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Supplementary Notes 55 

Supplementary Note 1: Benchmarking of SV calling pipeline for 56 
deletions and insertions 57 
  58 
We aimed to comprehensively assess the performance of our SV calling pipeline by 59 

comparing the SG10K-SV (Manta1) pipeline with three other popular SV detection 60 

algorithms such as Delly2 and Smoove3.  61 

 62 

To accurately benchmark the performance of our SV detecting pipeline, we 63 

downloaded a subset of 34 1000 Genome samples with both long and short read 64 

whole genome sequencing (WGS) data. We retrieved the 30x short read WGS CRAM 65 

files from https://registry.opendata.aws/1000-genomes/. Long-read sequencing data 66 

have become the technique of choice for SV detections and hence it will serve as the 67 

truth set for the comparison. We retrieved the comprehensive catalogue of SVs 68 

detected using long-read sequencing from Ebert et al.4 69 

(https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/in70 

tegrated_callset/) to ascertain the sensitivity and precision of the short-read SVs 71 

predicted using our SV detection pipeline and 2 other SV detection algorithms.  72 

 73 

SV discovery using Manta 74 

Manta1 was executed in the single sample mode to identify deletions and insertions in 75 

the 34 1000G samples using default parameters. We used SVimmer5 to cluster SVs 76 

across samples using the default parameters and re-genotyped the SVs in each 77 

sample using Graphtyper26 with default parameters. We then merged the individual 78 

re-genotyped VCF using Graphtyper2’s Vcfmerge function. Lastly, we retained PASS 79 

calls made under the aggregated genotyping model for downstream analysis. In 80 

addition, we applied additional filters recommended by Graphtyper2.  81 

For deletions, we filter the variants using bcftools with the following command: 82 

bcftools 'INFO/SVMODEL="AGGREGATED" && FILTER="PASS" && SVTYPE="DEL" && QD > 9  && 83 
(ABHet > 0.3 || ABHet < 0 ) && (AC/NUM_MERGED_SVS) < 25  && PASS_AC > 0 && 84 
PASS_ratio > 0.1' ${vcf} | bcftools filter -i 'FMT/FT ="PASS" ' --set-GTs . - | 85 
bcftools view -c1 -s ${meta} --output ${prefix}.DEL.vcf.gz -Oz --threads $task.cpus 86 
- 87 
 88 
For duplications, we retain variants which passed the following criteria: 89 

https://registry.opendata.aws/1000-genomes/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/integrated_callset/variants_freeze4_sv_insdel_sym.vcfgz
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/integrated_callset/variants_freeze4_sv_insdel_sym.vcfgz
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bcftools view -i 'INFO/SVMODEL="AGGREGATED" && FILTER="PASS" && SVTYPE="DUP" && 90 
QD > 5 && (AC/NUM_MERGED_SVS) < 25 && PASS_AC >0 ' ${vcf} | 91 
bcftools filter -i 'FMT/FT ="PASS" ' --set-GTs . - | bcftools view -c1 -s ${meta} -92 
-output ${prefix}.DUPonly.vcf.gz -Oz --threads $task.cpus - 93 
 94 

Lastly, for insertions, we filtered the variants with bcftools using the following command: 95 

bcftools view -i 'INFO/SVMODEL="AGGREGATED" && FILTER="PASS" && SVTYPE="INS" && 96 
PASS_AC >0 && (AC/NUM_MERGED_SVS) < 25 && PASS_ratio > 0.1 && (ABHet > 0.25 || 97 
ABHet < 0) && MaxAAS > 4' ${vcf} | bcftools filter -i 'FMT/FT ="PASS" ' --set-GTs . 98 
--threads $task.cpus - | bcftools view -c1 -s ${meta} --output 99 
${prefix}.INSonly.vcf.gz -Oz --threads $task.cpus - 100 
 101 

SV discovery using Delly 102 

Delly2 v1.2.6 was executed in the single sample mode to identify deletions and 103 

insertions in the 34 1000G samples using default parameters. BCFtools7 was used to 104 

convert the bcf output from Delly to VCF format before clustering SVs across samples 105 

using SVimmer5. The SVs were re-genotyped in each sample using Graphtyper26 with 106 

default parameters. We merged the individual re-genotyped VCF using Graphtyper2’s 107 

Vcfmerge function Lastly, we retained PASS calls made under the aggregated 108 

genotyping model for downstream analysis. In addition, we applied additional filters 109 

recommended by Graphtyper2.  110 

For deletions, we filter the variants using bcftools with the following command: 111 

bcftools 'INFO/SVMODEL="AGGREGATED" && FILTER="PASS" && SVTYPE="DEL" && QD > 9  && 112 
(ABHet > 0.3 || ABHet < 0 ) && (AC/NUM_MERGED_SVS) < 25  && PASS_AC > 0 && 113 
PASS_ratio > 0.1' ${vcf} | bcftools filter -i 'FMT/FT ="PASS" ' --set-GTs . - | 114 
bcftools view -c1 -s ${meta} --output ${prefix}.DEL.vcf.gz -Oz --threads $task.cpus 115 
- 116 
 117 
For duplications, we retain variants which passed the following criteria: 118 

bcftools view -i 'INFO/SVMODEL="AGGREGATED" && FILTER="PASS" && SVTYPE="DUP" && 119 
QD > 5 && (AC/NUM_MERGED_SVS) < 25 && PASS_AC >0 ' ${vcf} | 120 
bcftools filter -i 'FMT/FT ="PASS" ' --set-GTs . - | bcftools view -c1 -s ${meta} -121 
-output ${prefix}.DUPonly.vcf.gz -Oz --threads $task.cpus - 122 
 123 

Lastly, for insertions, we filtered the variants with bcftools using the following command: 124 

bcftools view -i 'INFO/SVMODEL="AGGREGATED" && FILTER="PASS" && SVTYPE="INS" && 125 
PASS_AC >0 && (AC/NUM_MERGED_SVS) < 25 && PASS_ratio > 0.1 && (ABHet > 0.25 || 126 
ABHet < 0) && MaxAAS > 4' ${vcf} | bcftools filter -i 'FMT/FT ="PASS" ' --set-GTs . 127 
--threads $task.cpus - | bcftools view -c1 -s ${meta} --output 128 
${prefix}.INSonly.vcf.gz -Oz --threads $task.cpus - 129 
 130 

 131 
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SV discovery using Smoove 132 

Smoove was executed in the single sample mode to identify structural variations in the 133 

34 1000G samples using Smoove Call function with default parameters. Variants were 134 

merged across samples using the Smoove Merge function with default parameters. 135 

Lastly, SVs were re-genotyped in each sample using the Smoove Genotype function 136 

with default parameters.  137 

 138 

Combining SVs detected across the three algorithms 139 

We obtained the single sample calls from each of the algorithms (Manta, Smoove, 140 

Delly) and clustered across all samples and algorithm using SVimmer5 with the default 141 

parameters. Lastly, we re-genotyped SVs in each sample using Graphtyper26 with 142 

default parameters and merged the individual re-genotyped VCF using Graphtyper2’s 143 

Vcfmerge function Lastly, we retained PASS calls made under the aggregated 144 

genotyping model for downstream analysis. In addition, we applied additional filters 145 

recommended by Graphtyper2.  146 

For deletions, we filter the variants using bcftools with the following command: 147 

bcftools 'INFO/SVMODEL="AGGREGATED" && FILTER="PASS" && SVTYPE="DEL" && QD > 9  && 148 
(ABHet > 0.3 || ABHet < 0 ) && (AC/NUM_MERGED_SVS) < 25  && PASS_AC > 0 && 149 
PASS_ratio > 0.1' ${vcf} | bcftools filter -i 'FMT/FT ="PASS" ' --set-GTs . - | 150 
bcftools view -c1 -s ${meta} --output ${prefix}.DEL.vcf.gz -Oz --threads $task.cpus 151 
- 152 
 153 
For duplications, we retain variants which passed the following criteria: 154 

bcftools view -i 'INFO/SVMODEL="AGGREGATED" && FILTER="PASS" && SVTYPE="DUP" && 155 
QD > 5 && (AC/NUM_MERGED_SVS) < 25 && PASS_AC >0 ' ${vcf} | 156 
bcftools filter -i 'FMT/FT ="PASS" ' --set-GTs . - | bcftools view -c1 -s ${meta} -157 
-output ${prefix}.DUPonly.vcf.gz -Oz --threads $task.cpus - 158 
 159 

Lastly, for insertions, we filtered the variants with bcftools using the following command: 160 

bcftools view -i 'INFO/SVMODEL="AGGREGATED" && FILTER="PASS" && SVTYPE="INS" && 161 
PASS_AC >0 && (AC/NUM_MERGED_SVS) < 25 && PASS_ratio > 0.1 && (ABHet > 0.25 || 162 
ABHet < 0) && MaxAAS > 4' ${vcf} | bcftools filter -i 'FMT/FT ="PASS" ' --set-GTs . 163 
--threads $task.cpus - | bcftools view -c1 -s ${meta} --output 164 
${prefix}.INSonly.vcf.gz -Oz --threads $task.cpus - 165 
 166 

Calculating precision, recall and F1-Score 167 

To evaluate the performance of different SV algorithm, we focus the test on the 168 

presence and absence of the variants in the long read dataset. We calculate the  169 

precision, recall and F1-Score using Truvari8 with the SV calls from long read data 170 
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from Ebert et al.4 as the truth set. A variant is defined as a true positive (TP) if the 171 

variant is found in both short-read and long-read dataset. A variant is defined as a 172 

false positive (FP) if it is not found in the long read dataset.  173 

 174 

Precision is defined as: 175 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 !"
!"#$"

                   (1) 176 

 177 

Recall is defined as:	178 

	179 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	 !"
!"#$%

																															(2) 180 

 181 

F1-score is defined as: 182 

𝐹1 = 2 ∗	 "&'()*)+,∗.'(/00
"&'()*)+,#.'(/00

         (3) 183 

 184 

 185 

Evaluation of SV detection pipelines using 34 1000G project WGS data 186 

The precision and recall for SV detection varied depending on the method. Fig 1c, d 187 

and e show the precision, recall and F1 (combined statistics of precision and recall) of 188 

the three different SV calling pipeline for calling structural variations. 189 

Delly+Graphtyper2 has the highest precision in terms of SV detection for both 30x and 190 

15x sequencing libraries. However, Manta+Graphtyper2 has a higher recall and F1 191 

score compared to the rest of the pipelines.  Combining SVs detected by all three 192 

pipelines did not improve the precision, recall and F1-Score compared to running the 193 

Manta+Graphtyper2 pipeline.  194 

 195 

When analyzing the SVs separately based on the SV classes, Delly+Graphtyper2 has 196 

the highest precision in terms of deletion and insertion detection for both 30x and 15x 197 

sequencing libraries (Supplementary Fig. 2). In terms of recall and F1-score, 198 

Manta+Graphtyper2 outperforms the other pipelines for both deletions and insertions.  199 

 200 

Next, we evaluate how sequencing read depth affects the performance of the SV 201 

pipelines. We down-sampled the 30x CRAM files to 15x using Sambamba9 and we 202 

evaluate the performance of the four different approaches to detect SVs. Differences 203 
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in sequencing depth affect precision and recall (Fig. 1c, d, e, and Supplementary Fig. 204 

2 and 3). Interestingly, the 30x dataset has a higher recall for all four approaches. In 205 

addition, data with a higher sequencing depth (30x) have a lower precision compared 206 

to the sequencing data with a lower coverage (15x). The lower precision and higher 207 

recall of the 30x data could be attributed to higher number of misaligned reads leading 208 

to spurious SV calling10.  209 

 210 

To estimate the number of variants that are missed or incorrectly called using the 15x 211 

samples as compared to 30x, we obtained the true positives (TP), false positives (FP), 212 

and false negative (FN) counts for each pipeline across different sequencing depth. 213 

Across all SV pipelines, 15x libraries have a lower FP count compared to the 30x 214 

libraries (Supplementary Fig. 3). This could be attributed to the higher number of 215 

misaligned reads in the 30x libraries which could lead to spurious SV calls. 216 

 217 

Supplementary Note 2: Benchmarking of SV calling pipeline for 218 

duplications 219 

 220 

As the Manta-SVimmer-Graphtyper2 SV pipeline relies solely on discordant read pairs 221 

and split-read alignments, it has inherent limitations to accurately detect duplication 222 

events created by the presence of tandem repeat sequences (e.g., microsatellites and 223 

minisatellites)11,12. We thus complemented the above algorithms with SurVIndel213, an 224 

in-house developed algorithm that can detect duplication events at high sensitivity 225 

(Supplementary Fig. 4).  226 

 227 

To demonstrate the robustness of SurVindel2, we assessed false discovery rate (FDR) 228 

and true positive (TP) statistics for duplications relative to Manta-SVimmer-229 

Graphtyper2, against a truth set of high quality SVs obtained by haplotype-resolved 230 

long-read sequencing of a selected subset of 1000 Genomes Project analyzed 231 

samples4.  232 

 233 

We downloaded CRAM files at 30x coverage are available for all the samples14. We 234 

randomly selected 10 samples for our benchmarking effort and down-sampled the 235 

CRAM files to 15x using samtools7 we ran our pipeline on a dataset comprising 5,487 236 
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discovery samples plus the 10 benchmarking samples. we ran our pipeline on a 237 

dataset comprising 5,487 discovery samples plus the 10 benchmarking samples.  to 238 

mimic our discovery dataset.  239 

 240 

For this benchmarking, we ran our pipeline on a dataset comprising 5,487 discovery 241 

samples plus the 10 benchmarking samples. we ran our pipeline on a dataset 242 

comprising 5,487 discovery samples plus the 10 benchmarking samples. Finally, we 243 

obtained a call set for each sample by retaining SVs with an allele count of at least 1 244 

and an FS value of PASS.  245 

 246 

We used an in-house tool (https://github.com/Mesh89/SVComparator) to compare, for 247 

each sample, the predicted SVs with the set of SVs reported in HGSVC2. Our pipeline 248 

reports tandem duplications and insertions separately, while HGSVC2 only reports 249 

deletions and insertions; tandem duplications are considered insertions. For this 250 

reason, we could not measure the sensitivity of our duplications and insertions 251 

separately. 252 

 253 
We measured an average per-sample duplication identification FDR of 12% and 36% 254 

for SurVindel2 and Manta-SVimmer-Graphtyper2, respectively. SurVIndel2 yielded a 255 

better sensitivity than Manta-SVimmer-Graphtyper2 (Supplementary Fig. 3, 256 

Supplementary Table 2). Furthermore, the gains in sensitivity were more pronounced 257 

for tandem repeats (Supplementary Fig. 5). 258 

 259 
One of the significant challenges when generating a dataset of SVs for a large 260 

population is maintaining a low level of noise. Our benchmarking efforts show that our 261 

call set is precise (average precision is 0.91 for deletions, 0.88 for duplications and 262 

0.72 for insertions) (Supplementary Table 3). Unsurprisingly, long reads can discover 263 

far more SVs compared to 15x Illumina paired-end reads. However, the number of 264 

deletions, duplications and insertions we discovered is comparable to recent studies 265 

such as gnomAD15 while using a lower sequencing depth. Coupled with the good 266 

precision, we conclude that our pipeline is in line with the state of the art in the field. 267 

 268 
Supplementary Note 3: Identifying novel variants with respect to gnomAD-269 
SV catalogue 270 
 271 
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To identify SVs that have a higher prevalence in Asian population within gnomAD-SV 272 

catalogue, we first identify variants that overlap between SG10K-SV and gnomAD-SV 273 

using SVimmer5. We identified 23,434 SVs in the SG10K-SV dataset which overlap 274 

with gnomAD-SV. This includes 4,725 deletions, 7,458 duplications and 11,251 275 

insertions.  276 

 277 

 278 
Supplementary Note 4: Identifying novel variants with respect to 1000G-279 
SV catalogue 280 
 281 
To identify SVs that have a higher prevalence in Asian population within 1000G-SV 282 

catalogue, we first identify variants that overlap between SG10K-SV and 1000G-SV 283 

using SVimmer5. We identified 9,668 SVs in the SG10K-SV dataset which overlap with 284 

1000G-SV. This includes 3,105 deletions, 284 duplications and 6,279 insertions. 285 

 286 

 287 
  288 
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Supplementary Figures 289 

 290 

 291 
Supplementary Fig. 1 Different types of structural variations detected in SG10K-292 
SV.  293 
 294 
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 295 
 296 

 297 
Supplementary Fig. 2 Benchmarking of various SV callers for deletions and 298 
insertions using 34 1000G samples with two different sequencing depths.  299 
a Boxplot showing the precision for deletions between 15x and 30x coverage for 300 
each caller. Combined refers to variants that are detected in all three pipelines. b 301 
Boxplot showing the recall for deletions between 15x and 30x coverage for each 302 
caller. c Boxplot showing the F1-score for deletions between 15x and 30x coverage 303 
for each caller. d Boxplot showing the precision for insertions between 15x and 30x 304 
coverage for each caller. e Boxplot showing the recall for insertions between 15x and 305 
30x coverage for each caller. f Boxplot showing the F1-score for insertions between 306 
15x and 30x coverage for each caller. The boxplots in a-f display the median and 307 
first/third quartiles. 308 
  309 
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 310 
 311 
Supplementary Fig. 3 True positive, false positive and false negative counts for 312 
Manta, Delly, Smoove and their combination for all classed of SVs using 34 313 
1000G samples with two different sequencing depth (15x and 30x coverage).  314 
a Boxplot showing the number of false positive counts between 15x and 30x coverage 315 
for each SV caller. Combined refers to variants that are detected in all three pipelines. 316 
b Boxplot showing the false negative counts between 15x and 30x coverage for each 317 
SV caller. c Boxplot showing the true positive counts between 15x and 30x coverage 318 
for each SV caller. The boxplots showed in a-c display the median and first/third 319 
quartiles. 320 
 321 
  322 
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 323 
Supplementary Fig. 4 Comparison of SurVindel2 and Manta-SVimmer-324 
Graphtyper2 pipeline for duplication identification.  325 
a Comparison of the number of duplications detected by Manta-Graphtyper2 and 326 
SurVIndel2. b Scatterplot comparing the number of true positives detected 327 
duplication and FDR achieved with Manta-SVimmer-Graphtyper2 and SurVindel2 for 328 
a truth set of high quality SVs obtained by haplotype-resolved long-read sequencing 329 
of a selected subset of 1000 Genomes Project analyzed samples4. 330 
  331 
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 332 

 333 
Supplementary Fig. 5 Barplot showing the number of duplications detected by 334 
Manta-SVimmer-Graphtyper2 and SurVindel2 in different genomic regions.  335 
The Y-axis shows the number of SVs and the X-axis shows the sample name for each 336 
1KG sample. Blue bars indicate the number of duplications detected in each 1KG 337 
sample by the Manta-SVimmer-Graphtyper2 pipeline. Green bars indicate the number 338 
of duplications detected in each 1KG sample by SurVindel2.  339 
The barplot on the left shows the number of SVs detected by Manta-SVimmer-340 
Graphtyper2 and SurVindel2 in tandem repeat regions. The barplot on the right shows 341 
the number of SVs Manta-SVimmer-Graphtyper2 and SurVindel2 in non-tandem 342 
repeat regions. SurVindel2 detects more duplications in both tandem repeat and non-343 
tandem repeat regions compared to Manta-SVimmer-Graphtyper2. 344 
  345 
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 346 
 347 
Supplementary Fig. 6 Violin plot showing the number of events per genome for 348 
the Validation datasets.  349 
a Violin plots and boxplots showing the number of events per genome for each 350 
ethnic group (number of Chinese = 663, number of Malays = 278, number of Indians 351 
= 581). DEL, deletions; DUP, duplications; INS, insertions (including MEIs) in the 15x 352 
validation dataset. The boxplots display the minimum and maximum number of SVs 353 
as well as the median and the first/third quartile. b Violin plots and boxplots showing 354 
the number of events per genome for each ethnic group (number of Chinese = 355 
1,433, number of Malays = 288, number of Indians = 198). DEL, deletions; DUP, 356 
duplications; INS, insertions (including MEIs) in the 30x validation dataset. The 357 
boxplots display the minimum and maximum number of SVs as well as the median 358 
and the first/third quartile. 359 
 360 
 361 
 362 
  363 
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 364 

 365 
Supplementary Fig. 7 Allele distribution for the two validation datasets.  366 
a Distribution of alternate allele counts for different class of SVs in the discovery 367 
dataset. b Distribution of alternate allele counts for different classes of SVs in the 368 
SG10K 15x validation dataset. The majority of the SVs are rare variants (AF < 1%). c 369 
Distribution of alternate allele counts for different classes of SVs in the SG10K 30x 370 
validation dataset. The majority of the SVs are rare variants (AF < 1%). d Allele count 371 
distribution across different SV classes segregated by allele frequency classes for 15x 372 
validation dataset. Allele frequency (AF) bins: Common (AF ≥ 0.01), rare (0.01 > AF ≥ 373 
0.001) and ultra-rare (AF < 0.001). e Allele count distribution across different SV 374 
classes segregated by allele frequency classes for 30x validation dataset. 375 
 376 
  377 
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 378 
 379 
Supplementary Fig. 8 Samplot of a 9.16kb deletion event overlapping the 380 
PRKAG2 gene region.   381 
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 382 
Supplementary Fig. 9: Distribution of novel Asian-specific and known Asian-383 
specific SVs across different allele frequency bins.  384 
Light-brown bars indicate SVs in SG10K-SV that overlap either gnomAD-SV or 385 
1000G-SV and do not have significant Fst. Brown bars indicate SVs in SG10K-SV 386 
which overlap variants in either gnomAD-SV and 1000G and have significant Fst, 387 
and therefore, they are termed as “Asian-specific”. Red bars indicate SVs that are 388 
only found in SG10K and have a call rate of ≥0.5 in Chinese, Malay, or Indians. 389 
These SVs are referred to as “Novel Asian Specific” SVs. The SVs are furthered 390 
partition into three different within SG10K-SV allele frequency (AF) bins: Common 391 
(AF ≥ 0.01), rare (0.01 > AF ≥ 0.001) and ultra-rare (AF < 0.001).  392 
  393 
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 394 
Supplementary Fig. 10 Scatter plot of the top-2 principal components of a 395 
SG10K_Health dataset Single Nucleotide Variant based PCA analysis showing 396 
the population structure in the Singaporean population.  397 
  398 
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 399 
 400 

 401 
 402 
Supplementary Fig. 11 PCA of variants in the discovery dataset showing the 403 
population structure in the SG10K-SV-r1.4.  404 
a PCA of all variants in the discovery dataset. b PCA using deletions only. c PCA 405 
using insertions only. d PCA using duplications only. 406 
  407 
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 408 
 409 
 410 

 411 
Supplementary Fig. 12 Distribution of SVs shared among ethnic group across 412 
different allele frequency bins.  413 
Different shades of blue indicate the number of ethnic groups in which the SV is 414 
detected in. The SVs are furthered partition into three different allele frequency bins. 415 
Common indicates variants with allele frequency ≥ 0.01; rare indicates variants with 416 
allele frequency ≥ 0.001 and  allele frequency < 0.01; ultra-rare variants refers to 417 
variants with allele frequency < 0.001. 418 
  419 
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