Geographically widespread and novel hemotropic mycoplasmas and bartonellae in Mexican free-tailed bats and sympatric North American bat species: Supplemental Materials

Table S1. PCR primers and amplification parameters used in this study

Table S2. GLM results for Mexican free-tailed bats from Bracken Cave, Texas

Table S3. GAM results for Mexican free-tailed bats from from Selman Bat Cave, Oklahoma

Figure S1. Consensus Bayesian phylogeny of Mycoplasma 23S rRNA sequences

Figure S2. Cross-tabulation of Mycoplasma genotypes by geography

Figure S3. Consensus Bayesian phylogeny of Mycoplasma rpoB sequences

Figure S4. Cross-tabulation of *Bartonella* genotypes by geography

Primers		Organism and gene	Expected product (bp)	Temperature (°C) / time (seconds)					
	Sequence			Initial denaturation	Denaturation	Annealing	Extension	Cycles	Ref
CS 443f	GCTATGTCTGCATTCTATCA		~700	95/120	95/30	48/30	72/120	40	1
CS 1210r	GATCYTCAATCATTTCTTTCCA								
Bhcs 781p	GGGGACCAGCTCATGGTGG	Bartonellae gltA	~300	95/180	95/30	55/30	72/120	40	2
Bhcs 1137n	AATGCAAAAAGAACAGTAAACA								
UNI_16S_hemoFnew	TGAATAAGTGACAGCWAACTATGTGCC	Hemoplasma	~850–900	95/300	95/50	60/60	72/60	55	3* This study
UNI_16S_hemoR	GACGGGCGGTGTGTACAAGACCTG	16S rRNA							
UNI_rpoB_hemoF1	CCTAAYTTRARYATWMGKGACGTTCACTATT C	Hemoplasma	~785	95/300	95/50	55/60	72/60	55	This study
UNI_rpoB_hemoR1_1	GAAGAMARRATAATDGCATCYTCATAGTTGT A	<i>rpoB</i> (primer set 1)**							
UNI_rpoB_hemoF1	CCTAAYTTRARYATWMGKGACGTTCACTATT C	Hemoplasma	~1280	95/300	95/50	55/60	72/90	55	This
UNI_rpoB_hemoR1_2	ACAGGAGTWCCATCYTCYARRTAWGGCAT	<i>rpoB</i> (primer set 2)**							study
UNI_23S_Myc_Ur_cladeF	CCCAGACCATKGGGYAAGCCTA	Hemoplasma	1500.00	95/300	95/50	58/60	72/90	55	3
UNI_23S_Myc_Ur_cladeR	GAGACAGTCAAGAGATGGTTACAC	23S rRNA	~1500–80						

Table S1. PCR primers and amplification parameters used in this study.

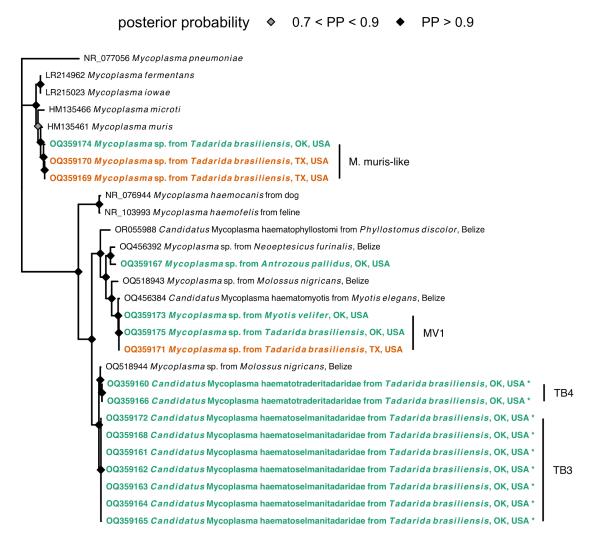
*Primers were slightly modified based on available hemoplasma 16S rRNA gene data

**Both sets of primers were used to amplify the hemoplasma *rpoB* gene. The *rpoB* primers were designed based on the conserved sequences found within the *rpoB* gene sequences of known hemotropic mycoplasmas and closely related *Mycoplasma* species.

1. Birtles RJ, Raoult D. Comparison of partial citrate synthase gene (*gltA*) sequences for phylogenetic analysis of *Bartonella* species. *International Journal of Systematic and Evolutionary Microbiology*. 1996;46(4):891-7.

2. Norman AF, Regnery R, Jameson P, Greene C, Krause D. Differentiation of *Bartonella*-like isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene. *Journal of Clinical Microbiology*. 1995;33(7):1797-803.

3. Volokhov DV, Norris T, Rios C, Davidson MK, Messick JB, Gulland FM, Chizhikov VE. Novel hemotrophic mycoplasma identified in naturally infected California sea lions (*Zalophus californianus*). *Veterinary Microbiology*. 2011;149(1-2):262-8.


Table S2. Results of GLMs with mean bias reduction for hemoplasma and *Bartonella* spp. positivity in Mexican free-tailed bat samples from Bracken Cave in Texas (n = 48; model 4). Reference levels include bats sampled in August 2021 and non-reproductive bats.

	hemoplasmas			Bartonella spp.			
Parameter	OR	z	р	OR	z	р	
Intercept		2.25	0.02		1.96	0.05	
December 2021	0.40	0.51	0.61	0.74	0.25	0.80	
March 2022	1.63	0.45	0.65	1.22	0.22	0.83	
Reproductive	1.53	0.33	0.74	2.67	0.95	0.34	

Table S3. Results of GAMs for hemoplasma and *Bartonella* spp. positivity in Mexican freetailed bat samples from Selman Bat Cave in Oklahoma (n = 146 and n = 145, respectively). Nonreproductive bats serve as the reference (only females were reproductive). Predictors are presented with model coefficients or estimated degrees of freedom (EDF) and test statistics

	hemoplasmas				Bartonella spp.					
Term	OR	z	EDF	χ^2	р	OR	z	EDF	χ^2	р
Intercept		4.67			< 0.01		2.77			0.01
Reproductive	0.39	1.36			0.17	0.79	0.53			0.60
s(Week)			2.10	14.02	0.001			1.75	6.68	0.02

Figure S1. Consensus Bayesian phylogeny of partial 23S rRNA mycoplasma sequences from this study (highlighted in bold and colored by geography; see Table 1 for genotype assignments) and reference sequences from bats and other mammals. Nodes are colored by posterior probability (nodes with less than 50% support are not shown). Hemoplasmas with *Candidatus* species names proposed here are indicated by asterisks and have paired 16S rRNA sequences in Figure 1.

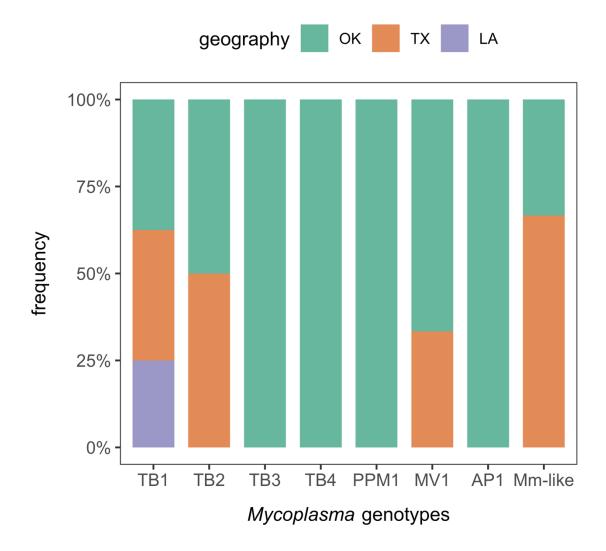
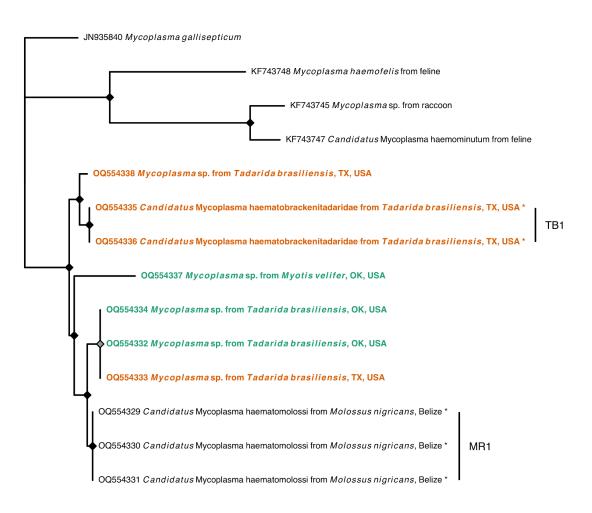



Figure S2. Cross-tabulation of *Mycoplasma* genotypes by geography, including all bat species.

Figure S3. Consensus Bayesian phylogeny of partial *rpoB* mycoplasma sequences from this study (highlighted in bold and colored by geography; see Table 1 for genotype assignments) and reference sequences from bats and other mammals. Nodes are colored by posterior probability (nodes with less than 50% support are not shown). Hemoplasmas with *Candidatus* species names proposed here are indicated by asterisks and have paired 16S rRNA sequences in Figure 1.

posterior probability \diamond 0.7 < PP < 0.9 \diamond PP > 0.9

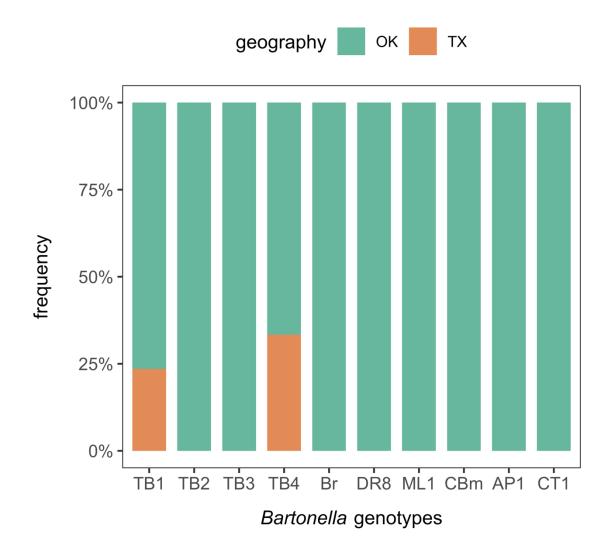


Figure S4. Cross-tabulation of *Bartonella* genotypes by geography, including all bat species.