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SUPPLEMENTARY NOTE 1: FINITE-ELEMENT SIMULATIONS

The mechanical resonator is simulated using Comsol Multiphysics. We perform eigenmode studies for a predefined
mesh, which is optimised via a convergence test. Either fixed or lossy boundary conditions are applied to the edges of
the beam. The phononic shield and the mechanical resonator are optimised to support a single mechanical in-plane
breathing mode within the phononic bandgap. Figure 1(a) shows the top view of the phononic shield’s unit cell. The
dimensions of the etched air-hole are: a = 970 nm (lattice constant), w = 960 nm (beam width), h = 180 nm (beam
thickness), le = 775 nm (air-hole length), and we = 270 nm (air-hole width). For quantum-dot (QD) charge control,
we need to ensure that the gate layers show good conductance from the substrate through the phononic shield to the
resonator. Therefore we try to keep the thinnest connection, between the resonator and substrate, as wide as possible,
which is (w− le)/2 = 92.5 nm. For the current design, we observe about 100MHz of additional linewidth broadening,
for more information see Ref. [1].

The phononic band diagram of the unit-cell is studied by applying floquet boundary conditions in the x-direction.
Eigenmode studies are performed upon sweeping kx from 0 to π/a, where a is the lattice constant. For even and
odd modes we apply symmetric and asymmetric conditions at z = 0, respectively. The band diagram is shown in
Fig. 1(b) in the main text. We observe a complete bandgap of 0.11GHz. We repeat the study and change the air-hole
parameters by ±20 nm. Although this leads to a broadening of the bands, the width of the phononic gap is not
much affected (especially for even modes). This suggests that the phononic shield is relatively robust against small
deviations from the original design. From the band diagram study, we can also extract the density of states (DOS),
shown in Fig. 1(b). We sum the obtained eigenmodes over a specific frequency bandwidth and normalise the states
to the unit-cell length [2]:

DOS =
n∆f

∆f · nk · a
, (1)

where ∆f is the frequency bandwidth, n∆f is the number of modes in ∆f , nk is the number of k-points in our study,
and a is the unit-cell length.
To estimate how many phononic-shield elements are needed, such that the resonator’s damping is not limited by

clamping losses, we perform a mechanical-quality-factor study in dependence on the number of shield unit cells, see
Fig. 1(c). The study is performed by applying a lossy boundary condition at the two beam ends. Since no phonon
loss within the material is added, this only simulates clamping losses. We select seven air holes (yellow line) on each
side of the resonator.

To finalise our design, we perform an optical far-field study of an emitter placed in the centre of the mechanical
resonator and we optimise the beam width and resonator defect length (x-direction) for radiation to the top (collection
lens). For a width of 960 nm, the two sidewalls reflect the field within the beam such that there is constructive
interference, increasing the radiation of the field to the top [1].

To estimate the exciton-phonon coupling rate, we perform thermomechanical calibration [3]. We describe the system
by a linear harmonic oscillator via the displacement function:

u(r, t) = x(t)|u(r)|, (2)

where |u(r)| = u(r)
max(|u(r)|) describes the normalised mode profile [3] obtained from COMSOL, and x(t) describes the

time dependence of the periodic motion. The equation of motion is:

meff
dx2(t)

dt2
+meffΓm

dx(t)

dt
+meffΩ

2
mx(t) = F (t), (3)
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Supplementary Fig. 1. Finite-element simulations. (a) Top view of the phononic-shield unit cell which consists of an
elliptical air-hole: a = 970 nm (lattice constant), w = 960 nm, h = 180 nm (beam thickness), le = 775 nm, and we = 270 nm. (b)
Mechanical density of states (DOS) for even (in-plane/symmetric) and odd (out-of-plane/asymmetric) modes. The mechanical
frequency is designed to lie in the centre of the complete bandgap. The simulation is performed with nk = 2000 and ∆f =
8MHz. (c) Mechanical quality factor with increasing number of shield unit cells. For the device presented in the main paper,
seven unit cells were chosen. (d) Thermal displacement of an eigenmode study obtained via thermomechanical calibration.
The major displacement of the in-plane breathing mode is along the beam axis. (e) Exciton-phonon coupling rate based on
deformation potential coupling, evaluated in the centre of the membrane (QD layer). A coupling rate of gep/2π = 3.2MHz is
found in the centre of the resonator.

where Ωm/2π is the mechanical frequency, k = meffΩ
2
m is the spring constant, and Γm is the energy dissipation rate

which relates to the mechanical quality by Qm = Ωm/Γm. The effective mass and zero-point-motion are obtained
with:

meff =

∫
ρ

(
u(r)2

max(|u(r)|)2

)
dV (4)

xzpf =

√
ℏ

2meffΩm
, (5)

where ρ is the material density of GaAs, and ℏ is the reduced Planck constant. Figure 1(d) shows the displacement,
xzpf · |u(r)|, of the in-plane breathing mode. The thermal displacement (Brownian-motion) is then given by the
equipartition theorem [4]:

xth = xzpf

√
2kBT

ℏΩm
, (6)

where T is the phonon-bath temperature, and kB is the Boltzmann constant. The exciton-phonon coupling is extracted
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Supplementary Fig. 2. Optical setup including all relevant hardware for excitation, measurement, and detection.
A double-pass acousto-optic modulator setup is used to stabilise the RF laser power. The excitation laser is fibre-coupled
and sent to the dark-field microscope. With two PBS, an LP, and a QWP, the reflected laser light is suppressed. The
collected QD single-photons are also fibre-coupled and analysed using SNSPDs. PL: photoluminescence, RF: resonance fluores-
cence, PBS: polarising beam splitter, LP: linear polariser, QWP: quarter-wave plate, HBT: Hanbury Brown-Twiss, SNSPDs:
superconducting-nanowire single-photon detectors.

from the strain profile after normalising the displacement by the zero-point motion. The QD couples to the strain via
deformation potential coupling [4, 5]:

∆E = a(ϵxx + ϵyy + ϵzz)−
b

2
(ϵxx + ϵyy − 2ϵzz), (7)

where ∆E is the QD’s energy shift, a = −8.33 eV and b = −1.7 eV are the deformation potentials for the hydrostatic
and shear strain of GaAs, respectively [6, 7]. The exciton-phonon coupling rate gep is:

gep =
∂ωQD

∂x
xzpf =

∆E

ℏ
. (8)

Figure 1(e) shows gep/2π for the in-plane breathing mode. In the very centre of the resonator, which is the optimal
position for the QD location, we obtain gep/2π = 3.2MHz.

SUPPLEMENTARY NOTE 2: DEVICE FABRICATION AND MEASUREMENT SETUP

The wafer material is grown with molecular-beam epitaxy and consists of a 1.15 µm AlAs sacrificial layer and a 180 nm
GaAs diode structure. The diode consists of a QD-layer at the centre of the membrane (at z = 0), as well as the p-
and n-doped layers at the top and the bottom, respectively. The advantage of the QD-in-middle device is that the
dots couple strongly to mechanical in-plane breathing modes. Above the QDs, there is an Al0.33Ga0.67As blocking
layer, to minimise the diode leakage current. Details on the wafer material can be found in Ref. [1].

The mechanical resonator is fabricated by means of electron-beam lithography. First, the mesa structure is etched
and 1.5× 1 µm2 contact pads are evaporated: Ni/Ge/Au/Ni/Au for the back contact (which is annealed to form an
ohmic contact) and Cr/Au for the top contact. Second, using a soft mask, the nanostructures are written using an
electron-beam and dry etched [8, 9] into the membrane (inductively-coupled plasma reactive ion etching). Finally,
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after removing the residual resist, the structures are under-etched in a wet-etch process (hydrofluoric acid) and released
via critical-point drying [9]. During the fabrication of the mechanical resonators, the design axis (x-axis in Fig. 1(d))
is aligned with the [110] axis of the wafer. Since the mechanical properties of GaAs are anisotropic, the current
mechanical mode would shift to 1.25GHz when aligning to [100].
The sample is glued onto a titanium sample holder using non-conductive two-component epoxy (UHU, endfest

300) and the contacts are connected manually to a PCB using copper wires and silver epoxy (EPO-TEK, E4110).
The sample is mounted on x/y/z-piezo steppers (attocube, ANPx101 & ANPz101) and an x-y-scanner (attocube,
ANSxy100lr) in a home-built vacuum-tube microscope with an optical NA = 0.65. The tube is evacuated down to
4× 10−6 mbar and then filled with 0.2mbar helium exchange gas, corresponding to 2.8× 10−3 mbar at 4.2K. At this
gas pressure, gas damping is negligible, see Ref. [1]. The measurement tube is precooled to liquid nitrogen temperature
(77K) and then moved into the He-bath cryostat (Cryovac) at 4.2K. The full measurement setup is shown in Fig. 2.

The gate voltage of the sample is controlled with a digital-to-analogue converter (Basel Precision Instruments, DAC
SP 927). The optical excitation part of the setup consists of three different lasers: a diode laser for photoluminescence
excitation at 830 nm (PicoQuant, LDH-D-C-830), a mode-locked laser for radiative-lifetime measurements (Coherent,
Mira 900-D), and a tunable diode laser for resonant excitation around 950 nm (Toptica, DL pro). The resonant laser
is frequency stabilised with a wavemeter (HighFinesse, WS7) and power stabilised with a double-pass acousto-optic
modulator setup (Gooch and Housego, AOM 3200-1113 & AODR 1200AF-AINA-2.5 HCR). All lasers are fibre-coupled
(Thorlabs, SM-780HP) and sent to the cross-polarised optical microscope. The microscope consists of two polarising
beam splitters, a linear polariser, and a quarter-waveplate. A laser suppression of up to 10−8 is typically achieved
when the beam is focused on bulk GaAs [10]. The sample surface can be imaged using a camera (Allied Vision, Guppy)
in combination with an LED (Thorlabs, M940D2) and a removable pellicle beamsplitter (Thorlabs, BP145B2). The
field of view is around 10µm. The collected QD photons are fibre-coupled and sent to either a spectrometer (Teledyne
Princeton Instruments, Blaze 100HRX & Acton SP2500i) or single-photon detectors in a Hanbury Brown-Twiss setup
(Single Quantum, Eos & Swabian Instruments, Time Tagger Ultra).

SUPPLEMENTARY NOTE 3: OPTICAL CHARACTERISATION OF THE QUANTUM DOT

For the thermal-motion measurements, it is essential to find a QD that not only has a high exciton-phonon coupling
rate but also a high count rate, a low inhomogeneous broadening, and good laser suppression. We present here
additional QD characterisation measurements to those shown in the main text. In the following paragraphs (also in
the main text), we refer to the frequency jittering of the QD resonance as the inhomogeneous broadening. The line
broadening due to excited-state dephasing, we refer to as the homogeneous broadening of the QD, also see Ref. [11].

To estimate the inhomogeneous broadening, we compare the measured linewidth to the transform limit, see Fig. 2(d)
in the main text. To determine the lifetime, we excite the QD using picosecond optical pulses. The time tagger module
is synchronised with the pulsed laser and a time histogram is recorded, see Fig. 3(a). The excited state of the QD
(X1−) freely decays with a time constant of τR = 1.18 ns. This gives an excited-state decay rate of ΓR = 1/τR =
847MHz, with a corresponding transform-limited linewidth of ΓR/2π = 135MHz. A low-power linewidth measurement
is presented in the main text, which yields Γinh/2π = 550MHz, which is a factor of four above the transform limit.
The Rabi frequency, ΩR, describes the interaction strength of the laser with the QD. We convert the excitation

power to the Rabi frequency by carrying out a resonant power-saturation measurement, see Fig. 3(b). Each data
point represents the peak intensity of a linewidth scan (obtained from a Lorentzian fit) at the corresponding excitation
power. The QD count rate is proportional to the excited-state population, ρee, which is given by [1]:

⟨σ̂+σ̂−⟩ = ρee =

(
1
2ΩR

)2
∆ω2

l +
1
2Ω

2
R +

(
1
2ΓR

)2 , (9)

where ΩR is the Rabi frequency, ∆ωl/2π is the laser detuning from the QD transition, and ΓR is the excited-state
decay rate. By fitting Eq. 9 to the data, the excitation power is translated to ΩR. Here, we include the inhomogeneous
broadening by a convolution of Eq. 9 with a Lorentzian-weighted detuning jitter of 400MHz. Without this, the Rabi
frequency would be underestimated, yellow line in Fig. 3(b).

The ratio between unsuppressed laser and QD counts depends highly on the laser spot position which in turn
depends on the QD position. Furthermore, it also highly depends on the excitation power. Figure 3(c) shows a
low-power autocorrelation measurement, with 5 nW of laser power reaching the sample (ΩR ≪ ΓR). The high single-
photon purity of 98% proves that the QD acts as a single-photon emitter. The autocorrelation is fitted with the
standard autocorrelation function of a two-level system [12].
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Supplementary Fig. 3. Optical characterisation of the QD. (a) Radiative-lifetime measurement with τ = 1.18 ns. The
corresponding transform limit for the linewidth is 1/(2πτR) = 135MHz. (b) Resonant saturation-power curve. The excitation
power is converted to the Rabi frequency, ΩR, via a model fit to the data (orange curve). (c) Low-power (ΩR ≪ ΓR)
autocorrelation measurement. Due to the high level of laser suppression, a single-photon purity of 98% is achieved. (d) High-
power resonant linewidth scan with ΩR = 8 ΓR. (e) Two example time traces (blue and red) of a high-power autocorrelation
measurement: (1) automatic laser suppression, (2) locking of the QD resonance, and (3) autocorrelation measurement.

At high excitation powers (ΩR ≫ ΓR) the emission of the quantum emitter saturates, however, the unsuppressed
laser increases. This leads to a reduced signal-to-background level. Figure 3(d) shows a high-power linewidth scan,
where the background level is significant (compared to Fig. 2(d) in the main text). The signal-to-background increases
further upon detuning the laser from resonance. Therefore, in an autocorrelation measurement, the higher the
laser power and the higher the laser detuning, the lower the single-photon purity (higher g(2)(0)). In addition, the
background level is also very unstable. Figure 3(e) shows two example time traces of a high-power (ΩR = 8 ΓR)
autocorrelation measurement with a laser detuning of ∆ωl/2π = 1GHz. The measurement is performed as follows.
First, the laser is automatically suppressed by alternately optimising the linear polariser and quarter-wave-plate angles
in our dark-field microscope. Second, we perform a linewidth scan and lock the QD resonance to the laser frequency,
thus, compensating for spectral drifts. Third, autocorrelation data is recorded for one minute, followed by going back
to step one. During the measurement, the laser suppression can drift up to an order of magnitude, a result of a
slight change in laser spot position due to vibrational noise from the environment and pressure changes in the helium
recovery line.

SUPPLEMENTARY NOTE 4: FROM AUTOCORRELATION TO NOISE-POWER SPECTRUM

In our experiments, we acquire the noise-power spectrum via an autocorrelation measurement. As mentioned above,
the collected signal contains unsuppressed laser light, which does not carry information about the mechanical res-
onator. Therefore, to obtain the true mechanical noise power, we need to correct for the unsuppressed laser. The
unsuppressed laser results in a flat background in the autocorrelation measurement (see Fig. 4(a), black curve), which
we correspondingly subtract. Subsequently, the autocorrelation is normalised to one at large time delays (ms-regime).
Figure 4(a) shows the post-processed autocorrelation, performed at optimal detuning such that Ωeff

R = Ωm. At long
time delays, weak oscillations due to the interaction with the mechanical resonator are visible (also see main paper).
The prominent oscillations at short delays are Rabi oscillations at Ωeff

R . The noise-power spectrum is related to the
autocorrelation via a Fourier transform (Wiener–Khinchin theorem) [5]:

Snn(f) = 2FFT
[
g(2)(τ)

]
τbin, (10)
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Supplementary Fig. 4. From autocorrelation to noise-power spectrum. (a) Autocorrelation measurement at optimal
detuning, Ωeff

R = Ωm, before (black) and after (blue) correcting for the unsuppressed laser. This is the same measurement as in
the main text in Fig. 3(h). (b) Fourier transform of the full autocorrelation data which is shown in (a). (c) Fourier transform
of the autocorrelation data without Rabi oscillations, yellow shaded area in (a).

where g(2)(τ) is the normalised autocorrelation data, and τbin is the autocorrelation binning time. Figure 4(b) shows
Snn(f) obtained from the full autocorrelation data. The broad peak around 1.5GHz is associated with the strong but
rapidly decaying Rabi oscillations from Fig. 4(a). The sharp feature is due to the QD-mechanical interaction. Due
to a phase difference of π between Rabi oscillations and mechanical modulation, the mechanical noise peak appears
as a dip in the broad Rabi peak. This makes it hard to integrate the mechanical-noise peak. To remove the Rabi
oscillations, we perform the Fourier transform on the data at delays τ > τR (yellow region in Fig. 4(a)), once the
Rabi oscillations are completely damped. The corresponding noise-power spectrum shows the mechanical noise as
a peak on a flat background, see Figure 4(c). This process does not compromise the mechanical noise power since
the mechanical damping constant of τm = 2Qm/Ωm = 0.46 µs is several orders of magnitudes larger than the Rabi
damping of ≈ 1 ns.

SUPPLEMENTARY NOTE 5: MASTER-EQUATION SIMULATIONS

To simulate the exciton-phonon interaction we perform master-equation simulations. The full Hamiltonian of the
system is given by:

Ĥ = ĤQD + Ĥm + Ĥint + Ĥdrive, (11)

where ĤQD is the QD, Ĥm the mechanical, Ĥint the interaction, and Ĥdrive the optical drive part. We describe the
QD as a simple two-level system (TLS) with a ground and an excited state, |g⟩ and |e⟩, respectively. The TLS is
driven by a classical optical field. In the dipole approximation, this reads:

ĤQD + Ĥdrive = ℏωQDσ̂+σ̂− − ℏ
ΩR

2
(σ̂+ + σ̂−)

(
eiωlt + e−iωlt

)
, (12)

where ℏωQD is the QD’s exciton transition energy, ΩR is the optical Rabi frequency, ωl/2π is the frequency of the
driving field, σ̂+ = |e⟩ ⟨g| and σ̂− = |g⟩ ⟨e| are the Pauli transition operators. The mechanical part is described by a
quantum harmonic oscillator:

Ĥm = ℏΩm

(
b̂†b̂+ 1/2

)
, (13)

where Ωm/2π is the mechanical frequency, b̂† and b̂ are the phonon creation and annihilation operators, respectively.

The phonon occupation of the mechanical resonator is ⟨nm⟩ = ⟨b̂†b̂⟩. The interaction part between the two systems
has a dispersive form where the displacement leads to a shift in the excited-state energy of the QD:

Ĥint = ℏgepσ̂+σ̂−

(
b̂† + b̂

)
, (14)

where gep/2π is the exciton-phonon coupling rate, σ̂+σ̂− = |e⟩ ⟨e|, and (b̂† + b̂) = x̂/xzpf is the displacement operator
in units of the zero-point motion. The interaction part can also be described classically:

Ĥint = ℏ
gep
xzpf

xth sin (Ωmt)σ̂+σ̂− = ℏgthep sin (Ωmt)σ̂+σ̂−, (15)
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(b) Fourier transform of the data shown in (a). (c) Steady-state (time-averaged) excited-state population in dependence of the
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1.18 ns, Ωm/2π = 1.466GHz, gthep/2π = 34.4MHz, gep/2π = 3.2MHz, and ⟨nm⟩ = 58.

where xth is the thermal displacement, and gthep = gep
√
2⟨nm⟩ = 2π×34.4MHz is the thermal exciton-phonon coupling

rate [13]. In the rotating frame of the laser field, the full Hamiltonian reads:

ĤRWA = −ℏ∆ωlσ̂+σ̂− + ℏΩm

(
b̂†b̂+ 1/2

)
+ ℏgepσ̂+σ̂−

(
b̂† + b̂

)
+ ℏ

ΩR

2
(σ̂+ + σ̂−) , (16)

where ℏ∆ωl is the energy detuning between the driving field and the QD transition. The incoherent part of the
Hamiltonian, which is the QD’s radiative decay, is added via a Lindblad operator L̂ =

√
ΓRσ̂−. The time dynamic of

the system is captured by the von Neumann equation [14]:

∂

∂t
ρ̂ = − i

ℏ
[ĤRWA, ρ̂] + L̂(ρ̂), L̂(ρ̂) = 1

2

(
2L̂ρ̂L̂† − ρ̂L̂†L̂− L̂†L̂ρ̂

)
. (17)

In our first simulation, we reproduce the time-modulation in the QD’s emission upon detuning the probe laser field.
Since the phonon population is large, ⟨nm⟩ = 58 ≫ 1, the interaction can be expressed classically [15], excluding
backaction on the mechanical resonator. Furthermore, we assume that the phase of the mechanical resonator is static
on the time scales of the QD dynamics (few ns). We perform numerical simulations using Eq.16-17 and solve for the
excited-state population, ρee. The inhomogeneous broadening is included by a Lorentzian-weighted detuning jitter of
400MHz. Figure 5(a) shows ρee as a function of time without (blue) and with (orange) inhomogeneous broadening,
respectively. Laser detuning and Rabi frequency are chosen such that Ωeff

R = Ωm. The strong oscillations at short t
are the optical Rabi oscillations and the weaker oscillations arise due to the QD-mechanical coupling. Note that, in
general, the mechanical modulation shows a higher amplitude in the time trace than in the autocorrelation. Around
3 ns, the phase shifts from the Rabi to the mechanical oscillations. The simulation is performed over 300 mechanical
periods, where we analyse further only the final 50 periods. As for the autocorrelation, we obtain the noise-power
spectrum via a Fourier transform of the normalised time trace:

Snn(f) = 2FFT

[
ρee(t)

⟨ρee⟩

]2
t2bin
tsim

, (18)
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where ⟨ρee⟩ is the average excited-state population, tbin is the binning time, and tsim is the length of the simulation.
Figure 5(b) shows Snn(f) obtained from the simulation shown in Fig. 5(a). Comparing the simulations without and
with inhomogeneous broadening, we observe an order-of-magnitude reduction in signal strength.

The numerical simulations are performed upon sweeping the Rabi frequency and laser detuning. Figure 5(c) shows
the time-averaged excited-state population. The integrated noise-power of the mechanical modulation is shown in
Fig. 5(d). As can be seen, the highest interaction between the two systems is found when the effective Rabi frequency
matches the mechanical frequency:

Ωeff
R =

√
Ω2

m +∆ω2
l

!
= Ωm. (19)

At low excitation powers (ΩR ≪ Ωm), this corresponds to detuning the laser to one of the acoustic sidebands
∆ωl = ±Ωm. Conversely, at high excitation powers (ΩR > Ωm), this corresponds to ∆ωl =

√
Ω2

m − Ω2
R (highlighted

in orange). Figure 5(e) shows the phase of the excited state’s time modulation. Several transitions of π are visible,
matching with the resonance condition of Ωeff

R = Ωm. Note that the signal-to-noise ratio in the measured power
spectrum depends on the product of Fig. 5(c) and (d), which is the noise sensitivity multiplied by the excited-state
population (photon count rate).

In order to extract the degree of mechanical cooling, we perform a second simulation where we include the
backaction on the phonon population of the mechanical resonator. For this, the mechanical resonator is treated as
a quantum harmonic oscillator coupled to a thermal bath. To reduce simulation time, we make use of the quantum
simulation toolbox Qutip [16, 17]. We perform master-equation simulations using Eq. 16 and 17, solving for the
steady-state solution. The coupling to the thermal bath is described with additional collapse operators:

ĉin =
√
Γm · nbath · b̂†, ĉout =

√
Γm · (nbath + 1) · b̂, (20)

where Γm = Ωm/Qm is the energy dissipation rate, and nbath = 58 is the thermal-bath population (at Ωm, T = 4.2K).
The simulations are performed with an Nm = 500 dimensional mechanical Hilbert space. Also here, 400MHz of
inhomogeneous broadening is included.

Figure 5(f) shows the expectation value of the resonator’s phonon population, ⟨nm⟩, as a function of Rabi frequency
and laser detuning. As before, the strongest interaction is found when Ωeff

R = Ωm. To observe a change in phonon
population, high excitation powers and laser detunings smaller than Ωm are required. Figure 6(a) shows ⟨nm⟩ at
optimal laser power and laser detuning for quality factors of 1, 5, and 10 times the current value. With the current
device properties (blue curve), the change in phonon number is small. However, when increasing the mechanical
quality factor, substantial cooling can be observed (orange and yellow curves). Figure 6(b) shows ⟨nm⟩ for a five-fold
enhanced Qm, a two-fold increased gep, and a transform-limited linewidth (bright red curve). Even though the current
quantum dot has a narrow optical linewidth with Γinh = 4ΓR, the remaining inhomogeneous broadening reduces the
change in phonon population by more than a factor of two (dark red curve).
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