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Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The manuscript proposed a new intracranial pressure (ICP) sensor that amplified by new technologies including iontronic
pressure transducer and exceptional-point (EP) wireless system. The new sensor demonstrated several advantages such as
high sensitivity and high resolution. The results were well presented and could be interest to the audience of Nat Commun. I
have following questions. 

1. Recent studies pointed out that the sensitivity at the EP cannot be enhanced because of the noise at the EP. How much is
the sensitivity enhanced? Why the sensitivity can be enhanced in this study? Noise analysis is needed. 
2. For an EP circuit with bifurcation effect, the resonance splits and one resonance shifts to a higher frequency and the other
one lower. However, as shown in this study (such as Fig. 2c, 4b, et.), the two resonant frequencies shifted to the same
direction, and no bifurcation effect cannot be observed. These results are conflicting. 
3. The bifurcated frequencies are in the strong coupling regime of parity-time symmetric circuit. However, the high-coupling
condition is challenging in the ICP sensor because of the presence of tissue and skull, especially for large animal model and
human. How this problem is solved? 
4. The heartbeat signal in Fig. 5g are not in well agreement with ECG signals. Seems the fluctuations of resonant frequency
are noise. More plots are needed to validate the heartbeat signals. 
5. The quality factor defined In theoretical analysis (Line 101) is confusing. Given this definition, the quality factors should be
fixed after the circuit’s design. Why the quality factors in Fig. 2c are changing? 
6. Typo in Line 213, 116. Typo in Line 232, no “quality factors”. Typo in Line 235, no “dashed lines”. 
7. Some important references are missing, including already reported EP biosensors (Dong et al., Nat Electron 2, 335-342
(2019); Li et al., Phy Rev Lett 130, 227201 (2023)) and very recent EP sensors in other fields (Kim et al., eLight 4, 6 (2024);
Lee et al., eLight 3, 20 (2023)). 

Reviewer #2 

(Remarks to the Author) 
The noteworthy results from this work can be summarized as follows: 
1. Proposed System: Introduction of an exceptional point (EP)-based biotelemetric system for continuous and real-time
wireless intracranial pressure (ICP) monitoring using an iontronic capacitive pressure transducer. 
2. Enhanced Performance: The system leverages EP degeneracy combined with a highly sensitive iontronic transducer,
leading to significant improvements in reliability, resolution, and sensitivity. 
3. Sensitivity: Achieved a maximum relative sensitivity of 115.95 kHz/mmHg, which is nearly an order of magnitude higher
than current ICP sensing systems. 
4. Accuracy: Capable of detecting pressure variations as small as one-thousandth of a millimeter of mercury, greatly
surpassing the accuracy of commercial ICP sensors. 
5. Validation: In-vivo experiments conducted on a rabbit model validated the practical efficacy of the system, showing its
superior sensitivity compared to traditional ICP probes. 
6. Multi-modal Detection: The system can accurately identify various degrees of pressure signals and perform multi-modal



detection, including minute ICP fluctuations caused by physiological processes such as respiration and cardiac activity. 
7. Comprehensive Monitoring: The system not only monitors ICP but also concurrently tracks respiratory and heart rates,
simplifying clinical procedures and enhancing clinical utility by providing a comprehensive monitoring solution in a single
device. 
8. Healthcare Applications: The integration of this biotelemetry system into bio-implantation practices holds significant
promise for healthcare applications, particularly in continuous monitoring of vital signs, potentially transforming patient care
and monitoring practices. 

Will the work be of significance to the field and related fields? How does it compare to the established literature? If the work
is not original, please provide relevant references. 
Yes, this work is likely to be significant to the field of biomedical engineering and related fields, particularly in the areas of
biotelemetry, intracranial pressure (ICP) monitoring, and patient care technology. Here’s how it compares to the established
literature and its potential impact: 

Significance to the Field: 
1. Advancement in ICP Monitoring: 
Higher Sensitivity and Accuracy: The proposed system's maximum relative sensitivity of 115.95 kHz/mmHg and the ability to
detect pressure variations as small as one-thousandth of a millimeter of mercury are notable advancements over existing
ICP monitoring technologies. This could significantly improve patient outcomes by enabling more precise and early
detection of abnormal ICP levels. 
Wireless Biotelemetry: The continuous and real-time wireless monitoring capability represents a substantial improvement in
patient comfort and mobility compared to traditional wired systems. 
2. Multi-modal Detection: 
The ability to monitor not only ICP but also respiratory and cardiac activity in a single device simplifies clinical procedures
and provides a more comprehensive picture of the patient's physiological state, which could be particularly valuable in
intensive care settings. 
3. Potential Healthcare Applications: 
The integration of this system into bio-implantation practices could transform patient care by enabling continuous, real-time
monitoring of vital signs, potentially reducing the need for invasive procedures and frequent hospital visits. 
Comparison to Established Literature: 
1. Current Sensing Systems: 
Traditional ICP monitoring systems, such as ventricular catheters and fiber optic transducers, typically have lower sensitivity
and resolution compared to the proposed EP-based system. These systems often require invasive procedures and are less
capable of detecting minute pressure fluctuations. 
2. Wireless and Telemetric Systems: 
While there have been advancements in wireless ICP monitoring, such as the use of telemetric sensors, these systems
generally do not achieve the same level of sensitivity and resolution as reported in this work. 

Originality and Novelty: 
The work appears to be original in its application of EP degeneracy with an iontronic capacitive pressure transducer for ICP
monitoring, achieving unprecedented sensitivity and accuracy levels. The integration of multi-modal detection capabilities
within a single wireless biotelemetric system also represents a novel advancement over current technologies. 
Conclusion: 
Given the enhancements in sensitivity, accuracy, and the added functionality of concurrent monitoring of respiratory and
cardiac activity, this work has the potential to make a significant impact on the field of ICP monitoring and broader healthcare
applications. It addresses several limitations of current technologies and introduces innovative solutions that could improve
patient care and monitoring practices. 

Major concerns: 
Within the literature regarding ICP and ICC (intracerebral compliance) there are new advanced system that was not
considered and compared with this data regarding the present manuscript. The authors should provide additional literature
regarding ICP measurements using Brain4care system, particularly, the robust publications as following: 

https://brain4.care/en/home-english/ 
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• Article | Characterization of intracranial compliance in healthy subjects using a noninvasive method - results from a
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Frigieri, Danilo Cardim, Roberta Lins Gonçalves, Thiago Luiz Russo, Robson Luis Oliveira de Amorim. 
DOI: https://doi.org/10.1007/s10877-024-01191-w 
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Response Letter 

 

An ultrasensitive multimodal intracranial pressure biotelemetric system enabled by 

exceptional point and iontronics 

We would like to express our gratitude to all reviewers for their valuable and constructive comments on 

our manuscript. In the following, we address each of the issues raised by the reviewers and outline the 

corresponding changes we have made in our revised manuscript. We believe that implementing the 

reviewers’ suggestions has significantly enhanced the quality of our work. Our aim is to ensure that the 

revised manuscript meets the criteria of impact, innovation, and interest for publication in Nature 

Communications, as judged by both the reviewers and the editor. 

 

Reviewer #1: 

 

Comment 0 

The manuscript proposed a new intracranial pressure (ICP) sensor that amplified by new 

technologies including iontronic pressure transducer and exceptional-point (EP) wireless system. 

The new sensor demonstrated several advantages such as high sensitivity and high resolution. The 

results were well presented and could be interest to the audience of Nat Commun. 

 

Our response: 

We are thankful to the reviewer for your careful reading of our revised manuscript and the 

overall positive evaluations.  

 

Comment 1 

Recent studies pointed out that the sensitivity at the EP cannot be enhanced because of the noise 

at the EP. How much is the sensitivity enhanced? Why the sensitivity can be enhanced in this study? 

Noise analysis is needed. 
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Our response: 

We very much appreciate the reviewer for pointing out this issue. In fact, the exceptional point 

(EP)-based sensors do enhance the sensitivity but provide no fundamental signal-to-noise ratio 

(SNR) enhancement1. That is said, while the system has enhanced responsivity towards the target 

perturbations around EP, any unwanted noise existing in the system will also be amplified in the 

same magnitude. Therefore, the unwanted noise of the sensing system should be suppressed to be 

sufficiently small compared to the target perturbation, which allows us to benefit from the 

sensitivity enhancement brought by the EP with minimum noise.  

Generally, there are several noise sources in electromagnetic systems, such as shot noise, 

flicker noise, thermal noise, and quantum noise. Particularly, quantum noise originated from the 

quantization nature of charged carriers and photons is significant in optical and photonic systems, 

but can be ignored in our radio-frequency EP sensing system2. Shot noise and flicker (1/ f  noise) 

exist in solid-state devices and vacuum electronics, which are important only at low frequencies 

(i.e., 1 Hz to 1 MHz). Consequently, thermal noise (Johnson-Nyquist noise3) sourced from the 

thermal agitation of bounded charges in devices (especially in resistors), which simultaneously 

introduces the resonance frequency shifts, is considered the dominant noise source in this work.  

According to Planck’s black body radiation law, the electrons in a real-world resistor are in 

random motion, whose kinetic energy may produce small and random voltage fluctuations across 

this resistor with a zero average but a nonzero root mean square (RMS) value, which can be 

expressed as 

 nosie
/

4
,

1hf kT

hfBR
V

e



 (1) 

where h  denotes the Planck’s constant, k  is the Boltzmann’s constant, T  represents the 

temperature in kelvin, ( )f B  is the center frequency (bandwidth), and R is the resistance value. In 

the low frequency range where the approximation hf kT=  takes account, the above equation can 

be simplified to nosie 4 .V kTBR  This indicates the noise voltage fluctuates between 8 .kTBR  

Therefore, the voltage across a non-ideal resistor can be decomposed into noise ,RV' V V   as seen 

in Fig. R1a. This model can also be equivalent to the series connection of an ideal resistor ( R ) and 

a noisy resistor ( R' ), as seen in Fig. R1b, such that noise( ) RV' I R R' IR IR' =V V .      Defining 
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a time-fluctuating parameter 1,2 /R' R   where the subscript 1,2 denotes the deviation occurring 

to the resistors of gain or loss oscillators, we can analyze the resonance frequency fluctuations due 

to thermal noise. Here, to simplify our analysis, we assume 1,2 [ ,  ]     where 8 / .kTB R  

In experiments, the measurement of eigenfrequencies associated with the Hamiltonians is 

realized by tracking the dips of reflection spectra, which, in this work, is the reflection coefficient 

(S11) at the gain side (Fig. R1b and R1c). The noise-deviated S11, considering the maximum noise 

( 1,2   ), has the form of 
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which yields the maximized deviated resonance frequency to be 
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The frequency fluctuation caused by the noise is 21,2 1, '.      Taking parameters used in our 

experiments (e.g., 13.56,  0.08    and the system operates at 0 24.1 MHzf   and 

290 KT  ), the above equation yields 2 1 kHz,f       which agrees well with our noise 

measurements in Fig. R1d that the measured frequency may have 2.5 kHz  fluctuation. This 

noise-introduced frequency fluctuation is indeed ignorable compared to the frequency shift caused 

by the target pressure variations (~ 10 – ~ 400 kHz), which, therefore, does not negate the 

implementation of the EP for sensing.    

In the revised manuscript, we have included the above discussions in Supplementary Material 

Note 7.  
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Fig. R1. (a) Circuit equivalent of a non-ideal resistor. (b) Circuit diagram of the EP sensing system considering the 

presence of thermal noise. (c) Reflection spectra measured within 120 seconds (per 2 seconds) without perturbations 

applied. (d) Frequency fluctuation caused by the noise. 

 

Comment 2 

For an EP circuit with bifurcation effect, the resonance splits and one resonance shifts to a higher 

frequency and the other one lower. However, as shown in this study (such as Fig. 2c, 4b, et.), the 

two resonant frequencies shifted to the same direction, and no bifurcation effect cannot be 

observed. These results are conflicting. 

 

Our response: 

This is a good point raised by this reviewer. The reviewer is correct that for normalized 

eigenfrequencies, i.e., 1,2  is in the unit of 0 ,  the increase of   (
1 /R L C  ) will lead to the 

bifurcation of 1,2  to opposite directions. However, we should note here that if the variation of   

is induced due to the change in ,C  the resonance frequency (
0 1/ LC  ) also shifts. This 
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indicates that the non-normalized eigenfrequencies will shift in the same direction in the spectrum. 

This can be better understood from Fig. R2, where Fig. R2a denotes the normalized eigenfrequency 

shift and Fig. R2b represents the non-normalized eigenfrequency shift with respect to the change 

in   (due to C variation). It can be seen that the non-normalized eigenfrequency will shift in the 

same direction but at different rates. In the previous manuscript Figs. 2b, 2d, and 2e (theoretical 

analysis), we exploited the normalized eigenfrequency, and in Fig. 2c and Fig. 4 (experimental 

measurements), we used the non-normalized eigenfrequency.  

In the revised manuscript, we have carefully rephrased the sentences discussing the 

eigenfrequency bifurcation to avoid ambiguity.  

 

Fig. R2. (a) The real part Re( )  of the eigenfrequencies normalized with respect to  
0 1/ LC   as a function of 

the non-Hermiticity parameter  . (b) The non-normalized eigenfrequencies as a function of the non-Hermiticity 

parameter   and capacitance C . 

 

Comment 3 

The bifurcated frequencies are in the strong coupling regime of parity-time symmetric circuit. 

However, the high-coupling condition is challenging in the ICP sensor because of the presence of 

tissue and skull, especially for large animal model and human. How this problem is solved? 

 

Our response: 

We sincerely thank the reviewer for bringing up this valuable question. The reviewer is correct 

that high-coupling or strong coupling is challenging in the ICP sensor because the strong coupling 
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requires a short distance between the sensor and reader coils, which, due to the presence of tissue 

and skull, is hard to achieve in reality. In our work, this problem is solved by using a weak 

coupling-based electronic EP system.  

The exact solution of eigenfrequencies in the PT-symmetric electronic system, as a function 

of   and the coupling strength  , has been given by ref. 4, and has the form of 

 
 

2 2 4 2

1,2 2 2

2 1 1 4 4

2 1
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 
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 


 (4) 

At the weak coupling regime, i.e., 1 = , the eigenfrequencies can be approximated as  

 2 2

1 2

1
1 1.

2
  


  ，  (5) 

Figure R3a demonstrates that the exact solution and the approximation of eigenfrequencies 

can have a perfect agreement with each other when 0.1.   Figure R3b illustrates that the weaker 

the coupling strength is, the larger   should become to ensure the eigenfrequency bifurcation. The 

red dashed lines in Fig. R3 depict the operating point ( 13.96,  0.08   ) of the proposed system 

in this work, which is sufficiently close to the EP for better sensitivity and located in the exact 

symmetry phase for two real eigenfrequencies.   

 

Fig. R3. (a) The exact and approximate solutions of the real part Re( )  of the eigenvalues as a function of coupling 

coefficient  . (b) The real part Re( )  of the eigenvalues as a function of the non-Hermiticity parameter  at 

coupling coefficient 0.2,  0.15,  0.08  . 
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The heartbeat signal in Fig. 5g are not in well agreement with ECG signals. Seems the fluctuations 

of resonant frequency are noise. More plots are needed to validate the heartbeat signals. 

 

Our response: 

We sincerely thank the reviewer for pointing out this issue. We believe that addressing this 

issue will indeed enhance the quality of our manuscript. In the response of comment 1, we have 

both theoretically and experimentally demonstrated that the noise-induced frequency fluctuations 

are within 2.5 kHz, which can be ignored compared to the eigenfrequency shift caused by the 

target pressure variations. To demonstrate that the fluctuations in Fig. 5g in the main text are 

extracted from the heartbeat signal instead of noise, we further perform experiments in the low-

pressure range shown in Fig. R4. The results demonstrated that the noise-induced (no pressure 

applied) frequency fluctuations (marked in Fig. R4a and zoomed-in in Fig. R4b. ) are below 

2 kHz,  while the frequency fluctuations caused by the heartbeat signal ( ~ 0.05 mmHg,  blue area 

marked in Fig. S9a)  are ~ 25 kHz (the grey area marked in Fig. R4a), which is more than one 

order of magnitude larger than the noise-induced fluctuation (Fig. R4b). In addition, the results in 

Fig. 4f, which demonstrates clear frequency differentiation under extremely weak pressure 

perturbations, further support this finding. Figure 5g shows that the frequency fluctuation caused 

by the heartbeat is about 25 kHz, significantly greater than that caused by noise. The fast Fourier 

transformation (FFT) analysis (Fig. R3c) of the ICP signal from Fig. 5f reveals two distinct peaks: 

one for breathing ( 0.33 Hz) and another for heartbeat ( 3.76 Hz), which closely matches the 

ECG results.  

In the revised manuscript, we have included the above discussions in Supplementary Material 

Note 10.  
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Fig. R4. (a) Frequency shift of 2  in response to low applied pressure ( per 60 seconds). (b) Enlarged view of 

frequency shift without applied pressure. (c) FFT analysis of ICP signal and ECG. 

 

Comment 5 

The quality factor defined in theoretical analysis (Line 101) is confusing. Given this definition, the 

quality factors should be fixed after the circuit’s design. Why the quality factors in Fig. 2c are 

changing? 

 

Our response: 

We very much appreciate the careful reading of this reviewer and pointing out this problem. 

We apologize that in the previous manuscript, the definition of quality factor was ambiguous. 

Generally, the quality factor can be categorized as bandpass quality factor, component quality 

factor, and pole quality factor. Previously, we adopted the component quality factor as the 

definition of   but the bandpass quality factor in Fig. 4d in the main context. This explains the 

changing of quality factor in Fig. 2c.  

To avoid the ambiguity, we have revised the definition of   and only adopt the bandpass 

quality factor ( 0 /Q f BW ) in our paper, and the system exhibits its greatest Q-factor in the exact 

symmetry phase. 

 

Comment 6 

Typo in Line 213, 116. Typo in Line 232, no “quality factors”. Typo in Line 235, no “dashed 

lines”. 

 

Our response: 

We sincerely apologize for the previous oversights in our manuscript, which led to several 

typographical errors and inaccuracies. We greatly appreciate your meticulous review, which has 

given us the opportunity to improve the quality of our manuscript. In the revised manuscript, we 
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have addressed each of the issues you highlighted, and conducted a thorough review of the entire 

text to ensure that similar issues do not persist. 

 

Comment 7 

Some important references are missing, including already reported EP biosensors (Dong et al., Nat 

Electron 2, 335-342 (2019); Li et al., Phy Rev Lett 130, 227201 (2023)) and very recent EP sensors 

in other fields (Kim et al., eLight 4, 6 (2024); Lee et al., eLight 3, 20 (2023)). 

 

Our response: 

We express our gratitude to the reviewer for bringing these valuable references to our attention, 

which can help us improve the quality of our manuscript. We have now included the references5–

11 (ref. 32 – 38 in the revised main context) to the EP-based sensor in the revised manuscript to 

provide a more comprehensive context for our study. 

 

Reviewer #2: 

 

Comment 0 

The noteworthy results from this work can be summarized as follows: 

1. Proposed System: Introduction of an exceptional point (EP)-based biotelemetric system for 

continuous and real-time wireless intracranial pressure (ICP) monitoring using an iontronic 

capacitive pressure transducer. 

2. Enhanced Performance: The system leverages EP degeneracy combined with a highly sensitive 

iontronic transducer, leading to significant improvements in reliability, resolution, and sensitivity. 

3. Sensitivity: Achieved a maximum relative sensitivity of 115.95 kHz/mmHg, which is nearly an 

order of magnitude higher than current ICP sensing systems. 
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4. Accuracy: Capable of detecting pressure variations as small as one-thousandth of a millimeter 

of mercury, greatly surpassing the accuracy of commercial ICP sensors. 

5. Validation: In-vivo experiments conducted on a rabbit model validated the practical efficacy of 

the system, showing its superior sensitivity compared to traditional ICP probes. 

6. Multi-modal Detection: The system can accurately identify various degrees of pressure signals 

and perform multi-modal detection, including minute ICP fluctuations caused by physiological 

processes such as respiration and cardiac activity. 

7. Comprehensive Monitoring: The system not only monitors ICP but also concurrently tracks 

respiratory and heart rates, simplifying clinical procedures and enhancing clinical utility by 

providing a comprehensive monitoring solution in a single device. 

8. Healthcare Applications: The integration of this biotelemetry system into bio-implantation 

practices holds significant promise for healthcare applications, particularly in continuous 

monitoring of vital signs, potentially transforming patient care and monitoring practices. 

 

Will the work be of significance to the field and related fields? How does it compare to the 

established literature? If the work is not original, please provide relevant references. 

Yes, this work is likely to be significant to the field of biomedical engineering and related fields, 

particularly in the areas of biotelemetry, intracranial pressure (ICP) monitoring, and patient care 

technology. Here’s how it compares to the established literature and its potential impact: 

 

Significance to the Field: 

1. Advancement in ICP Monitoring: 

Higher Sensitivity and Accuracy: The proposed system's maximum relative sensitivity of 115.95 

kHz/mmHg and the ability to detect pressure variations as small as one-thousandth of a millimeter 

of mercury are notable advancements over existing ICP monitoring technologies. This could 
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significantly improve patient outcomes by enabling more precise and early detection of abnormal 

ICP levels. 

Wireless Biotelemetry: The continuous and real-time wireless monitoring capability represents a 

substantial improvement in patient comfort and mobility compared to traditional wired systems. 

2. Multi-modal Detection: 

The ability to monitor not only ICP but also respiratory and cardiac activity in a single device 

simplifies clinical procedures and provides a more comprehensive picture of the patient's 

physiological state, which could be particularly valuable in intensive care settings. 

3. Potential Healthcare Applications: 

The integration of this system into bio-implantation practices could transform patient care by 

enabling continuous, real-time monitoring of vital signs, potentially reducing the need for invasive 

procedures and frequent hospital visits. 

 

Comparison to Established Literature: 

1. Current Sensing Systems: 

Traditional ICP monitoring systems, such as ventricular catheters and fiber optic transducers, 

typically have lower sensitivity and resolution compared to the proposed EP-based system. These 

systems often require invasive procedures and are less capable of detecting minute pressure 

fluctuations. 

2. Wireless and Telemetric Systems: 

While there have been advancements in wireless ICP monitoring, such as the use of telemetric 

sensors, these systems generally do not achieve the same level of sensitivity and resolution as 

reported in this work. 

 

Originality and Novelty: 
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The work appears to be original in its application of EP degeneracy with an iontronic capacitive 

pressure transducer for ICP monitoring, achieving unprecedented sensitivity and accuracy levels. 

The integration of multi-modal detection capabilities within a single wireless biotelemetric system 

also represents a novel advancement over current technologies. 

Conclusion: 

Given the enhancements in sensitivity, accuracy, and the added functionality of concurrent 

monitoring of respiratory and cardiac activity, this work has the potential to make a significant 

impact on the field of ICP monitoring and broader healthcare applications. It addresses several 

limitations of current technologies and introduces innovative solutions that could improve patient 

care and monitoring practices. 

 

Our response:   

We greatly appreciate the reviewer for your positive comments on our work. 

  

Comment 1 

Within the literature regarding ICP and ICC (intracerebral compliance) there are new advanced 

system that was not considered and compared with this data regarding the present manuscript. The 

authors should provide additional literature regarding ICP measurements using Brain4care system, 

particularly, the robust publications as following: https://brain4.care/en/home-english/ 

https://brain4.care/en/home-english/
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Our response:  

We thank the reviewer for bringing these valuable references to our attention.   

We recognize the importance of including comprehensive and current references to accurately 

reflect the state of research in this field. In response to your suggestion, we have reviewed the 

recent literature on ICP measurements using the Brain4care system. We have incorporated several 

publications12–17 (ref. 8 – 13 in the revised main context) into the revised manuscript for 

comparison.  
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