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S1 Data sets
The example data sets used in this paper are summarized in Table 1 of the main paper and 
divide into three broad categories: sports and games (six data sets), human social hierarchies 
(three data sets), and animal social hierarchies (six data sets). Here we provide some additional 
details on these data.

Sports and games: We consider both team competition (basketball, soccer) and individual 
competition (chess, Scrabble, tennis, video games). For the team sports we treat each team in 
each year as a different entity with its own assigned score si. Thus, for example, the England 
soccer team in 2015 is considered a different entity from the England soccer team in 2014. This 
reflects the fact that the composition of teams can change from season to season and with it the 
ranking of the team in comparison to others.

Two of the game data sets, for chess and Scrabble, were too large in their original forms to 
perform our full Bayesian analysis in a reasonable amount of time, so they were subsampled to 
reduce them to manageable size. We limited the chess data set to only those players who had 
participated in at least 200 games and then randomly selected 5% of those players. All others 
were removed from the data set. The Scrabble data set was similarly pared down by limiting it 
to players who had at least 100 games and then choosing a random 20% of those who remained.

Another issue with some of the game data is the presence of ties, which occur with moderate 
frequency in both chess and soccer. Although there do exist ranking models that allow for 
ties (12, 13), we avoid these in the present work for the sake of simplicity, and all our models 
assume that the only possible outcomes of a match are a win or a loss. To accommodate the 
chess and soccer data within this setting we remove all ties from the data, which amounts to 
10–30% of matches in those data sets.

Human social hierarchies: A related issue arises in the “friends” data set, which details 
friend nominations among students in a US middle/high school. A substantial fraction of the 
nominations are reciprocal—two individuals each nominate the other as a friend (40, 41). Such 
reciprocated nominations have been treated as ties in some previous analyses (8), but here again 
we simply remove them. Only unreciprocated friendships are recorded as a win for the person 
who receives the nomination.

For the faculty hiring data sets, the original source (33) included three data sets, for business 
schools, computer science departments, and history departments. We include only the first two 
of these in our analysis, purely to avoid cluttering the presentation, since the results for history 
departments very similar to the other two: we find (β̂, α̂) =  (4.38, 0.01) for history, compared 
to (4.36, 0.01) for business and (4.25, 0.01) for computer science.

Animal hierarchies: Data on animal dominance hierarchies are copious: this has been an 
active field of research for at least sixty years. The data sets studied in this paper come from a



variety of sources, but particularly from DomArchive, a collection of 436 dominance interaction
data sets compiled by Strauss et al. (42). Data sets in the archive vary widely in size, but the
sets we focus on are ones with a relatively large number of interactions per individual, which
improves the statistics and helps reduce uncertainty on the fitted values of the model parameters.

S2 Other measures of model performance

In the cross-validation results reported in the main paper we quantify predictive performance
of the various models by calculating the log-likelihood of the testing (held-out) data within
the fitted model—see Fig. 3. This is not, however, the only way to measure performance.
There are a number of other approaches in common use. In this appendix we describe some
alternative performance metrics and investigate how our models size up when measured by
these metrics. In general the results are similar to those presented in the main paper, but there
are some differences in the details.

A simple way to quantify the predictive performance of a model is to count the number of
times the model predicts the correct winner in the test data. As before, we start by fitting the
model to the training portion of the data to obtain MAP estimates ŝ of the scores. Then, given
those estimates, player i is considered favored to beat player j if ŝi > ŝj . The accuracy C of the
model is defined to be the fraction of matches in the testing data where this prediction is born
out:

C =

∑
ij Wij1ŝi>ŝj∑

ij Wij

, (S1)

where Wij is the number of times i beats j in the testing data, as previously, and 1x is the 
indicator function which is 1 if x is true and 0 otherwise.

Values of this accuracy measure are shown in Fig. S1A for each of the models considered 
in this paper for each of our data sets. As with our previous results for log-likelihood, we report 
performance relative to a baseline set by the standard Bradley-Terry model with a logistic prior, 
represented by the horizontal dashed line in the figure. Comparing with our earlier results from 
Fig. 3, the difference between models is smaller when measured in terms of accuracy than log-
likelihood. For example, the minimum violations ranking performs quite poorly according to 
log-likelihood, but is comparable and sometimes better than our models in terms of accuracy. 
This may be because the minimum violations ranking is more directly tuned to solving this 
specific problem: by minimizing violations we precisely minimize the number of outcomes that 
are predicted incorrectly. On the other hand, the minimum violations algorithm does not reflect 
how confident we are in each outcome or any other aspect of the prediction t ask, and in this 
sense is inferior to other approaches.



(A)

(B)

Figure S1: Results from the same set of cross-validation tests shown in Fig. 3, but quantified 
using (A) accuracy and (B) log posterior-predictive probability, instead of log-likelihood. All re-
sults are measured relative to the Bradley-Terry model with a logistic prior, which is represented 
as the dashed horizontal line in each panel. Error bars represent upper and lower quartiles, es-
timated from at least 50 random repetitions of the cross-validation procedure in each case. The 
maximum likelihood and SpringRank models are not included in the lower comparison, since 
they are based on point estimates rather than Bayesian methods and hence one cannot calculate 
a posterior-predictive probability. Arrows indicate results that are off the scale.



Both the likelihood and accuracy measures are based on point estimates of model parameters
ŝ, α̂, and β̂ but, as shown in Fig. 2, point estimates do not always do a good job of capturing the
full posterior distribution P (s, α, β|Atrain), particularly in sparse data sets. To get around this
issue we can calculate the average of the likelihood over the distribution of parameter values
thus:

P (Atest|Atrain) =

∫
P (Atest|s, α, β)P (s, α, β|Atrain) d

ns dα dβ. (S2)

In practice, this quantity can be estimated from a set of N samples of (sk, αk, βk) (with k =

1 . . . N ) drawn from the posterior P (s, α, β|Atrain), by computing the average

P (Atest|Atrain) ≃
1

N

N∑
k=1

P (Atest|sk, αk, βk). (S3)

We can calculate this estimate from the same Monte Carlo samples we already generated, which
we used previously to visualize the posterior distribution in Fig. 2. As our measure of perfor-
mance we then compute the log posterior-predictive probability per game

R =
logP (Atest|Atrain)∑

ij Wij

, (S4)

a fully Bayesian performance measure.
We plot this measure for a number of our models and data sets in Fig. S1B. Note, however, 

that since the measure involves an integral over the posterior distribution of the scores, we 
cannot apply it to ranking methods that return point estimates of the scores only, rather than a 
full probability distribution, which in this case means the Bradley-Terry MLE and SpringRank, 
which are thus excluded from the figure. Among the remaining methods the full luck-plus-depth 
model of this paper performs best, or equal-best, for every data set, by this measure.

S3 Point estimates of parameters
To compute the log-likelihood and accuracy measures of predictive success we use point esti-
mates of the model parameters and scores, which we compute one after the other: we estimate 
the expected posterior values of the parameters α̂, β̂  from a simple average of the Monte Carlo 
samples, then we fix these values and compute the MAP values of the scores ŝ using a standard 
numerical optimization method. We could, alternatively, use the expected values of the scores, 
which would be easy to calculate from the samples, but we prefer MAP values since they give 
a more appropriate point of comparison with other approaches based on maximum probability



estimates, such as the maximum likelihood fit to the Bradley-Terry model or the SpringRank
algorithm.

One might imagine one could simplify the calculation by just jointly optimizing the poste-
rior P (s, α, β|A) over both the scores and parameters to define estimates

(s∗, α∗, β∗) ≡ argmaxs,α,βP (s, α, β|A). (S5)

We find, however, that this can give biased results by artificially inflating the value of the depth
parameter β. This happens because the likelihood P (A|s, α, β) is a function of the product βs
(see Eq. (14)), meaning that the value of the likelihood is unchanged if we increase β while
simultaneously reducing all the scores by the same factor. Reducing s in this way increases the
prior P (s) (which is peaked at s = 0) and so increases the posterior P (s, α, β|A). Unchecked,
this effect would send the joint maximum to β∗ → ∞, s → 0. The prior P (β) somewhat
mitigates this problem, but in practice the jointly fitted value β∗ is still unreasonably large:
values for each of the data sets are shown in Table S1.

S4 Bayesian model selection

As mentioned in the main paper, our luck-plus-depth model can be regarded as a generalization
of a number of other popular ranking models. Setting α = 0 fixing β, for example, recovers
the standard Bradley-Terry model with a fixed-width prior, while letting β → ∞ recovers the
minimum violations ranking. This means that the value of P (α, β|A) on points or surfaces
within the α, β space gives the corresponding distribution for these other models and hence
allows us to compare model performance and perform true Bayesian model selection.

Within the Bayesian paradigm, competing models are often compared by computing the
Bayes factor between them, the ratio of their Bayesian evidences. The Bayesian evidence is
calculated by integrating the model likelihood over the space of all possible parameter (or score)
values, weighted by their prior probabilities. Model selection using the Bayes factor is analo-
gous to a classical likelihood ratio test, although by integrating over parameters Bayes factors
naturally penalize over-parameterized models. Applied to our setting, we can use the Bayes
factor to adjudicate whether our full luck-plus-depth model is preferred to the various models it
generalizes, for each of our data sets.

For example, as discussed in Section S5, the Bradley-Terry model with unit logistic prior on
the scores si corresponds approximately to the parameter choices αL = 0 and βL ≃ 2.56. The
Bayesian evidence of this model on a particular data set is then obtained by integrating over the
possible values of the scores while holding these parameters fixed:

P (A|αL, βL) =

∫
P (A|s, αL, βL)P (s) ds. (S6)



The Bayesian evidence of the full model, where the parameters α and β run free, is

P (A) =

∫
P (A|s, α, β)P (s)P (α)P (β) ds dα dβ

=

∫
P (A|α, β)P (α)P (β) ds dα dβ. (S7)

Then the Bayes factor between the two models is the ratio

K =
P (A|αL, βL)

P (A)
, (S8)

which can be interpreted in a manner akin to a p-value: if the value is very small then the
evidence for the model with zero luck and a fixed logistic prior is much weaker than for our
more general model.

In practice the Bayes factor can be calculated from our Monte Carlo samples, which allow
us to approximate the posterior distribution P (α, β|A) up to a multiplicative constant. The
Bayes factor can then be found by applying Bayes law thus:

P (A|αL, βL)

P (A)
=

P (αL, βL|A)
P (αL)P (βL)

(S9)

This expression is precisely the function of αL and βL plotted in Figure 2A. (The inverse prior 
factor 1/P (αL)P (βL) is implicitly included because of the nonlinear scale we use for the hori-
zontal axis—the scale was deliberately chosen so that the Jacobian of the transformation gives 
exactly the required factor.) Therefore, the darker regions in Figure 2 indicate choices of pa-
rameters that correspond to models with high Bayes factor, while absence of color indicates 
that the Bayes factor is low and the corresponding model is excluded. Thus it is clear that the 
conventional Bradley-Terry model at αL = 0 and βL ≃ 2.56 is excluded relative to our full 
model for all but one data set, the “friends” data.

Other models correspond to regions in parameter space, not just points. Minimum violations 
ranking, for example, is the β → ∞ limit of our model for any value of α—the whole of the 
right edge of Fig. 2A—while the depth-only model corresponds to the lower (α = 0) edge. 
The full model evidence for each of these models can then be found by integrating over the 
appropriate subspace of parameters. Even without performing the integral, however, it is clear 
simply from looking at the figure t hat t he m inimum v iolations r anking i s o nly p lausible for 
the hyenas, mice, and sparrows, while the depth-only model is plausible in all but the vervet 
monkeys, dogs, and mice.

(To be fair, for this simple visual analysis to be correct we would have to ensure that the 
distributions P (α, β|A) in Fig. 2A are all normalized to 1, meaning that probability clouds 
with a large extent, such as the mice data set, would be far dimmer than in fact they are—for



visual clarity the clouds have actually been normalized to maximize contrast. Nonetheless, the
results of our rough eyeball test do hold out regarding the minimum violations ranking and the
depth-only model.)

S5 Other measures of depth

In this paper we measure depth of competition by the parameter β in our joint luck-plus-depth
model, Eq. (14). This is not the only possible approach for quantifying depth, however, and
in this appendix we discuss some alternative approaches and explain how they relate to similar
ideas presented elsewhere.

As discussed in the section on depth of competition, our depth measure β counts the number
of “levels of skill” between two typical players in a population, who in expectation have a priori
score difference si − sj = 1 (because of our choice of prior on s). An alternative, and common,
way to define depth is as the number of levels between not the typical pair of players but the
best and worst players, which is given by

β̂range = β̂(ŝmax − ŝmin). (S10)

In the data sets studied here we find that the factor ŝmax − ŝmin varies from about 2.5 to 4. The 
range tends to be larger when there are more competitors, presumably because outliers are more 
likely in large samples, and we regard this as downside of this measure, although in practice the 
depth order of our data sets does not change greatly between this measure and our own. Values 
of β̂range are reported in Table S1 for each of the data sets.

Our depth measure β is defined i n t he c ontext o f o ur f ull l uck-plus-depth m odel, but in 
many cases, particularly for the sports data sets, there is no strong evidence of a nonzero luck 
parameter α. An alternative approach for quantifying depth in these cases is to use a depth-
only model as in Eq. (9). Depth values calculated by fitting this model are given in Table S1 
and denoted β0, which we refer to as “restricted depth.” In practice these figures are not very 
different for those for β in cases (such as sports) where the value of α is small anyway, or more 
precisely when the posterior distribution in Figure 2 meaningfully intersects the α = 0 axis, 
so that the zero-luck model is plausible. On the other hand, β and β0 can differ substantially 
when the data support a significantly nonzero value of α . For example, the mice data set has an 
expected value of α around 0.25 with a posterior distribution that has considerable separation 
from α = 0, and in this case we find a  l arge d ifference b etween a  value o f β̂  =  26.5 and 
β̂0 = 2.1, the latter being more akin to the sports data than to the other animal hierarchies.

The restricted depth β0 is closer in spirit to previous measures of depth that do not consider 
the element of luck, and the occurrence of large discrepancies with the value of β in some data 
sets suggests that such previous measures might potentially be in error by a substantial margin.



For applications where the element of luck is not an issue, however, the restricted depth could
be useful as a simplification of our measure. It can be calculated relatively straightforwardly,
to a good approximation, using the standard Bradley-Terry model with a logistic prior, a model
we have recommended in the past. In our current analysis we have used Gaussian priors, but the
logistic prior has some practical advantages in that it enables simple and fast iterative methods
for computing MAP scores. In the most common version of this approach, one uses the unit
logistic distribution 1/[(1 + es)(1 + e−s)] as prior with the standard (β = 1) Bradley-Terry
model, which leads to an elegant iterative algorithm for calculating the scores (8). The logistic
prior, however, has variance 1

3
π2, whereas our Gaussian prior has variance 1

2
, so, though the

qualitative shape of the two distributions is similar, the logistic distribution has substantially
greater width, by a factor of π

√
2/3. An alternative way to perform the same calculation is to

shrink the width of the prior to be the same as the Gaussian, while simultaneously shrinking the
width of the Bradley-Terry score function by the same factor, which is equivalent to choosing
β = π

√
2/3 = 2.565. This leaves the algorithm, and the resulting ranking, unchanged, and thus

the iterative method with a logistic prior is equivalent to the depth-only model with β = 2.565.
Happily, this choice of β falls squarely in the middle of the range of values seen in Fig. 2 

and in practice this approach has quite competitive performance, as shown in Fig. 3, where it is 
used as the baseline. On the other hand, there are plenty of cases where the value β = 2.565 
is clearly misspecified, which i s s ignaled by fitted scores whose variance does not match the 
width of the prior. This observation suggests that we could use the spread of the fitted scores as 
a heuristic measure of (restricted) depth and in practice this approach seems to work quite well. 
Quantifying the spread by its the standard deviation, we report figures for each of our data sets 
in Table S1, and we find that there is good correlation between this standard deviation and the 
restricted depth β̂0 as calculated earlier. Given that the former is substantially easier to calculate 
than the latter, this could be a useful approach for calculations where accuracy and rigor are not 
at a premium.

We also note that MAP estimation in our depth-only model is equivalent to fitting the usual 
Bradley-Terry model with an L2 regularization, equivalent to a Gaussian prior. This correspon-
dence suggests that one could infer a point estimate of the depth by tuning the strength of the 
L2 regularization by maximizing performance on some held-out validation data set. Like the 
joint MAP estimation of the depth and the scores discussed in Section S3, however, this method 
displays a bias towards large depth values. Specifically, since validation performance is only 
assessed at the MAP point estimate of the scores, if that point scales as s ∼ β−1 for large β 
the validation log-likelihood is largely unaffected, being proportional to βs. The Bayesian 
approach, by contrast, penalizes high values of β by effectively assessing performance inte-
grated over the whole posterior distribution of scores, since large β values are sensitive to slight 
changes in these scores beyond the point estimate.



A quite different approach to measuring depth has been developed in the animal behavior
literature, where the notion of “steepness” has gained currency in discussions of dominance
hierarchies (22). Steepness is most often defined through quantities known as “David’s scores,”
which are measures of individual performance analogous to our fitted si (1). The David’s scores
are defined as

DSi = wi +
∑
j

wjPij − li −
∑
j

ljPji (S11)

where Pij is the fraction of times that i beats j:

Pij =
Aij

Aij + Aji

, (S12)

and wi and li are row and column sums of this matrix:

wi =
∑
j

Pij, li =
∑
j

Pji. (S13)

De Vries et al. (22) propose normalizing the David’s scores according to

NormDSi =
DSi +

(
n
2

)
n

, (S14)

which vary between 0 and n − 1, then the animals are ranked according to the resulting values. 
With the inferred rank order on the x-axis and the normalized David’s score on the y-axis, the 
steepness of the hierarchy is then defined to be the slope S DS of the ordinary line of best fi t. A 
nice feature of this formulation is that the steepness runs from 0 to 1, with the value 1 being 
achieved in any hierarchy where all dominance interactions run from higher ranked to lower 
ranked individuals (zero violations).

Neumann and Fischer (43) have recently proposed a related measure that considers the 
slope SElo of the line of best fit between Elo scores for the competitors and their inferred ordinal 
ranking. Elo scores are essentially a sequential (time-dependent) version of a maximum like-
lihood fit to the Bradley-Terry model and so this definition is closer to the ideas considered in 
this paper. Neumann and Fischer also incorporate Bayesian elements where certain aspects of 
the fitting process are randomized, such as the sequential order (if the true order is unknown) 
and the initial values of the ratings.

In Table S1 we report values for a number of our data sets of SDS (calculated using the R 
package steepness (44)) and SElo (calculated using the R package EloSteepness (45)). 
Overall, we find t hat t he r esults a re c learly c orrelated w ith t he o ther m easures s hown i n the 
table, although SDS has trouble differentiating between the lower depth data sets. The Elo-
based steepness SElo fares better and correlates quite well with the restricted depth β̂0, although



the calculations are computationally demanding on account of the randomization and prove
intractable for our larger data sets (as indicated by “–” in the table).

To complete our collection of measures of depth we also include in Table S1 the parame-
ter βS that appears in the SpringRank model (25). This parameter has not previously been used
as a measure of depth but one can make an argument for its use in this way—see Appendix S7.

Finally, we note in passing that there is an analogy between the depth parameter β and a
notion of “temperature” for a data set. The form of the score function of Eq. (9) is precisely that
of the Fermi-Dirac probability function of many-body physics, the probability of occupation at
inverse temperature β of an energy level with energy s above the Fermi level. While we have
not directly exploited this analogy here, it is a part of a broader correspondence between noise
and unpredictability in statistics and temperature in physics.

Measures of depth Luck
Data set β̂ β∗ β̂range β̂0 std(ŝL) SDS SElo β̂S α̂ α∗

Sp
or

ts
/g

am
es

Scrabble 0.68 3.13 2.43 0.60 0.64 0.00 – 2.24 0.09 0.00
Basketball 1.01 10.79 3.66 0.83 0.61 0.01 0.48 2.32 0.13 0.02
Chess 1.17 4.73 4.21 1.04 0.91 0.00 – 2.85 0.07 0.12
Tennis 1.44 1.98 5.88 1.34 0.72 0.00 – 2.67 0.04 0.00
Soccer 1.73 6.23 4.97 1.58 1.02 0.00 – 4.00 0.04 0.00
Video games 1.77 17.53 5.12 1.55 1.10 0.02 0.62 2.95 0.07 0.05

H
um

an Friends 3.54 10.36 9.88 2.80 1.16 0.00 – 5.23 0.05 0.00
CS departments 4.25 15.42 12.11 3.88 1.88 0.01 0.78 4.46 0.01 0.00
Business depts. 4.36 13.72 11.73 4.07 2.25 0.14 0.84 4.07 0.01 0.01

A
ni

m
al

Vervet monkeys 6.01 30.39 17.07 3.57 2.23 0.40 0.85 4.34 0.07 0.07
Dogs 8.74 33.29 24.82 3.76 2.03 0.25 0.93 3.65 0.11 0.09
Baboons 13.19 18.61 39.04 9.37 4.38 0.05 0.95 5.63 0.02 0.02
Sparrows 22.92 63.89 69.68 8.68 3.62 0.50 0.91 7.72 0.02 0.01
Mice 26.48 59.48 72.29 2.10 1.35 0.31 0.72 3.22 0.25 0.24
Hyenas 100.58 168.48 246.42 9.83 4.00 0.30 0.95 8.15 0.02 0.02

Table S1: Inferred parameter values for the data sets considered in the Results section of the 
main paper. From left to right: β̂  is expected depth, β∗ is the jointly optimized MAP depth as 
in Eq. (S5), β̂range is depth between the best and worst player as in Eq. (S10), β̂0 is restricted 
depth as inferred in the depth-only (α = 0) model, std(ŝL) is the standard deviation of the MAP 
scores within the logistic-prior model, SDS is the steepness measure of de Vries et al. (22), SElo 

is the steepness measure of Neumann and Fischer (43), β̂S is the maximum likelihood estimate 
of the parameter βS in the SpringRank model (25), α̂ is the expected luck, and α∗ is the jointly 
optimized MAP estimate of the luck.



S6 Depth as predictability

In the Results section of the main paper we observed that among our data sets the sports and
games have lower depth compared to the social hierarchies, and we speculated that this was
because a high-depth sport would not be as interesting to watch: at high depth a typical pair
of competitors will be very unevenly matched and there will be little suspense about who is
going to win. In other words, high depth should result in high predictability of outcomes. In
this appendix we test this hypothesis by calculating various measures of predictability.

A natural measure of predictability is the same log-likelihood that we studied in our section
on predicting wins and losses. The log-likelihood of a data set is equal to minus the description
length of the outcomes of the matches in that set, given the fitted model. That is, it is equal
to the amount of information it would take to communicate the outcomes to a receiver who
already knows the fitted model. Higher information (more negative log-likelihood) implies
more unpredictable outcomes. Completely random outcomes (matches decided by the toss of
a coin) would give a log-likelihood of −1 per match (in log-base-2 units), while completely
predictable ones would give zero.

Previously, we plotted the log-likelihood relative to the baseline set by the standard Bradley-
Terry model, but in the present context we are interested in the absolute value. Figure S2A
shows the absolute value for each of our data sets, arranged in order of increasing depth β. As
the figure shows, the low-depth sports on the left are indeed quite unpredictable and none of
our models perform much better than chance at predicting outcomes (log-likelihood per match
is close to −1). Some of the methods we compare against, notably the maximum likelihood
Bradley-Terry and minimum violation ranking, fall well short even of random guesses, as indi-
cated by the arrows at the bottom of the figure. As depth increases, however, outcomes generally
become more predictable, and the deepest animal hierarchies have a log-likelihood approaching
zero, meaning outcomes are nearly perfectly predictable.

There are some exceptions to this trend, most notably the mice data set which, as seen in
Fig. 2, has a large element of luck (α̂ ≃ 0.25). This introduces substantial randomness into the
matches, despite the high depth, and greatly decreases predictability.

We can shed further light on predictability by calculating the average amount of information
needed to describe matches that are truly drawn from our model. That is, we consider two
players whose scores si are drawn from our normal prior with variance 1

2
, so that the difference

of their scores is normally distributed with variance 1, and we assume that the probability of i
beating j is given exactly by pij = fαβ(si − sj), Eq. (14), for some values of α and β that we
specify. Then the average information needed to describe the outcome of the match is given by
the standard entropy function for a Bernoulli random variable

H[pij] = −pij log pij − (1− pij) log(1− pij). (S15)



(A)

(B)

Figure S2: Absolute log-likelihood and accuracy values per match in the cross-validation tests
of Fig. 3. This figure differs from Fig. 3 in showing absolute values rather than values relative
to the Bradley-Terry model with logistic prior.



Then, writing s = si − sj and integrating, the average entropy per match over matches between
many random pairs of players is

Sαβ =
1√
2π

∫ ∞

−∞
H
[
fαβ(s)

]
e−s2/2 ds. (S16)

Unfortunately, this integral does not seem to have a closed-form solution, but it can be evaluated
numerically. Figure S3 shows a modified version of Fig. 2 from the main paper, representing
the posterior probability distribution of α, β for our various data sets, with superimposed lines
representing the contours of the average entropy. As the figure shows, the entropy is higher for
lower depth and for higher luck, as we would expect, since both increase the unpredictability of
outcomes. We also note that the posterior distributions of individual data sets appear to follow
the contour lines quite closely, arcing upward and to the right. This occurs because the entropy
is by definition equal to minus the log-likelihood, and our prior on α and β is slowly varying
by construction, so the posterior is also slowly varying along the contour lines of constant
likelihood. The contour lines are calculated as averages over outcomes drawn from the fitted
model, whereas the probability clouds in the figure represent real-world data, so the two are
not precisely comparable. But to the extent that the data are well described by the model we
would expect them to agree and hence for the clouds to follow the contours in the plot. This
also means that, while some of the clouds in the figure are quite extended, indicating substantial
uncertainty about the values of α and β, they are narrow in the direction perpendicular to the
contours, meaning that we have high confidence about the value of the log-likelihood. This is
reflected in Fig. S2A, where we see that the uncertainty on our estimates of the log-likelihood
is quite modest.

S7 SpringRank

Among the various approaches to ranking considered in this paper, SpringRank (25) is a recent
and novel approach based on a physical analogy to the behavior of a network of masses and
springs. In this appendix we make some observations on the method and how it relates to the
Bradley-Terry model, which forms the foundation for the other methods we consider.

In SpringRank the likelihood of observing a directed network A is given by a product of
Poisson distributions over all possible directed edges:

P (A|s, βS, c) =
∏
ij

r
Aij

ij

Aij!
e−rij , (S17)

with the expect number of directed edges i → j given by

rij = ce−
1
2
βS(si−sj−1)2 , (S18)
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Figure S3: The data sets of Fig. 2 with dashed lines representing the contours of average entropy
per match. Low entropy indicates confidence about the outcome of a match; high entropy
indicates unpredictability.

for given scores s, inverse temperature βS , and a “sparsity” parameter c. Equation (S17) can be
rewritten as

P (A|s, βS, c) =
∏
i<j

r
Aij

ij

Aij!
e−rij

r
Aji

ji

Aji!
e−rji

=
∏
i<j

(rij + rji)
Aij+Ajie−(rij+rji)

(Aij + Aji)!

(Aij + Aji)!

Aij!Aji!

(
rij

rij + rji

)Aij
(

rji
rij + rji

)Aji

=
∏
i<j

m
Āij

ij e−mij

Āij!

(
Āij

Aij

)
1

[1 + e−2βS(si−sj)]Aij [1 + e−2βS(sj−si)]Aji
, (S19)

where mij = rij + rji and Āij = Aij + Aji is an element of the adjacency matrix Ā of the
undirected network of matches.

Equation (S19) is equal to the likelihood of generating an undirected network Ā of matches
and then separately choosing the directions of the edges, i.e., the winners of the matches:

P (A|s, βS, c) = P (Ā|s, βS, c)P (A|s, βS, Ā), (S20)

where the probability of the undirected network is another product of Poisson distributions:

P (Ā|s, βS, c) =
∏
i<j

m
Āij

ij e−mij

Āij!
(S21)



Figure S4: The function W (βS, s) of Eq. (S25) plotted against s, for various values of βS as
indicated.

and

P (A|s, βS, Ā) =
∏
i<j

(
Āij

Aij

)
1

[1 + e−2βS(si−sj)]Aij [1 + e−2βS(sj−si)]Aji
. (S22)

(It is straightforward to confirm that the latter is correctly normalized for Aij = 0 . . . Āij and
Aji = Āij − Aij .)

But Eq. (S22) is identical to the likelihood for the model studied in this paper, Eqs. (3)
and (14),

P (A|s, α, β, Ā) =
∏
i<j

(
Āij

Aij

)
fαβ(sij)

Aijfαβ(sji)
Aji , (S23)

if we choose α = 0 and β = 2βS . (The binomial coefficient accounts for the number of ways of 
assigning directions Aij to the Āij undirected edges.) This observation suggests that we might 
use βS as a a measure of the (restricted) depth of a hierarchy, and indeed we observe a correlation 
between the maximum likelihood value β̂S and our own restricted depth parameter β0, as shown 
in Table S1.

However, it is the other term, Eq. (S21), that particularly distinguishes SpringRank from 
the other models we have considered. This term, which measures the likelihood that the set 
of observed matches occurs at all, has no equivalent in the Bradley-Terry model and related 
models. The quantity mij , which is the expected number of matches between i and j, can be



rewritten in the form

mij = M
W (βS, si − sj)∑
i<j W (βS, si − sj)

, (S24)

where

W (βS, s) =

√
βS

8π

[
e−

1
2
βS(s−1)2 + e−

1
2
βS(s+1)2

]
. (S25)

(Note that W (βS , s) is symmetric in s so the sign of the score difference in Eq. (S24) has no 
effect.) In this formulation the parameter M controls the total number of (undirected) edges in 
the network and the (properly normalized) probability density W (βS , si −sj ) controls how they 
are distributed given the scores si. Figure S4 shows the form of W (βS , s) for various choices 
of βS . For βS ≤ 1 there is a single peak at s = 0 so that interactions are preferentially between 
evenly matched players, but above βS = 1 the function becomes bimodal and increasingly 
peaked around s = ±1, so that players with a score difference near 1 are more likely to interact.

It is arguably a disadvantage of the SpringRank model that the same parameter βS controls 
both the depth of competition via Eq. (S22) and the distribution of matches via Eq. (S24). 
Conceptually these are separate processes, and one could make an argument for a model in 
which they were controlled by separate parameters, although we have not taken that approach 
here—we use the model as originally defined for the sake of consistency.

In our cross-validation tests we use the maximum likelihood point estimate for the value of 
βS , in keeping with the other models we study. We note, however, that De Bacco et al. (25), in 
their original work on SpringRank, used different values of βS depending on whether the results 
were scored using log-likelihood or accuracy, choosing in each case the value that gave the best 
performance according to the measure used. However, unlike the definition given in (25), our 
definition of the accuracy is independent of the choice of βS .

Finally, we note that the original specification of the SpringRank model also included an 
optional Gaussian prior on the scores. We have not adopted this prior in our tests, since we find 
that it tends to diminish the performance of the method.
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