Deciphering Quinazoline Derivatives' Interactions with EGFR: A Computational Quest for Advanced Cancer Therapy through 3D-QSAR, Virtual Screening, and MD Simulations

Sirajudheen Anwar^{1*}, Jowaher Alanazi¹, Nafees Ahemad², Shafaq Raza³, Tahir Ali Chohan*, Hammad Saleem^{3*}

¹Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia.

2 Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.

Correspondence: si.anwar@uoh.edu.sa**; [tahir.chohan@uvas.edu.pk;](mailto:tahir.chohan@uvas.edu.pk) Hammad Saleem hammad.saleem@uvas.edu.pk**

Abstract

The epidermal growth factor receptor (EGFR) presents a crucial target for combatting cancer mortality. This study employs a suite of computational techniques, including 3D-QSAR, ligand-based virtual screening, molecular docking, fingerprinting analysis, ADME, and DFT-based analyses (MESP, HOMO, LUMO), supplemented by molecular dynamics simulations and MMGB/PBSA free energy calculations, to explore the binding dynamics of quinazoline derivatives with EGFR. With strong q2 and r2 values from CoMFA and CoMSIA models, our 3D-QSAR models reliably predict EGFR inhibitors' efficacy. Utilizing a potent model compound as a reference, an E-pharmacophore model was developed to sift through the eMolecules database, identifying 19 virtual screening hits based on ShapeTanimoto, ColourTanimoto, and TanimotoCombo scores. These hits, assessed via 3D-QSAR, showed pIC_{50} predictions consistent with experimental data. Our analyses elucidate key features essential for EGFR inhibition, reinforced by ADME studies that reveal favorable pharmacokinetic profiles for most compounds. Among the primary phytochemicals examined, potential EGFR inhibitors were identified. Detailed MD simulation analyses on three select ligands—1Q1, 2Q17, and VS1 demonstrated their stability and consistent interaction over 200 ns, with MM/GBSA values corroborating their docking scores and highlighting 1Q1 and VS1's superior EGFR1 affinity. These results position VS1 as an especially promising lead in EGFR1 inhibitor development, contributing valuable insights towards crafting novel, effective EGFR1 inhibitors.

Keywords: EGFR; Anti-cancer; virtual screening; simulations; 3D-QSAR; *In-silico*; fingerprinting.

1. Molecular Dynamics simulations

Hundred nanoseconds (ns) MD simulations were carried out for all complexes using SANDER module in AMBER12 software package with the ff99SB force field. At first, the ligands were subjected to energy minimization by applying AM1 method [15] with HF/6- 31G* basis set in Gaussian 09 program. The force field parameters for the ligands were assigned using general AMBER force field (GAFF) together with RESP charges. LEaP program from AMBER 20 was used to assign missing hydrogen atoms. Each system was then immersed into an octahedron box of TIP3P [16] water model with a minimum distance of 10 \AA from the solute surface. In order to maintain the neutrality, Cl− and Na+ counter ions were added to the EGFR1-complex, respectively. Before running MD simulation, energy was minimized in 3 consecutive steps to avoid steric clashes. During the first step of minimization only the counter ions (Cl− or Na+) and water molecules were minimized while ligand and protein molecules were kept fixed. The next step of minimization was performed with unconstraint side chains and only the heavy atoms were kept frozen with a constraint force of 5.0 kcal·(mol·Å2) –1. In the final step unconstrained minimization of the whole system was executed. All three stages of minimizations were performed by applying 2500 steps of the steepest descent followed by 5000 steps of conjugate gradient method. In an NVT ensemble, the temperature of the system was gradually amplified from 0 to 300 K for 100ps and maintained at this point. Each system of protein-ligand complex was then subjected to equilibration process by applying the Langevin dynamics [17] with a collision frequency of 1 PS-1 and the force constant was set to 10 kcal/(mol·Å2). Finally, each of the protein-ligand complex systems was then underwent the molecular dynamics simulation using NPT ensemble at constant temperature of 300 K and 1atm pressure. The time integration step was set to 2 fs [40]. to constraint all bonds containing hydrogen bond atoms. The nonbonded electrostatic interactions were treated with particlemesh-Ewald (PME) [18] method and a 10 Å cutoff. The conformations of MD simulation trajectories were collected at every 1ps and 2ps during equilibration runs and production MD, respectively. All MD simulations procedures were accomplished using the CARNAL, ANAL, and PTRAJ modules of AMBER 12.

1.1. Free energy calculation

The snapshots collected during MD production runs were further used for structural and energetic analysis of each protein-ligand complex using molecular mechanics based scoring method MM/PB(GB)SA [19, 20], implemented in AMBER 20. To compare the binding free energies of selected compounds in EGFR1 complexes, MM/GBSA calculations were executed to the total of 1000 snapshots extracted from the final 2 ns of the MD trajectories of each complex system. The binding free energy calculations for each molecular species, including ligand-receptor complex, free receptor, and free ligand were performed as the difference between the total free energy of ligand-protein complex (Gcom) and the sum of free energy of individual protein (Gpro) and individual ligand (Glig). It can be calculated as follow:

$$
\Delta \text{Gbind} = \Delta H - T\Delta S = \text{Gcom} - (\text{Gprot} + \text{Glig}) \tag{2}
$$

The free energy of ligand-protein complex, protein, and ligand in above equation (Eq. 2) can be calculated by the following equation:

$$
\Delta G = \Delta GMM + \Delta Gsol - T\Delta S \tag{3}
$$

In Eq. 3, the total molecular mechanic energy in gas phase, solvation free energy, and entropy terms are denoted by GEMM, ΔGsol, and TΔS, respectively, at given temperature T.

In Eq. (4), ΔEMM is the sum of internal energies (ΔEint), van der Waals energies (ΔEvdW), and non-bonded electrostatic energies (Δ Eele). While in Eq. (5), the solvation-free energy (ΔGsol) can be calculated as the sum of polar and nonpolar parts.

 Δ EMM = Δ Eint + Δ EvdW + Δ Eele (4)

and,

 Δ Gsol = Δ Gele, sol PB(GB) + Δ Gnonpol; sol (5)

where the electrostatic contribution to solvation free energies (ΔGele,sol energies) can be computed by solving the Poisson_Boltzmann (PB) equations [21] or generalized Born (GB) model [22] for MMGBSA and MMPBSA methods. Linear combination of pairwise overlaps (LCPO) [23, 24] approach was applied to calculate the solvent accessible surface area (SASA, Å2) [23, 25]. Furthermore, molsurf module implicated in amber was used to determine the nonpolar solvation contributions ΔGnonpol,sol, as shown in Eq. (6):

 Δ Gnonpol;sol = γSASA + b (6)

where surface tension (0.0072 kcal⋅(mol⋅Å2)−1 is denoted by γ and the b is a constant (0).

The experimentally reported inhibitory activities in term of IC50 values were converted to the experimental binding free energies [27] using the following equation:

ΔGexp≈−RT⋅lnIC50 (8)

Where R=1.986×10−3 kcal/(K·mol), T=300 K, and Ki is in molar/mol.

1.2. Per-residue free energy decomposition analysis

All decomposition analysis were performed using MMGBSA module of AMBER20 [19, 20]. Pairwise the nature of the GB equation provides an opportunity to decompose free-energies into insightful interaction and desolation components. Hence, the ligand-protein interaction energies were further decomposed into van der Waals (ΔGvdw), electrostatic (ΔGele), polar (ΔGele, sol), and non-polar (ΔGnonpol, sol) contributions. It is described in equation 8 as mentioned equation.

 Δ Ginhibitor residue = Δ GvdW + Δ Gele + Δ Gele, sol + Δ Gnonpol, sol (9)

Sander module in AMBER12 software package was used to estimate the Van Der Waals (vdW) and electrostatic energy contributions in complex formation [20, 22]. All decomposition analysis were executed using the same snapshots which were used in previous calculations.

Figure S1. Ligand-based pharmacophoric query model and its validation; (A) query model of the co-crystal ligand (Ligand-based pharmacophoric features) generated from the reported pdf ID; (B) Tanimoto-Combo AUC-ROC curve for the validation of query model; (C) Shape-Tanimoto histogram for the validation of query model. (D) Chemical structure of the co-crystal ligand.

IC₅₀: Half-maximal inhibitory concentration, Pred: Predicted IC₅₀ values, pIC₅₀: Negative log of IC₅₀ Res: Difference between actual and predicted IC₅₀ values, Docking score =Glide docking score. Pred: Predicted IC₅₀ values, Docking score = Glide docking score.

Table S2: The area under ROC curves (AUC), enrichment factor (is 0.5 %, 1 % and 2 %) of the 3D virtual screening protocols for selecting query model.

Table S4. Binding free energy calculations of inhibitory molecules for the target protein EGFR.

Complex	EGFR-101	AEGFR-2017	EGFR-VS1
ΔE_{vdW}^a	-56.2562	-52.0968	-59.3939
$\Delta E_{\rm ele}{}^a$	-30.676	-17.108	-7.9898
ΔG nonpol, sol ^a	-4.4327	-4.8519	-5.3344
$\Delta G_{\rm gas}$	-86.9322	-69.2048	-67.3837
$\Delta G_{\rm sol}$	47.6495	41.0951	34.7830
$\Delta G_{\text{ele, sol (PB)}}^a$	52.0821	45.947	40.1174
ΔG ele, sol (GB) ^a	39.0250	33.1604	22.1590
$\Delta E_{vdW}+\Delta G_{\text{nonpol,sol}}^a$	-60.6889	-56.9487	-64.7283
$\Delta E_{\text{ele}} + \Delta G_{\text{ele,sol (PB)}}^a$	21.4061	28.839	32.1276
$\Delta E_{\text{ele}} + \Delta G_{\text{ele,sol (GB)}}^a$	8.36	16.06	14.17
ΔG pred (PB) ^b	-39.2827	-28.1097	-32.6007
$\Delta G_{\rm pred\,(GB)}^b$	-50.54	-43.1132	-52.8760
$IC_{50(nM)}^{\circ}$	$\overline{2}$	9870	NA
$\Delta G_{\rm exp}^{\rm d}$	-11.86	-8.26	NA

^aAll energies are in kcal/mol, ΔH : the enthalpy changes, $\Delta H = G_{ele} + \Delta G_{vdW} + \Delta G_{nonpol,sol} + \Delta G_{ele,sol}$. ^b ΔG_{pred} : the calculated binding free energy by the MMPB(GB)SA method. ^c Ki values of 3A, 4B, and 5B were taken from ref. 18. ^d ΔGexp: the experimental binding free energy was calculated according to the IC₅₀ by $\Delta G \approx RT \ln(K_d)$