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In this document, we supplement the statements in the main text by discussing details of the
VAE model, training dynamics, application to ground-state properties, GW calculations, and
the pseudobands approximation.

Supplementary Note 1—VAE model

Here, we will mathematically demonstrate that the VAE latent space from the special designed
encoder can effectively represent the KS state of a specific material with a unique unit cell, and
what the latent space exactly learns. Suppose we want to learn the representation of a 2D KS
state:

|ϕn(x, y, c)|I(x,y∈(−∞,+∞))
(1)

with periodicities Tx and Ty along two in-plane lattice constant vectors. Due to the 2D
nature, we treat the z degree of freedom of the KS states as an input channel c. n represents the
quantum number and crystal momentum of a specific material. However, instead of working in
infinite space, we typically only have the data from one complete periodicity within a unit cell:

fn(x, y, c; tx, ty) = |ϕn(x+ tx, y + ty, c)|I(x∈(0,Tx),y∈(0,Ty))
(2)

where arbitrary translation tx and ty is the unphysical degrees of freedom from the choice of
the origin of the unit cell. This results in a challenge for regular CNNs-NN architecture because
the translational covariance cannot be preserved by passing CNN output to a dense layer, even if
the CNN itself has translational covariance. In our context, to achieve prediction with physical
invariance, the first crucial point is to introduce circular padding to enable the periodic boundary
condition and ensure the periodicity of the CNN output feature map is the same as the input
layer. This way, the padding width equals the kernel size so that the convolutional scanning
will always go through the periodicity of the input. Then, we can obtain the feature map by
inputting fn to CNNs followed by a non-linear layer:

Õn(X,Y,C ′; tx, ty) = ReLU

∑
c

Tx∑
x

Ty∑
y

fn(X + x, Y + y, c; tx, ty) ·K(x, y, C ′)

 (3)

where C ′ is the output channel number, and the nonlinear ReLU function is:

ReLU =
x+ |x|

2
(4)

Importantly, the output feature map Õn(X,Y,C ′; tx, ty) not only provides additional nonlin-
ear degrees for fitting/representation, but it also preserves the periodicity of Tx and Ty introduced
by circular padding. Then, to achieve translational invariance, we utilize the basic fact that the
integral of a periodic function over a complete periodicity is always invariant to any arbitrary
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shift tx and ty. Therefore, instead of directly passing Õn(X,Y,C ′; tx, ty) to the next layer for
learning, we sum the feature map over X,Y , and we use ãn(C

′) to denote the summation:

ãn(C
′) =

Tx∑
X

Ty∑
Y

Õn(X,Y,C ′; tx, ty)

=

Tx∑
X

Ty∑
Y

Õn(X,Y,C ′)

(5)

where the unphysical degree of freedom of tx and ty are summed out with X and Y , which
achieve physical invariance to arbitrary translations . As a result, the consequent output vector
ãn ∈ RCout through the global channel aggregation can be used as representations for fn if
Cout is large enough. The resulting loss of local spatial information of X and Y can be totally
compensated by the depth of the channels, which provides sufficient nonlinearity for accurate
fitting.

Additionally, we find that the above representations can also be used for large systems beyond
single unit cell with minor modifications. Suppose we consider the KS state of an M ×N super
cell as:

Fn(x, y, c; tx, ty) = |ϕn(x+ tx, y + ty, c)|I(x∈(0,N×Tx),y∈(0,M×Ty))

=
N∑
i

M∑
j

fn(x+ i× Tx, y + j × Ty, c; tx, ty)
(6)

Passing this to our CNN model mentioned above, we get:

ÃM,N,n(C
′) =

N∑
i

M∑
j

Tx∑
X

Ty∑
Y

Õn(X + i× Tx, Y + j × Ty, C
′)

= (M ×N)

Tx∑
X

Ty∑
Y

Õn(X,Y,C ′)

= (M ×N)ãn(C
′)

(7)

where the second line comes from the integral invariance of a periodic function. Intriguingly,
the representation of an (M × N) super cell ÃM,N,n(C

′) is always equal to (M × N) times

that of a unit cell ÃM=1,N=1,n(C
′). Since our model doesn’t require any cropping/resizing for

the preprocessing, the original cell size information is preserved properly. Then, we can average
each nonlinear feature map (essentially the nonlinearly curved density of filtered reciprocal space
components) from the original electron state as follows:

zM,N,n(C
′) =

1

NTx ×MTy
ÃM,N,n(C

′) =
1

Tx × Ty
ãn(C

′)

=
1

Tx × Ty
Ã1,1,n(C

′)

= z1,1,n(C
′)

(8)

As a result, the latent space zn = f(z1,1,n(C
′)) (f is following dense layer) remains the same

for any supercell size, and it can represent a complete KS state density |ϕn(x, y, c)|I(x,y∈(−∞,+∞))

in the whole space. More importantly, our model is never limited to the data within a unit cell
spanned by two vectors with a specific angle. Instead, given the same material, the data from
any complete periodicity of a specific KS state will generate the same z1,1,n(C

′). Therefore,
the symmetry of the unit cell is implicitly enforced even though input data does not include
explicit symmetry labels, and the grid-based data can be properly used as the input layer if a
continuous periodicity is ensured. Here, z1,1,n(C

′) can be interpreted as a vector of “average
charge density” from different nonlinear global feature maps of a state.

In summary, our VAE model has several advantageous properties to generate effective rep-
resentations: i) zn is always smooth due to the smooth nature of neural networks, ii) zn can
handle translational invariance and PBC, iii) can handle any cell size and symmetry, iv) even if
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it is only trained with unit cell data, zn can be extended to large systems beyond the unit cell,
which provides future opportunities to study systems like defects and moiré bilayers.

Next, we demonstrate additional generalizability of our model. In the first row of Supplemen-
tary Supplementary Fig. 1(a-f), we select one random KS state from the test set and gradually
slide the window of the unit cell along one of its lattice constant vectors. The second row of
Supplementary Supplementary Fig. 1(a-f) displays the VAE latent space and reconstructed KS
wavefunction, obtained by inputting the corresponding shifted wavefunction into our model.
The generated wavefunction remains entirely invariant to any sliding of the unit cell. The third
row demonstrates the latent space and generated wavefunction using a model without including
GAP, which is sensitive to the selection of the unit cell. We see that the VAE with modified
CNN layer significantly enhances our model’s ability to deal with systems of different unit cell
size, cutoff energies, PBC and translational invariance.

Supplementary Figure 1: The first row of (a-f) shows a randomly picked KS state shifted
along the y-direction with 0, 1

6 ,
1
3 ,

1
2 ,

2
3 , and

5
6 a in real space. The second row of (a-f) illustrates

the latent space of the related shifted KS states respectively. The insets are the corresponding
reconstructed wavefunctions, generated by decoding the latent space. The latent space (recon-
structed wavefunction) is invariant to the unphysical degree of freedom of choosing the original
point of the unit cell, which preserves the translational invariance for the downstream physical
prediction. The third row of (a-f) is the latent space and reconstructed KS states by a simple
VAE without including GAP layer, which are presented for comparison.

As Supplementary Fig. 2 illustrates, we also show that our model is independent of the size
of the input in real space and can be extended to large super cells:
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Supplementary Figure 2: The first row of (a-e) illustrate the 1×1, 2×2, 3×3, 3×3 (shifted),
and 2× 3 super cell of a randomly picked KS state. The second row of (a-e) show the respective
latent space of related KS states from different super cells. The insets are the corresponding
reconstructed wavefunction, generated by decoding the latent space of rotated KS states. The
reconstructed wavefunction (latent space) are invariant to the size of the super cell, which can
be treated as a fundamental representation for KS state of the whole space. The third row of
(a-e) are reconstructed KS states by a simple VAE without including GAP, which are presented
for comparison.

Lastly, to investigate how our model handles the freedom of selecting the coordinate basis,
we choose four combinations of lattice vectors (a1,a2), (a1,−a2), (-a2,a1), and (a2,−a1)for the
input crystal unit cell. These combinations correspond to 90, 180, and 270-degree rotations of
the wavefunction in fractional crystal coordinates, as shown in the first row of Supplementary
Fig. 3(a-d). The second row of Fig. Supplementary Fig. 3(a-d) illustrates the latent space and
reconstructed wavefunction corresponding to the different choices of unit cell basis through our
VAE and a VAE without rotational CNN (third row). As expected, integrating rotatinal CNN
allow our VAE to recover the original pattern, while the naive VAE based on traditional CNN
is sensitive to the unphysical choice of coordinate basis.
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Supplementary Figure 3: The first row of (a-d) illustrates a randomly picked KS state
represented in a unit cell with bases of lattice vectors (a1,a2), (a1,−a2), (-a2,a1), and (a2,−a1).
The second row of (a-d) illustrates the latent space of respective rotated KS states. The insets
are the corresponding reconstructed wavefunctions, generated by decoding the latent space of
rotated KS states. The latent space (reconstructed wavefunction) is invariant to the choice of the
lattice vectors. The third row of (a-d) shows reconstructed KS states by a naive VAE without
including rotational CNN, which are presented for comparison.

Supplementary Note 2–Training Dynamics

Firstly, we want to emphasize the considerable challenge of learning the GW correction for the
full bandstructure, even when the DFT bandstructure is known, which has been a longstanding
problem in the field. Previous GW machine learning models, have relied on manually selected
intermediate physical quantities based on human intuition. These early approaches were only
capable of predicting the band gap [1, 2] or after carefully tailoring feature, were able to predict
a k-point-dependent GW correction that lacked the smoothness of a physical bandstructure [3].
This suggests that learning the GW correction is inherently a hard problem highly sensitive to
feature selection. In our work, we overcome this challenge by replacing feature selection with
autonomous representation learning, allowing us to obtain smooth GW bandstructures for the
first time. More fundamentally, unlike previous work that carefully tailored feature selection
for the GW problem specifically, our representation learning is not designed to target GW,
and it could be easily generalized in the future to any downstream method relying on DFT
wavefunctions.

To quantitatively analyze the GW dataset and estimate the training difficulties, we investi-
gate how the GW corrections vary with different k points and bands in each material in our test
set. Firstly, we calculate the standard deviation of GW corrections for all bands and k-points
within each material. Supplementary Fig. 4(a) presents the histogram of these standard devi-
ations across all 302 materials. The standard deviation of GW corrections in each material is
significantly larger than 0.1 eV, which is the MAE of our model. In addition, Supplementary
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Fig. 4(b-e) shows the standard deviation of GW corrections across all bands for a given k point,
plotted as a histogram for all 302 materials in the dataset. The standard deviations for each
material significantly exceed 0.1 eV as well. Similarly, Supplementary Fig. 4(f-m) depict the his-
togram of standard deviations of GW corrections for all k points given the same band across all
302 materials, demonstrating that the standard deviation for the same band in many materials
is also much larger than 0.1 eV, indicating that our model captures this variability. Therefore,
neither our model nor the GW correction in general is reduced to a single value regression (i.e.
a scissor shift).

Supplementary Figure 4: (a) the histogram of standard deviations of GW corrections from
all bands and k-points across all 302 materials. (b-f) the histogram of standard deviation of GW
corrections from all bands given the same k-point across all 302 materials. (f-m) the histogram
of standard deviation of GW corrections from all K-points given the same band across 302
materials. Source data are provided as a Source Data file.

Here, we provide more details regarding the training dynamics of both VAE and GW re-
gression model. We first examined how the training process of the VAE progresses with the
number of epochs. The total wavefunction data across 302 materials are randomly split, with
20% allocated to the test/validation set and the remaining 80% to the training set. The Supple-
mentary Fig. 5(a) below shows the R2 performance of the model on the training and validation
sets, achieving high R² values of 0.93 and 0.91 within 300 epochs, respectively. Additionally,
to assess how the dataset size affects the VAE, we plot the training process with an increasing
number of data points (KS states), as shown in Supplementary Fig. 5(b). Overfitting only ap-
pears when the number of data points is smaller than 1,000 states, while both the training and
test sets achieve high R2 values of 0.93 and 0.91 when the number of data points exceeds 10,000.
To further verify this finding, we include 20,000 states in the data set, and change the ratio
between training points and testing points. As Supplementary Fig. 5(c) shows, the overfitting is
negligible when the training set is more than 30% (6,000 states), which is approximately consis-
tent with previous result. In summary, this investigation into the training dynamics strengthens
our statement that the VAE can provide general and efficient representations across different
materials.
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Supplementary Figure 5: (a) Training dynamics of VAE for KS states with respect to
different number of epochs. (b) VAE R2 performance with respect to different size of dataset.
(c) VAE R2 performance with different ratio of training/test data. The total dataset includes
20,000 KS states. Source data are provided as a Source Data file.

For the downstream supervised prediction, we also conduct more benchmarks on our model.
Supplementary Fig. 6(a) shows that a simple downstream regression model achieves fast training
convergence (180 epochs) with a low GW correction MAE of 0.06 eV on the training set and
0.11 eV on the test set. This is under our expectation due to the effective dimension reduction
of the original wavefunction through the VAE. Supplementary Fig. 6(b) illustrates how the
number of data points affects the model’s performance, with overfitting becoming evident when
the number of states is less than 1K. This issue is resolved by increasing the number of states
to more than 10K. Additionally, we benchmark our model’s performance using a stricter and
more comprehensive cross-validation technique[4], as shown in Supplementary Fig. 6(c). Here,
we randomly divide our dataset into 10 folds, then use the data from a specific fold to score the
model trained on the remaining data. We iterate this process for all folds, and the average R²
score of our model is 0.96 on the training set and 0.94 on the test set.

Supplementary Figure 6: (a) Training dynamics of downstream NN for GW corrections with
respect to different number of epochs. The orange (blue) dashed lines represent test (training)
MAE. The orange (blue) lines represent test (training) R2. (b) Downstream NN R2 of perfor-
mance for GW prediction with respect to different size of dataset. (c) 10-folds cross-validation
of downstream NN for GW prediction. Source data are provided as a Source Data file.

We also note that a few large outliers existing in our regression predictions. To identify these
outliers, we filtered out materials and states with GW corrections larger than 0.25 eV. Although
these account for only 4% of the test set, they contribute significantly to the final error. Despite
the model’s robust performance on both the training and testing sets, we observed that the
outlier materials vary depending on some factors such as the choice of training set and model
parameters. Therefore, the identification of a group of specific materials are not quite meaningful
given this situation. A possible explanation for this variability is that some GW corrections may
not be fully converged, resulting in the ”noise” that which is learnt by model and leads to
outliers.

In our workflow, the representations of charge density, learned via a separate VAE (referred
to as VAE-charge), are used as the inputs for the GW neural network. The charge density
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representations can also be utilized for various downstream predictions of ground state DFT
properties, which will be discussed in the following section. To train the VAE-charge, the
total charge density data across 302 materials was randomly split, with 20% allocated to the
test/validation set and the remaining 80% to the training set. Supplementary Fig. 7(a) shows
the R² performance of the model on the training and validation sets, achieving a high R² value
of 0.95 and 0.93 respectively. To assess the requirement of dataset and training dynamics of
the VAE-charge model, we plot the training process with an increasing number of data points
(charge densities of materials), as shown in Supplementary Fig. 7(b). Both the R² performance
of the model on the training and testing sets exceeds 0.9 when the dataset includes 300 or more
materials. Only when the training data points is smaller than 100, the model starts exhibiting
overfitting. Supplementary Fig. 7(c) shows the R² performance of the model with respect to
training/dataset ratio. These training dynamics demonstrate that our VAE model has strong
extrapolation ability across different materials, supporting our claim of a general representation
mentioned in the manuscript.

Supplementary Figure 7: (a) Training dynamics of VAE-charge with respect to different
number of epochs. (b) VAE-charge R2 performance with respect to different size of dataset. (c)
VAE R2 performance with different ratio of training/test data. Total dataset includes 2600 2D
materials (charge density). Source data are provided as a Source Data file.

Next, we investigate how the data compression degree impacts the regression effect. If we
directly apply neural networks (NN) to predict GW corrections, the network size becomes ex-
tremely large due to the extensive input layer. For instance, including Kohn-Sham (KS) states,
charge density, and 10 super states in the input layer results in 39,602,801 trainable parameters
in downstream NNs. The VAE reduces the total trainable parameters to 13,801. The large
dataset before compression lead to several consequences: i) The training process for many-body
predictions results in possible divergence. In our case, the direct prediction of GW self-energy
by NN diverges within the first 3 epochs. ii) Overfitting is evident when data compression is
not applied. To quantitatively analyze how data compression affects prediction accuracy, we
plot the relationship between the R2 of the GW regression and the compressed input size of
the downstream neural network in Supplementary Fig. 8 . Our results indicate that overfitting
decreases with higher levels of data compression. iii) High training memory requirement. For
example, the DFT wavefunction across 302 materials is, in our case, around 1 TB, which will
tremendously limit the batch size. iv) Training speed and convergence are significantly impacted
by the small batch sizes, leading to extremely low learning efficiency. We observed that using
data compressed to 1/1200th of its original size increases training speed by 500+ times compared
to using the original data.
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Supplementary Figure 8: R2 of GW prediction with respect to different input dimensions of
KS states. The orange (blue) dots represent model performance on test (training) set. Source
data are provided as a Source Data file.

Finally, we look into the impact of data splitting methods on the training process for both the
unsupervised VAE learning of DFT states and the supervised learning of GW correction. Rather
than splitting the dataset based on states, we choose to segregate it by materials, reserving 30
distinct materials for testing purposes. For VAE learning, the performance of reconstructed
wavefunctions in the test set is very robust to different batches of 30 randomly chosen materials
in the test set. The r2 of reconstructed wavefunction can achieve a high value of 0.92, which
is almost the same level as the training set performance. However, for supervised learning,
this approach revealed that GW prediction accuracy exhibits some sensitivity to the selection
of different batches of materials, leading to a decline in the overall R2 to a range of 0.80-0.90
(MAE≈0.17 eV) when material sets are chosen randomly.

We use four valence and four conduction bands across a fixed 6× 6× 1 k-point grid to train
the NN model. These states are chosen for convenience in generating training data and are
irrelevant to the input/output size of the NN model. This choice will not introduce limitations
related to training on a specific grid size. Once the fNN model is well trained, it can take the
latent space representation of any arbitrary KS state (n, k) and predict the GW correction for
that specific KS state. As shown in Fig. S3(c), training the model at a specific k-point enables
it to predict other nearby k-points accurately, demonstrating the model’s extrapolation ability
across arbitrary k-points. Furthermore, to investigate the model’s extrapolation ability on unseen
bands, we excluded one valence band and one conduction band across all 302 materials from
training. Remarkably, as shown in Supplementary Fig. 9, the model achieves a high R2=0.93
(MAE = 0.12 eV) on these two unseen bands. Therefore, our model can effectively predict GW
corrections outside the training band
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Supplementary Figure 9: Parity plot comparing the exact calculated values (x-axis) to the
ML predicted values (y-axis) of the GW correction for reserved conduction and valence bands
(1801 states in total), which are excluded from training across 302 materials. The R2 for the
test set are 0.93 (MAE = 0.12 eV). Source data are provided as a Source Data file.

Finally, in Fig. S2(f), we explore the importance of each input to the supervised NN in
predicting GW corrections. Training is halted at 20,000 epochs before complete minimization
of the loss function. This decision is based on the fact that the superstates and charge density
for each individual state remain constant, then occasionally, the exclusion of KS states from the
training can disrupt the entire process. Employing 20,000 training sets closely approximates the
performance of the optimal model, making it suitable for comparative analysis.

Supplementary Note 3–Preservation of Physical Quantities

Preservation of realistic physical quantities is crucial to estimate the performance of our physical
regression model and justify the whole workflow. In our training process, we define the total
loss function with two components: i) the mean squared error (MSE) between the KS state
before and after passing through the VAE, and ii) the KL divergence. The MSE component
encourages each generated element of the KS states data to closely match the original states,
which helps to preserve not only the pattern but also the normalization of the KS wavefunction
after reconstruction. As Supplementary Fig. 10 shows, we use the well-trained VAE to generate
KS states over the test dataset and present a histogram of their normalization. This demonstrates
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that our approach effectively maintains the normalization of the KS wavefunction.

Supplementary Figure 10: The histogram of the norm of 1559 KS states reconstructed by
VAE over test set. The mean absolute percentage error of reconstructed KS norm is 1%. Source
data are provided as a Source Data file.

Secondly, we investigate if the KS states generated by the VAE-KS can reproduce the charge
density on its own. We pass all occupied states of a material to VAE-KS and obtain the re-
constructed KS state ϕ′

nk(r), then all reconstructed occupied states are summed to form the
reconstructed charge density as follow:

ρ′(r) =

occ∑
n,k

|ϕ′
nk(r)| (9)

Intriguingly, even the VAE-KS performance of R2 = 0.99 on the KS states in test set is 0.92,
the reconstructed charge density by summing all occupied states across materials in the test
set achieves a high R2 = 0.99 compared against to the original charge density (We believe this
might be attributed to cancellation of error). Therefore, the VAE, which is only trained with
individual KS states, can also perform well in reproducing the ground state density.

Furthermore, We also check if the total charge is preserved before and after VAE. Sup-
plementary Fig. 11 displays a histogram of the ratio of the charge number reconstructed by
VAE-charge to the original charge density across the test/validation sets. The mean absolute
percentage error of reconstructed KS norm is 3%. This demonstrates that the VAE-charge can
effectively preserve the meaningful physical quantity, charge number, even when reconstructed
from a low-dimensional latent space.
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Supplementary Figure 11: The histogram of the norm of charge density of 61 materials
reconstructed by VAE over test set. The mean absolute percentage error of reconstructed KS
norm is 3%. Source data are provided as a Source Data file.

Lastly, to verify that the degeneracies at high-symmetry points are properly respected, we
identified 663 pairs of degenerate states (a total of 1326 states) with threshold of 0.1 meV across
302 materials. We then used the trained model to predict their GW energies, resulting in a
MAE of 0.11 eV, consistent with the model’s performance on the test set. As shown in the
Supplementary Fig. 12, we plotted the histogram of the energy difference E1 − E2 between the
two degenerate states predicted by our model. The mean energy difference is 0.04 eV (R2 = 0.99),
which is significantly smaller than the total MAE. Therefore, we conclude that the degeneracies
at high-symmetry points are well preserved.
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Supplementary Figure 12: The histogram of energy difference between 663 pair of degenerate
states. The mean energy difference is 0.03 eV with a high R2 = 0.99. Source data are provided
as a Source Data file.

Supplementary Note 4–Application to Ground State Prop-
erties

Firstly, we explore how our VAE algorithm can generate a general low-dimensional representation
of charge density, and how our model can be extended to other ground state physical quantities
relevant to DFT. The prediction of the total ground state energy is a good benchmark of our
model due to the explicit functional relation of E[ρ]. We train a simple regression model to
learn the nonlinear mapping from eθ(ρ) to the DFT total energy. Our dataset consists of 2670
2D materials, with each data point containing a DFT ground state charge density labeled with
its corresponding total energy. Our dataset is randomly split into 90% for the training set and
10% for the validation/test set. As shown in the Supplementary Fig. 13(a), the MAE of the
total energy is 1.5 eV for the test set and 0.7 eV for the training set, with a high a R2 of 0.91
and 0.97, respectively. The training dynamics with respect to number of epochs are illustrated
in Supplementary Fig. 13(b).
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Supplementary Figure 13: (a) Parity plot comparing the exact calculated values (x-axis)
to the ML predicted values (y-axis) of the DFT total energies for individual material. Blue
(orange) dots represent training (test) sets. The training (test) set includes 2403 (267) states.
The MAE for the training set and test set are 0.7 and 1.5 eV respectively. (b) Training dynamics
of downstream NN for DFT total energies with respect to different number of epochs. The orange
(blue) lines represent test (training) R2. Source data are provided as a Source Data file.

In addition, unlike the GW self energy which has a closed form mapping relation, we still
perform non-linear regression on top of the latent space of individual KS states to predict
corresponding KS energies. As shown in Supplementary Fig. 14(a), we demonstrate that the
direct prediction of the DFT eigenvalues can achieve fairly high accuracy. Our dataset consists of
16,760 states, with 40% allocated to the test set and 60% to the training set. The regression MAE
over the test (train) set is 0.18(0.06) eV, as illustrated in the left figure below. As Supplementary
Fig. 14(b) shows, the MoS2 band structures for the first valence and conduction bands are
displayed. Even we split the dataset in term of states instead of materials, our model still exhibits
strong interpolation ability of DFT band predictions based on the KS state represebtations.

Supplementary Figure 14: (a) parity plot comparing the exact calculated values (x-axis) to
the ML predicted values (y-axis) of the DFT energies for the individual state. Blue (orange)
dots represent training (test) sets. The training set includes 10055 (6705) states The MAE for
the training set and test set are 0.06 and 0.18 eV respectively. (b) ML predicted DFT band
structures (green stars) and calculated PBE band structures (red dots) for monolayer MoS2.
Source data are provided as a Source Data file.
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Lastly, in addition to performing regression, we also evaluate the classification capabilities
of the VAE’s low-dimensional representation of charge density. Specifically, we aim to classify
whether a material is a metal or an insulator using this representation. To adapt the regression
model to a binary classifier, we replace the loss function with cross-entropy loss for training
the classification model. The dataset consists of 1006 materials, with 506 insulators and 500
conductors. We split the dataset into 80% for training and 20% for validation/testing. As
Supplementary Fig. 15, the ROC AUC score achieves a high value of 0.89, which is comparable
with previous ML model exclusively trained for metal/insulator classification[5].

Supplementary Figure 15: Receiver Operating Characteristic (ROC) curve for metal vs.
insulator classification using VAE charge density representation: The model achieves a high area
under the curve (AUC) value of 0.89, indicating strong performance in distinguishing between
metal and insulator states. Source data are provided as a Source Data file.

Therefore, we believe our algorithm provides a very general low-dimensional representation,
which can be widely applicable to the ground state density and other quantities relevant to DFT.

Supplementary Note 5–GW Calculation Details

In this study, we conduct ab initiomean-field calculations on 302 two-dimensional (2D) materials
employing DFT in the Perdew–Burke–Ernzerhof (PBE) approximation[6]. Subsequently, GW
calculations are performed, building on top of the DFT ground state wavefunctions. Both DFT
and GW calculations are executed using GPAW software package [7, 8]. Here, the average
vacuum region for the 302 2D materials is 14.78 Å(the average thickness of 302 materials is
3.41Å). There are 51 distinct chemical elements in our dateset.

For the supervised training for the GW prediction, we employ a cutoff energy of 400 eV for the
planewave components of the DFT wavefunction. An 80 eV cutoff for planewave components
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of the dielectric matrix and an average of 325 empty states is used to theoretically calculate
22,002 Σnk energies as supervised learning labels. GW corrections are calculated for 4 valence
and 4 conduction states near Fermi level for each material. A uniform k-grid of 6 × 6 × 1 is
used for each material, which is comparable with previous ML models for GW[9, 3], which
we use to benchmark the success of our model. Here, we note that our GW parameters are
somewhat underconverged. They are, however, sufficient for the proof of the validation of the
VAE representation for electronic structures, which is the main goal of this work.

Supplementary Note 6–Pseudobands Approximation

Constructing a ML model for GW prediction, which is both physics-informed and interpretable,
presents an additional challenge. The diagonal term of the GW self-energy Σnk depends not only
on |nk⟩, but also on all high energy empty bands (Eq. 1), which should all be fed to the neural
network model. As a result, despite the considerable dimension reduction of each individual
states through the VAE, the mapping from RNtrain×[(N+1)(p+1)] to the self-energy space RNtrain

is still challenging due to the substantial number of states N required for the GW calculation,
i.e. Ntrain ≪ (N + 1)× (p+ 1), where p+1 represents the collective input of the latent space of
KS states and its DFT energy.

In previous (non-ML) GW calculations, one way of compressing the empty states if through
the pseudobands technique [10, 11, 12, 13], in which the empty bands are divided into one low-
energy protected subspace and a series of pseudoband blocks, each of which combines bands with
comparable energies. The energies of each block are then replaced by a single average energy,
and for each k point, all |nk⟩ states in the block S are replaced by

∑S
n |nk⟩. In this way, each

pseudobands block is replaced by a nearly flat band, and at each k point, we have an effective,
unnormalized wave function. We refer to this com this band is known as a pseudoband. We note
that this process is not feature selection, as it has been shown that GW energies can be faithfully
reconstructed by passing the pseudoband states and the average energies to the usual formulae
for the GW self-energy. The information about the empty state dispersion relations near the
Fermi surface lost in the averaging process is expected to be compensated by including the charge
density into our model, which is also needed in standard Hybertsen-Louie Generalized Plasmon
Pole (HL-GPP) approaches to GW[14]. In this section, we briefly discuss why this seemingly
crude approximation works.

The expression of the zero-frequency dielectric matrix is

χGG′(q, ω = 0) =
∑
k

occ∑
n

emp∑
n′

Mnn′(k,q,G)M∗
nn′(k,q,G′)

2

Enk+q − En′k
, (10)

where
Mnn′(k,q,G) = ⟨nk+ q|ei(q+G)·r|n′k⟩ . (11)

When pseudobands is used, the high-energy terms in χGG′(q, ω = 0) are therefore replaced by
(P.B. means pseudobands)

χP.B. terms
GG′ (q, ω = 0) =

∑
k

P.B. blocks∑
S

2

Enk+q − ĒS

S∑
n′
1,n

′
2

occ∑
n

Mnn′
1
(k,q,G)M∗

nn′
2
(k,q,G′). (12)

To justify the pseudobands technique, it is sufficient to show that the unwanted n′
1 ̸= n′

2 cross
terms that do not appear in the definition of χ vanish after the summations over k and n.

Because the energies of states in each pseudobands block are comparable, in each pseudobands
block, the states share the same set of predominant G vectors. Thus, the states in pseudobands
block S can be written as

⟨r|n′k⟩ = 1√
V

N∑
i

cn′k(G
(i)
Sk)e

i(k+G
(i)
Sk)·r,

N∑
i

cn′
1k
(G

(i)
Sk)c

∗
n′
2k
(G

(i)
Sk) = δn′

1n
′
2
, (13)

and therefore

Mnn′(k,q,G) =

N∑
i

cn′k(G
(i)
Sk)c

∗
nk+q(G+G

(i)
Sk). (14)
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The pseudobands approximation of the diagonal χGG components of the polarizability is pro-
portional to

occ∑
n

Mnn′
1
(k,q,G)M∗

nn′
2
(k,q,G)

=

N∑
i,j

cn′
1k
(G

(i)
Sk)c

∗
n′
2k
(G

(j)
Sk)

occ∑
n

c∗nk+q(G+G
(i)
Sk)cnk+q(G+G

(j)
Sk)

∝
N∑
i,j

cn′
1k
(G

(i)
Sk)c

∗
n′
2k
(G

(j)
Sk)δij = δn′

1n
′
2
.

(15)

In the third step, we argue that the summation over the occupied states leads to an approximate,
non-normalized orthogonal relation, because the subspace spanned by the dominant G compo-
nents of the occupied states is expected to largely overlap with the subspace of the occupied
states, and therefore, although for i = j terms, the summation over occupied n is usually far
less than one, the fast oscillation of i ̸= j terms when n changes quickly brings the summation
to zero. Therefore, the unwanted non-diagonal terms in (12) can be ignored when G = G′.

For the G ̸= G′ terms we similarly have

occ∑
n

Mnn′
1
(k,q,G)M∗

nn′
2
(k,q,G′)

=

N∑
i,j

cn′
1k
(G

(i)
Sk)c

∗
n′
2k
(G

(j)
Sk)

occ∑
n

c∗nk+q(G+G
(i)
Sk)cnk+q(G

′ +G
(j)
Sk)

∝
N∑
i,j

cn′
1k
(G

(i)
Sk)c

∗
n′
2k
(G

(i)
Sk +G−G′).

(16)

Numerical experiments reveal that the unwanted n′
1 ̸= n′

2 terms in the G ̸= G′ components
in the above equation do not cancel each other; the summation over k however could eliminate
these terms. We note that the 1/(Ev−Ec) factor in (12) is approximately a constant as k varies,
and therefore the summation over k in (12) contains the following factor∑

k

cn′
1k
(G(i))c∗n′

2k
(G(j)) ∝

∑
k

e
iθn′

1k−iθn′
2k Nk→∞−→ δn′

1n
′
2
, (17)

where eiθnk is the random global phase factor introduced in the diagonalization process, which
changes much more rapidly than the G-dependence of cnk as k runs over the Brillouin zone
sampling, and therefore the summation in the equation above is proportional to the summation

of the highly oscillating e
i(θn′

1k−θn′
2k) factor, which vanishes when n′

1 ̸= n′
2. In conclusion,

the validity of the pseudobands technique for high-energy bands is well-justified for the whole
χGG′(q, ω = 0) because of the summation over k and/or n.

The analysis of pseudobands in sigma is more complicated because in the Coulomb hole part
of the GPP self-energy

⟨nk |ΣCH(E)|n′k⟩ = 1

2

∑
n′′

∑
qGG′

M∗
n′′n(k,−q,−G)Mn′′n′ (k,−q,−G′)

×
Ω2

GG′(q) (1− i tanϕGG′(q))

ω̃GG′(q) (E − En′′k−q − ω̃GG′(q))
v (q+G′) ,

(18)

where ΩGG′ , ω̃GG′ and ϕGG′ are quantities calculated from χGG′(q, ω = 0) and the momentum
space ground state density ρ(G). The right hand side contains complicated dependence on q,
G and G′. However, note that when n′′ is high and is within one of the pseudobands blocks,
typically the magnitudes of G and G′ are large enough to dominate v(q +G) = 4π/|q+G| 2,
and therefore the rapid variation of the random phase factor in |n′′k− q⟩ compared with the
relatively slow variance of second line of (18) as q runs over the Brillouin zone sampling again
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provides us with the opportunity to justify using pseudobands here: we have

⟨nk|Σhigh energy bands
CH (E)|n′k⟩ ∝

∑
G,G′

high energy bands∑
n′′

∑
q

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′),

(19)
and by applying the arguments in (17), the pseudobands estimation of the high-energy terms in
ΣCH is

⟨nk|ΣP.B. terms
CH (E)|n′k⟩ ∝

∑
G,G′

P.B. blocks∑
S

S∑
n′′
1 ,n

′′
2

∑
q

M∗
n′′
1 n

(k,−q,−G)Mn′′
2 n

′(k,−q,−G′)

∝
∑
q

|n′′
1k− q⟩ ⟨n′′

2k− q|
Nq→∞
∝ δn′′

1 n
′′
2
,

(20)

and the unwanted n′′
1 ̸= n′′

2 cross terms that do not appear in (19) again vanish.
The aforementioned fact that the random phase factor in DFT diagonalization ensures the

pseudobands technique can be further exploited by intentionally inserting random phase factors
before |nk⟩ states for a given k point and replacing a pseudobands block by several flat unnor-
malized bands, instead of just one such band; under such a scheme the size of pseudobands blocks
can be drastically increased, further improving the speed of the GW methodology. Moreover,
an empirical observation is that the valence bands can be pseudo-ized as well, and the protected
subspace can be very small, without any real damage to accuracy [13].

The above discussion shows that there exists a relatively simple and smooth mapping from
the protected bands, ground state density and pseudobands to the GW energies, which should
be learnable for modern neural networks. Specifically, we note that adding pseudobands into
the input data is not manual feature engineering, as the mapping from the protected bands,
ground state density and pseudobands to the GW energies is mathematically established. There
are however several further simplifications needed for a feasible machine learning model. Even
after the pseudobands procedure, there are still hundred of (protected and pseudo) bands; in
our preprocessing procedure, we tentatively eliminate the protected subspace and pseudo-ize
all bands, and also reduce the number of pseudobands subspaces to 3 for each material. We
also average pseudo-states in one pseudoband in the dimension of k to further reduce the size
of the input data, hoping that random phase factor cancellation mechanisms similar to what
is outlined above will ensure the validity of this procedure. Since the ground state electron
density in principle contains all information of the material, as shown by the foundation of
DFT [15], having the (compressed) ground state electron density as a part of the input to the
model compensates for the information loss.
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