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Supplementary Note 1. Material.21

22

Figure S1(a) shows the X-ray diffraction (XRD) result of the single crystal La3Ni2O7 using Cu-Kα X-rays (λ = 1.54 Å). XAS23

and RIXS experiments were conducted on the very sample. All diffraction peaks correspond to the lattice constant c ∼ 20.524

Å and no extra peaks appear, indicating negligible oxygen vacancies therein. Figure S1(b) illustrates the Laue pattern taken25

for the same sample. As shown in Fig. S1(b), the sharp X-ray Laue pattern taken from the same sample further confirms its26

well-defined (001) crystalline cleavage plane and high quality.27
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FIG. S1. (a) X-ray diffraction on the La3Ni2O7 sample measured in RIXS experiments. (b) X-ray Laue pattern taken on the (001) cleavage
plane of the very La3Ni2O7 single crystal.
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Supplementary Note 2. Multiplet calculation.28

29

2.1 Model and parameters.30

31

Model construction. — We construct a fully correlated double-cluster model consisting of the top and bottom corner sharing32

NiO6 octahedra in the bilayer structure, which includes all five 3d orbitals of each Ni site and all 2p orbitals of the eleven33

surrounding oxygen sites. For the spectroscopic process, additional Ni 2p core orbitals are included. To ease future analysis,34

we combine the oxygen orbitals surrounding each Ni site into symmetry adapted molecular orbitals of tetragonal D4h symmetry.35

Such a procedure results in two sets of ligand orbitals of z2, x2 − y2, xy, xz/yz symmetry, each coupling to their corresponding Ni36

3d orbitals with the same symmetry. We denote these orbital degrees of freedom by L. The remaining oxygen 2p orbitals couple37

to the Ni 3d orbitals only indirectly via the L orbitals and are denoted as L′. With open boundary condition, the Hamiltonian38

reads39

H =
∑
α

(Hαd + HαL + VααdL ) +
∑
α,α′,α

(Vαα
′

dL + Vαα
′

LL ) + HLL′ , (S1)

where α ∈ {t, b} denotes the top and bottom clusters, respectively. The local terms of the 3d sites read

Ht,b
d =

∑
i j

ϵ
i j
d d†i d j +

∑
i jkl

U i jkld†i d†j dldk,

where d(†)
i is the fermionic annihilation (creation) operator for the 3d state with spin-orbital index i ∈ {↑, ↓}⊗{z2, x2−y2, xy, xz, yz}.

The one-body energy tensor ϵd encodes the crystal-field splittings and an atomic spin-orbit coupling interaction with coupling
constant ζ3d. For the spectroscopic process, Ni 2p-3d Coulomb interactions and the core spin-orbit coupling ζ2p are further
supplemented. The rotationally invariant Coulomb interaction is parametrized by Slater integrals Fk and Gk [S1]. The ligand L
orbitals are treated as non-interacting, and the corresponding term is given as

Ht,b
L =

∑
i

ϵ iiL L†i Li,

where the one-body tensor ϵL is diagonal in the absence of spin-orbit coupling of oxygen 2p orbitals. Note that we take both
ϵd and ϵL to be traceless, as the mean on-site energies are subject to corrections depending on the Coulomb interaction and
charge-transfer energy (see below). The 3d orbitals hybridize with their surrounding ligand orbitals as well as the neighboring
ones, resulting in intra-cluster (inter-cluster) hybridization terms V tt,bb

dL (V tb
dL) in the form

VαβdL =
∑

i

ti
dL(dα†i Lβi + h.c.).

Similarly, the ligand-ligand hybridization reads

V tb
LL =

∑
i

ti
LL(Lt†

i Lb
i + h.c.).

The term HLL′ encompasses the one-body terms associated with the remaining ligand orbitals and their coupling to the ligand L40

orbitals. This term is found to induce minor quantitative changes in the spectral details and holds marginal significance for the41

ground state properties. Consequently, it will be projected out in the subsequent steps to prevent the introduction of additional42

parameters.43

Parameters. — To minimize bias in parameterization, we estimate the one-body parameters based on values derived from44

Ni 3d and oxygen 2p Wannier orbitals constructed through DFT calculations [S2, S3] on the experimental crystal structure of45

La3Ni2O7 under ambient pressure [S4]. The eventual parameters undergo fine-tuning to align with the specifics of the experi-46

mental XAS and RIXS spectra, typically converging within 15% of the DFT estimation. The Coulomb Slater integrals are scaled47

down to 80% of the atomic Hartree-Fock values for Ni2+ with 2p63d8 and 2p53d9 configurations for the initial and final states48

of XAS [S1].49

This semi ab initio approach leaves three unspecified parameters relevant to the ground-state and spectroscopic properties: the50

average Coulomb interaction within the 3d shell Udd, the interaction between the Ni 2p and 3d shell Upd, and the charge-transfer51

energy ∆. Here, ∆ is defined as the energy cost of creating a ligand hole in the assumed ground state with fully occupied ligand52

states, expressed as53

∆ = E(d8d8L) − E(d7d8), (S2)

where L denotes a ligand hole. The above definition relates the mean on-site energies of the 3d and ligand orbitals to the54

Coulomb interaction Udd. For our calculations, we set Udd = 6.0 and Upd = 7.5 eV, values comparable to those used in previous55
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ϵd ϵL ttt/bb
dL ttb

dL ttb
LL Other parameters

z2 0.30 0.30 -2.06 1.02 -0.39 Udd = 6.00, F2
dd = 9.79, F4

dd = 6.08
x2 − y2 0.36 0.30 -2.80 0.00 0.00 Upd = 7.50, F2

pd = 6.18, G1
pd = 4.63, G3

pd = 2.63
xy -0.27 -0.30 -1.55 0.00 0.00 ζ3d = 0.083, ζ2p = 11.50
xz/yz -0.18 -0.30 -1.37 0.31 0.20

TABLE SI. Summary of parameters used for the multiplet calculation, in units of eV. The monopole part of the Coulomb interaction is given
as F0

dd = Udd +
2

63 (F2
dd + F4

dd) and F0
pd = Upd +

1
15 G1

pd +
3
70 G3

pd for the 3d-3d and 2p-3d interactions, respectively.

studies on perovskite nickelates [S5, S6]. It is important to note that these values should be distinguished from, and are generally56

larger than, those employed in mean-field-type calculations such as DFT+U in Section 5. Changes within 1 eV do not result in57

qualitative changes of the ground-state and spectroscopic properties. All the parameters used are summarized in Table SI. The58

remaining charge-transfer energy ∆ is treated as a free parameter and adjusted to fit the experimental XAS spectra, calculated59

using exact diagonalization as implemented in Quanty [S7].60

2.2 Results.61

62

Charge transfer energy. — Figure S2(a) shows the calculated XAS as a function of ∆. Reasonable agreement with the63

experiment is achieved for ∆ ≲ 1.5 eV. As ∆ further increases, the spectra deviate from the experimental ones, displaying64

additional peak structures and a noticeable shift between the main peaks with σ and π polarizations. Examination of the ground65

state configuration in Fig. S2(b) shows that for all the calculated values of ∆, d8 remains the leading configuration, which66

contributes to the lowest-energy peak at ∼ 852.4 eV in XAS as shown in Fig. S2(c), similar to the case of NiO. For smaller ∆67

values, the subleading configuration is d8L, indicating significant self-doped ligand holes in the ground state. This part of the68
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FIG. S2. (a) Calculated XAS with different values of ∆ in comparison with the experimental results (both the original XAS spectra and XAS
spectra after subtracting signals contributed by the La M4-edge are appended). The spectra are calculated with an inverse core hole lifetime
0.35 eV and convoluted with a Gaussian function with full width at half maximum (FWHM) 0.20 eV. Typical XAS spectra calculated using
a d-only two-site cluster model assuming a 2d7.5 configuration is also shown for comparison. (b) The ground state electronic configuration
projected onto a single NiO6 cluster as a function of ∆. (c) Configuration decomposed XAS for ∆ = 0.5 eV. Only the leading contributions are
plotted.



4

0.5

1.0

1.5

2.0

nz2 nx2-y2 nxy nxz/yz
d d d d

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4 nz2 nx2-y2 nxy nxz/yz
L L L L

Excitation energy (eV)

E
le

ct
ro

n 
oc

cu
pa

tio
n

H
ol

e 
oc

cu
pa

tio
n

d7 d8L d9L2 d8 d9L

d7d8 d7d9L d8d8L d8d9L2 d9d9L3

W
ei

gh
ts

W
ei

gh
ts

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.5 1.0 1.5 2.0
Excitation energy (eV)

(a)

(b)

(c)

(d)

FIG. S3. Characterizations of the excited states up to 2.0 eV. (a,b) Electron and hole occupation of Ni 3d and ligand molecular orbitals,
respectively. (c,d) Weights of different local and global configurations.

wave function primarily contributes to the high-energy satellite peak in XAS [Fig. S2(c)]. It is worth mentioning here that the69

full spectral weight does not equal the sum of configuration-decomposed ones, as it also includes interference between different70

configurations. For ∆ ≳ 1.5 eV, the weight of d7 dominates over d8L, and the system crossovers to the canonical charge-transfer71

insulator regime with negligible ligand holes in the ground state, similar to the case of NiO. Note that this crossover also leads72

to a qualitative change in the XAS line shape, and the agreement between the calculated and experimental XAS progressively73

deteriorates with further increasing ∆ values. For large ∆ values, the ground state is well approximated by α|d7⟩ + β|d8⟩. As74

shown in Fig. S2(a), the corresponding XAS show similar characteristics to those obtained using a d-only two-site cluster model,75

integrating out the ligand degrees of freedom and assuming a 2d7.5 configuration.76

The above results highlight the importance of the oxygen degrees of freedom in the electronic structure, and confirm the77

small-charge-transfer nature in La3Ni2O7. In the following, we will focus on the case of ∆ = 0.5 eV, which gives the optimal78

agreement with the experimental XAS. We note that the results exhibit qualitative consistency across the range of ∆ values from79

0 to 1.5 eV. Given that the estimated model parameters typically carry an error bar on the order of a fraction of 1 eV, a reasonable80

conclusion is that ∆ ≲ 2 eV, falling between the values estimated for NiO (∼ 5 eV) and RNiO3 (∼ 0 eV).81

Characterization of the RIXS excitations. — The two sets of RIXS excitations centered around 0.4 eV and 1.0 eV in Fig.1h are82

well captured in the calculated RIXS spectra. The higher-energy excitation around 1.5 eV is less prominent in calculation. This83

is partly due to the limited degrees of freedom in the model, which only serve as a crude approximation of the continuum states84

that give rise to the strong, broad fluorescence background between 0 to 3 eV in experiments. To further understand the nature85

of these excitations, we characterize the low-energy excited states in the double-cluster model by evaluating their corresponding86

orbital occupations and wave function configurations.87

Figure S3 shows detailed characterizations of the excited states up to 2.0 eV. The excitations observed in RIXS around 0.4 eV88

involve charge transfers between the orbitals of z2 and x2−y2 symmetry, as indicated by the small decrease of nd
z2 /n

L
z2 and increase89

of nd
x2−y2 /n

L
x2−y2 occupation compared to the ground state in Figs. S3(a) and (b). Further investigation of the states suggests that90

these excitations are of mixed charge and spin type. The excitations centered around 1 eV involve substantial charge transfers91

between the dz2 and dxz/yz orbitals, which characterize the crystal-field splitting between the d eg and t2g orbitals. They involve92

relatively small movements of the ligand states, signifying almost pure dd-type excitations, similar to those observed in NiO and93

RNiO3 at a comparable energy. Higher-energy excitations between 1.3∼1.5 eV correspond to more complex dd-type excitations,94

involving transfers between all d orbitals. The excitation energy is somewhat lower than that observed in experiment, potentially95

owing to the limited in-plane size of the cluster model, which may underrepresent the correlated bandwidth of the planar orbitals.96

It is noteworthy that these dd excitations overlap in energy with a broad range of charge-transfer excitations between Ni-d and97

ligand orbitals. This is evident in the fluctuation of wave function configuration weights between the local d7 and d8L as well98

as the global d7d8 and d8d8L over almost the entire energy range, as shown in Figs. S3(c) and (d). This is expected for systems99

with a small charge-transfer energy.100
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FIG. S4. Calculated (a) XAS and (b) RIXS for V tb
dL scaled to 0.01, 0.25, 0.50, and 0.75 of their original values. The spectra calculated with

the original values are shown for comparison. The RIXS spectra were obtained by averaging two spectra with π-polarized incident light at,
and 0.5 eV above, their corresponding XAS maxima in (a). The discrete poles are convoluted with a Gaussian function of FWHM 0.05 eV to
obtain the continuous spectra.
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FIG. S5. Calculated polarimetric RIXS decomposed into π−π′, π−σ′, σ−π′, σ−σ′ components. The elastic peak as well as other excitations
above 0.2 eV are removed for clarity. The spectra are obtained by convoluting two poles around 0.1 eV with a Gaussion of FWHM 0.05 eV.

Effects of inter-layer coupling. — The importance of explicit consideration of the bilayer geometry for the electronic structure101

becomes evident upon tuning the inter-layer hoppings V tb
dL while keeping all other parameters unchanged. Fig. S4 shows the102

resultant XAS and RIXS for V tb
dL values scaled to different ratios of their original values in Tab. SI. The reduced inter-layer103

hopping results in a relative energy shift between the XAS with σ and π polarizations in Fig. S4(a). The calculated RIXS104

excitations are also contingent upon the inter-layer coupling, as illustrated in Fig. S4(b). While the energy of the excitations105

around 1 eV can be further adjusted by the average eg-t2g energy splitting in calculation, the excitation around 0.4 eV is more106

intricately influenced by the inter-layer hopping.107

Polarimetric RIXS. — Figure S5 shows the calculated RIXS spectra decomposed into different polarization channels. To108

obtain spin excitations around 0.1 eV, an exchange field of 0.56 eV is applied along the pseudo-tetragonal ab diagonal direction.109

Compared with other polarization components, theσ−σ′ one contributes negligible spectral weight, as expected for an excitation110

of magnetic origin.111
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Supplementary Note 3. Polarisation dependence of magnon excitations at the Ni L3-edge.112

113

Figure. S6(a) show RIXS intensity plots measured using 852.4 eV π-polarised photons along high-symmetry directions (H,H)114

and (H,0). The measured dispersion of magnon excitations is consistent with that measured using σ-polarised photons (Fig. 2a115

in the main text and Fig. S6(b)).116
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FIG. S6. (a) Magnon excitations measured by π-polarised photons along (H,H) and (H, 0) directions. Data were collected at 20 K using 852.4
eV X-rays at the Ni L3-edge. (b) Magnon excitations measured by σ-polarised photons along (H,H) and (H, 0) directions. Data were collected
at 20 K using 852.4 eV X-rays at the Ni L3-edge. The magnon peaks were fitted by the damped harmonic oscillator (DHO) function and
indicated by the red open circles.
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Supplementary Note 4. RIXS data analysis and fitting.117

118

All RIXS data were normalized to the incident photon flux. The positions of elastic peaks were determined from the non-
resonant signal of a carbon tape placed near the sample, and subsequently fine-calibrated by fitting the elastic peak to a Gaussian
with a fixed full width at half maximum (FWHM) as the instrument resolution (∼ 36.5 meV at the Ni L3 edge). The momentum-
dependent RIXS intensities were then corrected for self-absorption effects [S8]. For the final fitting, a constant background was
used and the magnon excitations were fitted using the damped harmonic oscillator (DHO) function χ′′(q, ω), given by

χ′′(q, ω) =
γqω

(ω2 − ε2
q)2 + 4γ2

qω
2

where εq is the undamped mode energy, γq is the damping factor related to the width of the magnon peak, and ω is the energy119

loss. The high energy hump (≳ 0.1 eV) was also fitted by the DHO function to account for the high-order magnetic excitations120

(mostly bimagnons) or the high-energy charge background.121

Figures S7(a) and S7(b) show two representative Ni L3-RIXS spectra and corresponding fittings. According to the analysis122

of polarimetric RIXS results (Fig. 2d in the main text), the low-energy phonon contribution to the RIXS intensity should be123

negligible, and adding a phonon peak in the fittings does not affect the magnon peak dramatically, as demonstrated in Figs. S7(c)124

and S7(d). Consequently, the phonon contribution is not considered in the following fittings. Figures S8 and S9 show the fitting125

results of RIXS spectra displayed in Fig. 2 in the main text.126
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respectively. The corresponding fittings are displayed. The fitted magnon peak is indicated as a blue shade. (c,d) The same Ni L3-RIXS spectra
as displayed in (a,b) while in the fitting a low-energy phonon peak was added (orange shade).
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FIG. S8. (a,b) Momentum-dependent RIXS spectra measured using 852.4 eV σ-polarised photons along high-symmetry directions (H,H) and
(H, 0), respectively. The corresponding fitting results are appended. The elastic peak is fitted by a Gaussian. The magnon and bimagnon are
fitted by the damped harmonic oscillator (DHO) function.
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FIG. S9. (a,b) Momentum-dependent RIXS spectra measured using 852.4 eV σ-polarised photons along high-symmetry directions (H, 0.5-H)
and (0.25, K), respectively. The corresponding fitting results are appended. The elastic peak is fitted by a Gaussian. The magnon and bimagnon
are fitted by the damped harmonic oscillator (DHO) function.

Supplementary Note 5. DFT computational method and spin order.127

128

In order to explore possible spin density wave (SDW) orders, we perform a density functional theory (DFT) calculation. Our129

DFT calculations employ the Vienna ab-initio simulation package (VASP) code [S9] with the projector augmented wave (PAW)130

method [S10]. The Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [S11] is used. The energy cutoff energy131

for expanding the wave functions into a plane-wave basis is set to be 500 eV. The experimental crystal structure is used in the132

calculation. The Γ-centered k-mesh is used in KPOINTS files which are generated by VASPKIT [S12] with the KPT-resolved133

value equal to 0.02 for different unit cells. The SDW orders are calculated using the simplified rotation invariant approach134

based on the DFT+U method introduced by Dudarev et al. [S13]. Since the RIXS has identified the QS DW = (0.25, 0.25) or135

(π/2, π/2) spin pattern, we will focus on the possible Q stripe order. Three SDW patterns are listed in Figs. S11(a-c). The first136
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pattern is the spin-charge intertwined stripe order (Stripe-1) as illustrated in Fig. S11(a), which has been observed in half-doped137

La3/2Sr1/2NiO4 [S14]. We use up/down arrows to represent spin up/down sites, and black balls for charge sites. Owing to the138

strong bilayer bonding, the spins are also flipped between the top and bottom Ni layers [S4, S14]. One can also exchange the139

charge chain positions to arrive at the double spin-charge stripe (Stripe-3), as illustrated in Fig. S11(c). The third SDW order140

is the double spin stripe order (Stripe-2) without charge order, as illustrated in Fig. S11(b). This Stripe-2 order is similar to the141

collinear double-stripe state discovered in FeTe [S15]. Based on DFT+U calculation, the ground state energies for the above142

three spin configurations and the G-type AFM (ordering at (π, π)) are listed in Table. SII. The Stripe-2 order is found to be the143

lowest energy state up to U=4.0 eV while the stripe-1 order is just slightly lower in energy.144

TABLE SII. Total energy (in units eV) per Ni atom of the different magnetic configurations.

U = 0 U = 1 U = 2 U = 3 U = 4
Stripe-1 -179.335 -177.312 -175.485 -173.82 -172.217
Stripe-2 -179.386 -177.493 -175.797 -174.269 -172.897
Stripe-3 -179.298 -177.31 -175.536 -173.931 -172.071
G-AFM -179.306 -177.3 -175.489 -173.852 -172.39

The calculated magnetic moments are listed in Table SIII. Although there are non-magnetic sites (black in Fig.S10(c)) for the145

initial inputs, the pure charge sites develop small non-zero values after self-consistent calculation for U > 0. Therefore, we list146

them by the slash line in Table SIII. The majority spin moment competes with the minority spin moment in the large U leading147

to a decreased minority spin moment in U = 4. Hence, there is an obvious energy change in U = 4. We also want to emphasize148

that DFT+U always overestimates the magnetic moments, and the limited supercell size makes it challenging to capture the149

spin-density-wave nature in the current DFT calculations. Nevertheless, the metallic band structure from current DFT results150

(Fig. S10) and the ordering tendency at Q = (π/2, π/2) align well with the RIXS observations. Experimentally, the studies of151

the magnetic moment show some contradictory results. NMR estimates that the magnetic moments at Ni sites are ∼ 0.08 µB for152

Ni with inner apical oxygen and 0.018 µB for Ni without inner apical oxygen [S16]. The recent µSR work estimates that the153

magnetic moment is 0.48-0.67 µB if the moment points in the ab-plane, while 0.28-0.31 µB if the moment points parallel to the154

c-axis [S17].155

TABLE SIII. The calculated magnetic moments (in units µB) at Ni sites for different magnetic configurations.

U = 0 U = 1 U = 2 U = 3 U = 4
Stripe-1 0.806 1.08 1.264 1.374 1.493
Stripe-2 0.716 0.941 1.076 1.185 1.282
Stripe-3 0.699/0.0 0.971/0.444 1.163/0.459 1.294/0.473 1.379/0.338
G-AFM 0.517 0.748 0.917 1.061 1.194

(a) (b)

FIG. S10. The band structures of Stripe-2 configuration or E-type AFM from DFT+U calculations. (a) U = 0 eV. (b) U = 4 eV.
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Supplementary Note 6. Magnetic excitations in the stripe-order states.156

157

In this section, we compute the spin dynamics dispersion relations for the above stripe states. We want to emphasize that the158

system we consider here is a spin-density wave. Formally, we can write down a semiclassical equation for its spin dynamics159

[S18]160

∂S i

∂t
= −S i ×

⟨ĤS DW⟩

∂S i
(S3)

where ĤS DW is the full Hamiltonian of the SDW orders. However, since the ĤS DW dynamics is complicated with two-layer,161

4-sites, and 2-orbital model, we replace the ĤS DW by the effective Heisenberg model of the spin degree of freedom for simplicity162

and leave the full consideration for future. The couplings J should be considered as the Weiss molecular field. We consider three163

models with the effective Heisenberg interactions illustrated in Fig. S11(a-c) to reproduce the observed magnon dispersion in164

the experiments. J1 and J2 are the in-plane couplings where J1 couples nearest-neighbor spins and J2 couples the next nearest-165

neighbor spins. Jz couples spins between layers within the bilayer in the [0, 0, 1] direction. The Hamiltonians can be written166

as167

H =
∑

i

JzS⃗ t
i · S⃗

b
i +

∑
⟨i j⟩α

J1S⃗ αi · S⃗
α
j +

∑
⟨⟨i j⟩⟩α

J2S⃗ αi · S⃗
α
j (S4)

where the α is the layer index for the bottom (b) or top (t) layer. ⟨i j⟩ and ⟨⟨i j⟩⟩ are the nearest-neighbor and next nearest-neighbor168

defined in Fig. S11(a-c) for each spin configuration.169

The in-plane lattice vectors for the structural unit cell are

a1 = (a, 0, 0) , a2 = (0, a, 0) (S5)

and for all three stripe configurations, the lattice vectors of the magnetic unit cell are

amag
1 = (4a, 0, 0) , amag

2 = (−a, a, 0) . (S6)

The reciprocal lattice vectors for this magnetic primitive unit cell are170

bmag
1 =

2π
a

(
1
4
,

1
4
, 0

)
, bmag

2 =
2π
a

(0, 1, 0) , (S7)

which indicates that the magnon dispersion becomes gapless at point
(
π
2 ,
π
2

)
.171

We calculate the magnon dispersion within the linear spin wave theory and use the torque equation formalism[S19, S20]
(which is equivalent to the Holstein-Primakoff treatment at the lowest order). As in our cases, the spins in the ground state are
oriented along c, the torque equations for the spins reduce to

dS x
r,i

dt
= −

1
ℏ

S y
r,i

∑
r′, j

Ji j
rr′S

z
r′, j − S z

r,i

∑
r′, j

Ji j
rr′S

y
r′, j

 ,
dS y

r,i

dt
= −

1
ℏ

S z
r,i

∑
r′, j

Ji j
rr′S

x
r′, j − S x

r,i

∑
r′, j

Ji j
rr′S

z
r′, j

 , (S8)

dS z
r,i

dt
≈ 0,

where r, r′ label the positions of the spins in different magnetic unit cells and the indices i, j label the spins within each magnetic172

unit cell. We seek the plane-wave like solutions of the form173

S x
r,i = S x

i exp [iQ · r − iωt] , S y
r,i = S y

i exp [iQ · r − iωt] (S9)

and we set S z
r,i = ±S with the sign given by the orientation of the spin in the ground state. Using Eq. (S8) and174

Eq. (S9), we can obtain the eigen equation for the magnon dispersion ω(Q). We denote the orthogonal eigenvectors as175

vn,Q =
(
cx

n,Q,1, c
y
n,Q,1, ..., c

x
n,Q,i, c

y
n,Q,i, ...

)
, where n denotes the n-th eigenvector and index i denotes the i-th spin in a magnetic unit176

cell. Therefore for the n-th magnon mode, its magnetization vector at site i is Mn,Q(ri) = S
(
cx

n,Q,i, c
y
n,Q,i, 0

)
. The RIXS intensity177

for the n-th magnon mode in the σ-π polarisation channel is given by Ref. [S20]178

In(Q) =
∑

i

∣∣∣kout ·Mn,Q(ri)
∣∣∣2 , (S10)
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Stripe-1 Stripe-2 Stripe-3
J1S (meV) 3.55 ± 0.04 0.00 ± 0.10 10.56 ± 0.15
J2S (meV) 2.01 ± 0.01 4.13 ± 0.04 7.11 ± 0.05
JzS (meV) 67.18 ± 0.89 73.89 ± 0.71 25.99 ± 0.29

TABLE SIV. The fitting parameters of different models in Fig. S11.

where kout is the outgoing wave vector. The scattering angle 2θ = 154◦ is fixed during the experiments, therefore the transferred179

momentum can be determined by180

|Q| =
4π sin θ
λE

, (S11)

where λE is the photon wavelength. The outgoing wave vector can be calculated as181

kout = cos θI + sin θQ, (S12)

with I = Q×c×Q
|c×Q| . We note that as the in-plane component of Q is swept, the Qz component changes accordingly, which plays an182

essential role in the varying of intensities of different magnon modes. We use intensity In(Q) as the weight to perform weighted183

averaging on ωn(Q) and take the weighted averaged ω̄(Q) to fit the experimental data. The results are shown in Fig. S11(d-f),184

where the black dots are the experimental data and solid lines are the fitting curves.185

From Fig. S11(d-e), we can see the Stripe-1 and Stripe-2 models fit the experimental data well. The intensities for acoustic186

spin dispersion are quite weak owing to the X-ray scattering matrix. We summarize the fitting parameters for different models187

in Table. SIV. All three models have relatively strong interlayer effective couplings JzS . On the other hand, the J1 coupling in188

Stripe-2 is relatively weak. Therefore, the spin dynamic equations in Stripe-2 are similar to Stripe-1, resulting in similar magnon189

dispersions. The mixture of Stripe-1 and Stripe-2 also has similar magnon dynamics. Here all calculations are performed based190

on single-domain configurations, without considering the effects of twinning.191

(a) (b) Stripe-3(c)

(e) (f)(d)

J�J 
J J�

Stripe-1 Stripe-2

J�

J�

J 

FIG. S11. (a)-(c) The schematic illustration for the three considered (π/2, π/2) stripe spin order in La3Ni2O7 lattice. Here, we only plot the
top layer while the spins are flipped at the bottom layer. The blue, red, and black filled circles represent spin up, spin down, and charge sites,
respectively. The brown lines represent the primitive magnetic unit cell in a plane, respectively. (a) The stripe-1 order. (b) The stripe-2 order.
(c) The stripe-3 order. (d)-(f) The fitting of the three models in (a)-(c). The blue lines are the dispersion relations of different magnon modes,
where the thicknesses of the lines and the depth of their color represent the intensity of the modes. The red lines are the weighted averaged
magnon dispersion ω̄(Q). Since in case (f) the intensity of the modes varies dramatically with Q leading to a strongly oscillated weighted
averaged dispersion, we do not present ω̄(Q) in this case. In cases (d) and (f), each magnon mode is doubly degenerate. For case (e), each
mode has quadruple degeneracy.
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