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sequencing enables whole capsid tracking
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Gene therapies using recombinant adeno-associated virus
(AAV) vectors have demonstrated considerable clinical success
in the treatment of genetic disorders. Improved vectors with
favorable tropism profiles, decreased immunogenicity, and
enhanced manufacturability are poised to further improve the
state of gene therapies. Such vectors can be identified through
directed evolution, a process of subjecting a diverse capsid li-
brary to a selection pressure to identify individual variants
with a desired trait. Currently, libraries that involve changes
distributed throughout the AAV capsid coding region, such as
DNA family shuffled libraries, are largely characterized using
low-throughput Sanger sequencing of individual clones. Howev-
er, improvements in long-read sequencing technologies have
increased their applicability to capsid libraries and evaluation
of the selection process. Here, we explore the application of
Oxford Nanopore Technologies refined by a concatemeric
consensus method for initial library characterization and moni-
toring selection of a shuffled AAV capsid library. Furthermore,
we present AAVolve, a bioinformatic pipeline for processing
long-read data from AAV-directed evolution experiments. Our
approach allows high-throughput characterization of AAV cap-
sids in a streamlined manner, facilitating deeper insights into li-
brary composition through multiple rounds of selection, and
generalization through training of machine learning models.

INTRODUCTION
Adeno-associated virus (AAV) is a small, nonenveloped parvovirus
that is the basis of a popular vector system for in vivo gene therapy ap-
plications. In this recombinant system, the viral rep and cap genes are
replaced with a therapeutic cassette, with the therapeutic construct re-
taining only the viral inverted terminal repeats, which are required for
genome encapsidation. This genome, typically containing a gene of in-
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terest, is packaged in a naturally occurring or engineered AAV capsid.
The AAV capsid is largely responsible for targeting the vector to partic-
ular cell types and tissues through interactions with cellular receptors,1

making capsid tropism an important factor in therapeutic efficacy.
AAV vectors are the basis of several approved gene therapies that
mostly make use of naturally occurring AAV serotypes: AAV1 (Gly-
bera), AAV2 (Luxturna, Upstaza), AAV5 (Hemgenix, Roctavian),
AAV9 (Zolgensma), and Rh74 (Elevidys). The only exception to date
is the engineered AAV-rh74var (Beqvez). However, naturally occur-
ring AAV serotypes are often inefficient at targeting primary human
cell types, necessitating large doses of vector, which leads to the toxicity
and activation of the immune system, resulting in increased risk of
serious adverse events, including death.2–4 A requirement for high
doses also increases the manufacturing costs of AAV-based therapies.
Therefore, significant efforts have been directed at engineering AAV
capsids with improved tropism toward human cells and decreased
immunogenicity.5–7

Toward this end, several approaches have been used for the identifi-
cation of novel AAV capsids with improved properties. These include
isolation of naturally occurring AAV capsids and ancestral capsid
reconstruction; rational engineering based on structural information,
including domain swapping, targeted mutagenesis, and incorporation
of binders such as nanobodies into the capsid structure; and directed
ical Development Vol. 32 December 2024 ª 2024 The Author(s).
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Figure 1. Workflow for shuffling and selection,

sequencing, and analysis

After library creation by shuffling and the selection process,

successful capsids are isolated by PCR. ONT R2C2

sequencing is conducted by generating concatemers by

circularization with a splint and rolling circle amplification,

followed by ONT sequencing. Sequencing data are pro-

cessed by AAVolve on a per-read basis to generate

consensus sequences from concatemer reads, then

alignment to a reference, parental region identification, er-

ror correction, and counting.
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evolution-based approaches centered around the selection of large
capsid libraries for a desired trait such as ability to transduce a target
cell type.6 Several library types have been employed for the latter,
including error-prone PCR,8 peptide display,9,10 DNA family shuf-
fling,11–13 and more targeted randomizations such as variable region
shuffling libraries14 and SCHEMA-designed recombination.15,16

More recently, machine learning (ML) approaches trained on high-
throughput methods of characterizing directed evolution experiments
have also been applied to the challenge of capsid engineering.17 These
approaches typically require large datasets for training, and therefore
have largely been used with short-read (Illumina) datasets capturing
a small portion of the capsid that has been modified, such as in the
case of peptide display9,10 or mutations to a small region of the
capsid.18,19 However, training datasets using the whole capsid sequence
is more likely to capture relevant epistatic interactions between distant
regions of the capsid, particularly for library types where the modifica-
tions are distributed throughout the capsid such as DNA family shuf-
fling. Methods for characterization of the whole capsid sequence by
long-read sequencing would therefore not only be useful for deeper
sequencing of libraries that involve modifications throughout the
capsid, but could also be used as the basis for ML modeling to further
optimize specific capsid properties.

To this end, previous studies have used long-read sequencing technol-
ogies for AAV genome characterization. In several of these, the pri-
mary focus was on characterization of AAV vector genomes for struc-
tural variation and contaminants, either by Pacific Biosciences
(PacBio) Single-Molecule Real-Time sequencing (SMRT)20–22 or Ox-
ford Nanopore Technologies (ONT) sequencing.23 Since all variants
are potentially of interest for any given capsid, sequencing of capsid
libraries has a requirement for higher accuracy compared to vector
genome quality control. Thus far, few studies have used long-read
sequencing for investigating the selection of shuffled libraries,
although there are examples of PacBio SMRT sequencing for
2 Molecular Therapy: Methods & Clinical Development Vol. 32 December 2024
this application.24,25 Although both ONT and
PacBio sequencing have greatly increased in ac-
curacy over the past decade,26 the ability of
PacBio subreads to generate a consensus
sequence (High Fidelity [HiFi] reads) can result
in higher overall accuracy for this sequencing
technology, which is likely the reason for its adoption thus far. How-
ever, to our knowledge, the application of concatenation through roll-
ing circle amplification during sequencing library preparation has not
yet been explored for capsid library ONT sequencing. Importantly,
this method, also known as Rolling Circle Amplification to Concate-
meric Consensus (R2C2), can increase the accuracy of ONT reads
through consensus generation in a manner similar to that of PacBio
HiFi sequencing.27,28

Here, we apply R2C2 sequencing to the task of characterizing whole
capsid sequences in the context of directed evolution library
sequencing and describe a novel bioinformatic tool, AAVolve, for
analysis of these data. We first examine the accuracy of R2C2
sequencing in the AAV capsid context. We then use this method
for sequencing of a shuffled capsid library throughout selection, iden-
tifying top-performing capsids and parental contributions to the
library.

RESULTS
R2C2 concatemer generation, sequencing and analysis with

AAVolve

Given the limitations on throughput of Sanger sequencing-based
characterization of shuffled AAV capsid libraries, we explored an
ONT sequencing-based approach for AAV capsid libraries (Fig-
ure 1). Shuffled capsid libraries were amplified and circularized us-
ing a custom splint based on the previously published R2C2
method.27 The circularized pool of capsid sequences was used as a
template for rolling circle amplification, yielding linear DNA ampli-
cons from �5 to �60 kb in length, with the main peaks at 32–49 kb
(Figure S1). Purified standard PCR amplicons and concatenated
amplicons were submitted for ONT library preparation (LSK114)
and sequencing on a PromethION flow cell. The PCR amplicons
from the capsid library were also subjected to PacBio HiFi
sequencing, and n = 48 individual clones were submitted for Sanger
sequencing.
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To analyze concatemer reads generated using this method, we devel-
oped AAVolve, a pipeline for consensus generation, identification of
parental regions, error correction, and read counting. While we
focused primarily on ONT R2C2 data, this pipeline can also be
used for Sanger and PacBio datasets by specifying the appropriate
sequencing data type.

For R2C2 data, the first step in AAVolve is consensus generation with
C3POa,27 although this step can be skipped for Sanger or PacBio data-
sets. Next, parental AAV capsid gene sequences and consensus reads
are separately aligned to a reference parent, and variants are identified
on a per-read basis in each aligned read. In a shuffled capsid library,
all reads are expected to have variants that come from one or more
parental sequences, so non-parental variants, which are likely the
result of sequencing errors, are dropped to produce a “corrected”
set of variants. Furthermore, variants that have a frequency above a
user-specified threshold can be included in this corrected set, while
still removing low-frequency variants that likely result from
sequencing errors. This may be useful in the case where the capsid li-
brary generation method is expeted to have introduced variants not
originating from a parental sequence, for example, with the inclusion
of an error-prone PCR step.

Following variant identification, AAVolve initially identifies the most
likely parent at each position by comparing the parental variants with
the observed variants in each read. Given that reassembly during
AAV capsid shuffling requires short regions of homology between
adjacent fragments, during this step variants within a user-specified
distance (typically a few base pairs) can be grouped and considered
together, and the parent with the fewest different variants is assigned
to the group. The number of tolerated differences between parents
and reads can be adjusted by the user to allow for the differences in
error rates for different sequencing technologies. If no parents have
fewer differences than the specified number, the read is discarded.
If a group of variants could originate from multiple different parents,
all possible parents are considered as the origin and used at this stage.

The parents assigned at each position are then revised, considering
neighboring variants, by assuming the fewest possible recombination
events occurred. This step uses a similar approach to Xover29 and
SALANTO,30 extended for larger datasets through the use of refer-
ence-based alignment: from the start of the read, the longest uninter-
rupted run of variants from the same parent(s) are chosen as the most
likely explanation for those variants, until the point where a recombi-
nation must have occurred because the current most likely parent(s)
are not possible.

Finally, error-corrected versions of each read are generated by starting
with the reference and replacing the reference sequence with the
variant sequence at each position where parental variants exist. Since
only parental variants (and possibly a small number of high-fre-
quency non-parental variants) are considered, this removes likely
sequencing errors that occur in regions of homology between the par-
ents. Distinct reads are then counted at both the nucleotide and
Molecular T
amino acid levels. AAVolve also produces a hypertext markup lan-
guage (html) report detailing the number of reads at each stage of
processing, the parental composition of the prevalent sequences in
the capsid library, and a distance matrix of those most prevalent
sequences.

ONT R2C2 sequencing error analysis

We next examined the error rate of R2C2 sequencing in the context of
AAV capsid libraries by preparing a sequencing library from the
AAV2 cap gene (Figure 2). After processing with C3POa, reads
were separated by the number of repeats used to generate consensus
reads, and each set of consensus reads was aligned to the AAV2 refer-
ence (Figure 2A). As is typical of ONT R2C2 data, consensus reads
generated from the few repeats contained a larger number of
sequencing errors, and the error rate decreased with the number of
repeats in the consensus read. The probability of error-free
sequencing was quantified by calculating the median per-base accu-
racy, which increased swiftly from 0.978 for reads with no repeats
(equivalent to non-R2C2 data) to 0.998 for reads with three repeats,
and then more slowly to 1.000 for reads with more than 10 repeats
(Figure 2B). The median per-base error rate was also calculated indi-
vidually for insertions, substitutions, and deletions, which were simi-
larly all low for consensus reads with more than three repeats (Fig-
ure 2C). The most commonly represented consensus reads in this
dataset had only one repeat (35% of the reads), and 27.9% of the reads
had three or more repeats (Figure 2D). Overall, the lowest error rate
was for consensus reads with three or more repeats, making this
sequencing approach promising for the characterization of AAV
capsid shuffled libraries.

Shuffled library selection

We next generated a shuffled capsid library using the parental se-
quences AAV2-N496D,31 AAV3b, AAV8, and AAV9. Assuming
that parental sequences must recombine in regions of homology be-
tween the four parents, there were 1.32 � 10165 possible sequences in
this shuffled library, although the actual number of unique sequences
was limited to �107–108 by a combination of factors, including li-
brary cloning and bacterial transformation restrictions. We per-
formed two selections with the shuffled library in human hepatocytes
in vivo using the xenografted Fah�/� Rag2�/� Il2rg�/� (FRG)32

mouse model of human liver: one selection proceeded for five rounds
in total, and another proceeded for one round. R2C2 libraries were
prepared at the packaging stage, and after one (r1) and five rounds
(r5) of selection, and analyzed with AAVolve. In total, we sampled
6,608,269, 3,693,976, and 2,249,965 reads from at the packaging, r1,
and r5 stages, respectively, and after processing with AAVolve, re-
tained 911,631 (13.8%), 613,756 (16.6%), and 315,647 (14.0%) reads
after removing those with too few repeats, or did not cover all possible
parental variants, or where a parental variant could not be identified
in at least one position where variation occurred in the read
(Table S1).

Parental sequences and consensus reads from each selection stage
were aligned to AAV2-N496D, with variants in each read inherited
herapy: Methods & Clinical Development Vol. 32 December 2024 3
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Figure 2. Number of repeats per read influences the error rate of R2C2 sequencing

(A) Consensus reads from an AAV2 cap gene library, aligned to AAV2. Reads are separated by number of repeats used to generate the consensus sequences, where reads

with zero repeats are a single instance of AAV2 cap, reads with one repeat contain two instances, and so on. Vertical purple bars indicate insertions, horizontal black lines

indicate deletions, and colored bars (blue, red, orange, green) represent substitutions. (B) Median per-base accuracy for consensus reads, as a function of number of repeats.

(C) Median per-base occurrences of substitutions, insertions and deletions, as a function of number of repeats. (D) Number of repeats observed in concatenated reads,

expressed as a fraction of the library total.
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from each parent being clearly visible and little apparent noise (Fig-
ure 3A). AAVolve identified the most likely parental sequences for
each unique AAV capsid in the sequencing data, along with their
counts, and the distribution of likely breakpoints in the library
(Figures 3B–3D). The results indicated that the packaged library
had relatively high diversity, with little recombination between posi-
tions 1,287 and 2,003. The lack of recombination was likely due to
relatively low homology between the four parents in this region,
with more variation evident in the alignment (Figure 3A, top).
Sequence diversity was not substantially reduced for the r1 library,
but the r5 library showed a clear bias toward particular parents across
the capsid sequence: AAV2-N496D in nucleotide positions 40–389,
AAV9 in positions 402–782, and AAV2-N496D in positions 782 on-
ward, with contributions from AAV3b and AAV8 in smaller regions
(Figures 3B–3D, center panels). Consistent with selection in human
hepatocytes, AAV2-N496D contributed most of the VP3 region of
the most prevalent sequences, including several residues important
for modulating heparan sulfate proteoglycan-binding affinity that
determine in vivo liver tropism. These residues include the N496D
mutation from AAV2-N496D,31 as well as R585 and R588.33 This
predominant pattern of parental contributions was also reflected in
the distribution of breakpoints across all unique sequences; inferred
recombination events between parents occurred at lower frequencies
along most of the capsid gene sequences in the packaging and r1 li-
braries. In contrast, the r5 library had a large proportion of recombi-
nation events at few sites, and between 60% and 80% of the sequences
had breakpoints at six positions (positions 402, 782, 809, 872, 953,
4 Molecular Therapy: Methods & Clinical Development Vol. 32 Decemb
and 2,141; Figures 3B–3D, bottom panels). This reduction in diversity
was also evident in distance matrices for the top 1,000 sequences, with
higher distances observed in the packaging and r1 libraries and lower
distances in the r5 library (Figures 3E–3G). The empirical cumulative
distribution function (ECDF) for the normalized counts for each
unique sequence in the three libraries also showed a skewing toward
fewer sequences with higher counts at each stage of the selection (Fig-
ure 3H), consistent with the appearance of bias toward highly preva-
lent sequences with the progression of the selection. Our approach
also allows tracking of individual sequences through the selection
process, and the results showed an increase in prevalence for some
AAV capsids that could successfully transduce the human liver and
a decrease in the frequency of other less functional capsids (Figures
3I and 3J). Overall, these results are consistent with the selection pro-
cess decreasing the variability in the library as more rounds are con-
ducted, with a convergence toward successful sequences.

Comparison with PacBio SMRT and Sanger sequencing

To compare the data quality obtained with ONT R2C2 sequencing
with other sequencing technologies, we also used PacBio SMRT
HiFi sequencing to characterize the selected library after five rounds
of selection. For comparison, we also sequenced 48 individual AAV
clones with Sanger sequencing, and all datasets were processed with
AAVolve (Figure 4). For the PacBio HiFi and Sanger datasets we ob-
tained 113,581 and 48 total reads, respectively (in the case of PacBio,
this is a count of zero mode waveguides), and retained 42,412 (37.3%)
and 44 (91.7%) total sequences after processing with AAVolve
er 2024
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Figure 3. Characterization of a shuffled AAV2-N496D, AAV3b, AAV8, and AAV9 capsid library with R2C2 sequencing and AAVolve

(A) Alignment of parental sequences (top) and consensus reads at three stages of selection (packaged vector, after one round and after five rounds). Variants relative to the

AAV2-N496D reference are represented by colored bars (green, red, blue, orange) in each read, with variants in the library inherited from one of the four parents. (B–D) The

most prevalent 5,000 unique sequences in the packaged library (B), after one round of selection (C), and after five rounds of selection (D). In (B)–(D), each row in the center

represents one read, colored by most likely parent at each variant, and at left is the corresponding count for the corresponding read. (Bottom) Frequency of breakpoints

occurring at each position for the whole library; that is, the fraction of reads where there are two different parents at either side of each position in the reference. (E–G) Distance

(legend continued on next page)
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(Table S2). Both methods had higher numbers of retained reads than
ONT R2C2 sequencing (see section shuffled library selection above).

By processing the ONT R2C2 reads with only one repeat, we also ob-
tained data for ONT without rolling circle amplification, but very few
reads remained after processing with AAVolve (2,249 of 5,274,844;
0.043%; Table S2), so these data were not explored further. However,
this does indicate a large improvement for ONT R2C2 sequencing
over ONT data without rolling circle amplification.

Broadly, the pattern of parental contributions and breakpoint fre-
quencies was similar for all three sequencing technologies (Figures
4A and 4B; compare with Figure 3D). All three sequencing libraries
showed low sequence variability, with most of the top unique se-
quences having similar contributions from each parent and a few
high-frequency breakpoints, consistent with having passed through
several rounds of selection. We also examined the number of shared
sequences for the three sequencing technologies, either for all unique
amino acid sequences in each library (Figure 4C) or the top 20% by
count (Figure 4D). All but one of the capsid sequences observed in
the Sanger dataset were also observed in at least one of the higher-
throughput methods, with 17 capsid sequences shared between
both sequencing technologies and another five sequences shared
with ONT R2C2. Furthermore, all five capsid sequences in the top
20% of the Sanger dataset were observed in both the ONT R2C2
and PacBio HiFi datasets, indicating that these technologies were
able to identify the highest performing capsids in the library. We
also ranked each unique sequence that appeared in both libraries by
count, observing that the same sequences tended to be ranked highly
in both libraries (Figure 4E), with an overall Spearman correlation co-
efficient of 0.78. Overall, the most prevalent sequences in each dataset
were similar, indicating a high degree of concordance between the
Sanger, ONT R2C2, and PacBio HiFi.

DISCUSSION
Although shuffled AAV capsid libraries have been enormously useful
for developing capsid variants with improved properties, such as
tropism,12,13,24,34,35 with a few exceptions, they have largely been
characterized using low-throughput Sanger sequencing, likely due
to the historically low accuracies of long-read sequencing technolo-
gies.36 Here, we applied ONT R2C2 sequencing27 to the problem of
shuffled library characterization. We also developed an analysis
tool, AAVolve, capable of analyzing long-read sequencing data
from shuffled libraries. We examined the error rate of ONT R2C2
sequencing, finding that this method is highly accurate, particularly
for consensus reads with more than three repeats, and represents a
significant improvement over regular ONT sequencing. We also
matrices, reflecting fraction of aligned amino acids differing between pairs of sequences,

shown for the packaged library (E), after one round of selection (F), and after five round

library. (H) ECDF for the normalized counts for each of the three stages of selection:

normalized by dividing the count for each unique sequence by the total library size. (I an

library and after one round of selection (I), or between the packaged library and after five

sequencing libraries, colored by the fold change during selection. Counts were normal
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used this method to monitor a shuffled AAV capsid library during se-
lection in primary human hepatocytes in a xenografted mouse model
of human liver. As expected, we observed a clear decrease in library
diversity and convergence on a pattern of parental contributions as
the selection proceeded. For the final round of selection, we observed
similar results for three different sequencing technologies: PacBio
HiFi, ONT R2C2, and Sanger sequencing.

Use of long-read sequencing technologies, together with analysis with
AAVolve, enable a marked increase in the sequencing depth that is
practically achievable for libraries involving variation to disparate
parts of the AAV cap gene—for example AAV capsid shuffling,
loop-swap and SCHEMA libraries. Several groups, including ours,
have demonstrated success in AAV bioengineering through smaller
changes such as peptide insertions,37–39 which can be characterized
with highly accurate short-read Illumina sequencing. However, opti-
mization of the entire capsid sequence may be required for tasks
where large portions of the capsid are involved, such as engineering
immune avoidance where antibody binding sites map to several
different capsid regions.40–42 Use of high-throughput long-read
sequencing, compared to low-throughput Sanger sequencing, facili-
tates higher visibility into the selection process. Subsequent analysis
with AAVolve additionally allows monitoring of the parental regions
that may be implicated in the response to a particular selection pres-
sure and higher-confidence identification of the top-performing
capsids.

One potential use for long-read datasets obtained for whole capsid
gene sequences throughout a directed evolution experiment is the
possibility of training an ML model on comprehensive datasets. ML
modeling has already proved useful when applied to short-read
data, typically from mutagenesis of a small region of the capsid or a
peptide insertion.18,19,43–48 Long-read datasets could be equally useful
for several tasks in capsid bioengineering, such as predicting capsid
viability, tropism, and immune profile. The use of transfer learning
using large protein language models such as ESM-249 and ProtT5,50

which make use of a large pre-training dataset and provide input fea-
tures that can reflect evolutionary relationships between sequences,
may be beneficial. Using MLmodels in this way may also help explore
the exceptionally large sequence space for shuffled libraries, where
cloned libraries reflect only a small fraction of the sequences that
are possible.

Analysis with AAVolve is flexible and allows the user to tune analysis
to several different capsid library types and sequencing technologies.
Here, we demonstrated its use for several different long-read
sequencing technologies, including ONT R2C2, PacBio HiFi, and
for themost prevalent 1,000 unique sequences in each library. Distancematrices are

s of selection (G). Reads are arranged along each axis in order of prevalence in the

packaged vector, after one round, and after five rounds of selection. Counts were

d J) Change in normalized read count for individual capsids, between the packaged

rounds (J). Each line represents an individual sequence that was observed in both

ized by dividing the count for each unique sequence by the total library size.
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Figure 4. PacBio HiFi and Sanger sequencing of a shuffled AAV2-N496D, AAV3b, AAV8, and AAV9 capsid library after five rounds of selection

(A and B) Overview of sequencing data for PacBio HiFi (A) or Sanger (B) sequencing, showing counts (left) and assigned parents (top right) for the top 5,000 unique sequences

(A) or all clones (B), and the location and frequency of breakpoints for the whole dataset (bottom right). In (A) and (B), each row in the center represents one unique sequence,

colored bymost likely parent for each variant position, and at left is the corresponding count for that read. (Bottom) Frequency of breakpoints occurring at each position for the

whole library; that is, the fraction of reads where there are two different parents at either side of each position in the reference. (C and D) Venn diagrams showing the number of

shared sequences between the datasets for all unique sequences (C) or the unique sequences with counts in the top 20% for each dataset (D). (E) Correlation between ranks

for unique sequences in the PacBio HiFi and Nanopore R2C2 datasets. Unique sequences were ranked by their count, and only the ranks for unique sequences that

appeared in both datasets are shown.
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Sanger sequencing, for a shuffled library. However, AAVolve can also
be used with any sequencing technology where reads cover the whole
AAV sequence or particular sub-sequences of interest, although
alignments to the reference sequence using minimap2 may need to
be tuned for the particular error profile of the sequencing method
in question. Using sequencing types with higher error rates such as
ONT without rolling circle amplification may result in small pro-
cessed datasets because many reads will be excluded as a result of con-
taininig variants not matching any parental sequences. Higher error
rates in sequencing may be partially alleviated by the ability of AA-
Volve to group adjacent variants and identify the closest parent to
the group, although in practice, sequencing technologies with lower
error rates are likely to be the most useful. The ability to group vari-
ants may also mean data are also likely to be of higher quality where
libraries are composed of sections of sequence drawn from individual
parent sequences, such as shuffled, loop-swap, or SCHEMA libraries,
rather than isolated changes such as those from error-prone PCR.
However, AAVolve can be used for all the aforementioned library
Molecular T
types, either through specification of appropriate parental sequences,
or with one reference sequence by relaxing the removal of non-
parental variants by setting a low threshold for their inclusion.
More generally, AAVolve can also be used for non-AAV libraries
constructed using methods similar to those described above.

Given the flexibility of AAVolve, the choice of sequencing technology
may depend on a range of factors, such as cost, time required, and
accessibility. For more error-prone sequencing technologies such as
ONT and PacBio, it is highly advantageous to increase accuracy
through consensus generation, either using HiFi reads for PacBio
and using the R2C2 method for ONT. One limitation observed
here for ONT R2C2 sequencing compared to PacBio HiFi is the larger
number of consensus sequences generated from few repeats observed
in this study. This is likely due to a preference for sequencing shorter
fragments, because the most frequently observed reads had one repeat
(and therefore a length of �10 kb), but that the TapeStation analysis
of generated concatemers showed a peak at 30–50 kb. This is
herapy: Methods & Clinical Development Vol. 32 December 2024 7
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consistent with previous studies also observing a preference for
sequencing of smaller DNA fragments.51,52 ONT R2C2 sequencing
could be improved through a size-selection step to increase the rela-
tive proportion of longer concatemers in the sequencing library, such
as gel electrophoresis, or through optimization of rolling circle ampli-
fication. Another possibility for the improvement of ONT data is
improved basecalling, either through fine-tuning on AAV sequencing
data or the use of generic super-resolution models.53

Overall, long-read sequencing with ONT R2C2 and analysis with
AAVolve facilitate much deeper characterization of AAV capsid li-
braries than is possible with Sanger sequencing, allowing for more
detailed investigations of capsid library compositions before and dur-
ing the selection process, and enabling more comprehensive sequence
space exploration though ML.

MATERIALS AND METHODS
AAV capsid shuffled library generation

A replication competent (RC) shuffled AAV library was prepared as
previously described.54 AAV variants AAV2-N496D (which differs at
position 3,688–3,690 from GenBank: NC_001401.2), AAV3b (Gen-
Bank: AF028705.1), AAV8 (GenBank: AF513852.1), and AAV9
(GenBank: AY530579.1) were included in the shuffled library. A total
of n = 24 individual shuffled cap genes were used to confirm library
diversity by Sanger sequencing. Recombinant AAV libraries were
produced by co-transfection of adherent HEK293T cells (American
Type Culture Collection [ATCC] CRL-3126) with the prepared
plasmid library and a pAd5 helper plasmid55 at a 1:1 M ratio, as pre-
viously described.54

Library selection in xenografted mice

All animal care and experimental procedures were approved by
the joint Children’s Medical Research Institute and The Children’s
Hospital at Westmead Animal Care and Ethics Committee. An
established FRG32 mouse colony was used to breed animals for
xenografting, which were housed in individually ventilated cages,
with 8 mg/mL 2(2-nitro-4-trifluoro-methylbenzoyl)-1,3-cyclohexa-
nedione (NTBC) was supplemented in drinking water. FRG mice
were engrafted with human hepatocytes (Lonza Group) when the an-
imals were at 6–8 weeks of age, as previously described.32 Humanized
FRG (hFRG) mice were placed on 10% NTBC (0.8 mg/mL) prior to
transduction with AAVs, and were kept at this NTBC dose until har-
vest. Selection of shuffled libraries was performed as previously
described.56 Briefly, mice were randomly selected for transduction
by intravenous injection into the tail vein with 2 � 1010 vector ge-
nomes per animal. After 24 h, mice were administered human adeno-
virus 5 (8 mL, ATCCVR-5) intravenously. At 72 h post-hAd5 (human
adenovirus 5) administration, the chimeric livers were harvested, ho-
mogenized, and 0.3 g portions were snap-frozen in liquid nitrogen
and stored at �80�C until processing. RC AAV capsids were recov-
ered from liver samples by exposing tissues to three freeze-thaw cycles
and homogenization with a polypropylene pestle in two volumes of
PBS. Tissue lysates were heated for 30 min at 65�C to inactivate
hAd5, then spun at maximum speed in a table-top centrifuge at
8 Molecular Therapy: Methods & Clinical Development Vol. 32 Decemb
4�C. Subsequently, 200 mL lysate was used for the next round of selec-
tion, up to five rounds.

R2C2 library preparation and sequencing

Frozen liver samples were thawed, and lysates were prepared as
described above. AAV capsids were recovered from liver lysate by
PCR (primers E5: 50-GACCAAAGTTCAACTGAAACG-30 and E3:
50-TGTGGATTTGGATGACTGC-30). The DNA splint for circulari-
zation (50- ATCAATAAACCGTTTAATTCGTTTCAGTTGAACTT
TGGTCATABDHVBTATATBDHVBATCACTACTTAGTTTTTT
GATATGTGGATTTGGATGACTGCATCTTTGAACAATAAATG
ATT-30) was synthesized as a single-stranded oligonucleotide, then
amplified and rendered double-stranded by PCR (primers splint_F:
50- ATCAATAAACCGTTTAATTCGTTTCAGTTGAAC-30 and
splint_R: 50- AATCATTTATTGTTCAAAGATGCAGTCATCC-30).
The AAV capsid PCR product was circularized by Gibson Assembly
using 357 and 185 ng of gel-purified AAV capsid and splint, respec-
tively, with 2�NEBuilder HiFi DNA Assembly Master Mix (NEB) at
50�C for 60 min. Linear DNA was digested by the addition of 60 U
Exonuclease I (NEB), 300 U Exonuclease III (NEB), and 15 U
Lambda Exonuclease (NEB), which were incubated at 37�C for 6 h,
then inactivated at 80�C for 20 min. DNA was purified with SPRI
beads (AMPure XP) at a 1.8:1 ratio. Rolling circle amplification was
catalyzed with 10 U of phi29 DNA polymerase (NEB) using random
hexamer primers at 30�C for 8 h, then heat inactivated for 10 min at
65�C. Concatemeric DNA was purified by the addition of SPRI beads
(1:1 ratio) and de-branched by incubation with 50 U T7 endonuclease
at 37�C for 2 h before elution. Some samples were subjected to a
further size selection step by gel electrophoresis on a 0.75% (w/v)
agarose gel (SeaKem GTG Agarose, Lonza), with fragments >15 kb
excised and purified using the Zymogen Gel DNA Recovery Kit
(Zymogen). Sequencing libraries were prepared using the Ligation
Sequencing kit V14 (ONT), with barcoding using the Native
Barcoding kit V14 (ONT). Fragment sizes were verified by
TapeStation (Agilent) using a genomic DNA TapeScreen (Agilent),
and then sequenced on a PromethION (R10.4.1, ONT) flow cell for
72 h. Basecalling used the Dorado Basecall Server (7.1.4 +
d7df870c0), with the high-accuracy model.

SMRT HiFi sequencing

For SMRT HiFi sequencing, PCR amplicons were prepared with
the E5 and E3 primers from liver lysates as described above.
Sequencing was conducted by Azenta Biosciences on a Sequel II
instrument. Following basecalling, consensus reads were generated
using ccs from smrtlink 8.0.0.80502 with a minimum length of
2,000 bp, a maximum length of 2,700 bp, and minimum passes
of 5�.

Single capsid clone analysis by sanger sequencing

Individual analysis of capsid clones in the shuffled libraries was per-
formed as previously described.54 Briefly, clones were picked from
plated library preparations, plasmid DNA was extracted using the
QIAprep Spin Miniprep Kit (QIAGEN), and the capsid gene was
Sanger sequenced by Garvan Molecular Genetics using the E5 and
er 2024
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E3 primers for capsid amplification (see R2C2 library preparation and
sequencing above).

AAVolve

AAVolve was written as a snakemake57 pipeline, which coordinates
several Python scripts and third-party tools. Dependencies are supplied
in docker containers, which can be used within the snakemake work-
flow with the Apptainer/Singularity58 software deployment method.
All Python scripts have unit tests, which are run automatically with pyt-
est through github actions. Input files are specified either on the com-
mand line or in a text file (comma-separated value format). For R2C2
data, C3POa (version 3.1)27 is first used to generate consensus reads;
this step is skipped for other sequencing types. Both (consensus) reads
and parental sequences are then aligned to one of the parental se-
quences (either from a user-provided fasta file or the first sequence
in the user-provided fasta file containing all parental sequences) using
minimap2 (version 2.28).59 A Python script identifies variants in each
read relative to the reference sequence, discarding any reads that do not
cover the full reference. The frequencies for each variant observed in
the library are computed. Variants are also identified using the
alignment of parental sequences, and these are used to remove any
non-parental variants from the set of read variants; any high-frequency
variants (above a user-defined threshold) not originating from any
parental sequence can be optionally included if they are of interest.

The most likely parent at each variant position is initially identified by
comparing the parental and read variants. During this process, the
variants can be considered individually or grouped to consider vari-
ants within a user-specified distance of one another in the reference
together. If individual, then all possible parents at each position are
assigned to that position; if the variant differs from all parents, then
the read is discarded. For groups, the number of variants differing
from each of the parents is counted. This number is compared against
a user-specified threshold for the proportion of variants that can
differ from any parent, and parents with a number below the
threshold are assigned to all variants in the group.

After initial assignment, parents are re-assigned based on neighboring
variants. Starting at the first variant of the read, a set is created with all
possible parents, and the intersection of this set with the parents
possible at the next variant position is computed. If the intersection
is an empty set, we assume that a recombination must have occurred,
and the contents of the set at the previous position are assigned to all
variants since the last recombination. If the intersection is non-empty,
then we continue to the next position and repeat the intersection.

Finally, reads are error corrected by assuming that all variants at non-
parental positions originated from sequencing errors and applying
the appropriate sequence for each assigned parent to the reference
sequence. Unique reads are then counted at both the nucleotide
and amino acid levels.

AAVolve provides a html report for each sequencing library, which in-
cludes the number of reads at each stage of processing and the number
Molecular T
of distinct capsids observed. The report also includes information about
the contribution of each parent to the most frequent sequences in the
library. It additionally includes plots of parental contributions the top
sequences, as well as frequencies of each parent and breakpoints at
eachposition for thewhole library. It also includes heatmaps of the pair-
wise distances between the top 1,000 sequences at the amino acid and
nucleotide levels (computed using Biopython [version 1.83] after amul-
tiple sequence alignment with mafft [version 7.520]).60 The compo-
nents of the report are generated using a Jupyter notebook61 and
rendered into html using papermill (version 2.5) and Quarto
(version 1.4).62

Sequencing data from the AAV2 capsid and shuffled AAV2-N496D,
AAV3b, AAV8, and AAV9 library were analyzed with AAVolve, us-
ing AAV2 as the reference parent (or AAV2-N496D in the case of the
shuffled library), not including non-parental variants, grouping vari-
ants within 1 bp of one another, and with a threshold of 0.2 for the
maximum fraction of grouped variants that can differ from a parent.
For the AAV2 dataset, error rates were calculated from minimap2
(version 2.28)59 alignments using a Python script. Reads were filtered
by number of repeats using a Python script, and visualized with the
Integrative Genomics Viewer (version 2.17).63 Plots were generated
using AAVolve outputs with R (version 4.2).64 AAVolve is open-
source software, and all code and documentation are available under
a GPL-3.0 license at https://github.com/szsctt/aavolve_data.

DATA AND CODE AVAILABILITY
Code for AAVolve is available on github: https://github.com/szsctt/aavolve. Code to repro-
duce analyses is available ongithub: https://github.com/szsctt/aavolve_data. Sequencing data
are available from the Sequence Read Archive: PRJNA1127255.
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Figure S1: Concatenated sequence sizes after rolling circle amplification. Concatenated 

sequence sizes were assessed by TapeStation using a gDNA TapeScreen (A).  A range of 

fragment sizes were observed, with peaks at 32 kb (B) and 50 kb (C). 

 

Table S1: Read counts at each stage of processing for nanopore R2C2 sequencing of a 

shuffled library throughout selection. 

Selection 

round Raw Consensus 

Filtered 

consensus 

Filtered by 

reference 

coverage 

Reads with 

identified 

parents 

Distinct 

amino 

acids 

Distinct 

nucleotides 

packaged 6608269 4661647 1828943 1304081 911631 790877 835120 

round 1 3693976 2562420 1249968 849257 613756 435364 508164 

round 5 2249965 1485856 431377 415711 315647 13069 60135 

 

 

Table S2: Read counts for sequencing technologies used at round 5 of selection (see Table 

S1 for ONT R2C2 

Sequencing 

technology Raw Consensus 

Filtered 

consensus 

Filtered 

by 

reference 

coverage 

Reads 

with 

identified 

parents 

Distinct 

amino 

acids 

Distinct 

nucleotides 

Nanopore 5274844 NA NA 2833705 2249 755 2107 



 3 

Sanger 48 NA NA 48 44 23 27 

PacBio 113581 NA 67971 64926 42412 2094 8749 
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