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Supplementary Methods 

Evaluation of batch correction results 

During the integration process, we used the `scvi.setup_anndata()` function. We added 

‘Dataset,’ ‘Assay,’ and ‘Library’ as the `categorical_covariate_keys,  ̀removing the potential 

cause of the technical batch effect by the difference of the dataset, assay (10x chromium v2 

or 10x chromium v3), and library (scRNA or snRNA). To validate the batch correction results, 

we calculated and compared the average silhouette width (ASW) for three atlas anndata 

objects: an unintegrated, highly variable gene (HVG) filtered with batch-aware feature 

selection and our batch-corrected dataset using scVI. We applied the `silhouette_batch()` 

function from the scib1 package for each categorical covariate key, with them assigned as the 

‘batch_key’.  

 

Gene set enrichment test for cell type validation 

A gene set enrichment test was performed for the established cell type marker genes 

from the previous single-cell transcriptomic study of the developing brain2. The 

background genes for the enrichment test were set to include all the genes included 

in the single-cell dataset of the previous study. Marker genes for each annotated 

cluster EN (excitatory neurons from postnatal samples), EN-fetal-early (excitatory 

neurons from early fetal samples), EN-fetal-late (excitatory neurons for late fetal 

samples), CGE-derived inhibitory neurons (IN-CGE), MGE-derived inhibitory neurons 

(IN-MGE), astrocytes, microglia, oligodendrocytes, OPC, pericytes, VSMC, 

endothelial cells, RG, and IPC were collected from the supplementary data provided. 

This enrichment test included cluster-specific differentially expressed genes (DEGs) 

with a threshold of FDR <0.05, log2 fold change >0.2, and >25% of cells within the 

cluster expressing the gene. A one-sided Fisher’s exact test with multiple comparisons 

was applied. 

 

Collation of neurological disorders and glioblastoma risk genes 

Risk genes of neurodevelopmental disorders, including autism, epilepsy, or 

developmental delay, were selected. For autism, we utilized risk genes identified in 

large-scale exome studies. 185 genes with the enrichment of protein-truncating 
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variants (PTVs), missense variants, and copy number variants (CNVs) in 20,627 

autism cases qualified multiple comparisons at FDR <0.05 were selected from Fu et 

al.3. In addition, we utilized 373 risk genes from the meta-analysis of cohorts 

ascertained for developmental delay (DD). We also chose 102 genes that are enriched 

for 11,986 autism cases at FDR <0.1 from Satterstrom et al.4. Epilepsy risk genes were 

sourced from the Epi25 dataset, comprising a compilation of 20,979 cases and 33,444 

controls from 59 global research cohorts. A total of 140 genes were selected from the 

summary statistics (https://epi25.broadinstitute.org/results) based on the enrichment 

of PTVs or damaging missense variants in case subjects (p-value <0.01). 

 For neuropsychiatric disorders, we chose the risk genes for anxiety disorder, 

bipolar disorder, major depression, and schizophrenia. We selected 692 genes from 

the anxiety-associated genomic loci in the GWAS catalog (EFO ID: EFO_0006788). 

We selected 58 bipolar disorder risk genes from the BipEx dataset, encompassing 

data from 14,210 cases and 14,422 controls. Genes significantly enriched for PTVs or 

damaging missense variants (p-value <0.01) in cases were subset from the summary 

statistics (https://bipex.broadinstitute.org). We obtained 450 major depression-

associated genes from a GWAS analysis of 88,316 cases and 902,757 controls5. 

Schizophrenia-related genes were sourced from exome and GWAS analysis. We 

utilized the schizophrenia exome meta-analysis consortium (SCHEMA) dataset, which 

includes data from 24,248 cases, 97,322 controls, and 3,402 parent-proband trios. 

Gene selection (n = 32) was guided by FDR <0.05. Additionally, 287 schizophrenia-

associated loci and 2,132 genes were obtained from Trubetskoy et al.6, involving 

76,755 individuals with schizophrenia and 243,649 controls. 

 For neurodegenerative disorders, we focused on genes associated with 

Alzheimer’s and Parkinson’s diseases. We selected 76 genes associated with 

Alzheimer's disease from a recent GWAS comprising 111,326 cases and 677,663 

controls7. Parkinson’s disease genes (n=423) were retrieved based on GWAS loci 

reported in the GWAS catalog (EFO ID: MONDO_0005180). 

 Furthermore, genes associated with neurological conditions in response to 

trauma exposure (EFO ID: EFO_0008483), vascular brain injury (EFO ID: 

EFO_0006791), and abnormal brain morphology (EFO ID: HP_0012443) were 

included. These were identified from GWAS loci reported in the GWAS catalog, with a 
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specific number of undisclosed genes. For glioblastoma, 17 glioblastoma driver genes 

were selected8. Gene set signatures for specific cellular states in glioblastoma 

(Astrocyte-like, OPC-like, NPC-like subprogram 1, NPC-like subprogram 2, 

Mesenchymal-like hypoxia-independent, and Mesenchymal-like hypoxia-dependent) 

were obtained from the meta-module gene list, identified to be recurrent across tumors 

indicating global characterization of intra-tumoral heterogeneity9. 

 

Pseudo-time and trajectory analysis 

Pseudo-time analysis was performed using Palantir10. Subset of each cell type of 

interest was reprocessed before the analysis. Samples with <100 cells were excluded 

from the pre-processing and integration steps to ensure robustness. To mitigate the 

batch effect, 5,000 highly variable genes were selected from each sample and 

integrated using scvi-tools11.  

Diffusion maps were derived from batch-corrected embeddings, and the 

resulting components were projected onto Uniform Manifold Approximation and 

Projection (UMAP). Pseudo-time computation and trajectory construction were 

conducted by designating cells with the minimum age of the premature cell type as the 

initial cell for each group. For instance, in the neuronal group, one of the earliest radial 

glial cells was chosen as the initial state. Similarly, in the oligodendrocyte and astrocyte 

groups, one of the OPC cells and astrocytes with the minimum age was considered 

the initial states. The endpoints of the trajectories were determined automatically. 

Differentiation potential was estimated by quantifying the entropy and pseudo-time 

distance of each cell from the initial state. Gene trends were subsequently computed 

for each lineage, and gene expression was illustrated across pseudo-time for temporal 

investigation. 

 

Inference of gene regulatory networks and enriched signaling pathways 

To facilitate gene regulatory network inference, transcriptionally similar cells were 

categorized into meta-cells using SEACells12 (v0.3.3). Following the designation of 

one meta-cell for every 75 single cells, 393,060 cells were aggregated into 5,000 meta-

cells. In the initialization step, the embedding matrix generated by scVI was used to 
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compute the kernel for the meta-cells and prioritize the top 10 eigenvalues. 

Subsequently, we constructed the kernel matrix and conducted an archetypal analysis. 

The minimum and maximum iterations were set to 10 and 100 in the model fitting step, 

with a convergence threshold of 0.01125. Within each SEACell, cellular aggregation 

was achieved by summing the log-normalized expression of all constituent cells, 

generating aggregated counts. 

 Transcription factor regulatory networks were inferred using pySCENIC13 

(v0.12.1). Log-transformed counts from the SEACells were used as an input matrix, 

considering only protein-coding genes. Adjacencies between the transcription factors 

and their targets were inferred using the GRNBoost2 algorithm. Regulon prediction for 

1,892 transcription factors was performed based on the motifs of the transcription 

factors and putative promoter regions of the target genes obtained from the cisTarget 

database (version 9), covering 10kb around the transcription start site, 500 bases 

upstream, and 100 bases downstream. The correlation between transcription factor 

and target genes was calculated using the entire set of cells, including those with zero 

expression. Cellular enrichments of regulons per SEACell were determined with an 

AUC threshold of 0.05, and the resulting regulon activities calculated for each SEACell 

were matched to the Leiden clusters possessing the highest cell counts. The regulon 

activities for transcription factors with a minimum mean of 0.02 and a variance of 0.001 

across Leiden clusters were visualized as a heatmap using the R package 

ComplexHeatmap (v2.15.1). Gene sets representing hormonal regulation, kinase-

mediated, and immune signaling pathways were obtained from the Reactome 

database14. Module scores were computed by averaging the expression levels of 

genes within each gene set and subtracting the average expression of a reference set 

of genes.  

 

Building an annotation prediction model with CellTypist 

We built a prediction model using the CellTypist package (v1.2.0)15 with a two-pass 

data training approach for further annotation. In the first pass, we implemented 

stochastic gradient descent (SGD) logistic regression with mini-batch training to 

identify features for model building. We ranked the top 100 genes associated with each 

Leiden cluster by their absolute regression coefficients and selected these as features. 
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Using the filtered data with the selected features, we performed logistic regression in 

the second pass with default parameters. 
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Supplementary Figures 

 

Supplementary Fig. 1. Comprehensive overview of quality metrics and sample 
information in single-cell atlas. a. Violin plot illustrating quality metrics, including the 

number of genes with at least one count per cell (n_genes_by_counts), the total 

number of counts per cell (total_counts), and the percentage of counts in mitochondrial 

genes (pct_counts_mt). b. Violin plot for log-normalized XIST expression for samples 

lacking sex information. c. UMAP of the atlas, colored by library, assay, sex, imputed 

sex (sex_impute), and a numeric representation of sample IDs (sampleID_numeric). 

d. The number of cells categorized by developmental stage, library, assay, sex, and 

imputed sex.  
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Supplementary Fig. 2. Comparison of silhouette scores for each technical batch 
key. Boxplot of absolute silhouette width (ASW) of clusters of un-integrated datasets, 

highly variable gene (HVG) filtered dataset, and the batch-corrected dataset with scVI 

tools in the aspect of the datasets, assays (10x chromium v2 and 10x chromium v3), 

and libraries (scRNA and snRNA). An absolute ASW close to 0 indicates poor batch 

mixing, while a value close to 1 indicates optimal mixing.  

 

Un-integrated HVG-filtered Batch-corrected (scVI)

0.4

0.6

0.8

1.0

1.2

Si
lh

ou
et

te
 S

co
re

p=4.317e-03

p=5.651e-06

p=7.779e-02

Silhouette Scores Comparison

Library
Assay
Dataset

Mean
Median



 

 
Supplementary Fig. 3. Estimated developmental lineages in neuronal cell types. 
a-d. UMAP visualizations of neuronal cell types colored by (a) estimated pseudo-time, 

(b) gestational age, (c) cluster, and (d) sample ID.  

  



 

 
Supplementary Fig. 4. Estimated developmental lineages of neurons and OPC. 
a-c. UMAP visualizations of cells colored by (a) estimated pseudo-time, (b) cell type, 

and (c) cluster. d. Temporal expression patterns of OPC precursors marker genes. e. 
Temporal expression of OPC and oligodendrocyte marker genes.  

 

  



 

 
Supplementary Fig. 5. Estimated developmental lineages in non-neuronal cell 
types. a-d. UMAP visualizations of oligodendrocyte-lineage cell types colored by (a) 

cell type, (b) gestational age, (c) cluster, and (d) sample ID. e-h.  UMAP visualizations 

of astrocytes colored by (e) estimated pseudo-time, (f) gestational age, (g) cluster, and 

(h) sample ID. i. Temporal expression patterns of genes associated with function 

enriched in reactive astrocytes. Expression of genes related to cytoskeleton 

organization (Cytoskeleton), chaperone activity (Chaperone), cell signaling (Signaling), 

secretion of proteins (Protein secretion), ion transporters (Transporter), and 

metabolism (Metabolism) of each lineage is depicted.  
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Supplementary Fig. 6. Pathway enrichment in early brain development. Violin plot 

displaying pathway module scores as the average expression level of pathway genes 

adjusted for control features.  
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Supplementary Fig. 7. Expression profiles of IL-17 receptor genes (IL17RA, 
IL17RB, IL17RC, IL17RE). a. UMAP visualization of z-score normalized IL-17 

receptor gene expression. b. Expression of IL-17 receptor genes over gestational days. 

The sample-wise mean of log-normalized gene expression was computed using a 

pseudo-bulk method. Clusters with at least 4,600 cells (C0-C22) were used. 

  



 

 

Supplementary Fig. 8. Distribution of samples and donors by sex across 
development. The bars represent the number of samples and the number of donors 

collected from male and female donors at different gestational periods. Samples at 

prenatal stages and the prenatal-to-postanal transition phase are included in the plot. 

  



 

 
Supplementary Fig. 9. IL17RD expression in radial glia and neuroblasts by sex 
across development. Expression of IL17RD over gestational days, colored by 

imputed sex and cell types. The sample-wise mean of log-normalized gene expression 

was computed using a pseudo-bulk method. Clusters for radial glia and neuroblasts 

with at least 4,600 cells (C3, C4, C11) were used.  
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