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Supplementary Table 1 – Sample demographics 

HCP-EP 

(n=145) 

TCP 

(n=101) 

CNP 

(n=224) 

Age (mean,sd) 23.41(3.86) 32.21(12.54) 32.59(9.21) 

Sex (f, %) 57, 38% 50, 57% 95, 42% 

Head motion (mm, 

sd) 

.06(.04) .09(.05) .08(.03) 

Diagnosis 

    SZ* 62 4 37 

    SZAD 8 3 0 

    MDD 5 22 0 

    BD 20 9 40 

    ANX* 0 5 0 

    ADHD 0 0 37 

    OCD 0 0 0 

    PTSD 0 7 0 

    SUD 1 1 0 

    ED 0 2 0 

    None (HC) 52 48 110 

Acronyms: HCP-EP = Human Connectome Project – Early Psychosis, TCP = Transdiagnostic 

Connectomes Project, CNP = UCLA Consortium for Neuropsychiatric Phenomics, SZ = 

Schizophrenia, SZAD = Schizoaffective Disorder, MDD = Major Depressive Disorder, BD = 

Bipolar Disorder, ANX=Anxiety Disorder, ADHD = Attention Deficit Hyperactivity Disorder, 

OCD = obsessive Compulsive Disorder, PTSD = Post-Traumatic Stress Disorder, SUD = 

Substance Use Disorder, HC = Healthy Control. 

*Includes all Schizophrenia Spectrum Diagnosis, except Schizoaffective Disorder

*Includes Generalized Anxiety Disorder and Specific Phobia



Supplementary Table 2 - Cognitive tests for each clinical dataset and loadings on the first principal 

component. 

HCP-EP loading TCP loading CNP 

nih_picseq_unadjusted 0.230 choice_rt_score* 0.282 cvlt_sd_free_recall 

nih_dccs_unadjusted 0.222 cont_concent_score* -0.028 cvlt_sd_cued_recall 

nih_flanker_unadjusted 0.235 digit_symbol_score* 0.474 cvlt_ld_free_recall 

nih_tpvt_uss 0.275 fast_react_score* 0.439 cvlt_ld_cued_recall 

nih_patterncomp_unadjusted 0.161 matrix_reasonscore* 0.348 cvlt_ld_recognition 

nih_lswmt_uss 0.261 read_mind_score* 0.227 wms_vr_immediate_recall 

nih_orrt_tbx_reading_score 0.267 recog_emo_score* -0.011 wms_vr_delayed_recall 

nih_fluidcogcomp_unadjusted 0.304 hammer_tot_meanRT^ -0.453 wms_vr_recognition 

nih_crycogcomp_unadjusted 0.292 stroop_tot_meanRT^ -0.352 wms_symbol_span 

nih_eccogcomp_unadjusted 0.328 wms_digit_span_fwd 

nih_totalcogcomp_unadjusted 0.346 wms_digit_span_bwd 

wasi_profilesubtest_verbalv 0.248 wms_digit_span_seq 

wasi_profilesubtest_performancemr 0.230 wais_letter_number_sequ 

wasi_iqscores_full2iq 0.289 wais_vocabulary 

wais_matrix_reasoning 

dkefs_verbal_fluency_english

taskswitch_interference 

taskswitch_switch_cost 

taskswitch_residual_switch_cost

ant_rt_conflict 

color_trail_interference 

cpt_hit_rate 

cpt_false_alarm_rate 

cpt_hits_rt 



*Administered online

^Administered within MRI scanner

Supplement Table 3 – 67 Phenotypes from Biobank used to train meta-matching model 

Variable Descriptio

n 

Variable Descriptio

n 

Variable Descriptio

n 

Alcohol C3 average 

weekly 

beer plus 

cider intake 

Trail-o C4 trail 

making 

online 

principal 

component 

4 

Matrix C2 matrix 

pattern 

completion 

principal 

component 

2 

Blood C2 blood 

assays 

principal 

component 

2 

Blood C4 blood 

assays 

principal 

component 

4 

Fluid Int. fluid 

intelligence 

Breath C1 spirometry 

principal 

component 

1 

Alcohol C2 average 

weekly 

champagne 

plus white 

wine intake 

Hearing hearing 

signal-to-

noise-ratio 

(snr) of 

triplet (left) 

Age age Carotid C5 carotid 

ultrasound 

principal 

component 

5 

Illness C1 non-cancer 

illness 

principal 

component 

1 

Cancer C1 cancer 

principal 

component 

1 

Time drive time spent 

driving per 

day 

#household number of 

people in 

household 

Carotid C1 carotid 

ultrasound 

principal 

component 

1 

Travel frequency 

of 

travelling 

from home 

to job 

Time TV time spent 

watching 

television 

(tv) per day 



workplace 

per week 

Match-o pairs 

matching 

online 

Work weekly 

length of 

working 

hour for 

main job 

BP eye C2 blood 

pressure & 

eye 

measures 

component 

2 

Trail C1 trail 

making 

principal 

component 

1 

Age edu age 

completed 

full time 

education 

Body C3 anthropom

etry 

principal 

component 

3 

Digit-o C1 symbol 

digit 

substitution 

online 

principal 

component 

1 

Deprive C1 multiple 

deprivation 

principal 

component 

1 

ECG C6 ECG 

measures 

principal 

component 

6 

Digit C1 symbol 

digit 

substitution 

principal 

component 

1 

Blood C3 blood 

assays 

principal 

component 

3 

ECG C2 ECG 

measures 

principal 

component 

2 

Match pairs 

matching 

Alcohol C1 average 

monthly 

spirits 

intake 

Illness C4 non-cancer 

illness 

principal 

component 

4 

ProMem 

C1 

prospective 

memory 

principal 

component 

1 

Neuro neuroticism 

score 

Smoke C1 smoke 

principal 

component 

1 

RT C1 reaction 

time 

principal 

component 

1 

ECG C1 ECG 

measures 

principal 

component 

1 

BP eye C3 blood 

pressure & 

eye 

measures 

principal 

component 

3 

Trail-o C1 trail 

making 

online 

Sex sex BP eye C6 blood 

pressure & 

eye 



principal 

component 

1 

measures 

principal 

component 

6 

Tower C1 tower 

rearranging 

principal 

component 

1 

Sex G C2 genotype 

sex 

inference 

principal 

component 

2 

Urine C1 urine 

assays 

principal 

component 

1 

Family C1 family 

history 

(parent's 

age) 

principal 

component 

1 

Body C2 anthropom

etry 

principal 

component 

2 

Sex G C1 genotype 

sex 

inference 

principal 

component 

1 

Blood C5 blood 

assays 

principal 

component 

5 

Grip C1 hand grip 

strength 

principal 

component 

1 

Bone C1 bone-

densitometr

y of heel 

principal 

component 

1 

Dur C4 process 

durations 

principal 

component 

4 

Body C1 anthropom

etry 

principal 

component 

1 

Matrix C3 matrix 

pattern 

completion 

principal 

component 

3 

Dur C2 process 

durations 

principal 

component 

2 

Bone C3 bone-

densitometr

y of heel 

principal 

component 

3 

Time walk number of 

days 

walked 10+ 

minutes per 

week 

Loc C1 location 

principal 

component 

1 

BP eye C4 blood 

pressure & 

eye 

measures 

principal 

component 

4 

BP eye C5 blood 

pressure & 

eye 

measures 

principal 

component 

5 

Dur C1 process 

durations 

principal 

Matrix C1 matrix 

pattern 

completion 

principal 

ECG C3 ecg 

measures 

principal 



component 

1 

component 

1 

component 

3 

Digit-o C6 symbol 

digit 

substitution 

online 

principal 

component 

6 

#Mem C1 numeric 

memory 

principal 

component 

1 

Genetic C1 genetic 

principal 

component

s and 

heterozygo

sity 

principal 

component 

1 

Sleep sleep 

duration 

per day 

Supplementary Figure 1 – Model performance and generalizability assessed using Coefficient of 

Determination (COD). A) Prediction performance (COD between observed and predicted values) 

using kernel ridge regression (red) and meta-matching (blue) across three transdiagnostic datasets: 

Human Connectome Project – Early Psychosis (HCP-EP), Transdiagnostic Connectomes Project 

(TCP) and UCLA Consortium for Neuropsychiatric Phenomics (CNP). Generalizability matrix for 

the kernel ridge regression (B; KRR) and meta-matching (C; MM) models, showing the prediction 

performance between the independent samples, where the model is trained in one dataset and then 

used to make predictions in an independent dataset. The diagonal represents the mean prediction 

performance within each dataset, which is also represented by the black dots in panel A. 



Supplementary Figure 2 – Kernel Ridge Regression (KRR) model generalizability matrix (left) 

and differences in generalizability between KRR and meta-matching (MM) models (right). 



Supplementary Figure 3 – Scatterplots of observed and predicted cognition scores for 

generalizability of the meta-matching model. 

Supplementary Figure 4 – Regional predictive features classified into 17 (A) and 7 (B) network 

solutions, as well as aggregated across all three studies (HCP-EP, TCP, CNP) using a 7 network 

solution (C) and ordered by strongest to weakest mean predictive feature weight.  



Supplementary Figure 5 – Edge-level predictive feature weights for each dataset 



Supplementary Figure 6 - Model performance after regressing out age, sex and head motion (mean 

FD) 

Supplementary Figure 7 - Correlation between edge-level feature weights for original and 

covariate adjusted meta-matching models. 



Supplementary Figure 8 –Feature weights associated with 67 health, demographic and behavioral 

variables using the stacking component of the meta-matching model. 



Supplementary Figure 9 – Model performance (Top) and feature weights (bottom) associated with 

64 health, demographic and behavioral variables using the stacking component of the meta-

matching model (after removing age, sex, and gene PC1 from the meta-matching model). 



SFig10 – Leave-One Out -Cross Validation (LOO-CV) results. Points colored by diagnosis, sex, 

and age. F=Female; M=Male; Anx=Anxiety Disorder; BD=Bipolar Disorder; ED=Eating 

Disorder; HC=Healthy Control; MDD=Major Depressive Disorder; SUD=Substance Use 

Disorder; SZ=Schizophrenia; SZAD=Schizoaffective Disorder; ADHD=Attention Deficit 

Hyperactivity Disorder. See ‘Control Analyses’ for further details of sub-group analysis. 



Supplementary Figure 11 – All FDR-corrected network level feature weights. 

Supplementary Figure 12 – Cross-dataset generalizability after removing schizophrenia patients 

from CNP dataset. 



SFig 13 – A) Model performance after removing all heathy control participants from 
each sample. Generalizability of meta-matching (B) and KRR (C) models after 
removing all heathy control participants from each sample. * = p<0.05; ** = 
p<0.001; *** = p<0.0001; ns= p>0.05) and black ^ denotes statistically significant 
difference between models. 



Additional Information on TCP dataset 

The MRI data for the Yale University and McLean Hospital sites are collected at the FAS Brain 

Imaging Center and McLean Hospital Brain Imaging Center, respectively. The purpose of this 

study is to collect brain imaging and behavioral data from a transdiagnostic cohort of patients with 

common psychiatric diagnoses, as well as control participants. An open release of the TCP dataset 

is planned for 2024 (NDA ID: 3552). Participants are recruited from the community via flyers, 

online advertisements and through patient referral from clinicians. All participants complete a 

clinical interview and an MRI scanning session. Participants were eligible for the study if they 1) 

were aged between of 18-65, 2) had no MRI contraindications, 3) were not colorblind, and 4) had 

no neurological abnormalities. All participants underwent Structured Clinical Interview for DSM-

5 to determine psychiatric diagnosis. As a result, recruitment included both healthy individuals 

and individuals with a diverse set of clinical presentations, including affective and psychotic 

psychopathology. 

Additional Information on MRI processing and denoising 

For the UK Biobank, we used the processed volumetric rs-fMRI data from the first imaging 

visit(1). Each fMRI dataset was spatially normalised to MNI152 2-mm template space and 

FMRIB's ICA-based X-noiseifier ((FSL-FIX; 2)) was trained on holdout set of participants and 

applied to the remaining participants to denoise the data. The mean global signal was extracted 

using a whole-brain mask and was regressed out of each dataset. A detailed outline of the 

processing, denoising and quality control of these data has been previously reported (1). 

For the CNP data set, fmriprep v1.1.1(3) was used. During this standardised and automated 

pipeline, each T1-weighted (T1w) volume was corrected for intensity non-uniformity 

using N4BiasFieldCorrection(4) and skull-stripped using antsBrainExtraction.sh. Brain surfaces 

were reconstructed using recon-all from FreeSurfer v6. Spatial normalization to the MNI152 

Nonlinear Asymmetrical template version 2009c was performed through nonlinear registration 

with ANTs(5), using brain-extracted versions of both T1w volume and template. Brain-tissue 

segmentation of tissue classes was performed on the brain-extracted T1w using FSL FAST(6). 

Functional MRI data were slice-time corrected using AFNI(7) and realigned to a mean reference 

image using mcflirt(8). Susceptibility distortion correction was performed by co-registering the 

functional image to the intensity-inverted T1w image with an representative EPI distortion atlas(9). 

This was followed by co-registration to the corresponding T1w using boundary-based registration, 

implemented using FreeSurfer’s BBRegister. The motion-correcting transformations, field-

distortion-correcting warp, BOLD-to-T1w transformation, and T1w-to-MNI warp were 

concatenated and applied in a single step using ANTS. ICA-based Automatic Removal Of Motion 

Artifacts (AROMA) was used to generate signal and noise and signal regressors for use in the non-

aggressive variant of the method(10). Regressors were calculated on the spatially smoothed output 

6 mm FWHM kernel) and then applied to the unsmoothed pre-processed file. Following ICA-

AROMA, we extracted mean time courses from eroded masks of the WM and CSF and regressed 

these signals out of the ICA-AROMA denoised data. Finally, each dataset was detrended with a 

2nd order polynomial and high-pass filtered at 0.005 Hz using AFNI’s 3dTproject. The mean 

https://www.sciencedirect.com/topics/medicine-and-dentistry/freesurfer


global signal was extracted using a whole-brain mask and was regressed out of each dataset. 

Further details on processing, denoising and quality control, please see are reported elsewhere(11). 

Both the HCP-EP and TCP datasets were acquired use the Human Connectome Project (HCP) 

MRI acquisition parameters. We therefore implemented the Minimal Processing Pipeline which 

was developed and optimized for HCP data(12). The pipeline adapts steps from FMRIB Software 

Library ((FSL; 13)) and FreeSurfer to account for greater spatial and temporal resolution and HCP-

data related distortions resulting from acquisition choices such as multiband acceleration, while 

aiming to remove the least amount of data necessary. During this pipeline, brain surfaces were 

reconstructed using recon-all from FreeSurfer v6. Skull stripped T1w and fMRI data were aligned 

using FSL Linear Image Registration Tool (FLIRT). Spin Echo EPI Field Maps with opposite 

phase encoding directions were used to estimate spatial distortion, using FSL topup and FLIRT 

was used to correct the scans for such distortions. This process was fine-tuned and optimised using 

FreeSurfer’s BBRegister. Functional MRI data realigned to a mean reference image 

using mcflirt(8). Lastly, non-linear registration of Functional MRI data, aligned to individual’s 

structural volume space into standard MNI152 space was done using FLIRT and FMRIB’s 

nonlinear image registration tool (FNIRT). To denoise the fMRI data, ICA-FIX was implemented. 

During ICA-FIX, the fMRI data is decomposed into spatially independent components using 

Multivariate Exploratory Linear Optimized Decomposition into Independent Components 

(MELODIC). The resulting components are then classified as noise or signal. While ICA-AROMA 

uses a set of fixed rules depending on the time-course and frequency of each component, ICA-FIX 

uses a machine-learning based classifier. Here we used the pre-trained HCP_hp2000 classifier 

provided with ICA-FIX(2), as the acquisition parameters of the fMRI data this classifier was train 

on are identical to those of the HCP-EP and TCP datasets. A temporal high-pass filter of 2000 was 

applied and a lenient threshold component labelling in FIX (t=10) was used. Finally, the mean 

global signal was extracted using a whole-brain mask and was regressed out of each dataset. 

The steps described above resulted in processed and denoised fMRI dataset in MNI152 volume 

space for each individual. For each fMRI dataset, the time series were averaged within each of the 

400 cortical(14) and 19 subcortical(15) parcels and pairwise Pearson’s correlations were computed 

to generate a 419 × 419 functional connectivity matrix, after which correlation values were z-

scored and the upper-triangle of this matrix which consisted of 87,571 unique functional 

connectivity estimates were entered into the prediction models. 

Meta-matching DNN variable selection procedure 

To obtain the final set of 67 phenotypes we followed the exact procedure outlined in (16), and 

began by extracting all 3,937 unique phenotypes available under UK Biobank resource application 

25163. We then performed three stages of selection and processing: 

Stage 1: we removed non-continuous and non-integer data fields (date and time converted to float), 

except for sex, brain MRI phenotypes (category ID 100), first repeat imaging visit (instance 3), 

first two instances (instances 0 and 1) if first imaging visit (instance 2) exists and first imaging 

visit (instance 2) if participants were more than double of participants from instances 0 or 1, first 

instance (instance 0) if only the first two instances (instances 0 and 1) exist and instance 1 

participants were more than double of participants from instance 0, phenotypes for which fewer 



than 2,000 participants had RSFC data, behaviors with the same value for more than 80% of 

participants. After the first stage of filtering, we were left with 701 phenotypes. 

Stage 2: It is likely that not all phenotypes are predictable using FC. Therefore, in the second stage, 

our goal was to remove phenotypes that could not be predicted accurately even with a large number 

of participants. Therefore, we randomly selected 1,000 participants from 37,848 participants. 

These 1,000 participants were completely excluded from the main experiments. Using these 1,000 

participants, KRR was used to predict each of the 701 phenotypes using RSFC. To ensure 

robustness, we performed 100 random repeats of training, validation, and testing (60%, 20%, and 

20%, respectively). For each repeat, KRR was trained on the training set, and hyperparameters 

were tuned on the validation set. We then evaluated the trained KRR on the test set. Phenotypes 

with an average test prediction performance (Pearson’s correlation) less than 0.1 were removed. 

At the end of this second stage, 265 phenotypes were left. See (16)for a list of selected and removed 

UK Biobank phenotypes. 

Stage 3: Many of the remaining phenotypes were highly correlated. PCA was performed separately 

on each subgroup of highly similar phenotypes in the 1,000-participant sample. Similarity was 

evaluated based on the UK Biobank-provided categories of item sets (that is, items under the same 

category were considered highly similar). PCAs were not applied to 18 phenotypes (out of 265 

phenotypes), which were not similar to other phenotypes. For the purpose of carrying out PCA, 

missing values were filled in using the expectation–maximization algorithm. For each PCA, we 

kept enough components to explain 95% of the variance in the data or six components, whichever 

was lower. Overall, the PCA step reduced the 247 phenotypes (out of 265 phenotypes) to 93 

phenotypes. We then repeated the previous step (stage 2) on these 93 phenotypes, resulting in 49 

phenotypes with prediction performance (Pearson’s correlation) larger than 0.1. Adding back the 

18 phenotypes that were not processed by PCA, we ended up with 67 phenotypes used in this 

manuscript. 

The final list of the phenotypes and a brief description of each variable can be found in in 

Supplementary Table 3. 
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