SUPPORTING INFORMATION

Synthesis of 3,3-Disubstituted Thietane Dioxides

Peerawat Saejong,^a Jaining Zhong,^a Juan J. Rojas,^a Andrew J. P. White,^a Chulho Choi,^b and James A. Bull^{a*}

^a Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane W12 0BZ, UK ^b Pfizer Worldwide Research, Development and Medical, Eastern Point Rd., Groton, CT 06340, USA.

*E-mail: j.bull@imperial.ac.uk

¹ H and ¹³ C NMR spectra. S6-S70 Thietane-3-ols. S7-S18 Thietane-3-ol-1,1-dioxides. S16-S26 Friedel–Crafts of thietane dioxides. S27-S56 C-S alkylation of thietane dioxides. S55-S6 C-O alkylation of thietane dioxide. S62-S66 Further functionalisation of 3,3-disubstituted thietane dioxide. S65-S70 S7 S7	Single crystal X-ray data for 3,3-disubstituted thietane dioxides 2a, 3aa, 3ac and 5aa	S2-S5
Thietane-3-ols.	¹ H and ¹³ C NMR spectra	S6-S70
Thietane-3-ol-1,1-dioxides. S16-S26 Friedel–Crafts of thietane dioxides. S27-S54 C-S alkylation of thietane dioxides S55-S6 C-O alkylation of thietane dioxide. S62-S64 Further functionalisation of 3,3-disubstituted thietane dioxide. S65-S76 S65-S76 S65-S76 S65-S76 S65-S76 S65-S76 S65-S76 S65-S76 S65-S76 S65-S76 S65-S76 S65-S76 S65-S76	Thietane-3-ols	S7-S15
Friedel–Crafts of thietane dioxides	Thietane-3-ol-1,1-dioxides	S16-S26
C-S alkylation of thietane dioxides	Friedel–Crafts of thietane dioxides	S27-S54
C-O alkylation of thietane dioxide	C-S alkylation of thietane dioxides	S55-S61
Further functionalisation of 3,3-disubstituted thietane dioxide	C-O alkylation of thietane dioxide	S62-S64
References S71	Further functionalisation of 3,3-disubstituted thietane dioxide	S65-S70
	References	S71

Preparation of single crystals

2a: Single crystals of **2a** were grown by dissolving the compound in a solvent mixture of CH_2CI_2 and hexane (6:4) at 40 °C. The warm mixture (2.0 mL) was added to **2a** (3.1 mg) in a 3 mL vial, which was then capped and left at room temperature until crystals formed.

3aa: For the growth of single crystals of **3aa**, acetone was used to dissolve the compound in a 3 mL vial. The vial was then loosely capped and placed inside a 10 mL vial containing 1.0 mL of heptane. The larger vial was sealed and stored at –20 °C until crystal formation was observed.

3ac and 5aa: Single crystals of 3ac and 5aa were grown slowly in CDCl₃ at room temperature.

Crystal Data, Data Collection and Refinement Parameters

 Table S1. Crystal Data, Data Collection and Refinement Parameters for the structures of 2a, 3aa, 3ac and 5aa.

data	2a	3aa	3ac	5aa
formula	$C_{10}H_{12}O_4S$	$C_{17}H_{18}O_4S$	$C_{18}H_{20}O_4S$	$C_{17}H_{18}O_3S_2$
formula weight	228.26	318.37	332.40	334.43
colour, habit	colourless needles	colourless blocks	colourless tablets	colourless tablets
temperature / K	173	173	173	173
crystal system	monoclinic	orthorhombic	monoclinic	monoclinic
space group	$P2_1/c$ (no. 14)	P212121 (no. 19)	$P2_1/c$ (no. 14)	$P2_1/c$ (no. 14)
a/Å	5.6198(3)	9.1214(2)	7.0019(2)	13.0110(3)
b/Å	6.9237(3)	11.1350(3)	11.1321(3)	5.89527(15)
c / Å	25.4955(12)	15.0959(4)	20.8963(6)	21.4203(6)
α / deg	90	90	90	90
β / deg	96.029(5)	90	95.061(3)	91.614(3)
γ / deg	90	90	90	90
V / Å ³	986.54(8)	1533.24(6)	1622.43(8)	1642.35(8)
Z	4	4	4	4
<i>D</i> _c / g cm ^{−3}	1.537	1.379	1.361	1.353
radiation used	Cu-Ka	Μο-Κα	Cu-Ka	Cu-Ka
µ / mm ⁻¹	2.876	0.227	1.927	3.018
no. of unique refins				
measured (<i>R</i> int)	1938 (0.0296)	3464 (0.0397)	3130 (0.0358)	3271 (0.0395)
obs, <i>F</i> ₀ > 4σ(<i>F</i> ₀)	1618	3161	2360	2673
completeness (%) [a]	99.9	99.9	98.7	99.8
no. of variables	142	206	216	202
R 1(obs), wR2(all) [b]	0.0363, 0.1035	0.0335, 0.0800	0.0423, 0.1181	0.0372, 0.1027
CCDC code	2368330	2368331	2368332	2368333

[a] Completeness to 0.84 Å resolution. [b] $R_1 = \Sigma ||F_0| - |F_0||/\Sigma ||F_0|$; $wR_2 = \{\Sigma [w(F_0^2 - F_0^2)^2] / \Sigma [w(F_0^2)^2]\}^{1/2}$; $w^{-1} = \sigma^2 (F_0^2) + (aP)^2 + bP$.

Table S1 provides a summary of the crystallographic data for the structures of **2a**, **3aa**, **3ac** and **5aa**. Data were collected using Agilent Xcalibur PX Ultra A (**2a**, **3ac** and **5aa**) and Agilent Xcalibur 3 E (**3aa**) diffractometers, and the structures were solved and refined using the OLEX2,^{1[}SHELXTL² and SHELX-2013³ program systems. The absolute structure of **3aa** was determined by use of the Flack parameter [x = 0.00(3)]. CCDC 2368330 to 2368333.

X-Ray crystallography

The O15–H hydrogen atom in the structure of **2a** was located from a ΔF map and refined freely subject to an O–H distance constraint of 0.90 Å. Whilst the structure of **2a** can be modelled using a half volume unit cell based on halving the *c* axis length, this results in a significantly disordered model in a chiral space group with an indeterminate Flack parameter [x = 0.25(11)]. The version presented here using the longer *c* axis, however, has no disorder in a centrosymmetric space group and is thus much preferred. The O22–H hydrogen atom in the structure of **3aa** was located from a ΔF map and refined freely subject to an O–H distance constraint of 0.90 Å. The absolute structure of **3aa** was determined by use of the Flack parameter [x = 0.00(3)]. The O22– H hydrogen atom in the structure of **3ac** was located from a ΔF map and refined freely subject to an O–H distance constraint of distance constraint of 0.90 Å.

Fig. S1 The crystal structure of 2a (65% probability ellipsoids).

Fig. S2 The crystal structure of **3aa** (50% probability ellipsoids).

Fig. S4 The crystal structure of 5aa (50% probability ellipsoids).

¹H and ¹³C NMR Spectra of Selected Compounds

Saejong et al.

Saejong et al.

Saejong et al.

References

(1) Dolomanov, O. V.; Bourhis, L. J.; Howard, J. A. K; Puschmann, H. OLEX2:a Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Cryst.* **2009**, *42*, 339–341.

- (2) SHELXTL v5.1, Bruker AXS, Madison, WI, 1998.
- (3) SHELX-2013, G.M. Sheldrick, Acta Cryst., 2015, C71, 3-8.