Supplementary Information

Supplementary Fig. 1: Experimental setup of in situ high-speed synchrotron X-ray imaging at ANL

a The side and **b** the front views of the direction of X-ray beam. The laser welding configuration was an overlapped weld. **c** Geometry of the dog bone-shaped specimen. Narrow width (500 μ m) in the gauge region is required due to the strong attenuation of X-ray on stainless steel.

Supplementary Fig. 2: T-peel strengths of laser welds

a The configuration of laser welds made in EWI and the specimen geometry for T-peel test, which followed refs. ^{1,2}. **b** T-peel strengths of laser welds (defined as the load per unit length of weld). The error bars represent the standard deviation calculated from 3 measurements for each condition.

Supplementary Fig. 3 CFD simulation setup

a Dimensions of the CFD simulation domain. **b** Heat flux factor which describes the laser profile with a Gaussian distribution.

Supplementary Fig. 4 Thermophysical properties of stainless steel

a Density, **b** specific heat, **c** thermal conductivity, **d** viscosity, and **e** surface tension. They were obtained from references $^{3-5}$.

Supplementary Fig. 5 Experimental validation of onset threshold of humping predicted by dimensionless humping index (π_h)

Experimental results along with the onset threshold of humping (π_h of 10,000) and the isoline of penetration depth of 170 µm for spot radii (r) of **a** 21.5 µm and **b** 13 µm.

Supplementary Table 1: Laser process parameters

All laser process parameters with the corresponding heat inputs calculated by the equation (Heat input = $P \times \eta/u_w$ ⁶). η (overall welding efficiency) is taken as 0.80 from the ref.⁷.

Laser welding speed (u_w) (m/s)	Power (P) (W)	Heat input (J/m)
0.33	102	247.27
0.67	188	224.48
1.00*	249	199.20
1.25*	323	206.72
1.42*	348	196.06

*Humping occurred

Supplementary Table 2 Materials constants used in Equation 1–3 and 5 (obtained from ref.

3-5)

Material's constants	Values at T_m	Values at T_b		
Density (ρ)	$7000 \frac{kg}{m^3}$	$6000 \frac{kg}{m^3}$		
Thermal conductivity (k)	$30 \frac{W}{m \cdot K}$	$45 \frac{W}{m \cdot K}$		
Specific heat (c_p)	770 $\frac{J}{kg \cdot K}$	770 $\frac{J}{kg \cdot K}$		
Surface tension coefficient (γ)	$1.65 \frac{kg}{s^2}$	$1.30 \frac{kg}{s^2}$		
Boiling temperature (T_b)	3134 K			
Melting temperature (T_m)	1698 K			
Ambient temperature (T_0)	300 K			
Latent heat of fusion (L_m)	$2.6 \times 10^5 \frac{J}{kg}$			

Supplementary Table 3 Validation of CFD simulation models, including molten pool (MP)

dimensions (length, width, depth) and humping characteristics (linear number density and

average height of humps)

Condition	Feature	Experiment	CFD simulation	Error (%)
0.33 m/s,	MP length (µm)	368*	400	8.7
102 W	MP width (µm)	116^	120	3.4
	MP depth (µm)	170*	170	0
1.42 m/s,	MP length (µm)	1080*	1180	9.3
348 W	MP width (µm)	93^	100	7.5
	MP depth (µm)	170*	170	0
	Linear number density	1.50^	1.46	2.7
	of humps (#/mm)			
	Average height of	$58.70 \pm 14.82^{\circ}$	53.00 ± 15.36	9.7
	humps (µm)			

* From in situ synchrotron X-ray imaging of laser welding process

[^] From optical profilometry of the top surfaces of laser welds

Supplementary Table 4 The maximum melt velocity (u_{max}) from analytical calculations using Equation 1 (Beck et al. ⁸) and CFD simulations

Condition	Feature	Analytical	CFD	Error (%)
		calculation	simulation	
0.33 m/s, 102 W	Maximum melt velocity	0.86	0.92	7.0
1.42 m/s, 348 W	$(u_{max}, m/s)$	6.05	5.69	6.0

Supplementary References

- Das, A., Fritz, R., Finuf, M. & Masters, I. Blue laser welding of multi-layered AISI 316L stainless steel micro-foils. *Opt Laser Technol* 132, 106498 (2020).
- 2. Standard Test Method for Peel Resistance of Adhesives (T-Peel Test). ASTM D1876.
- Chen, N. *et al.* Microstructural characteristics and crack formation in additively manufactured bimetal material of 316L stainless steel and Inconel 625. *Addit Manuf* 32, 101037 (2020).
- Kim, C. S. Thermophysical properties of stainless steels. *Argonne National Lab., Ill. (USA)* (1975).
- 5. Meng, X., Qin, G. & Zou, Z. Investigation of humping defect in high speed gas tungsten arc welding by numerical modelling. *Mater Des* 94, 69–78 (2016).
- Benyounis, K. Y., Olabi, A. G. & Hashmi, M. S. J. Effect of laser welding parameters on the heat input and weld-bead profile. *J Mater Process Technol* 164–165, 978–985 (2005).
- Fuerschbach, P. W. Measurement and prediction of energy transfer efficiency in laser beam welding. 75, (1996).

 Beck, M., Berger, P., Dausinger, F. & Huegel, H. Aspects of keyhole/melt interaction in high-speed laser welding. in *Proc.SPIE* vol. 1397 769–774 (1991).