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Supplementary Note 1: Crossover from log to power-law in the DoS in the

vicinity of a HOVHs

As we tune θ, we will find that the series expansion at the M point takes the form

α k2
x + βk2

y + γ k4
x + µ k2

xk
2
y + ν k4

y along with a π/2 rotated copy obtained by applying

(kx, ky) → (−ky, kx).

Since the pair of symmetry related bands are conjoined together, we need a strategy

to isolate a particular band of interest out of the two. Now the series expansion for

θ in the range [7◦, 12◦] indicates that ν ≪ γ for one band and ν ≫ γ for the other

one. For example, at θ = 9◦, the unrenormalized, SOC-free model has the following series

expansion at the M point: −0.09−0.029 k2
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y−0.4 k4
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with its rotated counterpart. Check the Mathematica notebook ‘4 Log to Power law.nb’

in the repository [1] for more details). We can see that the coefficient of the k4
x term is

about ten times larger than the coefficient of the k4
y term. This feature persists for all θ

in that range. Therefore, to be consistent, let us choose the band with ν < γ for further

analysis. The DoS integral is given by
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,

where we have ignore the pre-factors and have assumed that the integration is performed

over an appropriate region of the k-space. To infer the approximate low energy scaling

behaviour of the DoS (particularly for a HOVHs), one normally extends the integrals over

the entire (kx, ky)-plane (picking up a finite error in the process) and re-scales the kx and

ky in an appropriate fashion. When α is “small” (to be qualified below) we will re-scale

(kx, ky) → (|ϵ|1/4kx, |ϵ|1/2ky) to obtain after simplification
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Assume that ϵ > 0 (the arguments can be applied with a slight modification for ϵ < 0).

Then, using the scaling property of the delta function we obtain

g(ϵ) ∼
∫
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Since [ϵ] = E , [α] = E .l2 and [γ] = E .l4, we have [α2ϵ−1] = E .l4 = [γ], where E and l

are respectively energy and length units. Thus, α2ϵ−1 and γ are comparable since they

have the same dimension. In fact, for energies satisfying α2ϵ−1 ≪ γ, we can ignore the

k2
x term in comparison to the k4

x in the DoS integral by further rescaling kx → kx/γ
1/4.

(This is what we meant by α being small earlier). For sufficiently small energies, the

terms containing ϵ1/2 and ϵ can also be ignored so that the final DoS integral scales

approximately as

g(ϵ) ∼ ϵ−1/4

∫
d2k δ

(
β k2

y + γ k4
x + ν k4

y − 1
)
,

where the integral has become ϵ independent due to the approximation. We proceed

similarly for ϵ < 0, obtaining for α2|ϵ−1| ≪ γ

g(ϵ) ∼ |ϵ|−1/4

∫
d2k δ

(
β k2

y + γ k4
x + ν k4

y + 1
)
,

Thus the crossover from log to power law is controlled by

|ϵ| ≫ α2

γ
.

That is, for energies well above this scale, the quartic term dominates over the quadratic

term in the DoS integral, giving an approximate power law behaviour while for energies

well below this scale, the quadratic term dominates, giving a logarithmically diverging

DoS.

Supplementary Note 2: An alternate tuning scheme - staggered chemical poten-

tial

Starting from the Wannierized tight-binding model for Sr2RuO4 we can also engineer

a four-fold symmetric X9 singularity. This has a more strongly divergent DoS exponent

of -1/2 as compared to the A3 singularity with a DoS exponent of -1/4 [2]. Recall that

in the θ-interpolated model, we had a pair of dxy bands that become degenerate at the

M point and jointly satisfy the four-fold rotation symmetry. We managed to tune these

bands to a pair of cusp (A3) singularities (with canonical forms k4
x−k2

y and k2
x−k4

y). The
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Supplementary Figure 1: Tuning to an X9 singularity. (a) A staggered chemical potential

∆stag, when added to the vanilla model for Sr2RuO4, makes the two Ru atoms nonequivalent.

This lifts the degeneracy of the dxy bands at the M point while still preserving the four-fold

rotation symmetry. When the RuO octahedral angle θ is tuned, the bands evolve from a pair

of maxima (light red bands) to a pair of minima (light blue bands), passing through a pair of

X9 singularities at θ ≈ 8.5◦ (the brown bands). These X9 HOVHs take the form of a saddle (b)

and a higher order maximum (c), both having a divergent DoS exponent of -1/2. In (d) and (e)

we depict the phase diagrams for the bands (b) and (c) respectively. These track the evolution

of the nature of the critical point as θ and ∆stag are tuned.

degeneracy at the M is guaranteed by the lattice reflection symmetry that makes the two

Ru atoms equivalent. By adding a staggered chemical potential ∆stag that makes them

nonequivalent, we can break the degeneracy at the M point while still preserving the four-
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fold rotation symmetry. In fact, we notice that the two dxy bands can be tuned to host

a pair of X9 singularities at θ ≈ 8.5◦, with one band hosting a four-fold saddle and the

other hosting a higher order maximum (see Supplementary Figure 1 and the Mathematica

notebook ‘3 M point staggered chemical potential.nb’ in the GitHub repository [1]). Both

have the canonical form k4
x + c k2

xk
2
y + k4

y, with the sign and magnitude of c determining

whether the singularity is a saddle, maximum or minimum.
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