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Supporting Information Text 

 
Theoretical flow recirculation timescale in droplets 
 
The simplest theoretical model that captures the minimal elements to represent inner droplet flow 
in 3D is that of an inner phase static spherical droplet of radius 𝑅0 at the origin, with dynamic 

viscosity 𝜂𝑖, submerged in a continuous outer phase of dynamic viscosity 𝜂𝑜 that flows at uniform 
velocity 𝑈0 far from the fixed spherical droplet. Under these conditions, the droplet will experience 

shear-stress that results in inner (𝐮𝑖) and outer (𝐮𝑜) flow velocity fields. Assuming a laminar, 
inertia-less flow and neglecting surface tension gradients, both fields admit analytical 
representations that are known as Hadamard-Rybczynski velocity fields (1). These velocity fields, 
although idealized and incomplete for fully recapitulating the 3D configuration of trapped droplets, 
describe some of the functional relationships between quantities of interest with the physical 
parameters of the problem, and thus facilitates the study of inner droplet flow. Fig. S2 illustrates 
the Hadamard-Rybczynski velocity field streamlines as the outer phase with velocity −𝑈0 𝐳̂  flows 
past the sphere. Under these conditions, the inside velocity field can be fully represented with 

radial and angular components in spherical coordinates, 𝐮𝑖 = (𝑢𝜌
𝑖 , 𝑢𝜃

𝑖 ): 

 

𝑢𝜌
𝑖 (𝜌, 𝜃) =

𝑅0

𝜏
cos 𝜃 [(

𝜌

𝑅0
)

2

− 1] ,    (S1a) 

𝑢𝜃
𝑖 (𝑟, 𝜃) =

𝑅0

𝜏
sin 𝜃 [2 (

𝜌

𝑅0
)

2

− 1] ,    (S1b) 

 
where a characteristic timescale 𝜏 has been identified: 
 

𝜏 =
2𝑅0

𝑈0
 (1 + 𝑞),    𝑞 =  

𝜂𝑖

𝜂𝑜
 .            (S2) 

 
Hadamard-Rybczynski velocity streamlines inside the inner phase describe a family of 

Bernoullian quartic curves which admit the following parametric equation representation: 
 

𝜌0

𝜌
√

𝜌0
2−𝑅0

2

𝜌2−𝑅0
2 = sin(𝜃),      (S3) 

 
where 𝜌0 is the starting radial defining a specific closed quartic curve (Fig. S2). Ideally small 
particles recirculate these closed pathlines, thereby describing a periodic motion on both 𝜌(𝑡) and 

𝜃(𝑡) coordinates. This orbiting period, 𝑇𝑜𝑟𝑏𝑖𝑡, can be obtained by solving a system of ordinary 
differential equations that are defined by the radial and angular components of the velocity field 
(Eqs. S1a,b). We found that the solution to this system of nonlinear differential equations can be 
written in the implicit form: 
 

𝑡 − 𝑡0 = 𝜏 ∫
𝑅0𝜌′𝑑𝜌′

√(𝜌′2
−𝑅0

2)(𝜌′2
−𝜌0

2)(𝜌′2
+𝜌0

2−𝑅0
2)

𝜌

𝜌0
 ,    (S4) 

 
where 𝜌(𝑡0) = 𝜌0 set as the start point of the particle path, and the time constant 𝜏 is given by Eq. 
(S2).  From Eq. (S4), the recirculation time or cell/particle orbiting period can be readily computed 
as: 
 

𝑇𝑜𝑟𝑏𝑖𝑡 =
2𝜏

√(𝜌0/𝑅0)2−1
[𝐾 (

𝜌0
2

𝑅0
2−𝜌0

2) − 𝐹 (𝜙,
𝜌0

2

𝑅0
2−𝜌0

2)] = 𝜏 𝑓(𝜌0, 𝑅0) ,   (S5) 

 
where 𝜌0 is the vortex starting point, 𝐾(𝑚) and 𝐹(𝜙, 𝑚) are the complete and incomplete elliptic 

integrals of the first kind, respectively, with 𝜙 = sin−1[(𝑅0
2 − 𝜌0

2)/𝜌0
2] and 𝑚 =

𝜌0
2

𝑅0
2−𝜌0

2.  Although 

being an implicit solution to the particle equations of motion, Eq. (S5) can be directly used to 
compute particle trajectories. 
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Because 𝑇𝑜𝑟𝑏𝑖𝑡~𝜏 for a given recirculation streamline and the outer flow velocity magnitude is 

proportional to the applied flowrate (𝑈0~𝛼𝑄), the angular velocity of a recirculation element is 
given by: 

 

𝜔 = 2𝜋/𝜏 =
2𝜋

2𝑅0
𝑈0

 (1+𝑞)    
=

𝜋𝑈0

𝑅0(1+ 
𝜂𝑖
𝜂𝑜

)
 

 

𝜔(𝑄) =  
𝜋𝛼𝑄

𝑅0(1+ 𝜂𝑖 /𝜂𝑜)
 .     (S6) 
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Noise sources in the CMOS-based detection system 
 
In our detection system, high-frequency noise primarily originates from the camera-based 
detection, specifically from the complementary metal-oxide semiconductor (CMOS). That readout 
noise frequency significantly exceeds that of the temporal photon flux provided by the rotating 
cell, which has frequency in the order of 𝑓0~ 1/𝑇, where 𝑇 is the cell rotation period. 
 

We provide a noise analysis for the CMOS system, based on the work of Mandracchia et al. 
(2). In CMOS sensors, different electronic elements convert impinging photons (𝑃) into 

photoelectrons (𝑆) and thereafter into an intensity value or digital number (𝐷𝑁), for each pixel in 
the array that acts as a detector (2). Each element involved in the transduction process 
introduces uncertainty, which can be modeled via the following equation: 
 

𝐷𝑁(𝑝, 𝑡) = 𝑔(𝑝)  ⋅ 𝑆′(𝑝, 𝑡) + 𝑜(𝑝)     (S7) 
 
where 𝐷𝑁(𝑝, 𝑡) represents the digital number (grayscale value of the camera) readout at pixel 𝑝 
at timepoint 𝑡. In this equation, the fixed gain in 𝐷𝑁/𝑒−units at pixel 𝑝 is given by 𝑔(𝑝), and the 

offset 𝑜(𝑝) is given in 𝐷𝑁 units. The number of electrons 𝑆′(𝑝, 𝑡) measured at a given pixel 𝑝 and 

timepoint 𝑡 is the compound effect of different statistical processes that introduce the noise, and 
is described by the following equation: 
 

𝑆′(𝑝, 𝑡) = 𝑃(𝑆; 𝑝, 𝑡) + 𝑃(𝐼𝐷𝜏; 𝑝) + ℊ(0, 𝜎𝑅
2; 𝑝) + ℊ(0, 𝜎𝐹𝑃𝑁

2 ; 𝑝, 𝑡)   (S8) 
 
where 𝑃(⋅) is the Poisson distribution, ℊ(⋅) the heteroskedastic Gaussian distribution, 𝐼𝐷 is the 

dark current, 𝜏 the exposure time, 𝜎𝑅
2 is the electronic readout noise variance, and 𝜎𝐹𝑃𝑁

2  the fixed 
pattern noise variance. In Eq. (S8), the first term is due to photon shot noise, the second term to 
dark shot noise, the third to electronic read noise, and the last to fixed pattern noise. Short 
exposure times (<1 s) lead to the safe assumption that dark current can be neglected (3). 
Following the analysis of Mandracchia et al. (3), the Poisson distribution can be replaced by a 
Gaussian distribution if the photon flux is >5 photons per pixel with <1% error, to conclude that 
the camera-related noise is the sum of two independent Gaussian-distributed random variables, 
with variance: 
 

𝜎𝑁
2 = 𝜎𝑅

2 + 𝜎𝐺
2       (S9) 

 

where 𝜎𝐺
2 represents the Gaussian variance of the photon shot noise. Under this approximation, 

the noise distribution has a constant power spectral density, while signals from the actual sample 
are contained within the Optical Transfer Function (OTF) of the system and are further modulated 
by the natural frequency 𝑓0 of the rotating object. On the other hand, because the system is 

sampled at a frequency of 𝑓𝑠= fps (fps = 150 in our current analysis), a band of 0 < 𝑓 < 𝑓𝑠/2  can 
provide a complete reconstruction of the signal information by the Nyquist-Shannon sampling 
theorem. Temporal signal frequencies in the range of 𝑓0 ≲ 𝑓 ≤ 𝑓𝑠/2 can be therefore considered 
to be potentially parasitic. In practice, however, because a cut-off value close to the natural 
frequency of the system can result in over-filtering, we decided to keep frequencies at least 
approximately one order of magnitude above 2𝑓0, which in the parametric study (Fig. 4F in the 

main manuscript) corresponded to 𝑓𝑐~ 5 Hz. 
 
To improve signal quality prior to any digital filtering, the following noise reduction strategies are 
suggested: 
 

• Increasing the quantum efficiency of the system – essentially, the efficiency by which 
impinging photons are transformed into photoelectrons. This can be achieved in a back 
illumination detector scheme with a back thinning (BT) process, typically present in more 
costly cameras (e.g. scientific grade CMOS sensors). 
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• Binning schemes can be used to combine the signal incoming from different contiguous 
pixels into one compound pixel, thereby increasing the number of impinging electrons per 
pixel and therefore the signal, with respect to a given noise level. A trade off would be that by 
combining pixels, resolution is reduced (e.g. by lowering the total number of pixels present in 
the final image). 
 

• Longer exposure times can also be used to increase the signal level with respect to the noise 
levels of the system. This results in improved SNR but can critically impact the number of 
frames that can be collected per unit time. Reducing frame rate can ultimately result in a 
reduced number of optical slices, which are needed to perform the OPT-based 3D 
reconstruction. 
 

• Enhancing the optics needed to acquire the images of rotating cells could also be used to 
improve SNR. In particular, an increase in the NA of the objective (currently NA = 1.3) would 
have a direct impact on the amount of collected photons by widening the light cone that 
enters the objective lens. 
 

• Optimization of the imaging conditions within droplets could also lead to SNR improvements. 
Choosing cell media that provides low background fluorescence will reduce noise incoming 
from the sample. Furthermore, careful selection of the fluorophore excitation conditions of 
interest will have a direct impact on image quality. Excitation and emission filters can also be 
selected optimally for improved SNR, or laser excitation can be used instead to provide 
excitation photons closer to the specific wavelength needed for the fluorophore of interest. 
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Theory of shape representation via Spherical Harmonics (SPHARM) 
 
The theory of SPHARM expansions for representing a 3D surface object 𝐯(𝜃, 𝜙) has been 

previously described in detail (4, 5). Briefly, each of the spatial coordinates (𝑥, 𝑦, 𝑧) making up the 
vertices of the surface object can be expanded as a sum of spherical harmonic basis functions, 
𝑌𝑙

𝑚(𝜃, 𝜙), where 𝑙 represents the desired degree for the expansion and 𝑚 the order of the 
spherical harmonic function: 
 

𝐯(𝜃, 𝜙) = ∑ ∑ 𝐜𝑙
𝑚𝑌𝑙

𝑚(𝜃, 𝜙)𝑙
𝑚= −𝑙

∞
𝑙=0 .    (S10) 

 
where 

𝐯(𝜃, 𝜙) = (

𝑥(𝜃, 𝜙)

𝑦(𝜃, 𝜙)

𝑧(𝜃, 𝜙)
) ,     (S11) 

 

𝐜𝑙
𝑚 = (

𝑐𝑥𝑙
𝑚

𝑐𝑦𝑙
𝑚

𝑐𝑧𝑙
𝑚

) .         (S12) 

 
In these equations, the spherical harmonic functions are defined as: 
 

𝑌𝑙
𝑚(𝜃, 𝜙) = √

2𝑙+1

4𝜋

(𝑙−𝑚)!

(𝑙+𝑚)!
𝑃𝑙

𝑚(cos 𝜃) exp(𝑖𝑚𝜙)          (S13) 

 
where 𝑃𝑙

𝑚 are the associated Legendre polynomials. Coefficients are calculated by computing the 

inner product of 𝐯(𝜃, 𝜙) with the basis functions (4): 
 

𝐜𝑙
𝑚 = ⟨ 𝐯(𝜃, 𝜙) |𝑌𝑙

𝑚(𝜃, 𝜙)⟩        

=  ∫ ∫ 𝐯(𝜃, 𝜙) 𝑌𝑙
𝑚(𝜃, 𝜙)d𝜙 sin(𝜃) d𝜃

2𝜋

0

𝜋

0
       (S14) 

 
 
Expansion of the 3D surface object into its Fourier basis functions is possible if and only if the 
object has genus zero. As an example, the 𝑥 component of the vertices making up surface 

𝐯(𝜃, 𝜙) is given by (6): 
 

𝑥(𝜃, 𝜙) = ∑ ∑ 𝑐𝑥𝑙
𝑚𝑌𝑙

𝑚(𝜃, 𝜙)𝑙
𝑚= −𝑙

∞
𝑙=0 .    (S15) 

 
Existing Matlab implementations, such as the Spherical Harmonic Modeling and Analysis Toolkit 
(SPHARM-MAT Version 3.0) by Shen et al. (5), are available for calculation of the 𝐜𝑙

𝑚 coefficients 

of a given surface object 𝐯(𝜃, 𝜙). 
 
 
SPHARM-MAT data preparation. To analyze the fluorescence volumetric data obtained from 
ADOPT, we decided to build surface models from the different cell components under analysis. 
Upon collecting an OPT reconstructed object, a 3D matrix is generated, where each value 
represents the measured fluorescence intensity in a digital number (𝐷𝑁) format. These 𝐷𝑁 values 
represent translated photons from electrons with conversion factors dependent on the digital 
sensor (CMOS). To create the 3D surface models that would be analyzed by SPHARM, we 
normalized the intensity of said 3D matrices by their maximum intensity and applied a threshold 
to all values above a given isovalue. This operation essentially translates to indicating by a logical 
“1” all values within the fluorescence 3D matrices that are positive for the given fluorophore under 
analysis (Hoechst 33342 for all nuclei analyzed). This is a simple selection criterion, and while 
other more sophisticated methods may be used (e.g. through edge detection algorithms or 
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machine learning methods), the high SNR of the fluorophore lends itself to simple thresholding 
detection. 
 

After obtaining the binary 3D matrix (BW) for each cell nucleus, a simple topological fix was 

performed on the data using Matlab’s built-in function imfill(BW, 'holes') to guarantee simply 

connected objects prior to SPHARM analysis. This would guarantee all binary matrices had 
genus zero (i.e., no topological holes). Once topologically corrected, the binary matrices were 
transformed into two output vectors, one representing all vertices on the surface of the binary 
object and another representing their connectivity (faces) via function isosurface(∙). These 

vertex and face vectors, which essentially represent a triangular mesh of the voxels that were 
positive for the fluorophore of interest in 3D space, were then used as the input for the SPHARM 
algorithm. 

 
SPHARM-MAT parameters. SPHARM utilizes a Fourier transform approach to represent a 3D 
surface with three spherical functions, converting them into three sets of Fourier coefficients 
within the frequency domain (5). Spherical Harmonic analysis was carried out using the stand-
alone Matlab implementation of the spherical harmonic surface parametrization method by 
Brechbühler et al. (4), SPHARM-MAT developed by Shen et al. (5). First, SPHARM 
parametrization of the vertex and face vector of each cell nucleus was carried out using the 
Control of Area and Length Distortions (CALD) method. The following settings were selected: 
MeshGridSize: 50, MaxSPHARMDegree: 20, Tolerance: 2, Smoothing: 2, Iteration: 100, 
LocalIteration: 10, t_major: x, and SelectDiagonal: ShortDiag. 
 

After parametrization, the output .mat files were fed into the “Expansion” algorithm using the 
following settings: Method: LSF, MaxSPHARMDegree: 20. This resulted in three sets of Fourier 
coefficients (one for each spatial cartesian coordinate). The total number of Fourier coefficients 

was given by (𝐿𝑚𝑎𝑥 + 1)2, where 𝐿𝑚𝑎𝑥 is the MaxSPHARMDegree used in the reconstructions 
(here, 𝐿𝑚𝑎𝑥 = 20), for a total of 441 Fourier terms. To compare the coefficients of different nuclei 
(e.g. Fig. S3C), SPHARM alignment was carried out. First Order Ellipsoid (FOE) alignment was 
selected to establish surface correspondence. 

 
Orientation-independent surface concavity measurement from SPHARM shapes. Because 
SPHARM coefficient determination requires surface matching and alignment to register 3D 
SPHARM model objects, we decided to follow an approach that would be independent of the 
orientation of the generated spherical harmonic expansions. With such a method, FOE alignment 
would not be necessary, while still providing a meaningful topological comparison between 3D 
organelle surface objects. To do this, we realized from observation of SPHARM models with 
different degrees of detail (i.e., 𝐿𝑚𝑎𝑥) that concave features arise at low frequency components, 
while high frequency components contain an almost 50/50 composition of concave and convex 
surfaces. This stems from the fact that the addition of harmonics up to high frequency 
components result in complex shaped surfaces with intricate detail that have at portions positive 
and negative curvatures. A property of SPHARM 3D object reconstructions is that they have 
smooth surfaces, and thus lend themselves to application of computational algorithms for 
calculation of their local Gaussian curvature. We applied existing Matlab algorithms (7, 8) to 
calculate the areas having positive or negative curvature and proceeded to apply this method to 
each 3D surface nucleus analyzed for K562 cells and T cells. Therefore, to evaluate organelle 
concavity, we calculated the total portion of the organelle 3D surface having negative curvature: 
 

Area fraction with negative curvature in the 𝑗-th degree model =  
𝐴𝑛𝑒𝑔,𝑗

𝐴𝑡𝑜𝑡𝑎𝑙,𝑗
=  

∑ 𝐴𝑖𝑗𝛿𝑖
𝑁
𝑖=1

∑ 𝐴𝑖𝑗
𝑁
𝑖=1

   

 (S16) 
 

where 𝐴𝑖𝑗 represents the area of the 𝑖-th triangular face in the surface model of the 𝑗-th degree 

SPHARM model, 𝑁 represents the total number of faces, and: 
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 𝛿𝑖 = {
1 , if  𝜅1𝑖𝑗𝜅2𝑖𝑗 < 0

0,     if  𝜅1𝑖𝑗𝜅2𝑖𝑗 ≥ 0
  ,     (S17) 

 

with  𝜅1𝑖𝑗,  𝜅2𝑖𝑗 being the principal curvature components of the 𝑖-th face in the 𝑗-th degree model. 

In this analysis, 𝑖 spanned all the triangular faces (𝑖=1 to 𝑖 = 𝑁 ,with 𝑁=20,480 for all cases) in a 

surface model, and the degree of the SPHARM model was swept from 𝑗=1 to 𝑗 = 𝐿𝑚𝑎𝑥=20. In Eq. 

(S16), the summation in the denominator corresponds to the total surface area of the 𝑗-th 
SPHARM degree surface model. Under the assumption that negative curvature surfaces 
represent the concavity, we evaluated Eqs. (S16) and (S17) for all K562 and T cell nuclei in this 
paper. 
 
 
Orientation-independent surface concavity measurement validation. We validated that the 
concavity measurements obtained by SPHARM representation of cell nuclei were independent of 
the orientation of the raw 3D volumetric fluorescence (grayscale) data. To achieve this, random 
orientation states of the 3D volumetric fluorescence data were introduced by selecting 583 
random orientation vectors and rotation angles (Fig. S4). This produced a data set of 583 
randomly oriented 3D volumetric fluorescence matrices, which were transformed into their 3D 
surface voxel representation and then processed to produce the SPHARM shapes as described 
in the previous section. As seen from the mean and standard deviation values of the concavity 
measurement plots of Fig. S4C, harmonics above 𝑙 = 6 result in less than 10% variation, as 

prescribed by the coefficient of variation: CV (%) = 𝜎/𝜇 × 100%. For the maximum SPHARM 

degree (𝐿𝑚𝑎𝑥 = 20), variation was as low as 3.53%. This validation procedure thus provided an 
objective measurement of the orientation independence of concavity measurement through 
negative Gaussian area integration at each different harmonic level. 
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Fig. S1. Droplet trap device operation. Schematic showing the syringe pump operating in 
withdrawal mode to draw cell-laden droplets into the microfluidic trap array. A 200 µL pipette tip 
was used as reservoir to feed droplets into the device. A blow-up of the device side view depicts 
the relevant design dimensions used in this study. 
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Fig. S2. Flow velocity field of a 3D spherical droplet. 2D colormap represents the magnitude of 
the flow velocity field, normalized by the outer flow velocity magnitude far from the droplet. The 

flow field has azimuthal symmetry. Far from the droplet, the flow field is equal to −𝑼𝟎𝐳̂. 
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Fig. S3. Spherical harmonics representation of the cell nuclear textural information. (A) Texture 
map of the K562 cell nucleus (Fig. 2H in the main manuscript, included here for ease of 
visualization), displaying an enlarged nuclear groove structure. (B) Spherical harmonics 
parametric representation of the nucleus isosurface rendering in (A). (C) Magnitude of the 
spherical harmonic coefficients used in approximating spherically shaped and concave shaped 
K562 cell nuclei of Fig. 2K and L in the main manuscript. The spectral decomposition evinces the 
presence of the nuclear groove in the y-axis direction. 
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Fig. S4. Validation of orientation independence in cell organelle surface concavity 
measurements. (A) Schematic representation of a random rotation operation applied to a K562 
cell nuclei (obtained from 3D fluorescence volumetric data). (B) Scatter plot showing the N=583 
different random rotation operations here tested. Each point represents the coordinates of a 
random orientation vector, and the point color indicates the applied random rotation angle (0°-
360°) about the axis described by the orientation vector. (C) Measured concavity area of each 
SPHARM representation of the shape in (A), with increasing number of harmonic degree 
expansion. For N=583 randomly oriented 3D fluorescence volumetric data sets (K562 cell nuclei), 
the concave nuclear area was measured at each level of harmonic degree representation and 
averaged, with the standard deviation recorded (upper and lower shaded bounds to the line plot 
in C). 
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Fig. S5. Single-cell drift artifacts typically present in optical sectioning techniques. (A) Translation 
and rotation motion artifacts of unfixed T cells, as imaged by a CLSM system (fluorophore: anti-
CD45-Alexa Fluor 488). (B) A single xy-plane slice of the T cell in (A), showing its central position 
for tracking. (C,D) Different plane cuts illustrating motion artifacts. (E) Cell drift as a function of 
time, traced for N = 94 T cells. The calculated drift (in the xy-plane) of the centroid of a rotating 
cell inside a droplet. Average values are highlighted to evince motion trends. 
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Fig. S6. Activated T cell phenotype. (A) Primary T cell expansion-fold as a function of elapsed 
days after activation, for N =3 healthy donors. (B) T cell size distribution change from day 0 to 7. 
(C,D) Example of T cell activation markers distributions. Flow cytometry analysis of the percent of 
(A) CD25+ and (B) PD-1+ pan T cells on day 3 post-activation, for blood donor 1. Error bars 
represent quartile bounds. 
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Movie S1 (separate file). Brightfield footage of a rotating K562 cell trapped inside droplet under 
2 µL min-1 external oil phase flow rate. Scale bar = 20 µm. 

Movie S2 (separate file). Brightfield footage of a rotating K562 cell trapped inside droplet under 
10 µL min-1 external oil phase flow rate. Scale bar = 20 µm. 

Movie S3 (separate file). A rotating K562 cell trapped inside droplet with its nucleus stained 
using Hoechst 33342. Video was captured at 150 fps using a DAPI filter in a conventional 
widefield epifluorescence microscope at 100x (NA=1.3). Scale bar = 4 µm. 

Movie S4 (separate file). Reconstructed 3D surface model obtained via Optical Projection 
Tomography of raw footage in Movie S3. Surface was constructed via an isosurface rendering of 
the 3D volumetric fluorescence intensity profile. Scale bar = 4 µm. 
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