 123: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on energy intake (kcal/day), grouped by baseline BMI status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Inter	ention		C	Control			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Healthy												1.1		
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-425.00	531.00	30	0.00	685.00		-425.00 [-735.14; -114.86]	5.1
Liu 2022 (China)	32	32	FT=8h	Healthy	52		-617.10			-479.60		_	-137.50 [-281.90; 6.90]	13.7
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12		-415.91			-318.69			-97.22 [-375.52; 181.08]	6.1
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39		-569.00			-480.00	65.76		-89.00 [-195.33; 17.33]	17.3
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	24	-579.00	430.29	21	-580.00	430.29		1.00 [-251.00; 253.00]	7.0
Overall Effect						228			221			-	-120.05 [-211.68; -28.42]	49.3
Heterogeneity: $I^2 = 20\%$, $\tau^2 = 2246.2$	030,)	$\chi_4^2 = 4.9$	99 (p = 0.29)										a	
Metabolic														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-531.00	790.09	60	-76.00	325.33		-455.00 [-671.20; -238.80]	8.7
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-313.00	509.00	25	-16.00	439.00		-297.00 [-560.48; -33.52]	6.6
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-291.80	316.64	22	-109.61	316.64		-182.19 [-341.46; -22.92]	12.4
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-684.70	254.97	43	-586.90	230.38		-97.80 [-199.24; 3.64]	17.8
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-569.60	663.00	33	-523.98	606.00		-45.62 [-354.68; 263.44]	5.2
Overall Effect						211			183			-	-208.57 [-344.48; -72.66]	50.7
Heterogeneity: $I^2 = 61\%$, $\tau^2 = 13529$.	4468,	$\chi_4^2 = 1$	0.16 (p = 0.04)										
Overall Effect						439			404			•	-163.53 [-242.21; -84.85]	100.0
Heterogeneity: $I^2 = 45\%$, $\tau^2 = 6354.2$			6.22 (p = 0.06)											
Test for overall effect: $z = -4.07$ ($p <$												-600 -200 0 200 400 600		
Test for subgroup differences: $\chi_1^2 = 1$.12, d	f = 1 ()	p = 0.29)								Favou	urs Intervention Favours Contro	ol	

eFigure 124: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time-restricted eating on energy intake (kcal/day), grouped by health status

							Inter	vention		(Control			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Follow duration <6 months														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-531.00	790.09	60	-76.00	325.33		-455.00 [-671.20; -238.80]	8.7
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-291.80	316.64	22	-109.61	316.64	_	-182.19 [-341.46; -22.92]	12.4
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69	-415.91	824.70	66	-318.69	824.70		-97.22 [-375.52; 181.08]	6.1
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-569.60	663.00	33	-523.98	606.00		-45.62 [-354.68; 263.44]	5.2
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	24	-579.00	430.29	21	-580.00	430.29		1.00 [-251.00; 253.00]	7.0
Overall Effect						234			202				-171.05 [-330.68; -11.43]	39.4
Heterogeneity: $I^2 = 57\%$, $\tau^2 = 18319$.	9581,	$\chi_4^2 = 9$	25 ($p = 0.06$)											
Follow duration ≥6 months														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-425.00	531.00	30	0.00	685.00		-425.00 [-735.14; -114.86]	5.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-313.00	509.00	25	-16.00	439.00		-297.00 [-560.48; -33.52]	6.6
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-617.10	434.30	70	-479.60	434.30		-137.50 [-281.90; 6.90]	13.7
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-684.70	254.97	43	-586.90	230.38		-97.80 [-199.24; 3.64]	17.8
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-569.00	318.38	34	-480.00	65.76		-89.00 [-195.33; 17.33]	17.3
Overall Effect						205			202			•	-141.69 [-224.57; -58.82]	60.6
Heterogeneity: $I^2 = 33\%$, $\tau^2 = 2833.0$	808, 7	₄ ² = 5.9	7 (p = 0.20)											
Overall Effect Heterogeneity: $l^2 = 45\%$, $\tau^2 = 6354.23$	301	$r^{2} = 16$	22(p = 0.06)			439			404				-163.53 [-242.21; -84.85]	100.0
Test for overall effect: $z = -4.07$ ($p < 1$.22 (p = 0.00)									-600 -200 0 200 400 600		
Test for subgroup differences: $\chi_1^2 = 0$.			= 0.75								Favor	irs Intervention Favours Contr	ol	
restrict subgroup differences. A	o, u	1 10	0.101								1 uvou	a intervention i avours conti		

eFigure 125: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on energy intake (kcal/day), grouped by follow duration

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

								vention			Control			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	Veight%
Feeding time is > 8 hours														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-531.00	790.09	60	-76.00	325.33		-455.00 [-671.20; -238.80]	8.7
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-291.80	316.64	22	-109.61	316.64		-182.19 [-341.46; -22.92]	12.4
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69	-415.91	824.70	66	-318.69	824.70		-97.22 [-375.52; 181.08]	6.1
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-569.00	318.38	34	-480.00	65.76		-89.00 [-195.33; 17.33]	17.3
Overall Effect						214			182				-197.21 [-351.71; -42.72]	44.5
Heterogeneity: $l^2 = 67\%$, $\tau^2 = 15889$.	4446,	$\chi_{3}^{2} = 9$	0.13 (p = 0.03)											
Feeding time is ≤ 8 hours														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-425.00	531.00	30	0.00	685.00		-425.00 [-735.14; -114.86]	5.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-313.00	509.00	25	-16.00	439.00		-297.00 [-560.48; -33.52]	6.6
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-617.10	434.30	70	-479.60	434.30		-137.50 [-281.90; 6.90]	13.7
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-684.70	254.97	43	-586.90	230.38	-	-97.80 [-199.24; 3.64]	17.8
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-569.60	663.00	33	-523.98	606.00		-45.62 [-354.68; 263.44]	5.2
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	24	-579.00	430.29	21	-580.00	430.29		1.00 [-251.00; 253.00]	7.0
Overall Effect	0.0.4	2 0				225			222			*	-139.33 [-232.28; -46.39]	55.5
Heterogeneity: $l^2 = 26\%$, $\tau^2 = 3408.3$	091,7	(₅ = 0.	(4 (p = 0.24))											
Overall Effect Heterogeneity: $l^2 = 45\%$, $\tau^2 = 6354.2$	301	$v_{2}^{2} = 16$	322 (p = 0.06)			439			404			· · · · · · · · · · · · · · · · · · ·	-163.53 [-242.21; -84.85]	100.0
Test for overall effect: z = -4.07 (p <		4										-600 -200 0 200 400 600		
Test for subgroup differences: $\chi_1^2 = 0$.	.40, d	f = 1 (o = 0.53)								Favou	urs Intervention Favours Contr	rol	

eFigure 126: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on energy intake (kcal/day), grouped by eating window

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No		vention SD	No	(Mean	Control SD	Rate Ratio, 95% Cl	Mean Difference, 95%CI V	Veight%
Intervention involved < 1 sessio	n per													
Lin 2023 (USA)	44	38	FT=8h	Healthy	52		-425.00				685.00		-425.00 [-735.14; -114.86]	5.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-313.00	509.00	25	-16.00	439.00		-297.00 [-560.48; -33.52]	6.6
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-291.80	316.64	22	-109.61	316.64		-182.19 [-341.46; -22.92]	12.4
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-617.10	434.30	70	-479.60	434.30		-137.50 [-281.90; 6.90]	13.7
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69	-415.91	824.70	66	-318.69	824.70		-97.22 [-375.52; 181.08]	6.1
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-569.00	318.38	34	-480.00	65.76		-89.00 [-195.33; 17.33]	17.3
Overall Effect						278			247			•	-155.41 [-232.65; -78.17]	61.3
Heterogeneity: $I^2 = 14\%$, $\tau^2 = 1331.2$														
Intervention involved ≥ 1 sessio		weel												
Che 2021 (China)	48		FT=10h	Metabolic	12		-531.00		60	-76.00			-455.00 [-671.20; -238.80]	8.7
Wei 2023 (China)	32	32	FT=8h	Metabolic	52		-684.70			-586.90			-97.80 [-199.24; 3.64]	17.8
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12		-569.60			-523.98			-45.62 [-354.68; 263.44]	5.2
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	24	-579.00	430.29		-580.00	430.29		1.00 [-251.00; 253.00]	7.0
Overall Effect Heterogeneity: $l^2 = 71\%$, $\tau^2 = 25955$.	3043,	$\chi_{3}^{2} = 1$	10.37 (p = 0.02)		161			157				-155.46 [-347.31; 36.40]	38.7
Overall Effect Heterogeneity: $l^2 = 45\%$, $\tau^2 = 6354.2$	301,)	$c_{9}^{2} = 16$	6.22 (p = 0.06)			439			404				-163.53 [-242.21; -84.85]	100.0
Test for overall effect: z = -4.07 (p <												-600 -200 0 200 400 600		
Test for subgroup differences: $\chi_1^2 = 0$.00, d	f = 1 ()	p = 1.00)								Favou	Intervention Favours Cont	lor	

eFigure 127: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on energy intake (kcal/day), grouped by frequency of contact

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Inter	vention			Control			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
Any health professional												1		
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-291.80	316 64	22	-109.61	316 64		-182.19 [-341.46; -22.92]	12.4
Liu 2022 (China)	32	32	FT=8h	Healthy	52		-617.10			-479.60		_	-137.50 [-281.90; 6.90]	13.7
Kunduraci & Ozbek 2020 (Turkey			FT=8h	Metabolic	12		-569.60			-523.98			-45.62 [-354.68; 263.44]	5.2
Overall Effect						150		000,00	125	010.00		-	-145.67 [-246.77: -44.58]	31.3
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_2 = 0$).62 (p	0 = 0.73	3)										A CONTRACT & CONTRACT & CONTRACT	
Trained specifically in nutrition														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-531.00	790.09	60	-76.00	325.33		-455.00 [-671.20; -238.80]	8.7
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-425.00	531.00	30	0.00	685.00		-425.00 [-735.14; -114.86]	5.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-313.00	509.00	25	-16.00	439.00		-297.00 [-560.48; -33.52]	6.6
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-684.70	254.97	43	-586.90	230.38		-97.80 [-199.24; 3.64]	17.8
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69	-415.91	824.70	66	-318.69	824.70		-97.22 [-375.52; 181.08]	6.1
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-569.00	318.38	34	-480.00	65.76		-89.00 [-195.33; 17.33]	17.3
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	24	-579.00	430.29	21	-580.00	430.29		1.00 [-251.00; 253.00]	7.0
Overall Effect						289			279			-	-185.59 [-301.41; -69.77]	68.7
Heterogeneity: $I^2 = 62\%$, $\tau^2 = 13177$	5959,	$\chi_6^2 = 18$	5.6 (p = 0.02)											
Overall Effect Heterogeneity: $l^2 = 45\%$, $\tau^2 = 6354.2$	301	² - 16	22(p = 0.06)			439			404			· · · · · · · · · · · · · · · · · · ·	-163.53 [-242.21; -84.85]	100.0
Test for overall effect: $z = -4.07$ (p <			.22 (p = 0.00)									-600 -200 0 200 400 600		
Test for subgroup differences: $\chi_1^2 = 0$			= 0.61								Favor	irs Intervention Favours Cont		
root for oungroup anterorison A		00	0.0.1								1 4100	no intorronalori i aroaro oona		

eFigure 128: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on energy intake (kcal/day), grouped by delivery personnel

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No		ention SD	No	C Mean	Control SD	Rate Ratio, 95% Cl	Mean Difference, 95%CI V	Veight%
Additional resources were provi	ided													
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-313.00	509.00	25	-16.00	439.00		-297.00 [-560.48; -33.52]	6.6
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-617.10	434.30	70	-479.60	434.30		-137.50 [-281.90; 6.90]	13.7
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-684.70	254.97	43	-586.90	230.38	-	-97.80 [-199.24; 3.64]	17.8
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-569.60	663.00	33	-523.98	606.00		-45.62 [-354.68; 263.44]	5.2
Overall Effect						171			171			•	-122.66 [-199.36; -45.97]	43.3
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_3^2 = 2$	2.19 (p	0 = 0.5	3)											
Resources were not provided														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-531.00	790.09	60	-76.00	325.33		-455.00 [-671.20; -238.80]	8.7
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-425.00	531.00	30	0.00	685.00		-425.00 [-735.14; -114.86]	5.1
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-291.80	316.64	22	-109.61	316.64		-182.19 [-341.46: -22.92]	12.4
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69	-415.91	824.70	66	-318.69	824.70		-97.22 [-375.52; 181.08]	6.1
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-569.00	318.38	34	-480.00	65.76		-89.00 [-195.33; 17.33]	17.3
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	24	-579.00	430.29	21	-580.00	430.29		1.00 [-251.00; 253.00]	7.0
Overall Effect						268			233			-	-195.05 [-330.18; -59.92]	56.7
Heterogeneity: $I^2 = 63\%$, $\tau^2 = 16607$.	6006,	$\chi_{5}^{2} = 1$	13.51 (p = 0.02))									· · · · · · · · · · · · · · · · · · ·	
Overall Effect Heterogeneity: $I^2 = 45\%$, $\tau^2 = 6354.2$	301. 5	$v_{0}^{2} = 16$	6.22 (p = 0.06)			439			404				-163.53 [-242.21; -84.85]	100.0
Test for overall effect: $z = -4.07$ (p <												-600 -200 0 200 400 600		
Test for subgroup differences: $\chi_1^2 = 0$.83, d	f = 1 ()	p = 0.36)								Favou	urs Intervention Favours Contr		

eFigure 129: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on energy intake (kcal/day), grouped by resource provision

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Inter	vention		(Control			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
High														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-531.00	790.09	60	-76.00	325.33		-455.00 [-671.20; -238.80]	8.7
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-291.80	316.64	22	-109.61	316.64		-182.19 [-341.46; -22.92]	12.4
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	69	-415.91	824.70	66	-318.69	824.70		-97.22 [-375.52; 181.08]	6.1
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	36	-569.00	318.38	34	-480.00	65.76		-89.00 [-195.33; 17.33]	17.3
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-569.60	663.00	33	-523.98	606.00		-45.62 [-354.68; 263.44]	5.2
Overall Effect						246			215			-	-176.56 [-311.35; -41.77]	49.7
Heterogeneity: $l^2 = 58\%$, $\tau^2 = 12856.3$	2610,	$\chi_4^2 = 9$	9.63 (p = 0.05)											
Unclear														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-425.00	531.00	30	0.00	685.00		-425.00 [-735.14; -114.86]	5.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26		-313.00			-16.00	439.00		-297.00 [-560.48; -33.52]	6.6
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-617.10	434.30	70	-479.60	434.30		-137.50 [-281.90; 6.90]	13.7
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-684.70	254.97	43	-586.90	230.38	-	-97.80 [-199.24; 3.64]	17.8
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	24	-579.00	430.29	21	-580.00	430.29		1.00 [-251.00; 253.00]	7.0
Overall Effect						193			189			-	-152.21 [-258.64; -45.79]	50.3
Heterogeneity: $l^2 = 38\%$, $\tau^2 = 5332.0$	868, 7	$\chi_4^2 = 6.4$	45 (p = 0.17)											
Overall Effect Heterogeneity: $l^2 = 45\%$, $\tau^2 = 6354.23$	201	2 - 10	22 (2 - 0 06)			439			404			• • • • • • • • • • • • • • • • • • •	-163.53 [-242.21; -84.85]	100.0
Test for overall effect: $z = -4.07$ ($p < 1$			(p = 0.00)									-600 -200 0 200 400 600		
Test for subgroup differences: $\gamma_1^2 = 0$.			a = 0.79								Faure			
rest for subgroup differences: $\chi_1 = 0$.	.uo, a	1 - 10	v = 0.78)								ravol	irs Intervention Favours Contr		

eFigure 130: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on energy intake (kcal/day), grouped by risk of bias

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		nterver Mean		No		ntrol SD	Rate Ratio, 95% Cl M	ean Difference, 95%Cl W	/eight%
Obese I														
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-0.20	0.48	43	-0.10	0.48		-0.10 [-0.30; 0.10]	6.4
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	0.00	0.25	49	0.05	0.32	#	-0.05 [-0.15; 0.05]	10.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.02	0.18	24	-0.01	0.18		-0.02 [-0.12; 0.08]	9.9
Kunduraci & Ozbek 2020 (Turkey)) 48	35	FT=8h	Metabolic	12	32	-0.32	0.07	33	-0.31	0.18		-0.01 [-0.08; 0.06]	11.2
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.00	0.01	9	0.00	0.01		-0.00 [-0.01; 0.00]	12.3
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18	0.00	0.20	20	0.00	0.30	-	0.00 [-0.16; 0.16]	7.7
Overall Effect						276			178				-0.00 [-0.01; 0.00]	57.5
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_5^2 = 1$.97 (p	0 = 0.8	(5)											
Obese II														
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72	1.26	25	0.19	1.26		-0.91 [-1.61; -0.21]	1.0
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.01	0.34	30	0.07	0.34	-	-0.08 [-0.25; 0.09]	7.3
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-0.10	0.48	45	-0.10	0.48		0.00 [-0.20; 0.20]	6.4
Overall Effect						100			100			-	-0.14 [-0.41; 0.12]	14.7
Heterogeneity: $I^2 = 67\%$, $\tau^2 = 0.0329$	$, \chi_2^2 =$	6.01 (p = 0.05)											
Overweight														
Che 2021 (China)	48		FT=10h	Metabolic	12		-1.54			-0.66			-0.88 [-1.37; -0.39]	1.9
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12		-0.04			0.27			-0.31 [-0.39; -0.22]	10.5
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12		-0.89			-0.65			-0.24 [-0.46; -0.02]	5.9
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	23	0.03			-0.09	0.18		0.12 [0.01; 0.23]	9.6
Overall Effect	2					202			166				-0.26 [-0.56; 0.04]	27.9
Heterogeneity: $I^2 = 93\%$, $\tau^2 = 0.0793$, X3 =	45.1 (p < 0.01)											
o														
Overall Effect Heterogeneity: $I^2 = 85\%$, $\tau^2 = 0.0112$	2	70.4				578			444				-0.08 [-0.15; -0.01]	100.0
Heterogeneity: $T = 85\%$, $\tau = 0.0112$ Test for overall effect: $z = -2.18$ ($p =$		- /9.12	2 (p < 0.01)									1.5 -1 -0.5 0 0.5 1 1.5		
Test for subgroup differences: $\chi_2^2 = 3$		6-21	0 = 0 14)									1.5 -1 -0.5 0 0.5 1 1.5 Intervention Favours Control		
Test for subgroup differences: $\chi_2 = 3$.93, 0	- 2 (p = 0.14								ravol	as mervenuon Favours Control		

eFigure 131: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on HbA1c (%), grouped by baseline BMI status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

						Ir	ntervent	tion		Cor	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI M	ean Difference, 95%CI W	leight%
Healthy												1		
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.04 (1 27	66	0.27	0 24		-0.31 [-0.39; -0.22]	10.5
Lin 2023 (USA)	44	38	FT=8h	Healthy	52		-0.01 0		30	0.07		2	-0.08 [-0.25; 0.09]	7.3
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12		-0.02 (~~	-0.01			-0.02 [-0.12; 0.08]	9.9
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.00 0		9	0.00		in the second seco	-0.00 [-0.01; 0.00]	12.3
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-0.10 (45	-0.10			0.00 [-0.20; 0.20]	6.4
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18			20	0.00			0.00 [-0.16; 0.16]	7.7
Overall Effect						196			194				-0.07 [-0.19; 0.05]	54.0
Heterogeneity: $I^2 = 90\%$, $\tau^2 = 0.0176$,	$\chi_5^2 = 0$	49.07	(p < 0.01)											
Metabolic														
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72	1.26	25	0.19	1.26		-0.91 [-1.61; -0.21]	1.0
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-1.54	1.47	60	-0.66	1.24		-0.88 [-1.37; -0.39]	1.9
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-0.89 (0.43	22	-0.65	0.43		-0.24 [-0.46; -0.02]	5.9
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-0.20 0	0.48	43	-0.10	0.48		-0.10 [-0.30; 0.10]	6.4
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	0.00 0	0.25	49	0.05	0.32		-0.05 [-0.15; 0.05]	10.0
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-0.32 (0.07	33	-0.31	0.18		-0.01 [-0.08; 0.06]	11.2
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	23	0.03 (0.18	18	-0.09	0.18		0.12 [0.01; 0.23]	9.6
Overall Effect						382			250			•	-0.11 [-0.24; 0.02]	46.0
Heterogeneity: $I^2 = 80\%$, $\tau^2 = 0.0193$,	$\chi_6^2 = 2$	29.42	(p < 0.01)											
Overall Effect Heterogeneity: $l^2 = 85\%$, $\tau^2 = 0.0112$,	$\gamma_{12}^{2} =$	79.12	2 (p < 0.01)			578			444			· · · · · · · · · · · · · · · · · · ·	-0.08 [-0.15; -0.01]	100.0
Test for overall effect: $z = -2.18$ ($p = 0$ Test for subgroup differences: $\chi_1^2 = 0$.	0.03)											-1.5 -1 -0.5 0 0.5 1 1.5 urs Intervention Favours Control		
Test for subgroup differences: $\chi_1 = 0$.	20, at	= 1 ()	0 = 0.05)								ravou	urs intervention Favours Control		

eFigure 132: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time-restricted eating on HbA1c (%), grouped by health status

						li li	nterven	tion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI Me	ean Difference, 95%CI W	leight%
TRE+ad libitum vs No TRE+ad li	ibitun	n												
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72	1.26	25	0.19	1.26	·	-0.91 [-1.61; -0.21]	1.0
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-1.54	1.47	60	-0.66	1.24		-0.88 [-1.37; -0.39]	1.9
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.04	0.27	66	0.27	0.24		-0.31 [-0.39; -0.22]	10.5
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-0.89	0.43	22	-0.65	0.43		-0.24 [-0.46; -0.02]	5.9
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.01	0.34	30	0.07	0.34		-0.08 [-0.25; 0.09]	7.3
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	0.00	0.25	49	0.05	0.32	#	-0.05 [-0.15; 0.05]	10.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.02	0.18	24	-0.01	0.18		-0.02 [-0.12; 0.08]	9.9
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.00	0.01	9	0.00	0.01		-0.00 [-0.01; 0.00]	12.3
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	23	0.03	0.18	18	-0.09	0.18		0.12 [0.01; 0.23]	9.6
Overall Effect						438			303			•	-0.12 [-0.23; -0.02]	68.4
Heterogeneity: $I^2 = 90\%$, $\tau^2 = 0.0193$	$\chi_{8}^{2} =$	78.2 (<i>p</i> < 0.01)											
TRE+DCR vs DCR														
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-0.20	0.48	43	-0.10	0.48		-0.10 [-0.30; 0.10]	6.4
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-0.32	0.07	33	-0.31	0.18	#	-0.01 [-0.08; 0.06]	11.2
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-0.10	0.48	45	-0.10	0.48	-#-	0.00 [-0.20; 0.20]	6.4
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18	0.00	0.20	20	0.00	0.30	*	0.00 [-0.16; 0.16]	7.7
Overall Effect						140			141			*	-0.02 [-0.07; 0.04]	31.6
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_3^2 = 0$).77 (p	0 = 0.8	6)											
Overall Effect						578			444			•	-0.08 [-0.15; -0.01]	100.0
Heterogeneity: $I^2 = 85\%$, $\tau^2 = 0.0112$, x2 =	79.12	2(p < 0.01)											
Test for overall effect: z = -2.18 (p =			-								-	1.5 -1 -0.5 0 0.5 1 1.5		
Test for subgroup differences: $\chi_1^2 = 3$.04, d	f = 1 (p = 0.08)								Favou	urs Intervention Favours Control		

eFigure 133: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on HbA1c (%), grouped by energy prescription

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		nterven Mean		No		ntrol SD	Rate Ratio, 95% CI Me	ean Difference, 95%CI W	eight%
Follow duration <6 months Che 2021 (China) Manoogian 2022 (USA) Suthutvoravut 2023 (Thailand) Montero 2023 (Spain) Lowe 2020 (USA) Kunduraci & Ozbek 2020 (Turkey) Chow 2020 (USA) Jamshed 2022 (USA) Overall Effect	48 40 55 48 46 48 46 43	28 30 33 35 34 40	FT=10h FT=10h FT=9h FT=8h FT=8h FT=8h FT=8h FT=8h	Comorbidity Metabolic Healthy Metabolic Healthy Metabolic Healthy Healthy	12 12 12 12 12 12 12 12 12 12 12 14	60 70 49 148 22	-1.54 -0.04 -0.89 0.00 -0.02 -0.32 -0.00	1.47 0.27 0.43 0.25 0.18 0.07 0.01 0.48	60 66 22 49 24 33 9	-0.66 0.27 -0.65 0.05 -0.01 -0.31 0.00 -0.10	1.24 0.24 0.43 0.32 0.18 0.18 0.01	Rate Ratio, 95% Cl Me	-0.88 [-1.37; -0.39] -0.31 [-0.39; -0.22] -0.24 [-0.46; -0.02] -0.05 [-0.15; 0.05] -0.02 [-0.12; 0.08] -0.01 [-0.08; 0.06] -0.00 [-0.01; 0.00] 0.00 [-0.20; 0.20] -0.11 [-0.20; -0.01]	1.9 10.5 5.9 10.0 9.9 11.2 12.3 6.4 68.1
$\label{eq:constraint} \begin{array}{l} \mbox{Heterogeneity.} \ l^2 = 89\%, \ \tau^2 = 0.0127, \\ \mbox{Follow duration 26 months} \\ \mbox{Pavlou 2023 (USA)} \\ \mbox{Wei 2023 (China)} \\ \mbox{Lin 2023 (USA)} \\ \mbox{Thomas 2022 (USA)} \\ \mbox{Philips 2021 (Switzerland)} \\ \mbox{Overall Effect} \\ \mbox{Heterogeneity.} \ l^2 = 69\%, \ \tau^2 = 0.0179, \\ \end{array}$	55 32 44 38 40	39 32 38 34 28	FT=8h FT=8h FT=8h FT=10h FT=12h	Metabolic Metabolic Healthy Healthy Metabolic	26 52 52 39 26	25 45 30 18 23 141	-0.20 -0.01	0.48 0.34 0.20 0.18	25 43 30 20 18 136	0.19 -0.10 0.07 0.00 -0.09	0.48 0.34 0.30		-0.91 [-1.61; -0.21] -0.10 [-0.30; 0.10] -0.08 [-0.25; 0.09] 0.00 [-0.16; 0.16] 0.12 [0.01; 0.23] -0.04 [-0.19; 0.11]	1.0 6.4 7.3 7.7 9.6 31.9
Overall Effect Heterogeneity: $l^2 = 85\%$, $\tau^2 = 0.0112$, Test for overall effect: $z = -2.18$ ($p = 0$ Test for subgroup differences: $\chi_1^2 = 0$.	0.03)					578			444			-1.5 -1 -0.5 0 0.5 1 1.5 urs Intervention Favours Control	-0.08 [-0.15; -0.01]	100.0

eFigure 134: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on HbA1c (%), grouped by follow duration

						l	nterven	tion		Con	trol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI Me	ean Difference, 95%CI W	eight%
Feeding time is > 8 hours														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-1.54	1 47	60	-0.66 1	24		-0.88 [-1.37; -0.39]	1.9
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12		-0.04 (66	0.27 0			-0.31 [-0.39; -0.22]	10.5
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-0.89			-0.65 0			-0.24 [-0.46; -0.02]	5.9
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18	0.00		20	0.00 0			0.00 [-0.16; 0.16]	7.7
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	23	0.03 (0.18	18	-0.09 0	0.18		0.12 [0.01; 0.23]	9.6
Overall Effect						220			186			-	-0.20 [-0.44; 0.04]	35.5
Heterogeneity: $I^2 = 92\%$, $\tau^2 = 0.0625$,	$\chi_4^2 = $	48.65	(p < 0.01)											
Feeding time is ≤ 8 hours														
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72	1.26	25	0.19 1	1.26		-0.91 [-1.61; -0.21]	1.0
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-0.20 (0.48	43	-0.10 0	0.48		-0.10 [-0.30; 0.10]	6.4
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.01 (0.34	30	0.07 0	0.34		-0.08 [-0.25; 0.09]	7.3
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	0.00 0	0.25	49	0.05 0	0.32		-0.05 [-0.15; 0.05]	10.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.02 (0.18	24	-0.01 0	0.18		-0.02 [-0.12; 0.08]	9.9
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-0.32 (0.07	33	-0.31 0	0.18		-0.01 [-0.08; 0.06]	11.2
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.00 (0.01	9	0.00 0	0.01	1	-0.00 [-0.01; 0.00]	12.3
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-0.10 (0.48	45	-0.10 0	0.48	-#-	0.00 [-0.20; 0.20]	6.4
Overall Effect						358			258			*	-0.02 [-0.05; 0.02]	64.5
Heterogeneity: $I^2 = 24\%$, $\tau^2 = 0.0006$,	$\chi_{7}^{2} = 1$	9.25 (p = 0.24)											
Overall Effect						578			444			•	-0.08 [-0.15; -0.01]	100.0
Heterogeneity: $I^2 = 85\%$, $\tau^2 = 0.0112$,		79.12	2 (p < 0.01)											
Test for overall effect: $z = -2.18$ ($p = 0$											-	1.5 -1 -0.5 0 0.5 1 1.5		
Test for subgroup differences: $\chi_1^2 = 2$.	14, df	f = 1 ()	p = 0.14)							F	avou	urs Intervention Favours Control		

eFigure 135: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time-restricted eating on HbA1c (%), grouped by eating window

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							nterven				ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI M	ean Difference, 95%CI W	/eight%
Intervention involved < 1 session	n per	weel	K									1		
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72	1.26	25	0.19	1.26		-0.91 [-1.61; -0.21]	1.0
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.04	0.27	66	0.27	0.24		-0.31 [-0.39; -0.22]	10.5
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-0.89	0.43	22	-0.65	0.43		-0.24 [-0.46; -0.02]	5.9
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.01	0.34	30	0.07	0.34		-0.08 [-0.25; 0.09]	7.3
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	0.00	0.25	49	0.05	0.32	1	-0.05 [-0.15; 0.05]	10.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.02	0.18	24	-0.01	0.18		-0.02 [-0.12; 0.08]	9.9
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.00	0.01	9	0.00	0.01		-0.00 [-0.01; 0.00]	12.3
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18	0.00	0.20	20	0.00	0.30		0.00 [-0.16; 0.16]	7.7
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	23	0.03	0.18	18	-0.09	0.18		0.12 [0.01; 0.23]	9.6
Overall Effect						396			263			•	-0.08 [-0.17; 0.01]	74.2
Heterogeneity: $I^2 = 88\%$, $\tau^2 = 0.0148$ Intervention involved ≥ 1 session														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-1.54	1 47	60	-0.66	1 24		-0.88 [-1.37; -0.39]	1.9
Wei 2023 (China)	32	32	FT=8h	Metabolic	52		-0.20		~~	-0.10			-0.10 [-0.30; 0.10]	6.4
Kunduraci & Ozbek 2020 (Turkey)		35	FT=8h	Metabolic	12		-0.32			-0.31		23	-0.01 [-0.08; 0.06]	11.2
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14		-0.10			-0.10			0.00 [-0.20; 0.20]	6.4
Overall Effect	40	40	11-011	riculary	14	182	0.10		181	0.10	0.40	-	-0.13 [-0.32; 0.07]	25.8
Heterogeneity: $I^2 = 76\%$, $\tau^2 = 0.0268$.	$\chi_{3}^{2} =$	12.62	(p < 0.01)			10%			101				0.10[0.02, 0.01]	20.0
Overall Effect Heterogeneity: $l^2 = 85\%$, $\tau^2 = 0.0112$	$\gamma_{42}^{2} =$	79.12	2 (p < 0.01)			578			444			· · · · · · · · · · · · · · · · · · ·	-0.08 [-0.15; -0.01]	100.0
Test for overall effect: $z = -2.18$ ($p = -2.18$			u ,								-	1.5 -1 -0.5 0 0.5 1 1.5		
Test for subgroup differences: $\chi_1^2 = 0$.	19, di	f = 1 ()	p = 0.66)								Favou	Irs Intervention Favours Control		
											-			_

eFigure 136: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on HbA1c (%), grouped by frequency of contact

						h	nterven	tion		Cor	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI M	ean Difference, 95%CI W	/eight%
Additional resources were provi	ded													
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72	1.26	25	0.19	1.26		-0.91 [-1.61; -0.21]	1.0
Wei 2023 (China)	32	32	FT=8h	Metabolic	52		-0.20 (-0.10		-	-0.10 [-0.30; 0.10]	6.4
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-0.32 (0.07	33	-0.31	0.18		-0.01 [-0.08; 0.06]	11.2
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	23	0.03 (0.18	18	-0.09	0.18		0.12 [0.01; 0.23]	9.6
Overall Effect						125			119			★	-0.03 [-0.18; 0.13]	28.1
Heterogeneity: $I^2 = 75\%$, $\tau^2 = 0.0145$,	$\chi_3^2 =$	11.99	(p < 0.01)											
Resources were not provided														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-1.54	1.47	60	-0.66	1.24		-0.88 [-1.37; -0.39]	1.9
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.04 (0.27	66	0.27	0.24		-0.31 [-0.39; -0.22]	10.5
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-0.89 (0.43	22	-0.65	0.43		-0.24 [-0.46; -0.02]	5.9
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	-0.01 (0.34	30	0.07	0.34		-0.08 [-0.25; 0.09]	7.3
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	0.00 0	0.25	49	0.05	0.32		-0.05 [-0.15; 0.05]	10.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.02 (0.18	24	-0.01	0.18		-0.02 [-0.12; 0.08]	9.9
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-0.00 (0.01	9	0.00	0.01		-0.00 [-0.01; 0.00]	12.3
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-0.10 (0.48	45	-0.10	0.48	-#-	0.00 [-0.20; 0.20]	6.4
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18	0.00 0	0.20	20	0.00	0.30	-	0.00 [-0.16; 0.16]	7.7
Overall Effect						453			325			•	-0.11 [-0.21; -0.01]	71.9
Heterogeneity: $I^2 = 88\%$, $\tau^2 = 0.0169$,	$\chi_8^2 =$	66.86	(p < 0.01)											
Overall Effect Heterogeneity: $l^2 = 85\%$, $\tau^2 = 0.0112$,	$\gamma_{12}^2 =$	79.12	2 (p < 0.01)			578			444			· · · · · · · · · · · · · · · · · · ·	-0.08 [-0.15; -0.01]	100.0
Test for overall effect: z = -2.18 (p = 0	0.03)											1.5 -1 -0.5 0 0.5 1 1.5		
Test for subgroup differences: $\chi_1^2 = 0$.	88, di	f = 1 (p = 0.35)								Favou	urs Intervention Favours Control		

eFigure 137: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time-restricted eating on HbA1c (%), grouped by resource provision

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

	Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	10000	nterven Mean		No	Cor Mean	ntrol SD	Rate Ratio, 95% Cl	Mean Difference, 95%CI W	/eight%
	High												1		
	Che 2021 (China)	48		FT=10h	Metabolic	12	60	-1.54	1.47	60	-0.66	1.24		-0.88 [-1.37; -0.39]	1.9
	Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	-0.04	0.27	66	0.27	0.24		-0.31 [-0.39; -0.22]	10.5
	Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-0.89	0.43	22	-0.65	0.43		-0.24 [-0.46; -0.02]	5.9
	Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	0.00	0.25	49	0.05	0.32		-0.05 [-0.15; 0.05]	10.0
	Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-0.02	0.18	24	-0.01	0.18		-0.02 [-0.12; 0.08]	9.9
	Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12		-0.32		33	-0.31		+	-0.01 [-0.08; 0.06]	11.2
	Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11			9	0.00			-0.00 [-0.01; 0.00]	12.3
	Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18			20	0.00		-	0.00 [-0.16; 0.16]	7.7
	Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	23	0.03		18	-0.09	0.18		0.12 [0.01; 0.23]	9.6
	Overall Effect Heterogeneity: $J^2 = 89\%$, $\tau^2 = 0.0118$,	$\chi_{8}^{2} = 7$	71.02	(p < 0.01)			433			301			•	-0.08 [-0.16; 0.01]	79.0
	Unclear Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72	1 26	25	0.19	1 26		-0.91 [-1.61; -0.21]	1.0
	Wei 2023 (China)	32	32	FT=8h	Metabolic	52		-0.72			-0.10			-0.10 [-0.30; 0.10]	6.4
	Lin 2023 (USA)	44	38	FT=8h	Healthy	52		-0.01		30	0.07		-	-0.08 [-0.25; 0.09]	7.3
	Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14		-0.10			-0.10			0.00 [-0.20; 0.20]	6.4
	Overall Effect Heterogeneity: $I^2 = 50\%$, $\tau^2 = 0.0137$,				ricality	14	145			143	-0.10	0.40	-	-0.11 [-0.27; 0.06]	21.0
	Overall Effect Heterogeneity: $J^2 = 85\%$, $\tau^2 = 0.0112$,		79.12	2 (p < 0.01)			578			444			· · · · · · · · · ·	-0.08 [-0.15; -0.01]	100.0
Test for overall effect: $z = -2.18$ ($p = 0.03$)													1.5 -1 -0.5 0 0.5 1 1.5		
Test for subgroup differences: $\chi_1^2 = 0.09$, df = 1 ($p = 0.76$)											1	Favou	urs Intervention Favours Control		
								-				-			-

eFigure 138: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time-restricted eating on HbA1c (%), grouped by risk of bias

						h	nterven	tion		Con	trol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI Me	ean Difference, 95%CI W	/eight%
<80% of participants were Women Jakubowicz 2019 (Israel) Papakonstantinou 2018a (Greece) Kahleova 2014 (Czech Rep) Papakonstantinou 2018b (Greece) Overall Effect Heterogeneity: $J^2 = 96\%$, $\tau^2 = 0.0779$,	69 48 59 52	32 32 33 32	3M vs 6M 3M vs 6M 2M vs 6M 3M vs 6M (p < 0.01)	Metabolic Metabolic Metabolic Metabolic	12 12 12 12	35	-0.25	0.19 0.18	35 54	-0.20 (0.12 (-0.23 (-0.37 (0.19	•	-1.00 [-1.26; -0.74] -0.12 [-0.21; -0.03] -0.02 [-0.08; 0.04] 0.37 [0.17; 0.57] -0.17 [-0.46; 0.12]	18.2 22.1 22.4 19.9 82.7
≥80% of participants were Women Papakonstantinou 2016 (Greece)		27	3M vs 6M	Metabolic	12	40	0.20	0.71	40	0.20	0.64		0.00 [-0.30; 0.30]	17.3
Overall Effect Heterogeneity: $l^2 = 94\%$, $\tau^2 = 0.0718$, j^2 Test for overall effect: $z = -1.09$ ($p = 0$) Test for subgroup differences: $\gamma_1^2 = 0.6$.28)					155			155	F	avou	-1 -0.5 0 0.5 1 urs Intervention Favours Control	-0.14 [-0.39; 0.11]	100.0

eFigure 139: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on HbA1c (%), grouped by gender proportion

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

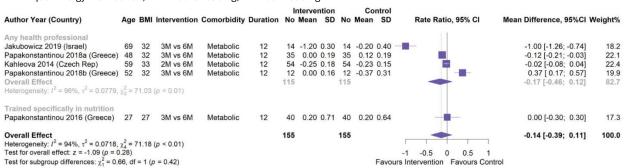
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		nterven Mean		No		ntrol SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
Obese I Jakubowicz 2019 (Israel) Papakonstantinou 2018a (Greece) Kahleova 2014 (Czech Rep) Papakonstantinou 2018b (Greece) Overall Effect Heterogeneity: $l^2 = 96\%$, $\tau^2 = 0.0779$,	$ \begin{array}{r} 69 \\ 48 \\ 59 \\ 52 \\ \chi_3^2 = 7 \end{array} $	32 32 33 32 71.03	3M vs 6M 3M vs 6M 2M vs 6M 3M vs 6M (p < 0.01)	Metabolic Metabolic Metabolic Metabolic	12 12 12 12	14 35 54 12 115	0.00	0.18		0.12	0.19	*	-1.00 [-1.26; -0.74] -0.12 [-0.21; -0.03] -0.02 [-0.08; 0.04] 0.37 [-0.17; 0.57] -0.17 [-0.46; 0.12]	18.2 22.1 22.4 19.9 82.7
Overweight Papakonstantinou 2016 (Greece) Overall Effect	27	27	3M vs 6M	Metabolic	12	40 155	0.20		40 155		0.64	-	0.00 [-0.30; 0.30] -0.14 [-0.39; 0.11]	17.3 100.0
Heterogeneity: $l^2 = 94\%$, $\tau^2 = 0.0718$, Test for overall effect: $z = -1.09$ ($p = 0$ Test for subgroup differences: $\chi_1^2 = 0.6$.28)										Favou	-1 -0.5 0 0.5 1 urs Intervention Favours Control		

eFigure 140: Meta-analysis of difference in mean difference (95% CIs) for the effect of

meal frequency on HbA1c (%), grouped by baseline BMI status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		nterven Mean		No	Co Mean	ntrol SD		Rate Ratio, 95% Cl	Mean Difference, 95%CI W	/eight%
2M vs 6M Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-0.25	0.18	54	-0.23	0.15		-	-0.02 [-0.08; 0.04]	22.4
3M vs 6M Jakubowicz 2019 (Israel) Papakonstantinou 2018a (Greece) Papakonstantinou 2016 (Greece) Papakonstantinou 2018b (Greece) Overall Effect Heterogeneity: / ² = 96%, r ² = 0.2033,		32 32 27 32 67.65	3M vs 6M 3M vs 6M 3M vs 6M 3M vs 6M (p < 0.01)	Metabolic Metabolic Metabolic Metabolic	12 12 12 12	14 35 40 12 101	0.20	0.19 0.71	35 40		0.19 0.64	-	-	-1.00 [-1.26; -0.74] -0.12 [-0.21; -0.03] 0.00 [-0.30; 0.30] 0.37 [0.17; 0.57] -0.18 [-0.64; 0.27]	18.2 22.1 17.3 19.9 77.6
Overall Effect Heterogeneity: $l^2 = 94\%$, $\tau^2 = 0.0718$, Test for overall effect: $z = -1.09$ ($p = 0$ Test for subgroup differences: $\chi_1^2 = 0.4$.28)					155			155		Favor	-1 urs In	-0.5 0 0.5 1 htervention Favours Control	-0.14 [-0.39; 0.11]	100.0


eFigure 141: Meta-analysis of difference in mean difference (95% CIs) for the effect of

meal frequency on HbA1c (%), grouped by intervention intensity

						1	nterven	tion		Co	ntrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI M	lean Difference, 95%CI W	/eight%
Intervention involved < 1 session	nor	wook										- 1		
Papakonstantinou 2018a (Greece)			3M vs 6M	Metabolic	12	35	0.00	0 19	35	0.12	0 19		-0.12 [-0.21; -0.03]	22.1
Papakonstantinou 2018b (Greece)			3M vs 6M	Metabolic	12		0.00			-0.37			0.37 [0.17; 0.57]	19.9
Overall Effect						47			47				0.12 [-0.36; 0.60]	42.1
Heterogeneity: $I^2 = 95\%$, $\tau^2 = 0.1139$,	$\chi_1^2 = -$	19.67	(p < 0.01)											
Intervention involved ≥ 1 sessior	per	week												
Jakubowicz 2019 (Israel)	69	32	3M vs 6M	Metabolic	12	14	-1.20	0.30	14	-0.20	0.40	_ _	-1.00 [-1.26; -0.74]	18.2
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-0.25	0.18	54	-0.23	0.15		-0.02 [-0.08; 0.04]	22.4
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	0.20	0.71	40	0.20	0.64		0.00 [-0.30; 0.30]	17.3
Overall Effect						108			108				-0.34 [-0.93; 0.26]	57.9
Heterogeneity: $I^2 = 96\%$, $\tau^2 = 0.2637$,	$\chi_2^2 = 0$	51.1 (/	p < 0.01)											
Overall Effect						155			155			-	-0.14 [-0.39; 0.11]	100.0
Heterogeneity: $I^2 = 94\%$, $\tau^2 = 0.0718$,	$\gamma_A^2 = 1$	71.18	(p < 0.01)											
Test for overall effect: $z = -1.09$ ($p = 0$												-1 -0.5 0 0.5 1		
Test for subgroup differences: $\chi_1^2 = 1.2$	34, df	f = 1 (µ	o = 0.25)								Favou	urs Intervention Favours Control		

eFigure 142: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on HbA1c (%), grouped by frequency of contact

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

eFigure 143: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on HbA1c (%), grouped by delivery personnel

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
<80% of participants were Wome	en													
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-26.49	34.86	60	-14.05	29.28		-12.44 [-23.96; -0.92]	0.3
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	23	-3.06	10.22	18	2.16	10.22		-5.23 [-11.53; 1.08]	1.0
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-5.90	17.47	43	-0.80	17.47		-5.10 [-12.40; 2.20]	0.7
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-4.54	7.63	22	0.20	7.63		-4.74 [-8.58; -0.90]	2.6
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-15.47	37.70	33	-13.12	28.40		-2.35 [-18.61; 13.91]	0.1
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-1.92	9.40	49	0.34	9.57		-2.26 [-5.34; 0.82]	4.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.06	6.74	24	0.29	6.74		-1.35 [-5.25; 2.55]	2.5
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72	1.26	25	0.19	1.26		-0.91 [-1.61; -0.21]	77.9
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-3.50	16.54	70	-2.90	16.54		-0.60 [-6.10; 4.90]	1.3
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	0.19	6.99	66	0.14	6.99	-+-	0.05 [-2.30; 2.40]	6.9
Overall Effect						543			410			•	-1.65 [-2.87; -0.42]	97.3
Heterogeneity: $I^2 = 24\%$, $\tau^2 = 0.8119$,	$\chi_{9}^{2} =$	11.79	(p = 0.23)											
>80% of participants were Wome	'n													
		38	FT=8h	Healthy	52	30	2 82	11.76	30	6.26	11.76		-3 44 [-9 39 2 51]	1.1
			FT=8h			45	-8.00	16.94	45		16.94			
					39									
Overall Effect				,		104			104			-		2.7
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_3^2 = 0$.	29 (p	= 0.9	6)										Control & Control & Control	
Overall Effect						647			514				-1 15 [-1 77: -0 53]	100.0
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{13} = 1$	2.43	(p = 0)	0.49)			047			514				-1.15 [-1.77, -0.55]	100.0
Test for overall effect: $z = -3.64$ ($p < 0$	0.01)											-20 -10 0 10 20		
Test for subgroup differences: $\chi_1^2 = 0.0$	09, di	f = 1 (j	p = 0.76)								Favou	rs Intervention Favours Control		
Liu 2022 (China) Manoogian 2022 (USA) Overall Effect Heterogeneity: $l^2 = 24\%, \tau^2 = 0.8119$, 280% of participants were Wome Lin 2023 (USA) Jamshed 2022 (USA) Chow 2020 (USA) Thomas 2022 (USA) Overall Effect Heterogeneity: $l^2 = 0\%, \tau^2 = 0, \chi_3^2 = 0$. Overall Effect Heterogeneity: $l^2 = 0\%, \tau^2 = 0, \chi_{13}^2 = 1$	32 40 $\chi_9^2 =$ 44 43 46 38 29 (p 12.43 0.01)	322811.7938403434340 = 0.9(p = 0)	FT=8h FT=10h (p = 0.23) FT=8h FT=8h FT=8h FT=8h FT=10h (c)	Healthy	52 12 52 14 12	69 70 543 30 45 11 18	-3.50 0.19 2.82	16.54 6.99 11.76 16.94 8.21	70 66 410 30 45 9 20	-2.90 0.14 6.26 -6.00 -7.00	16.54 6.99 11.76 16.94 13.93 19.30	-20 -10 0 10 20	-0.60 [-6.10; 4.90] 0.05 [-2.30; 2.40]	1.3 6.9 97.3 1.1 0.8 0.4 0.5

eFigure 144: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on fasting glucose (mg/dL), grouped by gender proportion

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interve Mean		No	C Mean	ontrol SD	Rate Ratio, 95% CI	lean Difference, 95%CI W	eight%
Obese I														
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-5.90	17 47	43	-0.80	17.47		-5.10 [-12.40; 2.20]	0.7
Kunduraci & Ozbek 2020 (Turkey)		35	FT=8h	Metabolic	12		-15.47			-13.12			-2.35 [-18.61; 13.91]	0.1
Montero 2023 (Spain)	48		FT=8h	Metabolic		148	-1.92	9.40	49		9.57		-2.26 [-5.34; 0.82]	4.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.06	6.74	24		6.74		-1.35 [-5.25; 2.55]	2.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-8.00	8.21	9		13.93		-1.00 [-11.31; 9.31]	0.4
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18	2.20	4.30	20		19.30		-1.00 [-9.69; 7.69]	0.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-3.50	16.54	70	-2.90	16.54		-0.60 [-6.10; 4.90]	1.3
Overall Effect						345			248			•	-1.90 [-3.90; 0.10]	9.5
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_8^2 = 1$.16 (p) = 0.9	98)											
Obese II														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30		11.76	30		11.76		-3.44 [-9.39; 2.51]	1.1
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-8.00		45		16.94		-2.00 [-9.00; 5.00]	0.8
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72	1.26	25	0.19	1.26	+	-0.91 [-1.61; -0.21]	77.9
Overall Effect						100			100			•	-0.95 [-1.65; -0.26]	79.7
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_2^2 = 0$.77 (p) = 0.6	68)											
Overweight			FT (0)								~~ ~~			
Che 2021 (China)	48		FT=10h	Metabolic	12		-26.49			-14.05			-12.44 [-23.96; -0.92]	0.3
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	23	-3.06		18		10.22		-5.23 [-11.53; 1.08]	1.0
Suthutvoravut 2023 (Thailand)	55 40	30	FT=9h	Metabolic	12	49 70	-4.54	7.63	22 66	0.20			-4.74 [-8.58; -0.90]	2.6
Manoogian 2022 (USA) Overall Effect	40	28	FT=10h	Healthy	12	202	0.19	6.99	166	0.14	6.99		0.05 [-2.30; 2.40]	6.9 10.7
Heterogeneity: $I^2 = 67\%$, $\tau^2 = 10.727$	$2, \chi_3^2 =$	= 9.03	(p = 0.03)			202			100				-3.83 [-8.00; 0.35]	10.7
Overall Effect						647			514				-1.15 [-1.77; -0.53]	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{13} =$	12 43	(n = 0)	(49)			041			014				-1.10[-1.17, -0.00]	100.0
Test for overall effect: $z = -3.64$ ($p <$	0.01)	w - 1										-20 -10 0 10 20		
Test for subgroup differences: $\chi_2^2 = 2$		f = 2(p = 0.30								Favo	urs Intervention Favours Control		
	,, ai	1												

eFigure 145: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on fasting glucose (mg/dL), grouped by baseline BMI status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interv Mean		No	C Mean	ontrol SD	Rate Ratio, 95% CI M	ean Difference, 95%CI W	Veight%
Healthy														
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	2.82	11.76	30	6.26	11.76		-3.44 [-9.39; 2.51]	1.1
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-8.00	16.94	45	-6.00	16.94		-2.00 [-9.00; 5.00]	0.8
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.06	6.74	24	0.29	6.74		-1.35 [-5.25; 2.55]	2.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-8.00	8.21	9	-7.00	13.93		-1.00 [-11.31; 9.31]	0.4
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18	2.20	4.30	20	3.20	19.30		-1.00 [-9.69; 7.69]	0.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-3.50	16.54	70	-2.90	16.54		-0.60 [-6.10; 4.90]	1.3
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	0.19	6.99	66	0.14	6.99		0.05 [-2.30; 2.40]	6.9
Overall Effect						265			264			+	-0.74 [-2.43; 0.95]	13.4
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_6^2 = 1$.45 (p	= 0.9	96)											
Metabolic														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-26.49	34.86	60	-14.05	29.28		-12.44 [-23.96; -0.92]	0.3
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	23	-3.06	10.22	18	2.16	10.22		-5.23 [-11.53; 1.08]	1.0
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-5.90	17.47	43	-0.80	17.47		-5.10 [-12.40; 2.20]	0.7
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-4.54	7.63	22	0.20	7.63		-4.74 [-8.58; -0.90]	2.6
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-15.47	37.70	33	-13.12	28.40		-2.35 [-18.61; 13.91]	0.1
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-1.92	9.40	49	0.34	9.57		-2.26 [-5.34; 0.82]	4.0
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72	1.26	25	0.19	1.26		-0.91 [-1.61; -0.21]	77.9
Overall Effect						382			250			•	-2.95 [-5.09; -0.82]	86.6
Heterogeneity: $I^2 = 44\%$, $\tau^2 = 2.8774$	$\chi_{6}^{2} =$	10.72	p = 0.10											
Overall Effect Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{13} =$ Test for overall effect: $z = -3.64$ ($p <$	0.01)					647			514			-20 -10 0 10 20	-1.15 [-1.77; -0.53]	100.0
Test for subgroup differences: $\chi_1^2 = 2$	55, d	f = 1 (p = 0.11								Favou	urs Intervention Favours Control		

eFigure 146: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on fasting glucose (mg/dL), grouped by health status

							Interv	ention		С	ontrol			
Author Year (Country)	Age	BM	I Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI M	ean Difference, 95%CI W	/eight%
TRE+ad libitum vs No TRE+ad li	bitun	n										1		
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-26.49	34.86	60	-14.05	29.28		-12.44 [-23.96; -0.92]	0.3
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	23	-3.06	10.22	18	2.16	10.22		-5.23 [-11.53; 1.08]	1.0
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-4.54	7.63	22	0.20	7.63		-4.74 [-8.58; -0.90]	2.6
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	2.82	11.76	30	6.26	11.76		-3.44 [-9.39; 2.51]	1.1
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-1.92	9.40	49	0.34	9.57		-2.26 [-5.34; 0.82]	4.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.06	6.74	24	0.29	6.74		-1.35 [-5.25; 2.55]	2.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-8.00	8.21	9	-7.00	13.93		-1.00 [-11.31; 9.31]	0.4
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72	1.26	25	0.19	1.26		-0.91 [-1.61; -0.21]	77.9
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	0.19	6.99	66	0.14	6.99		0.05 [-2.30; 2.40]	6.9
Overall Effect						438			303			•	-1.71 [-3.01; -0.42]	96.6
Heterogeneity: $I^2 = 28\%$, $\tau^2 = 0.9560$	$\chi_8^2 =$	11.1	7 (p = 0.19)											
TRE+DCR vs DCR			-											
Wei 2023 (China)	32			Metabolic	52	45		17.47	43	-0.80			-5.10 [-12.40; 2.20]	0.7
Kunduraci & Ozbek 2020 (Turkey)		35	FT=8h	Metabolic	12		-15.47			-13.12			-2.35 [-18.61; 13.91]	0.1
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45		16.94	45	-6.00			-2.00 [-9.00; 5.00]	0.8
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18		4.30	20		19.30		-1.00 [-9.69; 7.69]	0.5
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-3.50	16.54	70	-2.90	16.54		-0.60 [-6.10; 4.90]	1.3
Overall Effect						209			211			-	-2.00 [-5.35; 1.35]	3.4
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_4^2 = 0$.99 (p	0 = 0.	91)											
Overall Effect						647			514			•	-1.15 [-1.77; -0.53]	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{13} = 1$	12.43	(p =	0.49)						- 14					
Test for overall effect: z = -3.64 (p <												-20 -10 0 10 20		
Test for subgroup differences: $\chi_1^2 = 0$.	.02, d	f = 1	(p = 0.88)								Favou	urs Intervention Favours Control		

eFigure 147: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time-restricted eating on fasting glucose (mg/dL), grouped by energy prescription

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BM	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	eight%
Follow duration <6 months												T		
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-26.49	34.86	60	-14.05	20.28		-12.44 [-23.96; -0.92]	0.3
Suthutvoravut 2023 (Thailand)	55	30		Metabolic	12	49	-4.54	7.63	22	0.20			-4.74 [-8.58; -0.90]	2.6
Kunduraci & Ozbek 2020 (Turkey)		35		Metabolic	12		-15.47			-13.12			-2.35 [-18.61; 13.91]	0.1
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-1.92		49		9.57		-2.26 [-5.34; 0.82]	4.0
Jamshed 2022 (USA)	43	40		Healthy	14	45	-8.00	16.94	45	-6.00	16.94		-2.00 [-9.00; 5.00]	0.8
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.06	6.74	24	0.29	6.74		-1.35 [-5.25; 2.55]	2.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-8.00	8.21	9	-7.00	13.93		-1.00 [-11.31; 9.31]	0.4
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	0.19	6.99	66	0.14	6.99		0.05 [-2.30; 2.40]	6.9
Overall Effect				APORT PERSON CONTRACTOR		437			308			•	-1.91 [-3.61; -0.21]	17.6
Heterogeneity: $I^2 = 13\%$, $\tau^2 = 0.8031$.	$\chi_{7}^{2} =$	8.07	(p = 0.33)											
Follow duration ≥6 months														
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	23	-3.06	10.22	18	2 16	10.22		-5.23 [-11.53; 1.08]	1.0
Wei 2023 (China)	32	32		Metabolic	52	45		17.47	43	-0.80			-5.10 [-12.40; 2.20]	0.7
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30		11.76	30		11.76		-3.44 [-9.39; 2.51]	1.1
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18	2.20		20		19.30		-1.00 [-9.69; 7.69]	0.5
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72		25		1.26	+	-0.91 [-1.61; -0.21]	77.9
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69		16.54	70	-2.90	16.54		-0.60 [-6.10; 4.90]	1.3
Overall Effect						210			206			•	-1.03 [-1.71; -0.35]	82.4
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_5^2 = 3$.66 (p	= 0.0	60)											
Overall Effect						647			514				1 15 [1 77: 0 52]	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{13} = 0$	12.43	(p =	0.49)			04/			514				-1.15 [-1.77; -0.53]	100.0
Test for overall effect: $z = -3.64$ (p <)		v-	,									-20 -10 0 10 20		
Test for subgroup differences: $\chi_1^2 = 0$.		f = 1 ((p = 0.34)								Favou	irs Intervention Favours Control		
5 , min 1, 1	000000000		M											

eFigure 148: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time-restricted eating on fasting glucose (mg/dL), grouped by follow duration

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interv Mean		No	C Mean	ontrol SD	Rate Ratio, 95% CI	lean Difference, 95%Cl W	/eight%
Feeding time is > 8 hours Che 2021 (China) Philips 2021 (Switzerland) Suthutvoravut 2023 (Thailand) Thomas 2022 (USA) Manoogian 2022 (USA) Overall Effect Heterogeneity: <i>I</i> ² = 56%, <i>z</i> ² = 7.9966	48 40 55 38 40 $\chi^2_4 =$	28 30 34 28 9.07 (FT=10h FT=12h FT=9h FT=10h FT=10h FT=10h	Metabolic Metabolic Metabolic Healthy Healthy	12 26 12 39 12	60 23 49 18 70 220	-26.49 -3.06 -4.54 2.20 0.19	10.22 7.63 4.30	60 18 22 20 66 186	0.20 3.20	29.28 10.22 7.63 19.30 6.99		-12.44 [-23.96; -0.92] -5.23 [-11.53; 1.08] -4.74 [-8.58; -0.90] -1.00 [-9.69; 7.69] 0.05 [-2.30; 2.40] -3.31 [-6.86; 0.24]	0.3 1.0 2.6 0.5 6.9 11.2
Feeding time is \leq 8 hours Wei 2023 (China) Lin 2023 (USA) Kunduraci & Ozbek 2020 (Turkey) Montero 2023 (Spain) Jamshed 2022 (USA) Lowe 2020 (USA) Pavlou 2023 (USA) Liu 2022 (China) Overall Effect Heterogeneity: $l^2 = 0, \chi_8^2 = 2$	48 43 46 55 32	32 38 35 40 33 34 39 32	FT=8h FT=8h FT=8h FT=8h FT=8h FT=8h FT=8h FT=8h FT=8h	Metabolic Healthy Metabolic Metabolic Healthy Healthy Healthy Metabolic Healthy	52 52 12 14 12 12 26 52	45 30 32 148 45 22 11 25 69 427	2.82 -15.47 -1.92 -8.00 -1.06 -8.00 -0.72	9.40 16.94 6.74 8.21	43 30 33 49 45 24 9 25 70 328	6.26 -13.12 0.34 -6.00 0.29 -7.00 0.19	9.57 16.94 6.74		-5.10 [-12.40; 2.20] -3.44 [-9.39; 2.51] -2.35 [-18.61; 13.91] -2.26 [-5.34; 0.82] -2.00 [-9.00; 5.00] -1.35 [-5.25; 2.55] -1.00 [-11.31; 9.31] -0.91 [-1.61; -0.21] -0.60 [-6.10; 4.90] -1.06 [-1.71; -0.40]	0.7 1.1 0.1 4.0 0.8 2.5 0.4 77.9 1.3 88.8
Overall Effect Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{13} =$ Test for overall effect: $z = -3.64$ ($p <$ Test for subgroup differences: $\chi^2_1 = 1$	0.01)					647			514		Favou	-20 -10 0 10 20 urs Intervention Favours Control	-1.15 [-1.77; -0.53]	100.0

eFigure 149: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on fasting glucose (mg/dL), grouped by eating window

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interv	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	leight%
Intervention involved < 1 sessio	n per	week	c									1		
Philips 2021 (Switzerland)	40		FT=12h	Metabolic	26	23	-3.06	10.22	18	2 16	10.22		-5.23 [-11.53; 1.08]	1.0
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-4.54		22		7.63		-4.74 [-8.58; -0.90]	2.6
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	2.82	11.76	30	6.26	11.76		-3.44 [-9.39; 2.51]	1.1
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-1.92	9.40	49	0.34	9.57		-2.26 [-5.34; 0.82]	4.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.06	6.74	24	0.29	6.74		-1.35 [-5.25; 2.55]	2.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-8.00	8.21	9	-7.00	13.93		-1.00 [-11.31; 9.31]	0.4
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18	2.20	4.30	20	3.20	19.30		-1.00 [-9.69; 7.69]	0.5
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72	1.26	25	0.19	1.26	+	-0.91 [-1.61; -0.21]	77.9
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-3.50	16.54	70	-2.90	16.54		-0.60 [-6.10; 4.90]	1.3
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	0.19	6.99	66	0.14	6.99		0.05 [-2.30; 2.40]	6.9
Overall Effect						465			333			•	-1.08 [-1.70; -0.45]	98.1
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_9^2 = 7$.48 (p	0 = 0.5	9)											
Intervention involved ≥ 1 session	n per	week	(
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-26.49	34.86	60	-14.05	29.28		-12.44 [-23.96; -0.92]	0.3
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-5.90	17.47	43	-0.80	17.47		-5.10 [-12.40; 2.20]	0.7
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-15.47	37.70	33	-13.12	28.40		-2.35 [-18.61; 13.91]	0.1
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-8.00	16.94	45	-6.00	16.94		-2.00 [-9.00; 5.00]	0.8
Overall Effect						182			181			-	-4.74 [-9.19; -0.29]	1.9
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_3^2 = 2$.4 (p	= 0.49)											
Overall Effect						647			514			•	-1.15 [-1.77; -0.53]	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{13} =$.49)											
Test for overall effect: $z = -3.64$ ($p <$												-20 -10 0 10 20		
Test for subgroup differences: $\chi_1^2 = 2$.55, d	f = 1 (#	0 = 0.11)								Favou	ars Intervention Favours Control		

eFigure 150: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on fasting glucose (mg/dL), grouped by frequency of contact

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interv Mean		No	C Mean	ontrol SD	Rate Ratio, 95% CI M	ean Difference, 95%CI W	/eight%
Any health professional														
Philips 2021 (Switzerland)	40	28	FT=12h	Metabolic	26	23	-3.06	10.22	18	2.16	10.22		-5.23 [-11.53; 1.08]	1.0
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49	-4.54	7.63	22	0.20	7.63		-4.74 [-8.58; -0.90]	2.6
Kunduraci & Ozbek 2020 (Turkey)	48	35	FT=8h	Metabolic	12	32	-15.47	37.70	33	-13.12	28.40		-2.35 [-18.61; 13.91]	0.1
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-1.92	9.40	49	0.34	9.57		-2.26 [-5.34; 0.82]	4.0
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.06	6.74	24	0.29	6.74		-1.35 [-5.25; 2.55]	2.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-8.00	8.21	9	-7.00	13.93		-1.00 [-11.31; 9.31]	0.4
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69	-3.50	16.54	70	-2.90	16.54		-0.60 [-6.10; 4.90]	1.3
Overall Effect				8		354			225			•	-2.64 [-4.43; -0.84]	11.8
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_6^2 = 2$.9 (p =	= 0,82	2)											
Trained specifically in nutrition														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-26.49	34.86	60	-14.05	29.28		-12.44 [-23.96; -0.92]	0.3
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45	-5.90	17.47	43	-0.80	17.47		-5.10 [-12.40; 2.20]	0.7
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	2.82	11.76	30	6.26	11.76		-3.44 [-9.39; 2.51]	1.1
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-8.00	16.94	45	-6.00	16.94		-2.00 [-9.00; 5.00]	0.8
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18	2.20	4.30	20	3.20	19.30		-1.00 [-9.69; 7.69]	0.5
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25	-0.72	1.26	25	0.19	1.26		-0.91 [-1.61; -0.21]	77.9
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	0.19	6.99	66	0.14	6.99		0.05 [-2.30; 2.40]	6.9
Overall Effect				0.000-0110-0124		293			289			•	-1.04 [-2.10; 0.03]	88.2
Heterogeneity: $I^2 = 8\%$, $\tau^2 = 0.2810$, ;	$\chi_{6}^{2} = 6$.53 (p	o = 0.37)											
Overall Effect						647			514			•	-1.15 [-1.77; -0.53]	100.0
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{13} = 2$	12.43	(p = 0)	0.49)											
Test for overall effect: z = -3.64 (p < 1	0.01)											-20 -10 0 10 20		
Test for subgroup differences: $\chi_1^2 = 2$.	25, df	f = 1 ((p = 0.13)								Favou	urs Intervention Favours Control		

eFigure 151: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time-restricted eating on fasting glucose (mg/dL), grouped by delivery personnel

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interv Mean		No	C Mean	ontrol SD	Rate Ratio, 95% Cl	Mean Difference, 95%CI W	/eight%
Additional resources were provi Philips 2021 (Switzerland)	ided 40	28	FT=12h	Metabolic	26	23	-3.06	10.22	18	2 16	10.22		-5.23 [-11.53; 1.08]	1.0
Wei 2023 (China)	32	32	FT=8h	Metabolic	52	45		17.47	43		17.47		-5.10 [-12.40; 2.20]	0.7
Kunduraci & Ozbek 2020 (Turkey)		35	FT=8h	Metabolic	12		-15.47			-13.12			-2.35 [-18.61; 13.91]	0.1
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25		1.26	25		1.26		-0.91 [-1.61; -0.21]	77.9
Liu 2022 (China)	32	32	FT=8h	Healthy	52	69		16.54	70		16.54		-0.60 [-6.10; 4.90]	1.3
Overall Effect	OL.	0L	11.011	rioditity	02	194	0.00	10.01	189	2.00	10.01		-1.00 [-1.68; -0.31]	81.0
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_4^2 = 3$.05 (p	0 = 0.5	55)			104			100				1100 [1100, 0101]	01.0
Resources were not provided														
Che 2021 (China)	48		FT=10h	Metabolic	12	60	-26.49			-14.05			-12.44 [-23.96; -0.92]	0.3
Suthutvoravut 2023 (Thailand)	55	30	FT=9h	Metabolic	12	49		7.63	22		7.63		-4.74 [-8.58; -0.90]	2.6
Lin 2023 (USA)	44	38	FT=8h	Healthy	52	30	2.82	11.76	30	6.26	11.76		-3.44 [-9.39; 2.51]	1.1
Montero 2023 (Spain)	48		FT=8h	Metabolic	12	148	-1.92	9.40	49	0.34	9.57		-2.26 [-5.34; 0.82]	4.0
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45	-8.00	16.94	45	-6.00	16.94		-2.00 [-9.00; 5.00]	0.8
Lowe 2020 (USA)	46	33	FT=8h	Healthy	12	22	-1.06	6.74	24	0.29	6.74		-1.35 [-5.25; 2.55]	2.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-8.00	8.21	9	-7.00	13.93		-1.00 [-11.31; 9.31]	0.4
Thomas 2022 (USA)	38	34	FT=10h	Healthy	39	18	2.20	4.30	20	3.20	19.30		-1.00 [-9.69; 7.69]	0.5
Manoogian 2022 (USA)	40	28	FT=10h	Healthy	12	70	0.19	6.99	66	0.14	6.99	-+-	0.05 [-2.30; 2.40]	6.9
Overall Effect						453			325			•	-1.87 [-3.36; -0.38]	19.0
Heterogeneity: $I^2 = 5\%$, $\tau^2 = 0.2654$,	$\chi_8^2 = 8$.4 (p	= 0.40)											
Overall Effect	10 10	10 -1	0.40)			647			514			•	-1.15 [-1.77; -0.53]	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{13} =$ Test for overall effect: $z = -3.64$ ($p <$			0.49)									-20 -10 0 10 20	2	
Test for subgroup differences: $\chi_1^2 = 1$			n = 0.20)								Faula	-20 -10 0 10 20 urs Intervention Favours Con		
Test for subgroup differences: $\chi_1^2 = 1$.08, a	1 = 1 (p = 0.30								Favor	urs intervention Favours Con	Ittol	
	-										-	(a = a / a]		

eFigure 152: Meta-analysis of difference in mean difference (95% CIs) for the effect of time-restricted eating on fasting glucose (mg/dL), grouped by resource provision

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interv Mean		No	C Mean	ontrol SD	Rate Ratio, 95% CI M	ean Difference, 95%Cl W	/eight%
High Che 2021 (China)	48		FT=10h	Metabolic	12		-26.49			-14.05			-12.44 [-23.96; -0.92]	0.3
Philips 2021 (Switzerland) Suthutvoravut 2023 (Thailand)	40 55	28 30	FT=12h FT=9h	Metabolic Metabolic	26 12	23 49	-3.06	10.22	18		10.22		-5.23 [-11.53; 1.08] -4.74 [-8.58; -0.90]	1.0
Kunduraci & Ozbek 2020 (Turkey)		35	FT=8h	Metabolic	12		-15.47			-13.12			-2.35 [-18.61; 13.91]	0.1
Montero 2023 (Spain) Lowe 2020 (USA)	48 46	33	FT=8h FT=8h	Metabolic Healthy	12 12	148 22	-1.92	9.40 6.74	49 24	0.34	9.57 6.74		-2.26 [-5.34; 0.82] -1.35 [-5.25; 2.55]	4.0 2.5
Chow 2020 (USA)	46	34	FT=8h	Healthy	12	11	-8.00		9	-7.00			-1.00 [-11.31; 9.31]	0.4
Thomas 2022 (USA)	38 40	34 28	FT=10h	Healthy	39 12	18 70	2.20		20 66		19.30		-1.00 [-9.69; 7.69]	0.5
Manoogian 2022 (USA) Overall Effect			FT=10h	Healthy	12	433	0.19	6.99	301	0.14	6.99	•	0.05 [-2.30; 2.40] -2.10 [-3.78; -0.43]	6.9 18.3
Heterogeneity: $I^2 = 13\%$, $\tau^2 = 0.8735$,	$\chi_8^2 = 1$	9.23 ((p = 0.32)											
Unclear	121201		100000000000000000000000000000000000000		1000		1120-12020							
Wei 2023 (China) Lin 2023 (USA)	32 44	32 38	FT=8h FT=8h	Metabolic Healthy	52 52	45 30		17.47	43 30	-0.80	17.47		-5.10 [-12.40; 2.20] -3.44 [-9.39; 2.51]	0.7
Jamshed 2022 (USA)	43	40	FT=8h	Healthy	14	45		16.94	45	-6.00			-2.00 [-9.00; 5.00]	0.8
Pavlou 2023 (USA)	55	39	FT=8h	Metabolic	26	25		1.26	25		1.26		-0.91 [-1.61; -0.21]	77.9
Liu 2022 (China) Overall Effect	32	32	FT=8h	Healthy	52	69 214	-3.50	16.54	70 213	-2.90	16.54		-0.60 [-6.10; 4.90]	1.3 81.7
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_4^2 = 2$.02 (p	= 0.7	73)			214			213				-0.99 [-1.67; -0.30]	81.7
Overall Effect						647			E4.4				4 45 5 4 77. 0 521	100.0
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{13} = 1$	12.43	(p = (0.49)			04/			514				-1.15 [-1.77; -0.53]	100.0
Test for overall effect: $z = -3.64$ ($p < 1$	0.01)											-20 -10 0 10 20		
Test for subgroup differences: $\chi_1^2 = 1$.	46, df	f = 1 (p = 0.23)								Favou	urs Intervention Favours Control		

eFigure 153: Meta-analysis of difference in mean difference (95% CIs) for the effect of

time-restricted eating on fasting glucose (mg/dL), grouped by risk of bias

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ention		C	ontrol				
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference,	95%CI \	Weight%
<80% of participants were Wome	en											1			
Jakubowicz 2019 (Israel)	69	32	3M vs 6M	Metabolic	12	14	-55.00	2.09	14	-23.00	2.26 -		-32.00 [-33.61; -	30.39]	14.5
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-14.18	7.07	54	-8.47	7.25		-5.71 [-8.41;	-3.01]	14.5
Papakonstantinou 2018a (Greece)) 48	32	3M vs 6M	Metabolic	12	35	-3.06	7.21	35	-0.54	3.78		-2.52 [-5.22;	0.18]	14.5
Papakonstantinou 2018b (Greece)) 52	32	3M vs 6M	Metabolic	12	12	-5.59	5.59	12	-5.77	3.06	-	0.18 [-3.43;	3.79]	14.4
Forslund 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-2.88	8.29	70	-5.95	14.05		3.07 [-0.75;	6.89]	14.3
Overall Effect						185			185				-7.43 [-23.27;	8.41]	72.1
Heterogeneity: $I^2 = 99\%$, $\tau^2 = 324.30$	36, χ ₄	= 702	2.37 (p < 0.01)												
≥80% of participants were Wome	en														
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	2.59	14.98	19	2.82	15.52		-0.23 [-9.70;	9.24]	13.3
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-3.61	0.83	40	-3.61	1.45		0.00 [-0.52;	0.52]	14.6
Overall Effect Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\gamma_4^2 = 0$	(0 -	(30.0				61			59			•	-0.00 [-0.52;	0.52]	27.9
Helefogeneity, $r = 0.00, t = 0, \chi_1 = 0$	φ=	0.50)													
Overall Effect	0.40	2 _ 40	00.00 (= +0.04)			246			244				-5.40 [-17.22;	6.42]	100.0
Heterogeneity: $l^2 = 100\%$, $\tau^2 = 249.60$ Test for overall effect: $z = -0.90$ ($p = 0$		6 = 13	1000000000000000000000000000000000000	,							-30	-20 -10 0 10 20 30			
Test for subgroup differences: $\gamma_1^2 = 0.50$ ($\beta = 0.50$			0.20)												
Test for subgroup differences: $\chi_1 = 0$.	.04, 0	1 = 1 ()	0 = 0.30								Favours	Intervention Favours Control			

eFigure 154: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on fasting glucose (mg/dL), grouped by gender proportion

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interve Mean		No	Co Mean	ontrol SD	Rate Ratio, 95% CI	Mean Difference, 9	95%CI W	/eight%
Obese I Jakubowicz 2019 (Israel) Kahleova 2014 (Czech Rep) Papakonstantinou 2018a (Greece Papakonstantinou 2018b (Greece Overall Effect Heterogeneity: / ² = 99%, c ² = 322.87) 52	32 33 32 32 = 593	3M vs 6M 2M vs 6M 3M vs 6M 3M vs 6M 3.12 (p < 0.01)	Metabolic Metabolic Metabolic Metabolic	12 12 12 12		-55.00 -14.18 -3.06 -5.59	2.09 7.07 7.21 5.59	14 54 35 12 115	-23.00 -8.47 -0.54 -5.77	2.26 7.25 3.78 3.06	-	-32.00 [-33.61; - -5.71 [-8.41; -2.52 [-5.22; 0.18 [-3.43; -10.04 [-27.71;	-3.01] 0.18] 3.79]	14.5 14.5 14.5 14.4 57.8
Obese II Grangeiro 2021 (Brazil) Forslund 2008 (Sweden) Overall Effect Heterogeneity: $I^2 = 0\%$, $\chi^2 = 0$, $\chi^2_1 = 0$	30 39 1.4 (p =	35 38 = 0.53	3M vs 6M 3M vs 3M+3S	Healthy Healthy	13 52	21 70 91	2.59 -2.88	14.98 8.29	19 70 89	2.82 -5.95	15.52 14.05	•	-0.23 [-9.70; 3.07 [-0.75; 2.61 [-0.94;	6.89]	13.3 14.3 27.7
Overweight Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-3.61	0.83	40	-3.61	1.45		0.00 [-0.52;	0.52]	14.6
Overall Effect Heterogeneity: $l^2 = 100\%$, $\tau^2 = 249.6$ Test for overall effect: $z = -0.90$ ($p =$ Test for subgroup differences: $\chi_2^2 = 3$	0.37)	0)		246			244		-3 Favours	0 -20 -10 0 10 20 30 s Intervention Favours Control	-5.40 [-17.22;	6.42]	100.0

eFigure 155: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on fasting glucose (mg/dL), grouped by baseline BMI status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

							Interve	ention		C	ontrol				
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference,	95%CI W	/eight%
Healthy												11			
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	13	21	2.59	14.98	19	2.82	15.52		-0.23 [-9.70;	9.24]	13.3
Forslund 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-2.88	8.29	70	-5.95	14.05		3.07 [-0.75;	6.89]	14.3
Overall Effect						91			89			-	2.61 [-0.94;	6.15]	27.7
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_1^2 = 0$.	4 (p =	= 0.53)												
Metabolic															
Jakubowicz 2019 (Israel)	69	32	3M vs 6M	Metabolic	12	14	-55.00	2.09	14	-23.00	2.26		-32.00 [-33.61;	-30.39]	14.5
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-14.18	7.07	54	-8.47	7.25		-5.71 [-8.41;	-3.01]	14.5
Papakonstantinou 2018a (Greece)	48	32	3M vs 6M	Metabolic	12	35	-3.06	7.21	35	-0.54	3.78		-2.52 [-5.22;		14.5
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-3.61	0.83	40	-3.61	1.45		0.00 [-0.52;	0.52]	14.6
Papakonstantinou 2018b (Greece)	52	32	3M vs 6M	Metabolic	12	12	-5.59	5.59	12	-5.77	3.06		0.18 [-3.43;	3.79]	14.4
Overall Effect						155			155				-8.03 [-22.57;	6.51]	72.3
Heterogeneity: $I^2 = 100\%$, $\tau^2 = 273.58$	80, χ	$\frac{2}{4} = 13$	78.49 (p < 0.01)												
Overall Effect						246			244				-5.40 [-17.22;	6.421	100.0
Heterogeneity: $I^2 = 100\%$, $\tau^2 = 249.60$	48. 7	$^{2}_{a} = 13$	88.36 (p < 0.01)	1											
Test for overall effect: z = -0.90 (p = 0	.37)	0									-30	-20 -10 0 10 20 30			
Test for subgroup differences: $\chi_1^2 = 1.9$	at for overall effect: $z = -0.90$ ($p = 0.37$) at for subgroup differences: $\chi_1^2 = 1.94$, df = 1 ($p = 0.16$)										Favours I	ntervention Favours Contro	1		

eFigure 156: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on fasting glucose (mg/dL), grouped by health status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interve Mean		No		ontrol SD	Rate Ratio, 95% CI	Aean Difference,	95%CI W	/eight%
Follow duration <6 months Jakubowicz 2019 (Israel) Kahleova 2014 (Czech Rep) Papakonstantinou 2018a (Greece) Grangeiro 2021 (Brazil) Papakonstantinou 2016 (Greece) Papakonstantinou 2018b (Greece) Overall Effect Heterogeneity: I ² = 100%, τ ² = 269.54	30 27 52	32 33 32 35 27 32 32 3^{2} = 13	3M vs 6M 2M vs 6M 3M vs 6M 3M vs 6M 3M vs 6M 3M vs 6M 78.82 (p < 0.01)	Metabolic Metabolic Metabolic Healthy Metabolic Metabolic	12 12 13 12 12		-55.00 -14.18 -3.06 2.59 -3.61 -5.59	2.09 7.07 7.21 14.98 0.83 5.59	54 35 19 40	-3.61	2.26 7.25 3.78 15.52 1.45 3.06		-32.00 [-33.61; - -5.71 [-8.41; -2.52 [-5.22; -0.23 [-9.70; 0.00 [-0.52; 0.18 [-3.43; -6.81 [-20.07;	-3.01] 0.18] 9.24] 0.52] 3.79]	14.5 14.5 14.5 13.3 14.6 14.4 85.7
Follow duration ≥6 months Forslund 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-2.88	8.29	70	-5.95	14.05		3.07 [-0.75;	6.89]	14.3
Overall Effect Heterogeneity: $l^2 = 100\%$, $\tau^2 = 249.6t$ Test for overall effect: $z = -0.90$ ($p = 0$ Test for subgroup differences: $\chi_1^2 = 1$.	0.37)	0				246			244			-30 -20 -10 0 10 20 30 rrs Intervention Favours Control	-5.40 [-17.22;	6.42]	100.0

eFigure 157: Meta-analysis of difference in mean difference (95% CIs) for the effect of

meal frequency on fasting glucose (mg/dL), grouped by follow duration

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet

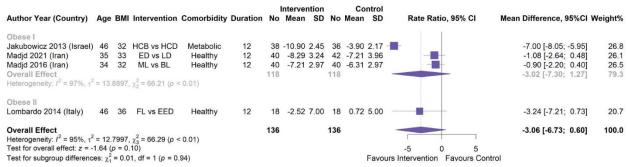
– 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

					Intervention Contro				C	ontrol					
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference,	95%CI W	/eight%
2M vs 6M Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-14.18	7.07	54	-8.47	7.25	-	-5.71 [-8.41;	-3.01]	14.5
3M vs 3M+3S Forslund 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-2.88	8.29	70	-5.95	14.05	-	3.07 [-0.75;	6.89]	14.3
3M vs 6M Jakubowicz 2019 (Israel) Papakonstantinou 2018a (Greece) Grangeiro 2021 (Brazil) Papakonstantinou 2016 (Greece) Papakonstantinou 2018b (Greece) Overall Effect Heterogeneify: / ² = 100%, τ ² = 325 93	30 27 52	32 32 35 27 32 32 $^{2}_{4} = 13$	3M vs 6M 3M vs 6M 3M vs 6M 3M vs 6M 3M vs 6M 74.83 (p < 0.01)	Metabolic Metabolic Healthy Metabolic Metabolic	12 12 13 12 12	14 35 21 40 12 122	-55.00 -3.06 2.59 -3.61 -5.59	7.21 14.98 0.83	14 35 19 40 12 120	-23.00 -0.54 2.82 -3.61 -5.77	3.78 15.52 1.45		-32.00 [-33.61; -2.52 [-5.22; -0.23 [-9.70; 0.00 [-0.52; 0.18 [-3.43; -7.01 [-22.98;	0.18] 9.24] 0.52] 3.79]	14.5 14.5 13.3 14.6 14.4 71.2
Overall Effect Heterogeneity: $l^2 = 100\%$, $\tau^2 = 249.6t$ Test for overall effect: $z = -0.90$ ($p = t$ Test for subgroup differences: $\chi_2^2 = 13$	0.37)	0				246			244		-30 Favours I	-20 -10 0 10 20 30 Intervention Favours Contro	-5.40 [-17.22;	6.42]	100.0

eFigure 158: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on fasting glucose (mg/dL), grouped by intervention intensity

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interv Mean		No		ontrol SD	Rate Ratio, 95% CI	Mean Difference, 95%	CI Weight%
Intervention involved < 1 session Papakonstantinou 2018a (Greece) Papakonstantinou 2018b (Greece) Forslund 2008 (Sweden) Overall Effect Heterogeneity: $l^2 = 65\%$, $\tau^2 = 5.3051$,	48 52 39	32 32 38	3M vs 6M 3M vs 6M 3M vs 3M+3S	Metabolic Metabolic Healthy	12 12 52	35 12 70 117		5.59		-0.54 -5.77 -5.95	3.78 3.06 14.05		-2.52 [-5.22; 0.1 0.18 [-3.43; 3.7 3.07 [-0.75; 6.8 0.02 [-3.23; 3.2	79] 14.4 89] 14.3
Intervention involved \geq 1 session Jakubowicz 2019 (Israel) Kahleova 2014 (Czech Rep) Grangeiro 2021 (Brazil) Papakonstantinou 2016 (Greece) Overall Effect Heterogeneity: $I^2 = 100\%$, $z^2 = 372.21$	69 59 30 27	32 33 35 27	3M vs 6M 2M vs 6M 3M vs 6M 3M vs 6M	Metabolic Metabolic Healthy Metabolic	12 12 13 12		-55.00 -14.18 2.59 -3.61	7.07 14.98	54 19	-23.00 -8.47 2.82 -3.61	2.26 ** 7.25 15.52 1.45		-32.00 [-33.61; -30.3 -5.71 [-8.41; -3.0 -0.23 [-9.70; 9.2 0.00 [-0.52; 0.5 -9.62 [-28.69; 9.4	01] 14.5 24] 13.3 52] 14.6
Overall Effect Heterogeneity: $l^2 = 100\%$, $\tau^2 = 249.6t$ Test for overall effect: $z = -0.90$ ($p = t$ Test for subgroup differences: $\chi_1^2 = 0$.	0.37)	•				246			244		⊂ -30 Favours	0 -20 -10 0 10 20 3 Intervention Favours Con		2] 100.0


eFigure 159: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on fasting glucose (mg/dL), grouped by frequency of contact

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interve Mean	ention SD	No		ontrol SD	Rate Ratio, 95% Cl	Mean Difference, 95%CI V	Veight%
Any health professional Jakubowicz 2019 (Israel) Kahleova 2014 (Czech Rep) Papakonstantinou 2018a (Greece) Papakonstantinou 2018b (Greece) Overall Effect Heterogeneity: /² = 99%, τ² = 322.871		32 33 32 32 = 593	3M vs 6M 2M vs 6M 3M vs 6M 3M vs 6M	Metabolic Metabolic Metabolic Metabolic	12 12 12 12		-55.00 -14.18 -3.06 -5.59	2.09 7.07 7.21 5.59	54 35	-0.54	2.26 7.25 3.78 3.06	-	-32.00 [-33.61; -30.39] -5.71 [-8.41; -3.01] -2.52 [-5.22; 0.18] 0.18 [-3.43; 3.79] -10.04 [-27.71; 7.62]	14.5 14.5 14.5 14.4 57.8
Trained specifically in nutrition Grangeiro 2021 (Brazil) Papakonstantinou 2016 (Greece) Forslund 2008 (Sweden) Overall Effect Heterogeneity: $l^2 = 18\%$, $\tau^2 = 0.7292$,	$30 \\ 27 \\ 39 \\ \chi_2^2 = 2$	35 27 38 2.44 (j	3M vs 6M 3M vs 6M 3M vs 3M+3S 0 = 0.30)	Healthy Metabolic Healthy	13 12 52	21 40 70 131	2.59 -3.61 -2.88	0.83	40	-3.61	15.52 1.45 14.05		-0.23 [-9.70; 9.24] 0.00 [-0.52; 0.52] 3.07 [-0.75; 6.89] 0.44 [-1.15; 2.03]	13.3 14.6 14.3 42.2
Overall Effect Heterogeneity: $l^2 = 100\%$, $\tau^2 = 249.60$ Test for overall effect: $z = -0.90$ ($p = 0$ Test for subgroup differences: $\chi_1^2 = 1$.	.37)					246			244			-30 -20 -10 0 10 20 30 rs Intervention Favours Contro	-5.40 [-17.22; 6.42]	100.0

eFigure 160: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on fasting glucose (mg/dL), grouped by delivery personnel

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

eFigure 161: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on fasting glucose (mg/dL), grouped by baseline BMI status

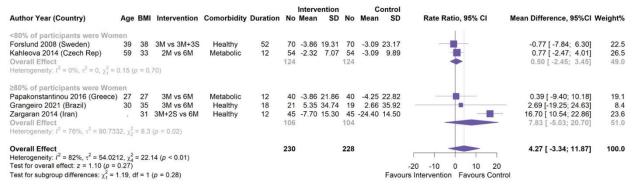
BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		Intervei Mean		No		ontrol SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
Healthy Lombardo 2014 (Italy) Madjd 2021 (Iran) Madjd 2016 (Iran) Overall Effect Heterogeneity: $l^2 = 0\%, \tau^2$	46 35 34 = 0, χ	36 33 32 $2^{2} = 1.2$	FL vs EED ED vs LD ML vs BL 21 (p = 0.55)	Healthy Healthy Healthy	12 12 12	18 40 40 98	-2.52 -8.29 -7.21	3.24 2.97		0.72 -7.21 -6.31			-3.24 [-7.21; 0.73] -1.08 [-2.64; 0.48] -0.90 [-2.20; 0.40] -1.11 [-2.08; -0.14]	20.7 26.1 26.5 73.2
Metabolic Jakubowicz 2013 (Israel)	46	32	HCB vs HCD	Metabolic	12	38	-10.90	2.45	36	-3.90	2.17	•	-7.00 [-8.05; -5.95]	26.8
Overall Effect Heterogeneity: $I^2 = 95\%$, τ^2 Test for overall effect: $z = -1$	1.64 (p = 0.	10)			136			136			-5 0 5	-3.06 [-6.73; 0.60]	100.0
Test for subgroup difference	es: X1	= 65.	08, df = 1 ($p < 1$	0.01)							Favou	ars Intervention Favours Contr	ol	

eFigure 162: Meta-analysis of difference in mean difference (95% CIs) for the effect of

meal distribution on fasting glucose (mg/dL), grouped by health status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.


Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration		ntervei Mean		No		ntrol SD	Rate Ratio, 95% CI	Mean Difference, 95%Cl	Weight%
Any health professiona Madjd 2016 (Iran)	34	32	ML vs BL	Healthy	12	40	-7.21	2.97	40	-6.31	2.97		-0.90 [-2.20; 0.40]	26.5
Trained specifically in r Jakubowicz 2013 (Israel) Lombardo 2014 (Italy) Madjd 2021 (Iran) Overall Effect Heterogeneity: /2 = 95%, r ²	46 46 35	32 36 33	HCB vs HCD FL vs EED ED vs LD $\gamma_2^2 = 38.75 (p \cdot 10^{-1})$	Healthy Healthy	12 12 12	38 18 40 96	-10.90 -2.52 -8.29	7.00	18	-3.90 0.72 -7.21	5.00	*	-7.00 [-8.05; -5.95] -3.24 [-7.21; 0.73] -1.08 [-2.64; 0.48] -3.83 [-8.37; 0.70]	20.7
Overall Effect Heterogeneity: $t^2 = 95\%$, τ^2 Test for overall effect: $z = -$ Test for subgroup difference	1.64 (p = 0	.10)			136			136		Favou	-5 0 5 urs Intervention Favours Contr	-3.06 [-6.73; 0.60]	100.0

eFigure 163: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on fasting glucose (mg/dL), grouped by delivery personnel

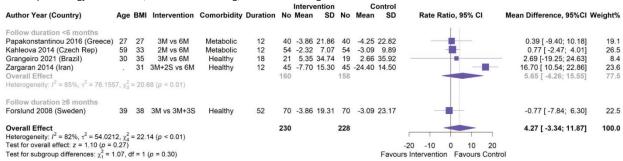
							- 1	Interver	ntion		Co	ntrol			
1	Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	/eight%
1	Additional resources we	re pr	ovid	ed									- 1		
	lakubowicz 2013 (Israel)	46	32	HCB vs HCD	Metabolic	12	38	-10.90	2.45	36	-3.90	2.17	-	-7.00 [-8.05; -5.95]	26.8
r	Madjd 2021 (Iran)	35	33	ED vs LD	Healthy	12	40	-8.29	3.24	42	-7.21	3.96		-1.08 [-2.64; 0.48]	26.1
1	Madid 2016 (Iran)	34	32	ML vs BL	Healthy	12	40	-7.21	2.97	40	-6.31	2.97		-0.90 [-2.20; 0.40]	26.5
(Overall Effect						118			118				-3.02 [-7.30; 1.27]	79.3
ŀ	Heterogeneity: $I^2 = 97\%$, τ^2	= 13.8	3897,	$\chi^2_2 = 66.21 \ (p < $	< 0.01)										
F	Resources were not prov	video	1												
ι	ombardo 2014 (Italy)	46	36	FL vs EED	Healthy	12	18	-2.52	7.00	18	0.72	5.00		-3.24 [-7.21; 0.73]	20.7
	Overall Effect			2			136			136				-3.06 [-6.73; 0.60]	100.0
	Heterogeneity: $I^2 = 95\%$, τ^2				< 0.01)										
	Test for overall effect: z = -1												-5 0 5		
٦	Test for subgroup difference	es: X1	= 0.0	1, df = 1 ($p = 0$.94)							Favou	urs Intervention Favours Con	itrol	

eFigure 164: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on fasting glucose (mg/dL), grouped by resource provision

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

eFigure 165: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on LDL (mg/dL), grouped by gender proportion

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.


Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration			ention SD	No	C Mean	ontrol SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
Obese I Kahleova 2014 (Czech Rep) Zargaran 2014 (Iran) Overall Effect Heterogeneity: $J^2 = 95\%$, $\tau^2 = 120.57$	59 64, χ		2M vs 6M 3M+2S vs 6M 1.12 (p < 0.01)	Metabolic Healthy	12 12	54 45 99	-2.32 -7.70	7.07 15.30	54 45 99	-3.09 -24.40		*	0.77 [-2.47; 4.01] 16.70 [10.54; 22.86] - 8.51 [-7.09; 24.12]	26.5 23.6 50.1
Obese II Forslund 2008 (Sweden) Grangeiro 2021 (Brazil) Overall Effect Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi^2_1 = 0$	39 30	38 35 p = 0.	3M vs 3M+3S 3M vs 6M 77)	Healthy Healthy	52 18	70 21 91	-3.86 5.35	19.31 34.74	70 19 89		23.17 35.92	-	-0.77 [-7.84; 6.30] - 2.69 [-19.25; 24.63] -0.44 [-7.17; 6.28]	22.5 8.4 30.9
Overweight Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-3.86	21.86	40	-4.25	22.82	e	0.39 [-9.40; 10.18]	19.1
Overall Effect Heterogeneity: $J^2 = 82\%$, $\tau^2 = 54.021$ Test for overall effect: $z = 1.10$ ($p = 0$ Test for subgroup differences: $\chi^2_2 = 1$	0.27)		. ,			230			228		Favou	-20 -10 0 10 20 urs Intervention Favours Cont	4.27 [-3.34; 11.87]	100.0

eFigure 166: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on LDL (mg/dL), grouped by baseline BMI status

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	leight%
Healthy														
Forslund 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-3.86	19.31	70	-3.09	23.17		-0.77 [-7.84; 6.30]	22.5
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	18	21	5.35	34.74	19	2.66	35.92		2.69 [-19.25; 24.63]	8.4
Zargaran 2014 (Iran)		31	3M+2S vs 6M	Healthy	12	45	-7.70	15.30	45	-24.40	14.50		16.70 [10.54; 22.86]	23.6
Overall Effect						136			134				6.94 [-7.06; 20.95]	54.4
Heterogeneity: $I^2 = 85\%$, $\tau^2 = 117.8$	512, 7	$c_2^2 = 13$	8.66 (<i>p</i> < 0.01)											
Metabolic														
Papakonstantinou 2016 (Greece) 27	27	3M vs 6M	Metabolic	12	40	-3.86	21.86	40	-4.25	22.82		0.39 [-9.40; 10.18]	19.1
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-2.32	7.07	54	-3.09	9.89	-	0.77 [-2.47; 4.01]	26.5
Overall Effect						94			94			-	0.73 [-2.35; 3.81]	45.6
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_1^2 =$	0.01	p = 0.	94)											
Overall Effect						230			228				4.27 [-3.34; 11.87]	100.0
Heterogeneity: $I^2 = 82\%$, $\tau^2 = 54.02$			14 (<i>p</i> < 0.01)											
Test for overall effect: z = 1.10 (p =	0.27)											-20 -10 0 10 20		
Test for subgroup differences: $\chi_1^2 =$								Favou	ours Intervention Favours Control					

eFigure 167: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on LDL (mg/dL), grouped by health status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

eFigure 168: Meta-analysis of difference in mean difference (95% CIs) for the effect of

meal frequency on LDL (mg/dL), grouped by follow duration

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

								Interv	ention	Control					
Autho	or Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI V	Veight%
2M vs Kahle	6M ova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-2.32	7.07	54	-3.09	9.89	-	0.77 [-2.47; 4.01]	26.5
	3M+3S nd 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-3.86	19.31	70	-3.09	23.17		-0.77 [-7.84; 6.30]	22.5
Grang	6M constantinou 2016 (Greece) leiro 2021 (Brazil) III Effect geneity: $I^2 = 0\%$, $\tau^2 = 0$, $\chi_1^2 = 0$	30	27 35 p = 0.8	3M vs 6M 3M vs 6M	Metabolic Healthy	12 18	40 21 61		21.86 34.74	40 19 59		22.82 35.92	-	0.39 [-9.40; 10.18] 2.69 [-19.25; 24.63] 0.77 [-8.17; 9.72]	19.1 8.4 27.5
	S vs 6M ran 2014 (Iran)	,	31	3M+2S vs 6M	Healthy	12	45	-7.70	15.30	45	-24.40	14.50		16.70 [10.54; 22.86]	23.6
Overall Effect Heterogeneity: $l^2 = 82\%$, $\tau^2 = 54.0212$, $\chi_4^2 = 22.14$ ($\rho < 0.01$) Test for overall effect: $z = 1.10$ ($\rho = 0.27$) Test for subproup differences: $\tau_2^2 = 22.10$. df = 3 ($\rho < 0.01$)							230			228		Favo	-20 -10 0 10 2 urs Intervention Favours Col		100.0

eFigure 169: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on LDL (mg/dL), grouped by intervention intensity

							Interve	ention		C	ontrol			
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 95%CI W	/eight%
Intervention involved < 1 session	n pe	r wee	≥k											
Forslund 2008 (Sweden)	39	38	3M vs 3M+3S	Healthy	52	70	-3.86	19.31	70	-3.09	23.17		-0.77 [-7.84; 6.30]	22.5
Grangeiro 2021 (Brazil)	30	35	3M vs 6M	Healthy	18	21	5.35	34.74	19	2.66	35.92		2.69 [-19.25; 24.63]	8.4
Zargaran 2014 (Iran)		31	3M+2S vs 6M	Healthy	12	45	-7.70	15.30	45	-24.40	14.50		16.70 [10.54; 22.86]	23.6
Overall Effect						136			134				6.94 [-7.06; 20.95]	54.4
Heterogeneity: $I^2 = 85\%$, $\tau^2 = 117.85$	i12, χ	$\frac{2}{2} = 13$	8.66 (<i>p</i> < 0.01)											
Intervention involved ≥ 1 session														
Papakonstantinou 2016 (Greece)	27	27	3M vs 6M	Metabolic	12	40	-3.86	21.86	40	-4.25	22.82		0.39 [-9.40; 10.18]	19.1
Kahleova 2014 (Czech Rep)	59	33	2M vs 6M	Metabolic	12	54	-2.32	7.07	54	-3.09	9.89	-	0.77 [-2.47; 4.01]	26.5
Overall Effect Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $\gamma_1^2 = 0$	1.017	n = 0	04)			94			94			+	0.73 [-2.35; 3.81]	45.6
Helefogeneity. $T = 0.90$, $t = 0$, $\chi_{\uparrow} = 0$.01(μ – υ.	.34)											
Overall Effect	- 2					230			228				4.27 [-3.34; 11.87]	100.0
Heterogeneity: $l^2 = 82\%$, $\tau^2 = 54.021$ Test for overall effect: $z = 1.10$ ($p = 1.00$		= 22.	14 (p < 0.01)									-20 -10 0 10 20		
Test for subgroup differences: $\chi_1^2 = 0$		4 - 4	(n = 0.40)								Faure		r -	
Test for subgroup differences: $\gamma_1 = 0$.12,0	1 = 1	(p = 0.40)								Favor	urs Intervention Favours Contro	1	

eFigure 170: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on LDL (mg/dL), grouped by frequency of contact

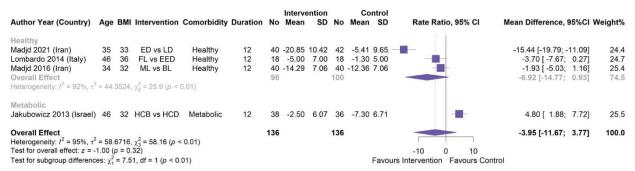
BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration			ention SD	No	C Mean	ontrol SD	Rate Ratio, 95% CI	Mean Difference, 95%Cl V	Veight%
Any health professional Kahleova 2014 (Czech Rep) Zargaran 2014 (Iran) Overall Effect Heterogeneity: $J^2 = 95\%$, $\tau^2 = 120.57$	59 764, χ		2M vs 6M 3M+2S vs 6M 0.12 (p < 0.01)	Metabolic Healthy	12 12	54 45 99		7.07 15.30	54 45 99	-3.09 -24.40			0.77 [-2.47; 4.01] 16.70 [10.54; 22.86] 8.51 [-7.09; 24.12]	26.5 23.6 50.1
Trained specifically in nutrition Forslund 2008 (Sweden) Papakonstantinou 2016 (Greece) Grangeiro 2021 (Brazil) Overall Effect Heterogeneity: $I^2 = 0\%, \tau^2 = 0, \tau_2^2 = 0$	39 27 30	35	3M vs 3M+3S 3M vs 6M 3M vs 6M 95)	Healthy Metabolic Healthy	52 12 18	70 40 21 131	-3.86	19.31 21.86 34.74		-4.25	23.17 22.82 35.92	-	-0.77 [-7.84; 6.30] 0.39 [-9.40; 10.18] 2.69 [-19.25; 24.63] -0.18 [-5.72; 5.37]	22.5 19.1 8.4 49.9
Overall Effect Heterogeneity: $l^2 = 82\%$, $\tau^2 = 54.02^{\circ}$ Test for overall effect: $z = 1.10$ ($p = 1$ Test for subgroup differences: $\chi_1^2 = 1$	0.27)					230			228		Favou	-20 -10 0 10 20 urs Intervention Favours Contro	4.27 [-3.34; 11.87]	100.0

eFigure 171: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal frequency on LDL (mg/dL), grouped by delivery personnel

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration			ention SD		C Mean	ontrol SD	Rate Ratio, 95% CI	Mean Differe	nce, 95%CI W	/eight%
Additional resources were prov Forsiund 2008 (Sweden) Papakonstantinou 2016 (Greece) Kahleova 2014 (Czech Rep) Grangeiro 2021 (Brazil) Overall Effect Heterogeneity: $l^2 = 0$ %, $\tau^2 = 0$, $\chi^2_3 = 0$	39 27 59 30	38 27 33 35	3M vs 3M+3S 3M vs 6M 2M vs 6M 3M vs 6M	Healthy Metabolic Metabolic Healthy	52 12 12 18		-3.86	19.31 21.86 7.07 34.74	54	-4.25 -3.09	23.17 22.82 9.89 35.92	-	0.39 [-5 0.77 [- 2.69 [-19	7.84; 6.30] 9.40; 10.18] 2.47; 4.01] 9.25; 24.63] 2.27; 3.33]	22.5 19.1 26.5 8.4 76.4
Resources were not provided Zargaran 2014 (Iran) Overall Effect		31	3M+2S vs 6M	Healthy	12	45 230	-7.70	15.30	45 228	-24.40	14.50			0.54; 22.86] 3.34: 11.87]	23.6 100.0
Heterogeneity: $l^2 = 82\%$, $\tau^2 = 54.021$ Test for overall effect: $z = 1.10$ ($p = 1$ Test for subgroup differences: $\chi_1^2 = 2$		230			220		Favou	-20 -10 0 10 urs Intervention Favours	20		100.0				


eFigure 172: Meta-analysis of difference in mean difference (95% CIs) for the effect of

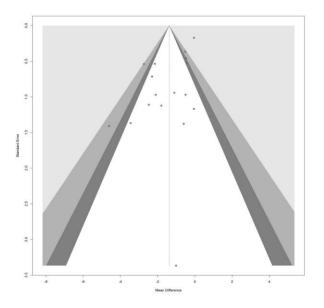
meal frequency on LDL (mg/dL), grouped by resource provision

Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interve Mean		No	Co Mean	ontrol SD	Rate Ratio, 95% CI	Mean Difference, 95	5%CI W	eight%
Obese I Madjd 2021 (Iran) Madjd 2016 (Iran) Jakubowicz 2013 (Israel) Overall Effect Heterogeneity: /² = 97%, t²			ED vs LD ML vs BL HCB vs HCD $\chi^2_2 = 57.33 (\rho -$		12 12 12		-20.85 -14.29 -2.50	7.06	40	-5.41 -12.36 -7.30	7.06	*	-15.44 [-19.79; -1 -1.93 [-5.03; 4.80 [1.88; -4.08 [-14.55; 1	1.16] 7.72]	24.4 25.4 25.5 75.3
Obese II Lombardo 2014 (Italy)	46	36	FL vs EED	Healthy	12	18	-5.00	7.00	18	-1.30	5.00		-3.70 [-7.67;	0.27]	24.7
Overall Effect Heterogeneity: $I^2 = 95\%$, τ^2	² = 58.0	6716,	$\chi_2^2 = 58.16 (p \cdot$	< 0.01)		136			136				-3.95 [-11.67;	3.77]	100.0
Test for overall effect: z = - Test for subgroup difference							Favou	-10 0 10 urs Intervention Favours Contro	bl						

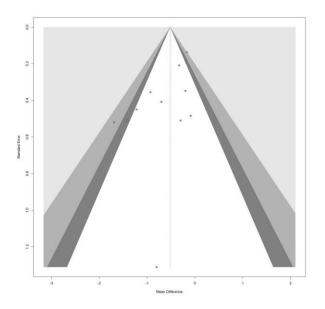
eFigure 173: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on LDL (mg/dL), grouped by baseline BMI status

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

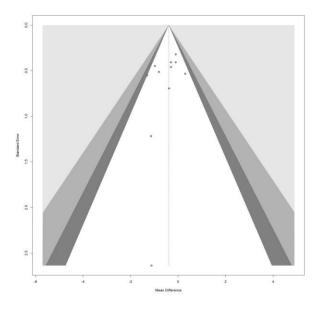
eFigure 174: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on LDL (mg/dL), grouped by health status

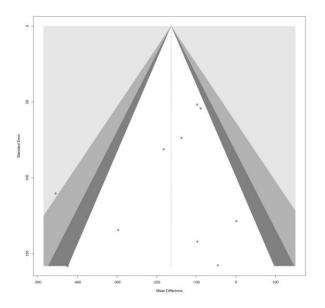

BMI: Body Mass Index; SD: Standard Deviation; CI: Confidence Interval; USA: United States of America; FT: Feeding Time; Duration: follow-up duration in weeks; 2M/3M/6M: 2, 3 or 6 meals; 3M+2S: 3 meals and 2 snacks; 3M+3S: 3 meals and 3 snacks; 10S: Grazing diet – 100kcal every 2-3 hours; HCB: High Calorie Breakfast; HCD: High Calorie Dinner; ED: Early Dinner; LD: Late Dinner; FL: Front Loading: EED: Equal Energy Distribution; ML: Middle Loading; BL: Back Loading.

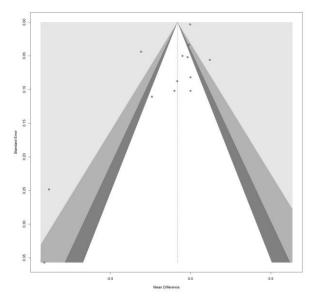
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Interve Mean		No		ntrol SD		Mean Difference,	95%CI W	/eight%
Any health professiona Madjd 2016 (Iran)	34	32	ML vs BL	Healthy	12	40	-14.29	7.06	40	-12.36	7.06	-	-1.93 [-5.03;	1.16]	25.4
Trained specifically in Madjd 2021 (Iran) Lombardo 2014 (Italy) Jakubowicz 2013 (Israel Overall Effect Heterogeneity: <i>I</i> ² = 97%, τ	35 46) 46	33 36 32	ED vs LD FL vs EED HCB vs HCD 6, χ^2_2 = 58.15 (p	Healthy Healthy Metabolic < 0.01)	12 12 12	40 18 38 96	-20.85 -5.00 -2.50	10.42 7.00 6.07	18		5.00	* * *	-15.44 [-19.79; - -3.70 [-7.67; 4.80 [1.88; -4.69 [-16.25;	0.27] 7.72]	24.4 24.7 25.5 74.6
Overall Effect Heterogeneity: $I^2 = 95\%$, τ Test for overall effect: $z =$ Test for subgroup difference	-1.00 (p = 0	.32)			136			136		Favor	-10 0 10 urs Intervention Favours Control	-3.95 [-11.67;	3.77]	100.0

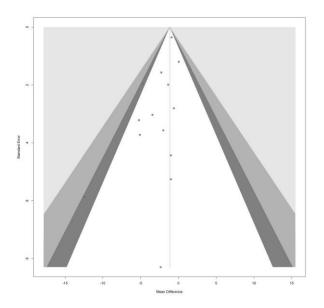

eFigure 175: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on LDL (mg/dL), grouped by delivery personnel

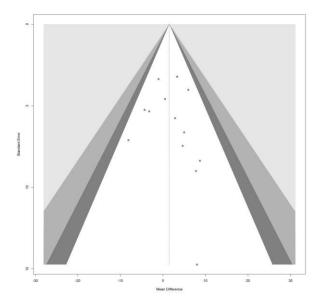
		Intervention					Co	ontrol							
Author Year (Country)	Age	BMI	Intervention	Comorbidity	Duration	No	Mean	SD	No	Mean	SD	Rate Ratio, 95% CI	Mean Difference, 9	95%CI W	eight%
Additional resources we	ere pr	ovid	ed												
Madid 2021 (Iran)	35	33	ED vs LD	Healthy	12	40	-20.85	10.42	42	-5.41	9.65		-15.44 [-19.79; -	11.091	24.4
Madid 2016 (Iran)	34	32	ML vs BL	Healthy	12	40	-14.29	7.06	40	-12.36	7.06		-1.93 [-5.03;		25.4
Jakubowicz 2013 (Israel)	46	32	HCB vs HCD	Metabolic	12	38	-2.50	6.07	36	-7.30	6.71		4.80 [1.88;	7.72]	25.5
Overall Effect						118			118				-4.08 [-14.55;	6.40]	75.3
Heterogeneity: $I^2 = 97\%$, τ^2	= 82.5	5274,	$\chi^2_2 = 57.33 (p < $	< 0.01)											
Resources were not pro							1000000								
Lombardo 2014 (Italy)	46	36	FL vs EED	Healthy	12	18	-5.00	7.00	18	-1.30	5.00	-	-3.70 [-7.67;	0.27]	24.7
0						400			100			1			100.0
Overall Effect Heterogeneity: $l^2 = 95\%$, τ^2	- 50 0	710	2 - 59 16 / 2	-0.01)		136			136				-3.95 [-11.67;	3.77]	100.0
Test for overall effect: $z = -1$				= 0.01)								10 0 10			
				05)							F	-10 0 10			
Test for subgroup difference	0, af = 1 (p = 0)	.95)							Favours Intervention Favours Control						

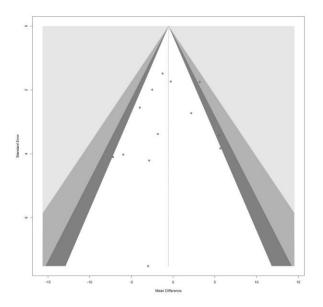

eFigure 176: Meta-analysis of difference in mean difference (95% CIs) for the effect of meal distribution on LDL (mg/dL), grouped by resource provision

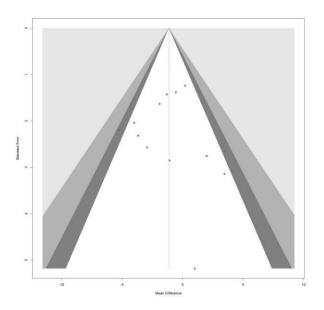

eFigure 177: Funnel plots for weight (TRE vs control)


eFigure 178: Funnel plots for BMI (TRE vs control)


eFigure 179: Funnel plots for lean mass (TRE vs control)


eFigure 180: Funnel plots for energy intake (TRE vs control)


eFigure 181: Funnel plots for HbA1c (TRE vs control)


eFigure 182: Funnel plots for fasting glucose (TRE vs control)

eFigure 183: Funnel plots for LDL (TRE vs control)

eFigure 184: Funnel plots for systolic blood pressure (TRE vs control)

eFigure 185: Funnel plots for diastolic blood pressure (TRE vs control)