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Abstract18

Background: Blood transfusions, crucial in managing anemia and coagulopathy in ICU19

settings, require accurate prediction for effective resource allocation and patient risk assessment.20

However, existing clinical decision support systems have primarily targeted a particular patient21

demographic with unique medical conditions and focused on a single type of blood transfusion.22

This study aims to develop an advanced machine learning-based model to predict the probability23

of transfusion necessity over the next 24 hours for a diverse range of non-traumatic ICU patients.24

Methods: We conducted a retrospective cohort study on 72,072 non-traumatic adult ICU25

patients admitted to a high-volume US metropolitan academic hospital between 2016 and 2020.26

We developed a meta-learner and various machine learning models to serve as predictors, training27

them annually with four-year data and evaluating on the fifth, unseen year, iteratively over five28

years.29

Results: The experimental results revealed that the meta-model surpasses the other models30

in different development scenarios. It achieved notable performance metrics, including an Area31
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Under the Receiver Operating Characteristic (AUROC) curve of 0.97, an accuracy rate of 0.93,32

and an F1-score of 0.89 in the best scenario.33

Conclusion: This study pioneers the use of machine learning models for predicting the34

likelihood of blood transfusion receipt in a diverse cohort of critically ill patients. The findings35

of this evaluation confirm that our model not only effectively predicts transfusion reception but36

also identifies key biomarkers for making transfusion decisions.37

Keywords: Blood Transfusion, Intensive Care Unit, Machine Learning, Electronic Health Record,38

Clinical Decision Support System39

1 Introduction40

Patients in the intensive care unit (ICU) frequently develop anemia or coagulopathy that is associ-41

ated with adverse outcomes, such as increasing risk of life-threatening situations, thrombosis, and42

coronary artery diseases [1]. Post-surgical and accident-affected patients also suffer from a high risk43

of mortality due to severe blood loss. Transfusion of blood components is generally recommended as44

a clinical treatment in such scenarios. Massive blood transfusions (MTs) are essential for patients45

with uncontrolled intraoperative hemorrhage to avoid complications. The MT protocol (MTP) is46

commonly applied to trauma patients. In transfusion medicine, Trauma typically refers to major47

physical injury or massive bleeding due to an accident or surgery. In contrast, non-traumatic blood48

transfusions are needed for a variety of clinical reasons that are not associated with physical in-49

juries or trauma. The reasons include healthy blood cell deficiency, anemia, coagulopathy, and other50

disorders (e.g., thrombocytopenia, hemophilia, kidney or liver disease, severe infection, and sickle51

cell disease). However, identification of non-traumatic ICU patients requiring transfusions is more52

difficult than identifying traumatic patients requiring massive transfusions. Compared to all other53

blood products, resuscitation with red blood cell (RBC) components is most common and frequent54

in transfusion patients. Approximately 85 million RBC units are transfused each year worldwide,55

and about 15 million are annually transfused in the United States [2]. In clinical practices, physi-56

cians often make decisions for blood transfusion primarily based on a few lab-screening features of a57

patient, such as anemia symptoms, hemoglobin levels, and platelet count. For example, the need for58

RBC transfusion is mostly decided by a hemoglobin threshold level of 7 to 8 g/dL, also suggested59

by the American Association of Blood Banks (AABB) [2]. However, in urgent scenarios of ICU,60

clinicians may not be able to exhaustively evaluate all markers of a patient, such as clinical history,61

lab values, and demographics, which can be important. Delayed infusion, improper dosage and type62

of blood-products selection in transfusion may even degrade the patient’s health. Thus, devising an63

efficient decision-making tool is critical to optimize the treatment strategies for blood transfusion of64

ICU patients.65

Numerous research studies on predicting RBC transfusion are well-documented in the literature.66

The techniques used in these works vary from clinical measures [3] and standard regression analysis67

[4, 5] to more complex machine learning methods such as neural networks [6–9] and reinforcement68

learning [1]. It is important to note that the majority of these prior studies were focused on the69

transfusion of patients undergoing specific operations, including cardiovascular surgery [10–12], head70
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and neck surgery [13], liver transplantation [14], prostatectomy [15], and hip fracture surgery [16].71

Additionally, most of the previous literature on blood transfusion prediction had incorporated patient72

demographics into model development [5, 6, 8–11, 13, 16–18], which may lead to biased predictions73

during evaluation. Fortunately, informative routinely collected laboratory tests are available to aid74

in the development of these models, including hemoglobin, hematocrit, platelet count, white blood75

cell count, creatinine, international normalized ratio (INR), bilirubin, partial thromboplastin time76

(PTT). However, existing works use a small subset of these lab values in their predictive model77

developments. Therefore, it is imperative to perform a more generalized analysis for all kinds of78

non-massively bleeding ICU patients, irrespective of diagnoses and demographic variables.79

In this study, a unique combination of parameterized machine learning-based schemes and sig-80

nificantly comprehensive clinical features was employed to devise a decision model for predicting81

the likelihood of receiving blood transfusion in critical care units. This model can offer health-82

care providers highly reliable support for predicting blood transfusion recipients, thereby facilitating83

proactive management of at-risk patients. To broaden the understanding of the rationale behind84

transfusion receipt and to enhance prediction efficiency, we explored different parameterized machine85

learning-based schemes, utilizing an extensive set of clinical features, to develop a clinical support86

decision system for transfusion receipt prediction in critically ill patients. The research centers on87

pinpointing which ICU patients will most likely receive a blood transfusion in the following 24 hours.88

For this aim, we proposed a generalizable and interpretable meta-model capable of predicting the89

likelihood of receiving transfusions of various blood products, including RBC, Plasma, and Platelets.90

The general workflow for our proposed architecture can be viewed in Figure 1.91

Our contributions are as follows:92

• Conduct a broad analysis on a large scale of non-traumatic critically ill patient cohorts with93

different medical conditions over five years.94

• Propose a meta-model for transfusion prediction that develops generalizable knowledge of95

transfusion patients.96

• Feature importance analysis of the meta-model to interpret reasoning behind the model’s97

transfusion predictions.98

2 Methods99

2.1 Data Collection100

Physiological data was continuously acquired and archived using the BedMaster (Excel Medical,101

Jupiter, FL) software from 150 ICU beds at Emory University Hospital (Atlanta, GA). Many clinical102

features were collected continuously at a sampling interval of 1-hour from a given patient’s admission103

through to discharge. However, some were derived from the electronic health records of enrolled104

patients. Extracted clinical features consist of vital signs and lab values from complete blood count105

(CBC), hepatic, pancreatic, cardiac, arterial blood gas (ABG), and inflammation tests.106
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Figure 1: Workflow diagram of the proposed architecture. Electronic health records data collected
from Emory University Hospital is preprocessed using missing features rejection, MICE imputation,
aggregation, and Pearson’s correlation feature selection. One year of data is used for testing, while
the other years of data are used for training. The data is then further preprocessed using feature
standardization and principal component analysis before being input into the meta-model for devel-
opment, evaluation, and model interpretation.

In this retrospective study, up to 24 hours of data preceding transfusion initiation was used for107

transfused patients admitted from 2016 to 2020, containing 72,072 patient encounters. Clinical data108

of the 24-hour timing window after the admission was considered for other non-transfused patients.109

Depending on the severity, each patient may undergo multiple transfusions, and thus, for every110

patient, clinical features were median-aggregated in their processing windows to have single entries111

per transfusion.112

In this study, the Transfused cohort was created with non-traumatic patients satisfying the fol-113

lowing inclusion criteria: 1) adult patient with age≥18 years, admitted to an ICU, 2) transfused114

with RBC, platelets, plasma, or whole blood products; and 3) with no massive bleeding. We ex-115

cluded the following patients: 1) massively transfused patients showing massive bleeding/traumatic116

complications by discarding those who received more than three transfusions in a continuous 6-hour117

window, 2) patients with inadequate data for processing and having all the features missing, and118

3) patients discharged or died after their ICU admission within 24 hours, due to limited duration119

of physiological data available. Whereas all the adult ICU patients (≥18 years) without any blood120

transfusion were included in the Non-transfused group. The abovementioned exclusion criteria were121

also applied to the non-transfused cohort. Eventually, the study included a total of 18,314 transfused122

and 53,758 non-transfused encounters. Demographic distribution and clinical statistics of involved123

patients are summarized in Table 1. For better generalization, our study involves patients from124

various hospital departments and surgery sections. All transfusion and non-transfusion patients’125

distribution characterized by clinical features is shown by a Uniform Manifold Approximation and126

Projection for Dimension Reduction (UMAP) representation in Figure 2, where color labels depict127

various hospital service sections.128

2.2 Data Processing129

In this study, a year-wise analysis was performed for patients admitted to Emory Hospital ICU over130

a five-year span, from 2016 to 2020. In routinely collected lab variables and vital signs, we discarded131
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Figure 2: UMAP presenting all transfusion and non-transfusion events, characterized by clinical
values, in 2016-2020 from various hospital services. Note that OBGYN refers to Obstetrics and
Gynecology.

variables missing more than 90% of values. Subsequently, a total of 43 clinical variables were selected132

as independent and robust features from Pearson’s cross-correlation analysis. Table S1 displays these133

features along with their respective units of measurement. The Multivariate Imputation by Chained134

Equations (MICE) algorithm was utilized to impute missing values in features, as it has demonstrated135

proficiency in managing high-dimensional data and complex missing data patterns [19]. Within the136

scope of the MICE technique, linear regression was used for the imputation of continuous variables.137

Subsequently, principal component analysis (PCA) was employed to reduce dimensionality, mitigate138

noise, and simplify the dataset. We selected the number of principal components that together139

explain 90% of the variability within the original dataset. These selected features are subsequently140

utilized by the models to estimate the likelihood of a transfusion recipient. In the initial experiment,141

models were trained on the 2017 to 2020 datasets and then evaluated on the 2016 dataset. In order142

to show temporal consistency, we conducted it iteratively on an annual basis.143

2.3 Machine Learning Models144

We utilized five distinct machine learning algorithms to predict the probability of necessity for blood145

transfusions 24 hours in advance during ICU stays. These included logistic regression (LR), random146

forest (RF), feedforward neural networks (FNN), support vector machines (SVM), and XGBoost147

(XGB). To improve the predictive performance of the blood transfusion receipt, a meta-model was148

constructed, forming a stacking ensemble model grounded in the principle of stacked generalization149

[20, 21]. This technique harnesses the collective predictive strength of various models by aggregating150

individual predictions into a cohesive final prediction through a meta-model. This wisdom of the151

crowd approach aims to enhance different predictive performance metrics with the amalgamation of152

5



multiple base models. During the implementation, we tried different combinations of the developed153

base models and ultimately selected the RF, SVM, and XGB as the first-level models. Each model154

contributed its unique predictive strengths to the ensemble, with the objective of enhancing the155

overall accuracy of the final prediction. We also conducted a thorough examination of various156

meta-learners for transfusion receipt prediction to assess their efficacy in integrating the first-level157

models’ predictions. LR, RF, AdaBoost, CatBoost, GradientBoosting, voting classifier, Gaussian158

Näıve Bayes, Choquet fuzzy integral fusion [22], dynamic staking, and deep neural networks were159

analyzed. The Gaussian GradientBoosting model was finally chosen as the meta-model.160

To identify the optimal set of hyperparameters for the machine learning models, we undertook161

an extensive search that covered the most impactful parameters across the different models. Table162

S2 details the hyperparameters and their associated values analyzed using a grid search strategy to163

pinpoint the optimal hyperparameters. Our primary performance metric was the area under the164

receiver operating characteristic curve (AUROC). AUROC can encapsulate a more holistic view of165

the classification performance of a model and is not biased by the imbalanced class distribution. As166

a result, models with a higher AUROC potentially lead to more efficient models in the prediction of167

blood transfusion by maintaining the balance between specificity and sensitivity metrics. Eventually,168

the performance of the developed models was assessed using AUROC, accuracy, F1-score, precision,169

and recall.170

We considered five unique scenarios for training and evaluating the machine learning models on171

a year-by-year basis. Specifically, each model was trained using data from a four-year period and172

then tested on data from a subsequent, distinct hold-out year. For instance, one of the scenarios173

involved training the models on data collected from 2016 to 2019 and then testing them on data174

from 2020. This year-wise temporal splitting method is particularly suitable for our study as it175

better evaluates the model’s generalizability across different time periods and better reflects real-176

world clinical applications where models must predict outcomes in future, unseen scenarios. All the177

experiments were conducted on Python 3.8.8 with scikit-learn 1.3.0, utilizing an NVIDIA GeForce178

GTX 950M graphics card, an Intel Core i7 processor at 2.60GHz, and 16GB of RAM.179

3 Results and Discussion180

3.1 Patient Cohort Characteristics181

Table 1 contains the characteristics of the patient cohorts, particularly of ICU patients with no182

massive bleeding who received at least one transfusion and those who did not receive any transfusion.183

It can be seen that there are no significant differences between the transfused and non-transfused184

patients for the lactic acid and most demographic variables. However, there are significant differences185

for the remaining variables in the table. Although the clinical significance of these differences186

remains uncertain, they highlight the vital dynamics of organ function, showing the severity of critical187

illnesses within ICU cohorts. Patients who received a transfusion had slightly higher creatinine levels,188

lower lipase levels, and lower SpO2/FiO2 ratios than their non-transfused counterparts. Additionally,189

those who received a transfusion also had lower hemoglobin levels and lower platelet counts than190
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Table 1: Cohort characteristics for patients admitted to the hospital from 2016 to 2020.

Characteristic Total encounters Non-transfused †Transfused ∗p-value
n = 72072 (100%) n = 53758 (74.6%) n = 18314 (25.4%)

Age, median [95% CI] 63.0 [25.0, 90.0] 62.0 [24.0, 90.0] 64.0 [26.0, 88.0] <0.001
Gender, n (%)

Female 33985 (47.2) 24834 (46.2) 9151 (50.0) <0.001
Male 38087 (52.8) 28924 (53.8) 9163 (50.0)

Race, n (%)
African American or Black 29833 (41.4) 22107 (41.1) 7726 (42.2) 0.012
Caucasian or White 36317 (50.4) 27263 (50.7) 9054 (49.4)
Other 5922 (8.2) 4388 (8.2) 1534 (8.4)

Ethnicity, n (%)
Hispanic or Latino 2226 (3.1) 1679 (3.1) 547 (3.0) 0.303
Non-Hispanic or Latino 64667 (89.7) 48180 (89.6) 16487 (90.0)
Other 5179 (7.2) 3899 (7.3) 1280 (7.0)

Hospital Service, n (%)
Medicine 32245 (44.7) 25212 (46.9) 7033 (38.4) <0.001
OBGYN 323 (0.4) 219 (0.4) 104 (0.6)
Cardiovascular 13416 (18.6) 10396 (19.3) 3020 (16.5)
Orthopedics 1538 (2.1) 1088 (2.0) 450 (2.5)
General Surgery 2417 (3.4) 1349 (2.5) 1068 (5.8)
Neurosurgery 4643 (6.4) 4019 (7.5) 624 (3.4)
Thoracic Surgery 4265 (5.9) 2693 (5.0) 1572 (8.6)
Oncology 1310 (1.8) 677 (1.3) 633 (3.5)
Urology 363 (0.5) 236 (0.4) 127 (0.7)
Other 11552 (16.0) 7869 (14.6) 3683 (20.1)

In-Hospital Mortality, n (%) 4888 (6.8) 2932 (5.5) 1956 (10.7) <0.001
Height (cm), median [95% CI] 170.2 [149.9, 190.5] 170.2 [149.9, 190.5] 169.0 [149.9, 190.5] <0.001
Weight (kg), median [95% CI] 81.0 [45.6, 145.0] 82.0 [45.7, 147.4] 78.3 [45.4, 136.4] <0.001
Albumin, median [95% CI] 3.4 [2.0, 4.6] 3.6 [2.2, 4.7] 3.0 [1.7, 4.3] <0.001
BUN, median [95% CI] 19.0 [6.0, 89.0] 18.0 [6.0, 84.0] 23.0 [6.0, 100.0] <0.001
Creatinine, median [95% CI] 1.0 [0.5, 9.9] 1.0 [0.5, 10.0] 1.1 [0.4, 9.5] <0.001
Hemoglobin, median [95% CI] 10.9 [6.6, 15.9] 11.7 [8.0, 16.2] 7.8 [5.5, 13.4] <0.001
Lactic Acid, median [95% CI] 1.5 [0.6, 7.1] 1.5 [0.6, 6.2] 1.5 [0.6, 9.0] <0.001
Lipase, median [95% CI] 26.0 [3.0, 465.0] 25.0 [3.0, 505.1] 27.0 [3.0, 390.8] <0.001
Methemoglobin, median [95% CI] 0.4 [0.1, 1.2] 0.3 [0.0, 1.0] 0.5 [0.1, 1.4]] <0.001
SpO2/FiO2 Ratio, median [95% CI] 250.0 [96.0, 476.2] 250.0 [95.5, 476.2] 247.8 [97.0, 476.2] <0.001
Platelets, median [95% CI] 210.0 [44.0, 481.0] 217.0 [83.0, 459.0] 179.0 [15.0, 534.0] <0.001
PTT, median [95% CI] 31.2 [22.3, 108.5] 30.9 [22.3, 115.5] 31.9 [22.3, 102.6] <0.001

Abbreviations used – BUN: blood urea nitrogen, FiO2: fraction of inspired oxygen, OBGYN: obstetrics and gynecology, PTT: partial prothrombin
time, SpO2: peripheral blood oxygen saturation, [95% CI]: 95 percent confidence interval. Note that the listed dynamic features, including lab values
and vital signs, are based on pre-transfusion data for transfused patients and post-admission data for non-transfused patients.

* P-values for Gender, Race, Ethnicity, Hospital Service, and In-Hospital Mortality were computed using the Chi-square test. All other p-values were
computed using the Kruskal-Wallis test.

†
Transfused column has data of all patient encounters who received at least one transfusion with no MTP. However, dynamic clinical variables were
presented here by considering their index transfusions only.

those who did not receive a transfusion. This is consistent with the transfusion criteria outlined191

by [2]. We also analyzed in-hospital mortality rates among patients who were either transfused or192

not, specifically targeting those with hemoglobin levels below 7 g/dL. In this selected cohort, we193

observed that 208 (10.6%) patients received transfusions, whereas 28 (1%) did not. This analysis194

revealed that anemic patients were more likely to receive transfusions during their End-of-Life care.195

Out of 72,072 patient encounters between 2016 and 2020 in the study, 18,314 received transfu-196

sions, while 53,758 did not receive any. Among all years, the highest number of transfusions was197

noted in 2020, the COVID-affected year, with a count of 6515. Also, the average number of transfu-198

sions received by each transfusion encounter was 1.66 in 2020. We hypothesize that COVID might199

be the driving factor for rapid health deterioration, leading to the increased number of transfusions200
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Table 2: Performance metrics of the developed machine learning models across different model
development scenarios.

Year 2016 2017 2018 2019 2020
Metric AUC Acc F1 Pre Rec AUC Acc F1 Pre Rec AUC Acc F1 Pre Rec AUC Acc F1 Pre Rec AUR Acc F1 Pre Rec
LR 0.93 0.88 0.83 0.84 0.82 0.94 0.90 0.85 0.85 0.85 0.94 0.90 0.86 0.84 0.87 0.93 0.88 0.84 0.83 0.84 0.93 0.88 0.84 0.86 0.82
FR 0.94 0.88 0.83 0.83 0.83 0.95 0.90 0.85 0.85 0.84 0.95 0.89 0.85 0.84 0.86 0.94 0.88 0.84 0.84 0.83 0.93 0.87 0.83 0.86 0.80
FNN 0.93 0.88 0.82 0.85 0.78 0.94 0.89 0.82 0.88 0.77 0.94 0.88 0.83 0.83 0.83 0.95 0.89 0.85 0.87 0.83 0.92 0.86 0.81 0.84 0.78
XGB 0.95 0.89 0.84 0.86 0.82 0.96 0.91 0.86 0.87 0.85 0.95 0.90 0.86 0.86 0.87 0.95 0.85 0.85 0.85 0.84 0.95 0.88 0.83 0.89 0.78
SVM 0.95 0.89 0.84 0.88 0.80 0.95 0.91 0.86 0.89 0.83 0.96 0.91 0.87 0.87 0.87 0.95 0.90 0.85 0.86 0.83 0.93 0.87 0.82 0.90 0.75
MM 0.95 0.89 0.84 0.86 0.83 0.96 0.91 0.86 0.87 0.87 0.97 0.93 0.89 0.90 0.89 0.95 0.89 0.85 0.86 0.85 0.94 0.88 0.84 0.88 0.80

during 2020.201

Additionally, to reveal the correlation between hemoglobin levels and receiving blood transfusion,202

Figure S2 presents a boxplot demonstrating the distribution of hemoglobin levels in both transfused203

and non-transfused cohorts. A Pearson’s correlation coefficient of 0.675 was obtained (p<0.001).204

When considering 7 g/dL as a threshold for transfusion initiation, it is observed that patients with205

hemoglobin levels quite above this mark also received transfusions, and patients with hemoglobin206

less than this mark also did not get transfused. This highlights the insufficiency of relying solely on207

hemoglobin levels to develop an efficient transfusion decision support system.208

3.2 Performance Results and Analysis209

The performance results of five different test scenarios are presented in Table 2, where the specified210

year denotes the evaluation period. Figure 3 shows the combined receiver operating characteristic211

(ROC) and precision-recall curves of the developed models for all five development scenarios. Of212

note, we calculate and plot the mean with the standard deviation of all five scenarios for each data213

point of the models. Table S3 summarizes the p-values obtained from significant T-test for different214

performance metrics of the models.215

Overall, the meta-model consistently outperforms other models across various scenarios, main-216

taining an AUROC of at least 0.94. It exhibites well-shaped ROC and precision-recall curves, while217

also other models can demonstrate comparable curve shapes. Among the rest, the SVM, XGB, and218

FNN models register the best performance. Specifically, the SVM model excels in terms of preci-219

sion across different scenarios, while the meta-model has the highest recalls. When evaluated on220

unseen data from the year 2018 and trained on data from other years, the meta-model achieves an221

impressive performance, boasting an AUROC of 0.97, an accuracy rate of 0.93, and an F1 score of222

0.89. The main contribution of the meta-model can be seen in its ability to maintain high precision223

while improving recall. That is, it is able to identify a high proportion of the true positive cases224

it predicts as such, ensuring that the predictions it makes are highly reliable. At the same time,225

it increases the ability to capture most of the actual positive instances in the test set, effectively226

minimizing the chances of missing any critical positives. Figure S1 illustrates the calibration plot227

of the different developed models for various development scenarios. This plot reveals that all of228

the developed models are relatively well-calibrated. In the current study, we hypothesize that the229

dynamic physiological markers provided by clinical labs and vital signs may have a more direct im-230

pact on receiving transfusion than the diagnosis of diseases, and static demographics. Furthermore,231

incorporating static demographics and diagnoses into models may inadvertently introduce bias, par-232
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ticularly affecting minority groups [23]. Thus, we argue that excluding these variables enhances the233

models’ potential for fairness and generalization and allows for an improved balance between model234

performance, generalizability, and fairness.235

Figure 4 presents the hierarchical SHapley Additive exPlanations (SHAP) panel of the meta-236

model evaluated on the 2020 data [24, 25]. It offers valuable insight into how the meta-model relies237

on its base models to predict the necessity of a transfusion for a given patient. Notably, the prediction238

output from the RF algorithm stands out as the most influential model affecting the meta-model’s239

decisions. The second column of the panel further delineates the impact of the top five features240

within each of the three base models on their final predictions. Across the board, hemoglobin and241

platelets emerge as the most significant features in the individual machine learning models and,242

subsequently, the overarching meta-model. Additionally, the SHAP scatter plots provide a visual243

representation of the influence exerted by different features on specific predictions, illustrating both244

the magnitude and direction of that influence. Although the provided SHAP panel helps explain the245

contribution of each feature and base model, the interactions between features and the meta-model’s246

decision-making process may not be fully transparent. It should be noted that the SHAP panel for247

the meta-model, when evaluated across different years, exhibited largely similar patterns, with only248

minor variations. The 2020 scenario was visualized arbitrarily as an example.249

(a) (b)

Figure 3: (a) ROC curves and (b) precision-recall curves of the machine learning models for trans-
fusion receipt prediction in the five development scenarios. The curves are represented by a solid
line indicating the mean, with the 95% confidence interval depicted as a shaded area.

4 Discussion250

This study aims to develop a reliable meta-model for predicting transfusion recipients, with the251

potential to improve patient outcomes and increase operational efficiency by revealing feature corre-252

lations that may have been overlooked or are challenging to incorporate in human decision-making.253
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Figure 4: SHAP panel for the meta-model developed on the 2020 dataset.

Figure 5: A use-case scenario of the developed meta-model includes collecting routine lab values
and vital signs in a 24-hour sliding window. This data is then processed through a preprocessing
workflow, preparing it as input for machine learning models. Overall, a complex, critically ill, non-
trauma patient poses a clinical decision for the reception of blood transfusion. The primary objective
is to employ a robust machine learning model, trained on historical real-world data, to predict the
clinically relevant likelihood of receiving a blood transfusion. This prediction aims to aid clinicians
in enhancing their decision-making process.
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The developed model demonstrated significant performance across various training scenarios, with254

a full year’s data utilized for evaluation. The ability to analyze the underlying reasons behind255

the meta-model’s decision-making using its base models and patient features, offers better commu-256

nication with healthcare providers and builds trust. By enabling healthcare providers to predict257

transfusion recipients, this model can allow for proactive management of patients at risk, potentially258

improving recovery rates and reducing complications due to delayed transfusions. Additionally,259

improved predictive capabilities can streamline hospital operations, from optimizing blood supply260

management to planning staffing and procedural logistics more efficiently.261

By unveiling unique complex patterns in physiological data and clinical indicators, the developed262

models estimate the likelihood of receiving blood transfusion among non-traumatic ICU patients well263

in advance. This predictive capability can be helpful in several aspects. By pinpointing those patients264

who are likely to receive transfusions within the next 24 hours, healthcare providers can conduct fur-265

ther investigations and prioritize and streamline transfusion processes, making them more efficient266

and targeted. While the performance gains demonstrated by our ensemble model, highlighted by the267

significant T-tests in Table S3, may appear significant and modest for different performance metrics,268

their practical implications in clinical settings are substantial. Small improvements in timely identi-269

fication and increased monitoring can help to avoid the administration of unnecessary transfusions,270

which, in turn, reduces the risk of transfusion-related complications. This also can contribute to271

streamlining hospital operations, from optimizing blood supply management to planning staffing272

and procedural logistics more efficiently. The end result is an improvement in patient outcomes273

through the judicious use of medical interventions and resources, underscored by a clinical decision274

support data-driven approach to patient care.275

Currently, the proposed study is limited to predicting the reception of blood transfusions only.276

Despite this limitation, the developed clinical decision support system represents a pioneering effort277

in predicting and issuing initial alerts for the general likelihood of receiving different types of trans-278

fusion in ICU patients with a wide range of medical conditions. The capacity to utilize a vast array279

of heterogeneous training data makes the algorithms more robust in the face of incomplete, noisy280

ICU data, and simulating different ’use cases’ to refine parameters is a crucial step in addressing the281

unique challenges associated with ICU research. After determining the necessity for a blood transfu-282

sion, clarity on the type of transfusion is crucial since different blood products are administered for283

various indications. As such, important next steps include extending the decision-making model’s284

output to encompass not only an estimation of blood transfusion receipt but also the prediction of285

the specific type of blood product. Additionally, integrating the prediction of the volume and rate286

of transfusion into these models could be beneficial. To address the limitations of SHAP analysis in287

fully explaining model decision-making, integrating more advanced interpretability techniques such288

as Counterfactual Explanations to highlight input changes that would alter predictions, Anchor Ex-289

planations to provide clear if-then rules for stable predictions, and exploring causal inference models290

can be investigated. The next phases of this research will involve analyzing patients’ longitudinal291

data and conducting a prospective study. This will enable the deployment of the best-performing292

model in real ICU settings and allow for its performance to be enhanced through iterative optimiza-293

tions. It should also be noted that we did not come across any instances of individuals refusing294

11



transfusions for reasons such as religious beliefs in the current study. However, such cases, though295

possibly rare, could exist and represent outliers or sources of error that are important to consider296

when developing and evaluating predictive models.297

When considering the accuracy of human decisions without machine learning methods, we believe298

that not relying on comprehensive potential features and the inability to decipher their complex inter-299

relations by humans may result in inappropriate transfusion decisions, specifically in non-traumatic300

patients. Hence, we expect that our machine learning-driven study could be utilized prospectively for301

clinical management and future research. A use-case scenario for deploying the proposed workflow302

as a clinical decision support system in the ICU settings for providing real-time predictions is shown303

in Figure 5.304

5 Conclusion305

In this study, we developed machine learning-based prediction models for identifying critical care306

patients most likely to receive blood transfusions. For this aim, a unique combination of clinical307

features and parameterized models were explored and established. The utilization of pre-transfusion308

laboratory values and vital signs as features had been instrumental in the development of these309

models. The emphasis was placed on creating a meta-learner that was not only generalizable across310

different patient populations but also offered clear interpretative value in its predictions regarding311

transfusion necessities. Our dataset consisted of a comprehensive array of transfusion-related events312

from over 70,000 adult patient encounters representing a broad spectrum of medical conditions, all313

of whom were treated at the Emory University Hospital. However, our model needs to be cross-314

validated with other hospitals for more generalization. Hence, future endeavors will aim to validate315

extensively and integrate these models into clinical workflows and assess their effectiveness on a316

broader scale, with the ultimate goal of refining and personalizing care in critical settings.317
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Figure S1: Calibration curves of the machine learning models using the five development scenarios.
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Figure S2: Distribution of hemoglobin level for transfused and non-transfused cohorts and cross-
correlation of hemoglobin levels and blood transfusion decision. Each dot refers to the hemoglobin
level of an ICU patient.
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Table S1: List of routine clinical features selected in the study; variable names, their meanings, and
measuring units.

Variable names and their meanings Unite
temperature: Body temperature 0C
sbp cuff: Cuff-based systolic blood pressure mmHg
dbp cuff: Cuff-based diastolic blood pressure mmHg
pulse: Pulse rate (beats per minute) beats per minute
unassisted resp rate: Respiratory rate breaths per minute
spo2: Blood saturated oxygen concentration, SpO2 level %
end tidal co2: End-tidal CO2 mmHg
bicarb (hco3): Bicarbonate mmol/L
blood urea nitrogen (bun) mg/dL
chloride mEq/L
creatinine mg/dL
glucose mmol/L
magnesium mg/dL
osmolarity mOsm/kg
phosphorus mg/dL
potassium mEq/L
sodium mEq/L
hemoglobin g/dL
met hgb g/dL
platelets ×109/L
white blood cell count ×109/L
carboxy hgb %
alanine aminotransferase (alt) U/L
albumin g/L
alkaline phosphatase IU/L
bilirubin direct mg/dL
bilirubin total mg/dL
inr: International normalized ratio -
lactic acid mmol/L
partial prothrombin time (ptt) s
protein g/dL
lipase U/L
b-type natriuretic peptide (bnp) pg/ml
troponin ng/ml
fio2: Fraction of inspired oxygen range: 0-1
partial pressure of carbon dioxide (paco2) mmHg
partial pressure of oxygen (pao2) mmHg
ph -
saturation of oxygen (sao2) %
hemoglobin a1c %
best map: Mean arterial pressure mmHg
pf sp: SpO2/FiO2 ratio -
pf pa: PaO2/FiO2 ratio mmHg
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Table S2: Hyperparameter search space for tuning the models. The average AUROC for each meta-
learner is provided alongside its name.

Models Hyperparameters Search Space

RF
Number of trees in the forest {100, 150, 200, 300, 500, 1000, 1500, 3000}
Minimum sample split {2, 4, 5, 10}
Maximum depth {5, 8, 10, 12, 15, 20}

SVM
Kernel type {linear, poly, sigmoid, rbf}
Regularization parameter {0.2, 0.5, 0.8, 1, 1.5, 3, 5, 10, 25, 50}

XGB

Learning rate {0.01, 0.1}
Number of boosting stages {100, 250, 500}
Maximum depth {5, 7, 12, 15}
Gamma {0, 0.1, 1}

FNN
Number of hidden layers {3, 4}
Number of neurons {an = 16 + 4(n− 1) | n ∈ Z, 1 ≤ n ≤ 61}

MM
Meta-model {LR: 0.92, RF: 0.93, AdaBoost: 0.91, CatBoost: 0.92, GradientBoosting: 0.92, voting classifier: 0.90,

Gaussian Näıve Bayes: 0.95, Choquet fuzzy integral fusion: 0.95, dynamic staking: 0.85,
deep neural networks: 0.75}

Abbreviations used – FR: random forest, SVM: support vector machine, XGB: XGBoost, FNN: feedforward neural
networks, MM: meta-model

Table S3: Pairwise p-values derived from the significant T-test analysis of the performance metrics
for the developed machine learning models.

Model 1 Model 2 AUC Acc F1 Pre Rec

MM

LR 0.008 0.273 0.290 0.011 0.673
FR 0.094 0.159 0.159 0.011 0.409
FNN 0.037 0.093 0.031 0.132 0.040
XGB 0.724 0.249 0.486 0.451 0.485
SVM 0.421 0.740 0.545 0.576 0.242

SVM

LR 0.034 0.739 0.700 0.003 0.308
FR 0.359 0.222 0.433 0.003 0.490
FNN 0.128 0.123 0.079 0.056 0.472
XGB 0.471 0.343 1.000 0.191 0.542

XGB
LR 0.000 0.713 0.620 0.032 0.668
FR 0.046 1.000 0.308 0.032 1.000
FNN 0.019 0.720 0.039 0.327 0.131

FNN
LR 0.733 0.308 0.067 0.372 0.032
FR 0.371 0.608 0.123 0.372 0.071

FR LR 0.111 0.587 0.572 1.000 0.572

Table S4: Case study analysis of four randomly selected patients on the prediction performance and
reliability of the developed meta-model and its base models. All the models predicted the labels
of the first and second patients correctly. For the third patient, the RF and SVM models were
unable to make accurate predictions, whereas the meta-model successfully predicted the patient’s
condition. Notably, the probability estimates provided by the meta-model were consistently more
reliable across these cases. In the fourth scenario, despite all models failing to accurately predict
the patient’s actual condition, the meta-model exhibited a smaller margin of error.

Patient Number Actual Label RF XGB SVM MM Predicted Label
1 1 0.74 0.82 0.76 0.99 1
2 0 0.18 0.02 0.03 0.00 0
3 1 0.49 0.54 0.38 0.74 1
4 0 0.71 0.69 0.60 0.52 1
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