Impact of genetic alterations on central nervous system progression of primary vitreoretinal lymphoma

Kota Yoshifuji,^{1*} Daichi Sadato,^{2*} Takashi Toya,³ Yotaro Motomura,¹ Chizuko Hirama,² Hiroshi Takase,⁴ Kouhei Yamamoto,⁵ Yuka Harada,⁶ Takehiko Mori¹ and Toshikage Nagao¹

¹Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU); ²Clinical Research Support Center, Tokyo Metropolitan Komagome Hospital; ³Hematology Division, Tokyo Metropolitan Komagome Hospital; ⁴Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU); ⁵Department of Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University and ⁶Clinical Laboratory, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan

*KYo and DS contributed equally as first authors.

Correspondence: K. Yoshifuji yoshhema@tmd.ac.jp

Received: Accepted: Early view: January 1, 2024. May 24, 2024. June 6, 2024.

https://doi.org/10.3324/haematol.2023.284953

©2024 Ferrata Storti Foundation Published under a CC BY-NC license 座 👀

Supplementary data

Supplemental Method

Treatment for the patients

All patients underwent initial treatment with weekly intravitreal MTX injections (400 μ g/100 μ L) in the affected eyes until the lesions resolved. Thereafter, systemic HD-MTX (3.5 g/m2 every other week for a total of five cycles) was administered to 20/36 patients, and the remainder were carefully observed without any additional chemotherapy, according to the decision of the physician. If the treatment was not tolerated, it was discontinued at the discretion of the physician.

Flow cytometry analysis

The infiltrating cells were isolated from the vitreous humor and obtained for flow cytometry. The surface expression of B-cell markers (CD19 and CD20), T-cell markers (CD3, CD4, CD5, and CD8), and κ and λ light chains were examined. Using the criteria suggested by Levy et al.¹, we defined a monoclonal κ population as one where the κ/λ ratio was 3:1 or greater, and monoclonal λ population as one that had a λ/κ ratio in excess of 2:1.

PCR analysis of IGH rearrangement

PCR analysis of IGH rearrangement was outsourced to LSI Medience Corporation (Tokyo, Japan).

Cytokine measurement

The IL-6 and IL-10 concentrations in a vitreous humor were measured at our laboratory and SRL Corporation (Tokyo, Japan). In total, 50 μ L of vitreous supernatant from each patient was used for ELISA according to the given manufacturer instructions (Invitrogen, Camarillo, CA, USA).

Amplicon-based targeted sequencing

The custom gene panel of 107 genes frequently mutated in lymphoma, and PVRL was designed using Illumina Design Studio. Covered bases were 406,093 bp, and there were 3,044 (5–157 amplicons/gene)

designed panel amplicons. This custom gene panel was designed to cover all exons of each gene on genomic DNA. As a template, 10 ng DNA amplified the target genes. Libraries were synthesized using AmpliSeq Library Plus for Illumina (Illumina, San Diego, CA, USA). The libraries were analyzed using MiSeq Reagent Kit v2 (500 cycles) with MiSeq (Illumina) platform following the provided manufacturer instructions.

Whole exome sequencing

Genomic DNA capture, enrichment, and elution were performed using Agilent SureSelect Human V6 (Agilent Technologies, Santa Clara, CA) following protocols by the manufacturer. In total, 600 ng of each genomic DNA sample was used as bait. After ligation on adaptor oligonucleotides, tail repairing, and purification, libraries were quantified by qPCR to obtain an adequate DNA template for sequencing. Synthesized libraries were sequenced on the NovaSeq 6000 (Illumina) as 150 bp pair-ended reads. Sequencing was performed by Rhelixa (Tokyo, Japan).

Gene variant discovery

Fastq files from next-generation sequencing were cleaned with Trimmomatic,² and the results were aligned to the human reference genome, hg19, using Burrows–Wheeler Alignment (BWA)³. Qualimap⁴ was used to analyze coverages of mapped reads. Gene variants were detected using HaplotypeCaller included in the GATK tool⁵. Gene variants obtained from HaplotypeCaller were filtered with the parameters of quality/depth, mapping quality, and strand bias to exclude false-positive variants.⁶ Variants were annotated with information from the Refseq, 1000G, and Exac databases in Illumina VariantStudio 3.0 software (Illumina). Variants with a prevalence of >1% in each regional population were excluded. COSMIC and CLINVAR databases and previous genomics research papers (Table S1) were referred to judge whether the variants were pathogenic or not.

Detection of copy number alteration

Copy number alteration for each PVRL sample were analyzed using CNVkit⁷ with bam files generated by the mapping process of gene variant discovery. Consequently, the normalized coverage values of PVRL data were compared to that of uveitis cases as controls and gene copy numbers were obtained. During the

calculation process, the number of amplicons and the \log_2 value in control data (-5 or less) and spread of read depth (1 or more) were applied as a filter, resulting in copy number of read depth (20 or more) with low spread read depth gene regions. The \log_2 copy number of >0.25 was decided as gain and the \log_2 copy number less than -0.25 was considered as loss. CNA of *HIST1H1B*, *HIST1H1C*, *HIST1H1E*, *HIST1H4H*, and *SOCS1* were excluded from the analysis because the copy number variation between the samples was too large. In the annotation process, copy number gain of oncogene and loss of tumor suppressor gene were defined as pathogenic and incorporated into analysis. Genes with the gain of function mutations had oncogenic function were considered as oncogenes, and genes with the loss of function mutations contributed to tumorigenic pathway were considered as tumor suppressor genes (Table S1).

Gene	Mutation effect	Characteristics of mutations	Reference
ACTB	N.I.	Missense in N-terminal	Lohr et al ⁸ , Wang et al ⁹
APC	Loss of function	-	Zhang et al ¹⁰ , Schmitz et al ¹¹
ARID1A	Loss of function	-	Zhang et al ¹⁰ , Schmitz et al ¹¹
ARID2	Loss of function	-	Wang et al ⁹
AXINI	N.I.	-	Wang et al ⁹
ATM	Loss of function	_	Schmitz et al ¹¹
B2M	Loss of function	-	Challa-Malladi et al ¹² , Schmitz et al ¹¹
BCL10	N.I.	-	Morin et al ¹³ , Schmitz et al ¹¹
BCL2	Gain of function	-	Morin et al ¹³ , Wang et al ⁹
BCL6	N.I.	_	Morin et al ¹³ , Schmitz et al ¹¹
BCL7A	Loss of function	Missense in N-terminal	Schmitz et al ¹¹ , Baliñas-Gavira et al ¹⁴
BRCA1	Loss of function	_	Wang et al ⁹
BRAF	Gain of function	Missense in hotspot (e.g. V600)	Schmitz et al ¹¹
DTCI	T 66 /		Lee et al^{15} , Bonzheim et al^{16} ,
BIGI	Loss of function	Missense in N-terminal	Mlynarczyk et al ¹⁷
DTCO	T CC /		Lee et al ¹⁵ , Bonzheim et al, ¹⁶
BTG2	Loss of function	Missense in N-terminal	Wang et al ⁹ , Mlynarczyk et al ¹⁷
CACNAIC	N.I.	_	Lee et al ¹⁵
BTK	Loss of function	-	Lohr et al ⁸ , Schmitz et al ¹¹ , Hu et al ¹⁸
CCND3	Loss of function	Missense in C-terminal hotspot	Morin et al ¹³ , Schmitz et al ¹⁹ , Schmitz et al ¹¹
CD274	Gain of function	-	Kataoka et al ²⁰ , Schmitz et al ¹¹
CD58	Loss of function	-	Challa-Malladi et al ¹² , Schmitz et al ¹¹
CD70	Loss of function	-	Schmitz et al ¹¹
CD79A	Gain of function	Missense in immunoreceptor tyrosine-based activation motif	Davis et al ²¹ , Schmitz et al ¹¹
CD79B	Gain of function	Missense in immunoreceptor tyrosine-based activation motif (e.g. Y196)	Davis et al ²¹ , Bonzheim et al ¹⁶ , Wang et al ⁹
CDKN2A	Loss of function	-	Nayyar et al ²² , Wang et al ⁹
CDKN2B	Loss of function	-	Nayyar et al ²² , Wang et al ²¹
CIITA	Loss of function	-	Mottok et al ²³ , Wang et al ⁹
CREBBP	Loss of function	-	Bonzheim et al ¹⁶ , Wang et al ⁹
CSMD1	Loss of function	-	Escudero-Esparza et al ²⁴ , Lee et al ¹⁵
CXCR4	Gain of function	Nonsense in C-terminal hotspot (e.g. S342*)	Treon et al^{25} , Lee et al^{15}
DTX1	Loss of function	-	de Miranda et al ²⁶ , Lee et al ¹⁵
DUSP2	N.I.	-	Lee et al ¹⁵ , Wang et al ⁹
EHD1	N.I.	-	Lee et al ¹⁵
EP300	Loss of function	-	Schmitz et al ¹¹
ERBB4	Gain of function	-	Wang et al ⁹
ETS1	Loss of function	_	Morin et al ¹³ , Bonetti et al ²⁷ , Wang et al ⁹
ETV6	Loss of function	_	Bonzheim et al ¹⁶ , Wang et al ⁹
EZH2	Gain of function	-	Zhang et al ¹⁰ , Schmitz et al ¹¹
FAS	Loss of function	-	Grønbaek et al ²⁸ , Schmitz et al ¹¹
FAT1	Loss of function	_	Laginestra et al^{29} , Wang et al^9
FAT4	Loss of function	_	Cai et al ³⁰ , Lee et al ¹⁵
FBXW7	Loss of function		Wang et al ⁹

Table S1. Target genes included in the sequencing panel of 107 genes and the reference used for gene annotation

FLT3	Gain of function	Missense in thymidine kinase domain (e.g. D835)	Wang et al ⁹
FLT4	Gain of function	Missense in thymidine kinase domain	Liu et al ³¹ , Wang et al ⁹
FOXO1	Loss of function	Missense in phosphoinositide 3- kinase/AKT phosphorylation sites	Trinh et al ³² , Wang et al ⁹
FRY	Loss of function	-	Lee et al ¹⁵ , Mai et al ³³
GADD45B	N.I.	_	Wang et al ⁹
GNA13	Loss of function	-	Muppidi et al ³⁴ , Schmitz et al ¹¹
GRHPR	Loss of function	-	Lee et al ¹⁵ , Andrades et al ³⁵
HIST1H1B	Loss of function	-	Li et al 36 , Lee et al 15
<i>HIST1H1C</i>	Loss of function	-	Li et al 36 , Lee et al 15
<i>HIST1H1E</i>	Loss of function	-	Li et al 36 , Lee et al 15
HIST1H4H	Loss of function	-	Li et al ³⁶ , Lee et al ¹⁵
IGLL5	Loss of function	_	Bonzheim et al ¹⁶ , Lee et al ¹⁵
IKZF3	Loss of function	_	Wang et al ⁹
IDE (T CC /		Cherian et al 37 , Lee et al 15 ,
IRF4	Loss of function	Missense in DNA binding domain	Bonzheim et al ¹⁶ , Wang et al ⁹
IRF8	Loss of function	Missense in DNA binding domain	Reddy et al ³⁸ , Lee et al ¹⁵
ITPKR	Loss of function	_	Schmitz et al ¹¹
KI HI 14	Loss of function	_	Choi et al^{39} Lee et al^{15}
KLIILI4 KI HI 6	Loss of function		Schmitz et al ¹¹
KLIILO KMT2D	Loss of function		$I = e^{15} Wang et al^9$
	Loss of function	-	Let et al , wang et al 1^{15}
	N I	-	Lee et al
LRIGI MCL1	IN.I.	-	Lee et al ⁹
MCLI MED12	IN.I.	-	Wang et al ³⁸
MED12 MEE2D	IN.I.	-	Par et al ⁴⁰ Ware et al ⁹
MEF2B	IN.I.	-	Pon et al ¹² , wang et al
MALII	N.I.	-	Schmitz et all. Les et all5
MPEGI	Loss of function	-	Schmitz et al., Lee et al.
MUCIO	N.I.	-	
MIOR	Loss of function	-	Schmitz et al ¹¹
MYC	Gain of function	-	Wang et al?
MYD88	Gain of function	-	Lee et al ¹⁵ , Bonzheim et al ¹⁶ , Wang et al ⁹
NFKBI	Loss of function	-	Wang et al ²
NFI	Loss of function	-	Schmitz et al ¹¹
NFKBIA	Loss of function	-	Schmitz et al ¹¹ , Weniger et al ⁴¹
NFKBIE	Loss of function	-	Schmitz et al ¹¹ , Weniger et al ⁴¹
NFKBIZ	N.I.	-	Schmitz et al ¹¹
NOTCHI	Gain of function	-	Schmitz et al ¹¹
NOTCH2	Gain of function	-	Schmitz et al ¹¹
OSBPL10	N.I.	-	Dobashi et al 42 , Lee et al 15
OTOF	N.I.	-	Lee et al ¹⁵
PCDH15	N.I.	-	Lee et al ¹⁵
PAX5	Loss of function	-	Schmitz et al ¹¹ , Gu et al ⁴³
PIM1	Loss of function	-	Lee et al ¹⁵ , Bonzheim et al ¹⁶ , Wang et al ⁹
PLCG2	N.I.	-	Wang et al ⁹
PRDM1	Loss of function	-	Bonzheim et al ¹⁶ , Wang et al ⁹
RBMX	Loss of function	-	Schmitz et al ¹¹ , Zheng et al ⁴⁴
PTEN	Loss of function	-	Schmitz et al ¹¹
REL	N.I.	-	Schmitz et al ¹¹
RP1	N.I.	-	Lee et al ¹⁵
RUNX1	Loss of function	-	Wang et al ⁹
SETBP1	Gain of function	-	Wang et al ⁹

RHOA	Gain of function	-	Schmitz et al ¹¹
SGK1	Gain of function	-	Schmitz et al ¹¹
SOCS1	Loss of function	-	Schmitz et al ¹¹
SPEN	Loss of function	-	Reddy et al ⁴⁰ , Schmitz et al ¹¹
STAT3	Gain of function	Missense in SH2 domain (e.g. Y640F, D661Y)	Koskela et al ⁴⁵ , Schmitz et al ¹¹
STAT6	Gain of function	Missense in DNA binding domain (e.g. D419)	Yildiz et al ⁴⁶ , Schmitz et al ¹¹
TBL1XR1	Loss of function	Missense in WD domain	Venturutti et al ⁴⁷ , Bonzheim et al ¹⁶ , Wang et al ⁹
TCF3	Gain of function	-	Schmitz et al ¹¹
TET2	Loss of function	-	Schmitz et al ¹¹
TMSB4X	N.I.	-	Lee et al ¹⁵
TNFAIP3	Loss of function	-	Kato et al ⁴⁸ , Schmitz et al ¹¹
TNFRSF14	Loss of function	-	Schmitz et al ¹¹ , Wu et al ⁴⁹
TP53	Loss of function	-	Schmitz et al ¹¹ , Wang et al ⁹
UBALD2	N.I.	-	Lee et al ¹⁵
USH2A	N.I.	_	Lee et al ¹⁵
ZFP36L1	Loss of function	_	Reddy et al ³⁸ , Lee et al ¹⁵

N.I., Not identified. Details of references were listed in supplementary references.

Case	Gene	Mutation type	cDNA change	AA change	VAF (%)	Read depth
1	MYD88	Missense	c.794T>C	p.Leu265Pro	29.36	453
1	PIM1	Frameshift	c.644 680delAGCCGGTGCAAGATCTCTTC GACTTCATCACGGAAAG	p.Glu215GlyfsTer138	20.99	567
1	PIM1	Nonsense	c.691C>T	p.Gln231Ter	40.71	565
1	ETS1	Nonsense	c.1323C>G	p.Tyr441Ter	27.11	439
1	CD79B	Missense	c.590A>G	p.Tyr197Cys	27.89	882
1	BTG2	Missense	c.133G>T	p.Ala45Ser	14.31	1,139
10	TBL1XR1	Missense	c.1108G>T	p.Asp370Tyr	55.50	582
10	PIM1	Splice	c.513+1G>C		57.03	619
10	PRDM1	Splice	c.291G>C	p.Glu97Asp	58.21	1,029
10	PRDM1	Splice	c.291+1G>A		58.41	1,029
10	CDKN2A	Missense	c.247C>T	p.His83Tyr	64.08	710
10	ETV6	Splice	c.33+1G>A		71.48	519
10	CD79B	Missense	c.590A>G	p.Tyr197Cys	78.99	2,385
10	KLHL14	Nonsense	c.289C>T	p.Gln97Ter	44.37	978
10	IGLL5	Nonsense	c.64C>T	p.Gln22Ter	42.40	500
10	BTG2	Missense	c.142G>A	p.Glu48Lys	43.54	2,522
10	BTG2	Missense	c.157C>T	p.His53Tyr	35.65	3,669
10	BTG1	Missense	c.498G>A	p.Met166Ile	39.23	1,300
10	BTG1	Missense	c.398G>A	p.Ser133Asn	44.41	1,504
10	BTG1	Missense	c.208A>G	p.Ile70Val	40.31	2,079
10	BTG1	Missense	c.129C>A	p.Ser43Arg	46.29	283
12	MYD88	Missense	c.794T>C	p.Leu265Pro	28.17	1,260
12	PIM1	Frameshift	c.149_156delGCAACGCC	p.Arg50HisfsTer13	56.27	670
12	PIM1	Frameshift	c.276delG	p.Met92IlefsTer93	60.48	625
12	PIM1	Nonsense	c.676G>T	p.Glu226Ter	48.71	1,944
12	PIM1	Nonsense	c.720 748delGCAGGTGCTGGAGGCCGTGC GGCACTGCC	p.Trp240Ter	24.73	1,326
12	PRDM1	Frameshift	c.500 522delCTCCCCGGGAGCAAAACCTG GCT	p.Ser167CysfsTer14	34.95	495
12	ACTB	Missense	c.143G>A	p.Gly48Asp	26.49	1,797
12	ETV6	Nonsense	c.19C>T	p.Gln7Ter	30.12	601
12	ETV6	Missense	c.1172A>G	p.Tyr391Cys	23.27	709
12	BTG1	Nonsense	c.103C>T	p.Arg35Ter	37.11	256

Table S2. Detected pathogenic genetic mutations

12	KLHL14	Frameshift	c.625_635delCTGGTGGAGGA	p.Leu209CysfsTer47	34.28	878
12	KLHL14	Nonsense	c.271C>T	p.Gln91Ter	29.34	634
12	IGLL5	Splice	c.206+2T>A	-	24.32	6,187
12	BTG2	Missense	c.83G>A	p.Gly28Asp	26.39	2,876
12	BTG2	Missense	c.185G>C	p.Gly62Ala	25.24	2,524
12	BTG1	Missense	c.304C>T	p.Leu102Phe	31.11	270
12	BTG1	Missense	c.116C>T	p.Thr39Ile	36.33	256
22	MYD88	Missense	c.794T>C	p.Leu265Pro	31.92	639
22	TBL1XR1	Missense	c.941T>A	p.Val314Asp	37.48	643
22	HIST1H1B	Missense	c.392C>G	p.Ala131Gly	73.16	395
22	PIM1	Nonsense	c.652C>T	p.Gln218Ter	48.17	546
22	PRDM1	Splice	c.291G>C	p.Glu97Asp	74.72	542
22	CDKN2A	Missense	c.197A>G	p.His66Arg	85.45	55
22	PTEN	Frameshift	c.149 153dupTTGAT	p.Asp52LeufsTer4	27.35	1,104
22	MPEG1	Nonsense	c.271C>T	p.Gln91Ter	33.27	505
22	KMT2D	Nonsense	c.6229C>T	p.Gln2077Ter	38.25	1,336
22	CIITA	Nonsense	c.657C>A	p.Cys219Ter	36.02	1,180
22	CD79B	Missense	c.590A>C	p.Tyr197Ser	34.73	976
26	BTG2	Nonsense	c.16G>T	p.Gly6Ter	47.99	2,761
26	MYD88	Missense	c.794T>C	p.Leu265Pro	39.86	1,041
26	TBL1XR1	Missense	c.1099T>C	p.Cys367Arg	38.34	866
26	HIST1H1B	Frameshift	c.230 257delAGAAGAATAACAGCCGCATT AAGCTGGG	p.Glu77AlafsTer6	18.61	1,752
26	PIM1	Nonsense	c.387C>G	p.Tyr129Ter	51.70	853
26	PAX5	Splice	c.41 46+13delGGACAGGTAGGACCGCGAT		35.36	1,151
26	GRHPR	Frameshift	c.129_130delGG	p.Glu44AlafsTer48	15.02	486
26	GRHPR	Frameshift	c.129_130delGG	p.Glu44AlafsTer48	15.02	486
26	GRHPR	Frameshift	c.129_130delGG	p.Glu44AlafsTer48	15.02	486
26	MPEG1	Nonsense	c.1201G>T	p.Glu401Ter	29.63	1,441
26	MPEG1	Frameshift	c.1195_1196delAA	p.Lys399ValfsTer10	36.38	1,443
26	MPEG1	Frameshift	c.920delG	p.Gly307AlafsTer21	29.60	1,108
26	ETV6	Splice	c.33+1G>C		57.42	404
26	ETV6	Nonsense	c.427C>T	p.Gln143Ter	54.02	1,405
26	KMT2D	Nonsense	c.14152G>T	p.Glu4718Ter	43.40	1,719
26	CIITA	Nonsense	c.1099C>T	p.Gln367Ter	30.15	617
26	CIITA	Frameshift	c.3052delG	p.Glu1018LysfsTer32	62.17	423

26	BCL2	Missense	c.351C>G	p.Ser117Arg	24.56	2,895
26	BCL2	Missense	c.20C>T	p.Thr7Ile	27.50	1,491
26	GRHPR	Frameshift	c.129_130delGG	p.Glu44AlafsTer48	15.02	486
26	GRHPR	Frameshift	c.129_130delGG	p.Glu44AlafsTer48	15.02	486
26	BTG2	Missense	c.96G>T	p.Glu32Asp	26.12	2,726
31	MYD88	Missense	c.794T>C	p.Leu265Pro	34.50	774
31	TBL1XR1	Missense	c.1051G>A	p.Glu351Lys	32.16	398
31	TET2	Frameshift	c.4745_4746delCT	p.Ser1582PhefsTer31	12.00	175
31	PIM1	Frameshift	c.201 214delGCACAGCCCCGGCT	p.His68ArgfsTer101	73.88	157
31	PIM1	Splice	c.513+1G>A		30.50	400
31	PIM1	Nonsense	c.652C>T	p.Gln218Ter	56.61	295
31	PIM1	Nonsense	c.691C>T	p.Gln231Ter	33.74	492
31	PIM1	Frameshift	c.711_724delCTTCTTCTGGCAGG	p.Phe238AlafsTer57	38.14	527
21		Nonsense	c.103/G > 1	p.Glu3551er	24.07	008
21	EIVO	Splice	C.54-10-A		29.34	799 504
21	EIVO	Splice	C.1234-2A>G	C1 2071T	31.91	304
31	KM12D	Nonsense	c.11911C>1	p.Gln39/Ter	33.17	612
31	DIXI	Nonsense	C.229U>1	p.Gln / / Ier	32.22	239
31		Missense	c.5891>C	p. Tyr19/His	69.73	621
31	BIGI	Missense	C.34/G>A		41.39	428
31	BIGI	Missense	c.145G>A	p.Ala491hr	36.11	144
39	MYD88	Missense	c./941>C	p.Leu265Pro	39.48	423
39	KM12D	Nonsense	c.12844C>1	p.Arg42821er	34.29	35
49	MYD88	Missense	c./941>C	p.Leu265Pro	46.60	515
49	PIMI	Nonsense	c.69/G>1	p.Glu2331er	73.22	956
49	PIMI	Frameshift	c.737_740delTGCG	p.Val246GlyfsTer118	73.17	954
49	CD/9B	Missense	c.590A>C	p. lyr19/Ser	48.21	1,931
49	KLHL14	Nonsense	c./63C>1	p.Gln2551er	47.42	1,242
49	KLHL14	Nonsense	c./35G>A	p. Irp245 ler	42.69	1,225
49	BIGI	Missense	c.123C>G	p.Ser41Arg	42.96	135
49	BIGI	Missense	c.108G>C	p.Gln36His	42.96	135
52	PIMI	Nonsense	c.927C>G	p. Tyr 309 Ter	33.15	374
52	PRDMI	Nonsense	c.232C>T	p.Gln/81er	50.64	543
52	ACTB	Missense	c.21/C>T	p.His/3Tyr	68.18	396
52	CSMD1	Nonsense	c.9254G>A	p.Trp3085Ter	30.49	505
52	ETV6	Missense	c.1256T>G	p.Phe419Cys	33.62	687
52	BCL7A	Missense	c.91T>C	p.Trp31Arg	32.85	137

52	CREBBP	Missense	c.4463C>T	p.Pro1488Leu	48.61	1,473
52	CD79B	Missense	c.590A>G	p.Tyr197Cys	58.42	1,152
52	MYD88	Missense	c.794T>C	p.Leu265Pro	63.94	391
52	BTG2	Missense	c.273G>C	p.Gln91His	42.53	783
56	PIM1	Nonsense	c.382C>T	p.Gln128Ter	55.11	303
56	ACTB	Missense	c.137G>C	p.Gly46Ala	33.64	431
56	CD79B	Missense	c.590A>C	p.Tyr197Ser	34.32	1,110
56	MYD88	Missense	c.794T>C	p.Leu265Pro	43.04	381
56	BTG1	Nonsense	c.168G>A	p.Trp56Ter	57.03	626
56	BTG1	Missense	c.400A>T	p.Thr134Ser	50.12	431
56	BTG1	Missense	c.160C>T	p.His54Tyr	57.03	626
56	BTG1	Missense	c.8C>T	p.Pro3Leu	26.63	612
61	PIM1	Nonsense	c.387C>A	p.Tyr129Ter	48.55	1,584
61	PIM1	Splice	c.513+1G>A		38.99	418
61	KMT2D	Splice	c.10441-2A>G		66.88	2,962
61	IKZF3	Splice	c.826+1G>T		52.79	1,847
61	BTG2	Frameshift	c.100 124delAGGCTTAAGGTCTTCAGCGG GGCGC	p.Arg34SerfsTer59	41.52	2,271
61	MYD88	Missense	c.794T>C	p.Leu265Pro	94.93	592
61	BTG1	Missense	c.14A>T	p.Tyr5Phe	20.82	1,047
82	SOCS1	Frameshift	c.312_330delCGACAGCCGCCAGCGGAAC	p.Asp105AlafsTer7	23.05	564
87	LRP1B	Splice	c.1971-2A>T		47.28	1,303
87	TBL1XR1	Missense	c.920A>G	p.His307Arg	50.79	1,262
87	BCL7A	Splice	c.92+1G>A		41.35	237
87	CREBBP	Nonsense	c.5701C>T	p.Gln1901Ter	50.00	92
87	NF1	Nonsense	c.669G>A	p.Trp223Ter	45.19	135
87	BTG2	Missense	c.52G>A	p.Gly18Ser	53.98	2,321
87	BTG2	Missense	c.83G>A	p.Gly28Asp	53.83	2,326
87	BTG2	Missense	c.133G>T	p.Ala45Ser	53.64	2,321
87	BTG2	Missense	c.136C>T	p.Leu46Phe	40.55	2,328
97	PIM1	Nonsense	c.652C>T	p.Gln218Ter	80.38	581
97	PIM1	Nonsense	c.720G>A	p.Trp240Ter	41.68	715
97	PIM1	Nonsense	c.908G>A	p.Trp303Ter	41.99	443
97	PRDM1	Splice	c.291G>C	p.Glu97Asp	51.92	728
97	GRHPR	Splice	c.214+1G>A		41.75	103
97	GRHPR	Splice	c.287+1G>A		36.71	779
97	KMT2D	Frameshift	c.15891_15895dupGGTGC	p.His5299ArgfsTer8	37.80	463

97	CD79B	Missense	c.590A>G	p.Tyr197Cys	33.35	1,475
97	BTG2	Splice	c.142+1G>C		30.43	1,620
97	MYD88	Missense	c.794T>C	p.Leu265Pro	33.06	605
97	MPEG1	Nonsense	c.556C>T	p.Gln186Ter	29.55	714
114	FBXW7	Missense	c.1513C>T	p.Arg505Cys	47.07	2,422
114	IRF4	Missense	c.208C>G	p.Leu70Val	26.67	30
114	PIM1	Frameshift	c.245 249delGTCCC	p.Arg82LeufsTer90	60.07	263
114	PIM1	Frameshift	c.674 702delCGGAAAGGGGAGCCCTGCAA GAGGAGCTG	p.Thr225SerfsTer65	84.02	795
114	CSMD1	Splice	c.9814+1G>A		44.04	965
114	ETV6	Splice	c.12 33+24delTCCTGCTCAGTGTAGCATTA AGGTAAAAATCTTCTCCCCTCCTTCT		50.84	356
114	BCL7A	Missense	c.70G>A	p.Ala24Thr	46.23	106
114	KLHL14	Nonsense	c.562C>T	p.Gln188Ter	33.91	929
114	KLHL14	Nonsense	c.550C>T	p.Gln184Ter	42.80	736
114	MYD88	Missense	c.794T>C	p.Leu265Pro	45.77	627
114	MEF2B	Frameshift	c.396 399dupTGCA	p.Ala134CysfsTer21	46.81	94
114	BTG2	Missense	c.83G>A	p.Gly28Asp	32.40	1,923
114	BTG2	Missense	c.92G>A	p.Ser31Asn	32.40	1,923
126	FAT4	Nonsense	c.3754G>T	p.Gly1252Ter	36.60	806
126	FRY	Frameshift	c.2667delT	p.Leu890TrpfsTer30	20.41	49
132	ITPKB	Nonsense	c.691A>T	p.Lys231Ter	32.56	1,170
132	MYD88	Missense	c.794T>C	p.Leu265Pro	54.79	1,608
132	TBL1XR1	Missense	c.1184A>T	p.Tyr395Phe	44.29	736
132	ACTB	Missense	c.193C>T	p.Leu65Phe	28.15	959
132	GRHPR	Splice	c.214+1G>A		43.33	90
132	ETV6	Splice	c.33+1G>A		54.30	151
132	IRF8	Missense	c.197A>G	p.Lys66Arg	38.90	365
132	BTG2	Missense	c.83G>A	p.Gly28Asp	29.77	2,267
136	MYD88	Missense	c.794T>C	p.Leu265Pro	64.93	211
136	<i>HIST1H1E</i>	Missense	c.308G>A	p.Gly103Asp	22.31	130
136	IGLL5	Frameshift	c.32 41delAGACCCCTGA	p.Glu11GlyfsTer95	33.33	75
136	RBMX	Frameshift	c.1dupA	p.Met1?	36.17	47
136	KMT2D	Nonsense	c.2635G>T	p.Glu879Ter	38.58	127
136	BCL7A	Nonsense	c.92G>A	p.Trp31Ter	28.57	77
137	CD58	Nonsense	c.471C>G	p.Tyr157Ter	35.48	1,581
137	CD58	Nonsense	c.454C>T	p.Arg152Ter	38.45	1,597

137	ITPKB	Nonsense	c.622C>T	p.Gln208Ter	30.72	345
137	MYD88	Missense	c.794T>C	p.Leu265Pro	36.47	987
137	TBL1XR1	Missense	c.1200T>A	p.Ser400Arg	37.32	142
137	TBL1XR1	Missense	c.1124T>A	p.Ile375Lys	40.46	131
137	TBL1XR1	Missense	c.1123A>G	p.Ile375Val	40.46	131
137	PIM1	Nonsense	c.481G>T	p.Glu161Ter	38.11	677
137	CDKN2A	Nonsense	c.330G>A	p.Trp110Ter	36.89	862
137	BCL7A	Missense	c.86G>A	p.Arg29His	31.16	276
137	CIITA	Frameshift	c.3021delC	p.Ser1008GlnfsTer7	39.45	512
137	CD79B	Missense	c.589T>G	p.Tyr197Asp	34.08	1,247
137	GNA13	Nonsense	c.79C>T	p.Gln27Ter	27.96	651
139	MYD88	Missense	c.794T>C	p.Leu265Pro	54.98	1,346
139	PIM1	Nonsense	c.361G>T	p.Glu121Ter	39.10	693
139	PRDM1	Frameshift	c.485_486delTG	p.Val162GlufsTer26	81.73	197
139	ETV6	Splice	c.33+1G>C		83.65	159
139	CREBBP	Missense	c.4472A>C	p.Gln1491Pro	43.25	1,519
139	TP53	Missense	c.761T>A	p.Ile254Asn	82.95	733
139	CD79B	Missense	c.589T>G	p.Tyr197Asp	45.48	1,172
139	IGLL5	Frameshift	c.93_94delGG	p.Ala32HisfsTer59	91.19	590
139	BTG1	Missense	c.116C>T	p.Thr39Ile	46.44	239
144	MYD88	Missense	c.794T>C	p.Leu265Pro	34.62	1,352
144	PRDM1	Splice	c.291G>C	p.Glu97Asp	53.34	718
144	CD79B	Missense	c.590A>G	p.Tyr197Cys	32.83	1,185
144	KLHL14	Nonsense	c.289C>T	p.Gln97Ter	38.02	313
144	BTG1	Missense	c.17C>T	p.Thr6Ile	33.89	773
147	GRHPR	Splice	c.287+1G>A		22.31	1,013
147	ETV6	Splice	c.33+1delG		20.29	138
147	IGLL5	Frameshift	c.212delT	p.Leu71ArgfsTer38	31.77	1,432
147	MYD88	Missense	c.794T>C	p.Leu265Pro	31.90	1,279
147	MPEG1	Nonsense	c.2131C>T	p.Gln711Ter	17.74	248
173	CSMD1	Nonsense	c.585G>A	p.Trp195Ter	42.10	38
174	MYD88	Missense	c.794T>C	p.Leu265Pro	21.72	1,625
174	TBL1XR1	Missense	c.1100G>C	p.Cys367Ser	23.48	1,001
174	PRDM1	Splice	c.291G>A	c.291G>A(p.=)	27.79	662
174	PRDM1	Splice	c.291+1G>A		27.79	662
174	CDKN2A	Nonsense	c.329G>A	p.Trp110Ter	49.78	1,137
174	KMT2D	Nonsense	c.8050C>T	p.Gln2684Ter	25.77	2,716

174	ZFP36L1	Nonsense	c.567C>A	p.Cys189Ter	27.47	1,791
174	KLHL14	Nonsense	c.562C>T	p.Gln188Ter	35.16	2,076
179	NOTCH2	Nonsense	c.7090C>T	p.Gln2364Ter	55.59	1,423
179	BTG2	Frameshift	c.115_116insACTTAAGGTCTTCA	p.Ser39AsnfsTer67	29.44	1,155
179	BTG2	Frameshift	c.115 116insATTTAAGGTCTTCA	p.Ser39AsnfsTer67	20.61	1,155
179	CD79B	Missense	c.590A>C	p.Tyr197Ser	94.96	873
179	GNA13	Nonsense	c.111C>A	p.Cys37Ter	42.96	568
179	BTG2	Missense	c.83G>A	p.Gly28Asp	40.72	1,159
179	BTG2	Missense	c.121G>C	p.Ala41Pro	40.40	1,161
180	MYD88	Missense	c.794T>C	p.Leu265Pro	42.18	211
180	IRF4	Nonsense	c.178C>T	p.Gln60Ter	34.41	186
180	IRF4	Missense	c.208C>G	p.Leu70Val	94.69	113
180	CD79B	Missense	c.589T>G	p.Tyr197Asp	59.78	184
180	KMT2D	Nonsense	c.12253C>T	p.Gln4085Ter	42.86	252
180	PIM1	Splice	c.355+1G>C		96.80	437
180	ETV6	Splice	c.33+1G>C		54.95	202
180	ETV6	Splice	c.33+1delG		37.62	202
182	GNA13	Splice	c.283+1G>A		25.63	355
184	MYD88	Missense	c.794T>C	p.Leu265Pro	38.05	1,201
184	TBL1XR1	Missense	c.971C>T	p.Ser324Phe	78.37	1,946
184	PIM1	Splice	c.355+1G>A		39.38	678
184	PIM1	Nonsense	c.432C>A	p.Tyr144Ter	66.80	253
184	PIM1	Frameshift	c.704_711delCCCGCAGC	p.Ala235ValfsTer62	23.55	1,622
184	GRHPR	Splice	c.215-9_217delGCACAACAGGGG		44.26	1,803
184	GRHPR	Frameshift	c.220 221delAA	p.Asn74SerfsTer18	44.36	1,799
184	MPEG1	Nonsense	c.1687C>T	p.Gln563Ter	39.23	989
184	ETV6	Splice	c.31_33+8delAAGGTAAAAAT		80.45	133
184	ZFP36L1	Frameshift	c.750delG	p.Glu250AspfsTer52	29.03	31
184	IGLL5	Frameshift	c.158_179delGAGCCTCAGTTGGAAGCAGC CG	p.Gly53AspfsTer49	62.22	532
184	BTG2	Missense	c.20C>T	p.Thr7Ile	59.84	1,367
184	BTG2	Missense	c.277C>T	p.His93Tyr	37.53	1,327
184	BTG1	Missense	c.197G>A	p.Gly66Asp	43.70	540
184	BTG1	Missense	c.108G>C	p.Gln36His	39.51	205
184	BTG1	Missense	c.91C>T	p.Leu31Phe	40.10	207

189	MYD88	Missense	c.794T>C	p.Leu265Pro	88.47	1,102
189	CD79A	Nonsense	c.553G>T	p.Glu185Ter	52.75	728
189	IGLL5	Splice	c.206+1G>T		35.00	3,177
197	FBXW7	Missense	c.1393C>T	p.Arg465Cys	24.71	603
197	CD79B	Missense	c.589T>A	p.Tyr197Asn	28.35	1,252
197	EP300	Splice	c.1529-2A>T		33.33	222
204	HIST1H1C	Frameshift	c.199_200delGC	p.Ala67CysfsTer5	40.15	259
204	IRF8	Missense	c.67T>C	p.Tyr23His	45.67	1,743
204	CD79B	Missense	c.590A>C	p.Tyr197Ser	38.41	2,114
204	GNA13	Frameshift	c.93delC	p.Lys32ArgfsTer14	39.48	1,145
204	GNA13	Frameshift	c.80_89delAGCAACGCAA	p.Gln27ArgfsTer16	39.60	1,149
204	IGLL5	Splice	c.206+17 206+18insTCAGGTAAGGGGGCAA GAGATT		49.00	1,945
204	MYD88	Missense	c.794T>C	p.Leu265Pro	46.65	701
204	BTG1	Missense	c.206G>A	p.Cys69Tyr	27.07	1,330

Abbreviations: AA, amino acid; VAF, variant allele frequency

Case	Gene	CNA	Log ₂	Case	Gene	CNA	Log ₂	Case	Gene	CNA	Log ₂
1	CDKN2A	Loss	-0.91	49	BCL2	Gain	0.78	139	FLT3	Gain	0.45
1	CDKN2B	Loss	-0.64	49	CD58	Loss	-0.28	139	PRDM1	Loss	-0.75
1	CSMD1	Loss	-0.51	49	CDKN2A	Loss	-3.17	139	SGK1	Loss	-0.89
1	IGLL5	Loss	-0.45	49	CDKN2B	Loss	-4.32	139	TNFAIP3	Loss	-0.94
1	MYC	Gain	0.53	49	CIITA	Loss	-0.74	139	TP53	Loss	-0.82
1	PRDM1	Loss	-0.37	49	ETV6	Loss	-0.95	144	CDKN2A	Loss	-1.12
1	SGK1	Loss	-0.47	49	IGLL5	Loss	-3.46	144	CDKN2B	Loss	-1.68
1	TNFAIP3	Loss	-0.52	49	MALT1	Gain	0.78	144	PRDM1	Loss	-0.53
10	BCL7A	Loss	-0.45	52	CDKN2A	Loss	-1.28	144	SGK1	Loss	-0.36
10	CDKN2A	Loss	-0.68	52	CDKN2B	Loss	-2.51	144	STAT6	Gain	0.80
10	CDKN2B	Loss	-1.29	52	MEF2B	Loss	-0.61	144	TNFAIP3	Loss	-0.55
10	ETV6	Loss	-0.54	56	CDKN2A	Loss	-2.61	179	STAT6	Gain	0.83
10	KMT2D	Loss	-0.65	56	CDKN2B	Loss	-3.49	179	CDKN2A	Loss	-3.74
10	PRDM1	Loss	-1.30	56	PRDM1	Loss	-2.36	179	CDKN2B	Loss	-3.79
12	CDKN2A	Loss	-0.78	61	BCL7A	Loss	-0.56	180	BCL2	Gain	0.87
12	CDKN2B	Loss	-0.84	61	CDKN2A	Loss	-3.11	180	BCL7A	Loss	-0.69
12	IGLL5	Loss	-0.49	61	CDKN2B	Loss	-2.27	180	CD274	Gain	0.74
12	PIM1	Loss	-0.55	61	IGLL5	Loss	-1.43	180	CDKN2A	Loss	-3.09
12	PRDM1	Loss	-0.36	61	PRDM1	Loss	-0.92	180	CDKN2B	Loss	-1.34
12	SGK1	Loss	-0.33	61	SGK1	Loss	-0.70	180	MALT1	Gain	0.55
12	TNFAIP3	Loss	-0.37	61	TNFAIP3	Loss	-0.90	180	SETBP1	Gain	0.69
22	CDKN2A	Loss	-2.48	87	CDKN2A	Loss	-4.01	184	ARID2	Loss	-0.75
22	CDKN2B	Loss	-2.33	87	CDKN2B	Loss	-4.51	184	CDKN2A	Loss	-2.52
22	CSMD1	Loss	-0.76	97	CDKN2A	Loss	-3.14	184	CDKN2B	Loss	-2.35
22	ETV6	Loss	-0.68	97	CDKN2B	Loss	-1.54	184	CSMD1	Loss	-0.61
22	IGLL5	Loss	-2.77	97	ETV6	Loss	-1.54	184	ETV6	Loss	-0.51
22	MEF2B	Loss	-0.52	97	NFKBIZ	Gain	0.47	184	PRDM1	Loss	-0.82
22	PRDM1	Loss	-0.81	114	CDKN2A	Loss	-1.05	184	SGK1	Loss	-1.10
26	CDKN2A	Loss	-0.32	114	CDKN2B	Loss	-1.66	184	TNFAIP3	Loss	-0.81
26	ETV6	Loss	-0.42	114	MPEG1	Loss	-0.78	189	MCL1	Gain	0.81
26	IGLL5	Loss	-1.69	132	CDKN2A	Loss	-1.90	189	BRAF	Gain	0.38
26	MALT1	Gain	0.60	132	CDKN2B	Loss	-1.75	189	STAT6	Gain	0.38

Table S3. Detected pathogenic copy number alterations

26	SETBP1	Gain	0.56	132	NFKBIZ	Gain	0.50	189	PRDM1	Loss	-0.75
31	BCL2	Gain	0.48	132	RHOA	Gain	0.81	189	SGK1	Loss	-0.71
31	CDKN2A	Loss	-1.46	132	SGK1	Loss	-0.71	189	TNFAIP3	Loss	-0.72
31	CDKN2B	Loss	-1.67	132	TNFAIP3	Loss	-0.91	197	STAT6	Gain	0.63
31	MALT1	Gain	0.51	136	CDKN2A	Loss	-0.83	197	CDKN2A	Loss	-1.04
31	PRDM1	Loss	-0.56	136	CDKN2B	Loss	-0.85	197	IGLL5	Loss	-1.11
31	SETBP1	Gain	0.53	136	PRDM1	Loss	-0.50	204	CDKN2A	Loss	-4.93
31	TMSB4X	Gain	0.96	136	SGK1	Loss	-0.79	204	CDKN2B	Loss	-2.11
39	CD274	Gain	0.68	136	TNFAIP3	Loss	-0.38	204	CREBBP	Loss	-0.80
39	CDKN2A	Loss	-3.86	137	SGK1	Loss	-0.79	204	IGLL5	Loss	-1.19
39	CDKN2B	Loss	-4.63	139	CDKN2A	Loss	-2.85	204	PRDM1	Loss	-0.90
39	ETV6	Loss	-2.81	139	CDKN2B	Loss	-3.62	204	SGK1	Loss	-0.93
39	IGLL5	Loss	-0.86	139	ETV6	Loss	-0.57	204	TNFAIP3	Loss	-1.11

Abbreviations: CNA, copy number alteration

Factors	ET	р-	
	Positive (n = 8)	Negative $(n = 27)$	value
Sex, male/female	3/5	11/16	1
Age, median (range), years	71.5 (45–83)	69 (43–84)	0.70
Laterality, unilateral/bilateral	3/5	12/15	1
IL-10 level (pg/mL), median (range)	890 (17–5005)	1008 (10-130,125)	0.50
IL-10/IL-6 ratio	12.6 (0.29–98.1)	15.6 (0.46–1161.8)	0.26
Cytopathology positive (class ≥IIIb)	6/2	17/10	0.69
Detection of B-cell clonality (FCM analysis)	5/1	18/6	1
Positive for IGH rearrangement (PCR)	8/0	20/6	0.30
WBC (/µL), median (range)	5950 (4500–13,000)	6200 (3600–12,400)	0.84
ANC (/µL), median (range)	3735 (2547–10,946)	4018 (2051–11,284)	0.95
ALC (/µL), median (range)	1905 (1363–2539)	1488 (792–3834)	0.24
LDH (U/L), median (range)	220.5 (163–376)	199 (141–274)	0.38
sIL-2R (U/mL), median (range)	269.5 (208.4–4040)	321 (107–762)	0.40
CRP (mg/dL), median (range)	0.06 (0.02–0.48)	0.05 (0.02–0.54)	0.41

Table S4. Relationship between ETV6 loss and clinical findings

p-values < 0.05 were considered statistically significant.

Abbreviations: ALC, absolute lymphocyte count; ANC, absolute neutrophil count; CRP, C-reactive protein; FCM, flow cytometry; IL, interleukin; LDH, lactate dehydrogenase; PCR, polymerase chain reaction; sIL-2R, soluble interleukin-2 receptor, WBC, white blood cell

Factors	PRDM	p-	
	Positive (n = 17)	Negative (n = 18)	value
Sex, male/female	9/8	5/13	0.18
Age, median (range), years	72 (45–83)	69.5 (43-84)	0.47
Laterality, unilateral/bilateral	5/12	10/8	0.18
IL-10 level (pg/mL), median (range)	738 (137–130,125)	1192 (10–10,596)	0.64
IL-10/IL-6 ratio	17.4 (1.2–1161.8)	13.0 (0.29–190.6)	0.22
Cytopathology positive (class ≥IIIb)	12/5	11/7	0.73
B-cell clonality (FCM analysis)	11/4	12/3	1
Positive for <i>IGH</i> gene rearrangement (PCR)	12/4	16/2	0.39
WBC (/µL), median (range)	6000 (4100–13000)	6200 (3600–12,400)	0.87
ANC (/µL), median (range)	3870 (2378–10946)	3959 (2051–11,284)	0.88
ALC (/µL), median (range)	1488 (968–2539)	1632.5 (792–3834)	0.82
LDH (U/L), median (range)	199 (157–376)	212.5 (141–274)	0.88
sIL-2R (U/mL), median (range)	287.1 (125–4040)	341.5 (107–762)	0.31
CRP (mg/dL), median (range)	0.04 (0.02–0.48)	0.065 (0.02–0.54)	0.69

Table S5. Relationship between PRDM1 alteration and clinical findin	ngs
---	-----

p-values < 0.05 were considered statistically significant.

Abbreviations: ALC, absolute lymphocyte count; ANC, absolute neutrophil count; CRP, C-reactive protein; FCM, flow cytometry; IL, interleukin; LDH, lactate dehydrogenase; PCR, polymerase chain reaction; sIL-2R, soluble interleukin-2 receptor; WBC, white blood cell

			Vitreous humo	r			Brain					
Case	Gene	Mutation type	cDNA change	AA change	VAF	Gene	Mutation type	cDNA change	AA change	VAF		
39	MYD88	Missense	c.794T>C	p.Leu265Pro	39.48	MYD88	Missense	c.794T>C	p.Leu265Pro	90.42		
	KMT2D	Nonsense	c.12844C>T	p.Arg4282Ter	34.29	KMT2D	Nonsense	c.12844C>T	p.Arg4282Ter	70.33		
	CD274		Gai	n		CD274		Gain				
	CDKN2A		Los	S		CDKN2A	Loss					
	CDKN2B		Los	S		CDKN2B	Loss					
	IGLL5		Los	S		IGLL5		Loss				
	ETV6		Los	S				_				
			-			ACTB	Gain					
			-			CD58	Frameshift	c.218delC	p.Ala73ValfsTer11	91.62		
			-			IRF4	Missense	c.170C>T	p.Ala57Val	64.48		
			-			HIST1H1C	Missense	c.347C>G	p.Ala116Gly	94.51		
			-			HIST1H4H	Missense	c.28G>T	p.Gly10Cys	34.31		
			-			MYC	Missense	c.63C>G	p.Ser21Arg	63.02		
			-			MYC	Missense	c.106C>T	p.Pro36Ser	63.35		
			-			MYC	Missense	c.650G>C	p.Ser217Thr	62.87		
			-			CD79B	Missense	c.589T>C	p.Tyr197His	57.61		
			-			BRAF	Gain					
			-			STAT6	Gain					
			-			B2M	Loss					
56	ACTB	Missense	c.137G>C	p.Gly46Ala	33.64	ACTB	Missense	c.137G>C	p.Gly46Ala	40.37		
	CD79B	Missense	c.590A>C	p.Tyr197Ser	34.32	<i>CD79B</i>	Missense	c.590A>C	p.Tyr197Ser	39.56		
	MYD88	Missense	c.794T>C	p.Leu265Pro	43.04	MYD88	Missense	c.794T>C	p.Leu265Pro	40.16		
	BTG1	Missense	c.400A>T	p.Thr134Ser	50.12	BTG1	Missense	c.400A>T	p.Thr134Ser	39.05		
	BTG1	Missense	c.160C>T	p.His54Tyr	57.03	BTG1	Missense	c.160C>T	p.His54Tyr	38.59		
	BTG1	Nonsense	c.168G>A	p.Trp56Ter	57.03	BTG1	Nonsense	c.168G>A	p.Trp56Ter	38.59		
	BTG1	Missense	c.8C>T	p.Pro3Leu	26.63	BTG1	Missense	c.8C>T	p.Pro3Leu	35.94		
	PRDM1		Los	S		PRDM1	Loss					
	CDKN2A		Los	S		CDKN2A		Loss				
	CDKN2B		Los	S		CDKN2B		Loss				
	PIM1	Nonsense	c.382C>T	p.Gln128Ter	55.11			-				

Table S6. Pathogenic gene alteration in primary vitreoretinal lymphoma patients with central nervous system progression

	KMT2D		Los	s				_			
	BCL7A		Los	S				-			
			-			BTG1	Missense	c.316G>A	p.Val106Ile	42.37	
			-			GNA13	Nonsense	c.79C>T	p.Gln27Ter	41.29	
82	SOCS1	Frameshift	c.312_330delCG ACAGCCGCCA GCGGAAC	p.Asp105AlafsTer7	23.05	SOCS1	Frameshift	c.312_330delCGACAGC CGCCAGCGGAAC	p.Asp105AlafsTer7	49.62	
			-			MYD88	Gain				
			-			RHOA		Gain			
			-			TET2		Loss			
			-			FAT4		Loss			
			-			FBXW7	Loss				
			-			FAT1		Loss			
			-			CDKN2A	Loss				
			-			CDKN2B	Loss				
			-			IGLL5	Loss				
			-			MYD88	Missense	c.794T>C	p.Leu265Pro	42.32	
			-			<i>HIST1H1E</i>	Missense	c.536C>T	p.Ala179Val	24.25	
			-			PIM1	Splice	c.356-1G>A		40.08	
			-			PRDM1	Nonsense	c.1230C>A	p.Tyr410Ter	78.49	
			-			ACTB	Missense	c.585G>C	p.Glu195Asp	31.11	
			-			CSMD1	Splice	c.86-2A>G		26.09	
			-			BTG1	Missense	c.136G>A	p.Glu46Lys	38.39	
			-			IGLL5	Splice	c.206+1G>C		37.45	
97	PIM1	Nonsense	c.720G>A	p.Trp240Ter	41.68	PIM1	Nonsense	c.720G>A	p.Trp240Ter	44.93	
	PIM1	Nonsense	c.908G>A	pTrp303Ter	41.99	PIM1	Nonsense	c.908G>A	p.Trp303Ter	43.76	
	GRHPR	Splice	c.287+1G>A		36.71	GRHPR	Splice	c.287+1G>A		47.28	
	KMT2D	Frameshift	c.15891_15895du pGGTGC	p.His5299ArgfsTer8	37.80	KMT2D	Frameshift	c.15891_15895dupGGTG C	p.His5299ArgfsTer8	52.79	
	CD79B	Missense	c.590A>G	p.Tyr197Cys	33.35	CD79B	Missense	c.590A>G	p.Tyr197Cys	37.82	
	BTG2	Splice	c.142+1G>C		30.43	BTG2	Splice	c.142+1G>C		39.49	
	MYD88	Missense	c.794T>C	p.Leu265Pro	33.06	MYD88	Missense	c.794T>C	p.Leu265Pro	47.34	
	MPEG1	Nonsense	c.556C>T	p.Gln186Ter	29.55	MPEG1	Nonsense	c.556C>T	p.Gln186Ter	42.65	
	PRDM1	Splice	c.291G>C	p.Glu97Asp	51.92	PRDM1	Missense	c.291G>C	p.Glu97Asp	78.68	
	CDKN2A Loss					CDKN2A	Loss				

CDKN2B		Los	S		CDKN2B		Loss		
PIM1	Nonsense	c.652C>T	p.Gln218Ter	80.38			-		
GRHPR	Splice c.214+1G>A			41.75		-			
ETV6	TV6 Loss						-		
NFKBIZ		Gai	n		-				
					PIM1	Splice	c.356-9_357delCTTTCCT	AGGC	29.60
_					MYC	Missense	c.486G>T	p.Glu162Asp	48.26
-						TAT6 Gain			
-						GLL5 Loss			

Abbreviations: AA, amino acid; CNS, central nervous system; VAF, variant allele frequency

Supplemental Figure 1. Representative copy number plot. Copy numbers of each amplicon were shown as boxplot organized by the gene level. Results of uveitis sample (control) and two PVRL cases (Case 1 and 49) are shown in (A) and (B) and (C), respectively. Black dotted line indicates copy number neutral value. Red and blue dotted lines are thresholds for gain and loss, respectively.

Supplementary references

1. Levy N, Nelson J, Meyer P, Lukes RJ, Parker JW. Reactive lymphoid hyperplasia with single class (monoclonal) surface immunoglobulin. Am J Clin Pathol. 1983;80(3):300-308.

2. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-2120.

3. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-1760.

4. Okonechnikov K, Conesa A, Garcia-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32(2):292-294.

5. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303.

 Najima Y, Sadato D, Harada Y, et al. Prognostic impact of TP53 mutation, monosomal karyotype, and prior myeloid disorder in nonremission acute myeloid leukemia at allo-HSCT. Bone Marrow Transplant. 2021;56(2):334-346.

7. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput Biol. 2016;12(4):e1004873.

8. Lohr JG, Stojanov P, Lawrence MS, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci U S A. 2012;109(10):3879-3884.

9. Wang X, Su W, Gao Y, et al. A pilot study of the use of dynamic analysis of cell-free DNA from aqueous humor and vitreous fluid for the diagnosis and treatment monitoring of vitreoretinal lymphomas. Haematologica. 2022;107(9):2154-2162.

Zhang F, Lu YJ, Malley R. Multiple antigen-presenting system (MAPS) to induce comprehensive
B- and T-cell immunity. Proc Natl Acad Sci U S A. 2013;110(33):13564-13569.

11. Schmitz R, Wright GW, Huang DW, et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N Engl J Med. 2018;378(15):1396-1407.

12. Challa-Malladi M, Lieu YK, Califano O, et al. Combined genetic inactivation of beta2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell. 2011;20(6):728-740.

13. Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476(7360):298-303.

14. Balinas-Gavira C, Rodriguez MI, Andrades A, et al. Frequent mutations in the amino-terminal domain of BCL7A impair its tumor suppressor role in DLBCL. Leukemia. 2020;34(10):2722-2735.

15. Lee J, Kim B, Lee H, et al. Whole exome sequencing identifies mutational signatures of vitreoretinal lymphoma. Haematologica. 2020;105(9):e458-460.

16. Bonzheim I, Sander P, Salmeron-Villalobos J, et al. The molecular hallmarks of primary and

secondary vitreoretinal lymphoma. Blood Adv. 2022;6(5):1598-1607.

17. Mlynarczyk C, Teater M, Pae J, et al. BTG1 mutation yields supercompetitive B cells primed for malignant transformation. Science. 2023;379(6629):eabj7412.

 Hu N, Wang F, Sun T, et al. Follicular Lymphoma-associated BTK Mutations are Inactivating Resulting in Augmented AKT Activation. Clin Cancer Res. 2021;27(8):2301-2313.

19. Schmitz R, Young RM, Ceribelli M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490(7418):116-120.

20. Kataoka K, Shiraishi Y, Takeda Y, et al. Aberrant PD-L1 expression through 3'-UTR disruption in multiple cancers. Nature. 2016;534(7607):402-406.

21. Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463(7277):88-92.

22. Nayyar N, White MD, Gill CM, et al. MYD88 L265P mutation and CDKN2A loss are early mutational events in primary central nervous system diffuse large B-cell lymphomas. Blood Adv. 2019;3(3):375-383.

23. Mottok A, Woolcock B, Chan FC, et al. Genomic Alterations in CIITA Are Frequent in Primary Mediastinal Large B Cell Lymphoma and Are Associated with Diminished MHC Class II Expression. Cell Rep. 2015;13(7):1418-1431.

24. Escudero-Esparza A, Bartoschek M, Gialeli C, et al. Complement inhibitor CSMD1 acts as tumor suppressor in human breast cancer. Oncotarget. 2016;7(47):76920-76933.

25. Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenstrom's macroglobulinemia. N Engl J Med. 2015;372(15):1430-1440.

26. de Miranda NF, Georgiou K, Chen L, et al. Exome sequencing reveals novel mutation targets in diffuse large B-cell lymphomas derived from Chinese patients. Blood. 2014;124(16):2544-2553.

27. Bonetti P, Testoni M, Scandurra M, et al. Deregulation of ETS1 and FLI1 contributes to the pathogenesis of diffuse large B-cell lymphoma. Blood. 2013;122(13):2233-2241.

28. Gronbaek K, Straten PT, Ralfkiaer E, et al. Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity. Blood. 1998;92(9):3018-3024.

29. Laginestra MA, Cascione L, Motta G, et al. Whole exome sequencing reveals mutations in FAT1 tumor suppressor gene clinically impacting on peripheral T-cell lymphoma not otherwise specified. Mod Pathol. 2020;33(2):179-187.

30. Cai J, Feng D, Hu L, et al. FAT4 functions as a tumour suppressor in gastric cancer by modulating Wnt/beta-catenin signalling. Br J Cancer. 2015;113(12):1720-1729.

31. Liu N, Gao M. FLT4 Mutations Are Associated with Segmental Lymphatic Dysfunction and Initial Lymphatic Aplasia in Patients with Milroy Disease. Genes (Basel). 2021;12(10):

32. Trinh DL, Scott DW, Morin RD, et al. Analysis of FOXO1 mutations in diffuse large B-cell lymphoma. Blood. 2013;121(18):3666-3674.

33. Mai Z, Yuan J, Yang H, et al. Inactivation of Hippo pathway characterizes a poor-prognosis subtype of esophageal cancer. JCI Insight. 2022;7(16):

34. Muppidi JR, Schmitz R, Green JA, et al. Loss of signalling via Galpha13 in germinal centre Bcell-derived lymphoma. Nature. 2014;516(7530):254-258.

Andrades A, Alvarez-Perez JC, Patino-Mercau JR, Cuadros M, Balinas-Gavira C, Medina PP.
Recurrent splice site mutations affect key diffuse large B-cell lymphoma genes. Blood. 2022;139(15):2406-2410.

36. Li H, Kaminski MS, Li Y, et al. Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood. 2014;123(10):1487-1498.

37. Cherian MA, Olson S, Sundaramoorthi H, et al. An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia. J Biol Chem. 2018;293(18):6844-6858.

38. Reddy A, Zhang J, Davis NS, et al. Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. Cell. 2017;171(2):481-494 e415.

39. Choi J, Phelan JD, Wright GW, et al. Regulation of B cell receptor-dependent NF-kappaB signaling by the tumor suppressor KLHL14. Proc Natl Acad Sci U S A. 2020;117(11):6092-6102.

40. Pon JR, Wong J, Saberi S, et al. MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation. Nat Commun. 2015;6(7953.

41. Weniger MA, Kuppers R. Molecular biology of Hodgkin lymphoma. Leukemia. 2021;35(4):968-981.

42. Dobashi A, Togashi Y, Tanaka N, et al. TP53 and OSBPL10 alterations in diffuse large B-cell lymphoma: prognostic markers identified via exome analysis of cases with extreme prognosis. Oncotarget. 2018;9(28):19555-19568.

43. Gu Z, Churchman ML, Roberts KG, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019;51(2):296-307.

44. Zheng T, Zhou H, Li X, et al. RBMX is required for activation of ATR on repetitive DNAs to maintain genome stability. Cell Death Differ. 2020;27(11):3162-3176.

45. Koskela HL, Eldfors S, Ellonen P, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366(20):1905-1913.

46. Yildiz M, Li H, Bernard D, et al. Activating STAT6 mutations in follicular lymphoma. Blood. 2015;125(4):668-679.

47. Venturutti L, Teater M, Zhai A, et al. TBL1XR1 Mutations Drive Extranodal Lymphoma by Inducing a Pro-tumorigenic Memory Fate. Cell. 2020;182(2):297-316 e227.

48. Kato M, Sanada M, Kato I, et al. Frequent inactivation of A20 in B-cell lymphomas. Nature. 2009;459(7247):712-716.

49. Wu F, Watanabe N, Tzioni MM, et al. Thyroid MALT lymphoma: self-harm to gain potential T-

cell help. Leukemia. 2021;35(12):3497-3508.