SUPPLEMENTARY INFORMATION

The homodimerization domain of the Stl repressor is crucial for efficient inhibition of mycobacterial dUTPase

Zoé S. Tóth^{1,2,3,*}, Ibolya Leveles^{1,2}, Kinga Nyíri^{1,2}, Gergely N. Nagy^{1,2}, Veronika Harmat^{4,5}, Thapakorn

Jaroentomeechai⁶, Oliver Ozohanics⁷, Rebecca L. Miller⁶, Marina Ballesteros Álvarez², Beáta G.

Vértessy^{1,2,*}, András Benedek^{1,2,*}

¹ Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary

² Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary

³ Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary

⁴ Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary

⁵ HUN-REN-ELTE Protein Modelling Research Group, Hungarian Research Network, Budapest, Hungary

⁶ Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark

⁷ Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary

* To whom correspondence should be addressed. Email: <u>toth.zoe@ttk.hu</u>, <u>benedek.andras@ttk.hu</u>, <u>vertessy.beata@ttk.hu</u>

Supplemental note

Recently we have shown, that the experimentally correct setup of BLI studies require that Stl protein is immobilised on the sensor¹. Table 2 in the main text shows the data for this experiment. As a comparison we also performed the BLI experiment in the setup where MtDUT is immobilised. Comparing data in Table 2 and Table S2 clearly indicates that dimerization of Stl^{WT} interferes with the determination of the binding parameters.

Supplemental tables

Table S1. List of	primers used	for cloning and	mutagenesis
-------------------	--------------	-----------------	-------------

Name	Sequence (5'- 3')
Stl ^{NT} _FW	CGAAAAAGCTAAATTAACTATGAAACCCTGGCGAACACC
Stl ^{NT} _Rev	CATAGTTAATTTAGCTTTTTTCGGTATCGGTGCTCAGAATCTG
avi-MtDUT_FW	TATGCTCGAGTATGGGCAGCAGCCATCATC
avi-MtDUT_Rev	GCAGGTACCTCACAAACTCGCATGTCCG
Stl-avi-mut-F-fin	GGCTCAGAAAATCGAATGGCACGAATAACTCGAGCGGCCGCAT
Stl-avi-mut-R-fin	TCGAAGATGTCGTTCAGGCCGGACATGTTGGTATCTTTTCCAGA
	ATAATTTTTTTCTGATGTTC
GST-Stl-avi-pan4-F	TATTCTCGAGTATGTCCCCTATACTAGGTTATTGG
GST-Stl-avi-pan4-R	GTCCGGTACCTATTCGTGCCATTCGATTTTCTG
Stl ^{NT} -avi_F	ATGTCCGGCCTGAACGAC
Stl ^{NT} -avi_R	GCTTTTTTCGGTATCGGTGC

Table S2. BLI interaction analysis of sensor bound MtDUT titrated with Stl.

Licond	Analyta	$K_{\rm D}^*$	kon	$k_{ m off}$
Ligand	Analyte	(pM)	$(M^{-1}s^{-1})(10^5)$	(s ⁻¹)(10 ⁻⁵)
MtDUT ^{WT}	Stl ^{WT}	215±2	3.94±0.01	$8.44{\pm}0.08$
MtDUT ^{∆loop}	Stl ^{WT}	335±3	2.66±0.02	8.90±0.04
MtDUT ^{WT}	Stl ^{NT}	Н	eterogenous bind	ding
MtDUT ^{∆loop}	Stl ^{NT}	Н	eterogenous bind	ding

 $\frac{1}{2}\chi^2$ value was below 0.4 in all cases.

Structure	MtDUT ^{∆loop}	MtDUT-Stl ^{NT}
PDB ID	8CGA	8P8O
Data collection		
Space group	P63	P212121
Cell dimensions		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	55.249, 55.249, 83.751	104.669, 123.82, 170.229
α, β, γ (°)	90.00, 90.00, 120.00	90.00, 90.00, 90.00
Resolution (Å)	47.85-1.26 (1.33-1.26) *	46.38-3.40 (3.50-3.40)
R _{meas}	0.04488 (0.4152)	0.156 (6.237)
Ι / σΙ	14.18 (2.69)	13.92 (0.48)
Completeness (%)	99.96 (99.97)	97.50 (93.20)
Redundancy	2.0 (2.0)	5.24 (5.21)
CC1/2	0.996 (0.763)	0.999 (0.314)
Refinement		
Resolution (Å)	47.85-1.30 (1.35-1.30)	46.38-3.40 (3.49-3.40)
No. unique reflections	35602 (3581)	30380 (2113)
Rwork / Rfree	0.1413 (0.1618) / 0.1707	0.2439 (0.5497) / 0.2856
	(0.2127)	(0.5733)
No. atoms	1231	11820
Protein	1074	11820
Ligand/ion	48	0
Water	117	0
B-factors	14.33	145.65
Protein	13.18	145.65
Ligand/ion	13.26	-
Water	25.29	-
R.m.s deviations		
Bond lengths (Å)	0.007	0.002
Bond angles (°)	1.03	0.48

* Values for the highest resolution shell are shown in parentheses

MtI	DUT ^{WT}	S	tl ^{NT}	Binding type
Residue	Atom type	Residue	Atom type	Diffuling type
11: 01	NE2	Asn102	OD1	
His21	ND1			
Asp24	OD1	Tyr106	ОН	
Asp24	OD2			
	NH1	Tyr116	О	
Arg64	NH2	Ser115	Ο	
Ser65	OG	Tyr112	0	Hydrogen bond
Thr69	OG1	Tyr113	0	
Arg70	NH1	Ser114	0	
Alg/0	1111	Leu152	0	
Thr81	0	Tyr112	ОН	
Asp83	Ν	1 y1112	OII	
Arg87	Ν	Tyr106	0	
	Ν	Tyr113	OH	
Lys91	NZ	Asp110	OD1	Salt bridge
		-		Hydrogen bond
	NH1	Asp117	OD1	TT 1 1 1
Arg110		Tyr116	0	Hydrogen bond
Ingilo	NH2	Asp117	OD1	Salt bridge
Asp117 OD1		Hydrogen bond		
Glu126	0	ND2	Hydrogen bond	
010120	Ν	110110-0	OD1	11 al ogon oond

Table S4. MtDUT^{WT}-Stl^{NT} complex polar interactions

Supplemental figures

	Notif I Notif II Motif III	
C. burnetii		99
Y. pestis		98
E. coli	MMKKIDVKILDPRVGKEFPLPTYATSGSAGLDLRACLNDAVELAPGDTTLVPTGLAIHIADPSLAAMMLPRSGLGHKHGIVLGNLVGLIDSDYQQQLMI	99
S. paratyphi	MMKKIDVKILDPRVGQQFPLPTYATSGSAGLDLRACLDDAVELAPGATTLVPTGLAIHIADPSLAAVMLPRSGLGHKHGIVLGNLVGLIDSDYQGQLMV	99
Human	$\label{eq:main_set} MPCSEETPAISPSKRARPAEVGGMQLRFARLSEHATAPTRGSARAAGYDLYSAYDYTIPPMEKAVVKTDIQIALPSGC-YGRVAPRSGLAAKHFIDVGAGVIDEDYRGNVGVAPRSGLAAKHFIDVSAGVIDEDYRGNVGVAPRSGLAAKHFIDVSAGVIDAKFIDVAPRSGLAAKHFIDVSAGVIDAYAF$	111
H. pylori	MKIKIQKIHPNALIPKYQTDGSSGFDLHAVEEVMIKPHSVGLVKIGICLSLEVGY-ELQVRTRSGLALNHQVMVLNSPGTVDNDYRGEIKV	90
C. acnes	MADVVVPTVAVPEAMPRYAMPGDAGADLTCRHDVDLAPGERAMVETGVRVALPDGY-VGFVNPRSGLAARHGLSIVNAPGTIDSGYRGQINV	91
N. guangzhouensis	DPVALLRLDRDLFVPSYAHPGDAGADLMTTVDVTLAPGERTLVPTGIAVALPEGY-VGLVHPRSGLAARHGLSIVNAPGTVDAGYRGEIKV	90
M. smegmatis	MSTSLAVVRLDRELPMPTRAHDGDAGVDLYSAENVELAPGQRALVSTGIAVAIPHGM-VGLVHPRSGLAARVGLSIVNSPGTIDAGYRGEIKV	92
M. leprae	MSTSLAVVRLDPGLPLPSRAHDGDAGVDLYSVEDVKLAPGQRALVRTGLAVAIPFGM-VGLIHPRSGLAVRVGLSIVNSPGTVDAGYRGEIKV	92
M. ulcerans	MSNSLAVVRLDPGLPLPSRAHDGDAGVDLYSAEDVVLPPGQRALVRTGVAVAIPFGM-VGLVHPRSGLASRVGLSIVNSPGTIDAGYRGELKV	92
M. marinum	MSNSLAVVRLDPGLPLPSRAHDGDAGVDLYSAEDVVLPPGQRALVRTGVAVAIPFGM-VGLVHPRSGLASRVGLSIVNSPGTIDAGYRGELKV	92
M. tuberculosis	MSTTLAIVRLDPGLPLPSRAHDGDAGVDLYSAEDVELAPGRRALVRTGVAVAVPFGM-VGLVHPRSGLATRVGLSIVNSPGTIDAGYRGEIKV	92
M. bovis	MSTTLAIVRLDPGLPLPSRAHDGDAGVDLYSAEDVELAPGRRALVRTGVAVAVPFGM-VGLVHPRSGLATRVGLSIVNSPGTIDAGYRGEIKV	92
M. avium	MSTSLAIVRLDPGLPLPSRAHEGDAGVDLYSAEDVRLEPGRRALVRTGVAVAIPFGM-VGLVHPRSGLAARVGLSIVNSPGTIDAGYRGEIKV	92
Phage Ø11	${\tt MTNTL}_{Q} {\tt VRL}{\tt LSENARMPERNHKTD}_{AGYDIFSAETVVLEP} {\tt QEKAVIKTDVAVSIPEGY-VGLLTSRSGVSSKTHLVIETGKIDAGYHGNLGI}$	90
Phage 80a	MINTLQVKLLSKNARMPERNHKTDAGYDIFSAETVVLEPQEKAVIKTDVAVSIPEGY-VGLLTSRSGVSSKTHLVIETGKIDAGYHGNLGI	90

		Motif IV	Motif V	
C. burnetii	SCWNRGKEPYT1	NPGDRIAQLVVLPILKAQFAVVEEFEL	TERGAGGFGSSGQN	152
Y. pestis	SVWNRGQQPFT1	EPGERIAQMVFVPVVQAEFNLVEDFTD	SERGTGGFGHSGRQ	151
E. coli	SVWNRGQDSFT1	QPGERIAOMIFVPVVQAEFNLVEDFDA	TDRGEGGFGHSGRQ	152
paratyphi	SIWNRGQDSFTI	EPGERIAQMVFVPVVQAEFNLVEAFDA	TERGEGGFGHSGRK	152
Human	VLFNFGKEKFEV	KKGDRIAQLICERIFYPEIEEVQALDD	TERGSGGFGSTGKN	164
H. pylori	ILANLSDKD-FKV	QVGDRIAQGVVQKTYKAEFIECEQLDE	TSRGSGGFGSTGVSKA	145
C. acnes	LLVNTDPREPVHI	DAGSRIAQLVVVPVVEAIFEPVEDLDD	TERGQGGYGSTGVSAMPPVDG	152
N. guangzhouensis	CLVNLDPREPVVI	HRGDRVAQLVVQRVEQAQFLEVDSLDA	SVRGACCYGSTCGFAGVETQRSAT	154
M. smegmatis	SLINLDPQTPVVI	SRGDRIAQLLVQRVELPELVEVTSFDEAGLA	TTRGDGGHGSSGGHASL	154
M. leprae	ALINLDPVEPLVV	HRGDRIAQLLVQRVELVELVEVSSFDEAGL	ETSRGDGGHGSSGGHASL	154
M. ulcerans	VLINLDPATPIVV	NRGDRIAQLLVQRVELLELVEVSSFDEAGL	ATSRGDGGHGSSGGHASL	154
M. marinum	ALINLDPATPIVV	NRGDRIAQLLVQRVELLELVEVSSFDEAGL	AATSRGDGGHGSSGGHASL	154
M. tuberculosis	ALINLDPAAPIVV	HRGDRIAQLLVQRVELVELVEVSSFDEAGL7	STSRGDGCHGSSGGHASL	154
M. bovis	ALINLDPAAPIVV	HRGDRIAQLLVQRVELVELVEVSSFDEAGLA	STSRGDGGHGSSGGHASL	154
M. avium	ALINLDPAEPIVV	HRGDRIAQLLVQRVELVELVEVSSFDEAGLA	GTSRGDGGHGSSGGHASL	154
Phage #11	NIKNDAIASNGY-ITPGVFDIKGEIDLSDAIRQYGTYQI	NEGDKLAQLVIVPIWTPELKQVEEFES	-VSERGEKGFGSSGV	169
Phage 80a	NIKNDHEDDKMQTIFLRNIDNEKIFEKERHLYKLGSYRI	EKGERIAQLVIVPIWTPELKQVEEFES	VSERGEKGFGSSGV	170

Figure S1. Sequence comparison of several trimeric dUTPase enzymes. The conserved motifs of selected dUTPase sequences are highlighted in blue and indicated as a blue line. The mycobacteria-specific insert sequence elements are highlighted in yellow boxes. The multiple sequence alignment was performed using Clustal Omega.

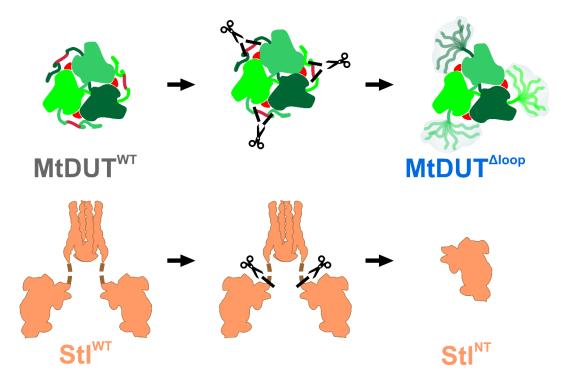
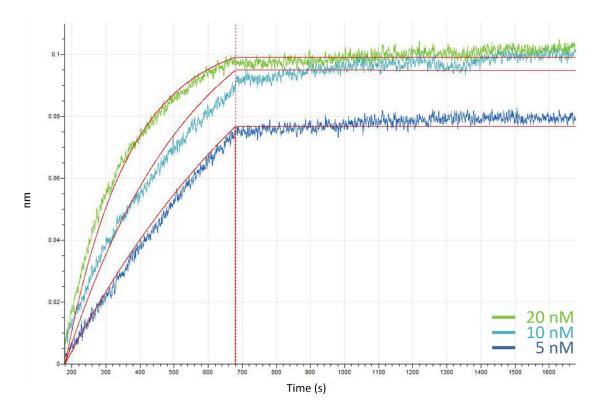
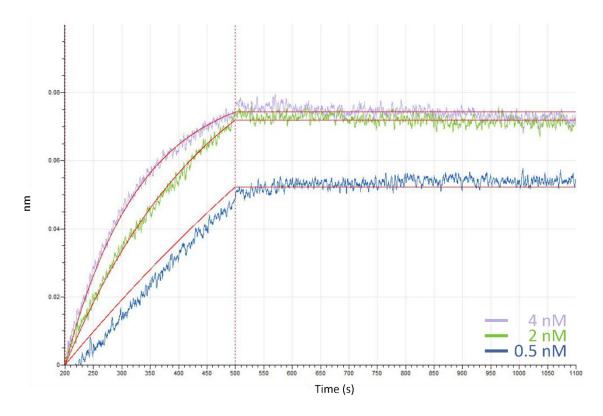




Figure S2. Schematic figure explaining the truncation of MtDUT^{WT} and Stl. The deletion of the AGLAS surface loop of MtDUT^{WT} resulting in MtDUT^{Δ loop} is shown on the top panel. MtDUT trimers are represented as green figures in three different shades (for the protomers)

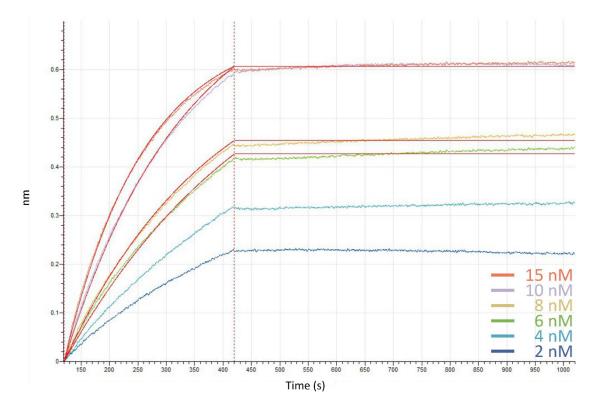

(based on crystal structures PDB ID 2PY4 and 8CGA). The C-terminal arm domains are represented as green lines, where the position of the AGLAS surface loop is highlighted in burgundy. For MtDUT^{Δ loop} the C-terminal arm domains are represented as partially transparent lines. The substrate is shown as red shape. The bottom of this panel shows the truncation of the C-terminal domain of Stl^{WT} resulting in Stl^{NT}. The Stl dimer is represented as a peach -colored figure, which consists of the C-terminal domain (based on crystal structure with PDB ID:6H48) (which is responsible for the dimer formation), the N-terminal domain (based on crystal structure with PDB ID:6H49) and a small hinge region² (represented as brown-coloured dashed line) . Stl^{NT} is shown as a peach-coloured figure.

Figure S3. BLI curves of Avi-tagged Stl^{WT} and MtDUT^{WT}. A 1:1 binding model has been fitted to the binding data ($K_D < 1$ pM, $\chi^2 = 0.194$).

Figure S4. BLI curves of Avi-tagged Stl^{WT} and MtDUT^{Δ loop}**.** A 1:1 binding model has been fitted to the binding data (K_D =33±1 pM, χ^2 =0.0374).

Figure S5. BLI curves of Avi-tagged Stl^{NT} and MtDUT^{WT}. A 1:1 binding model has been fitted to the binding data (K_D =190±1 pM, χ^2 =0.2024).

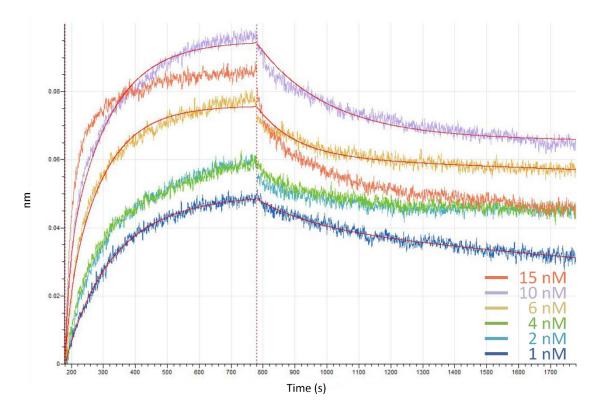
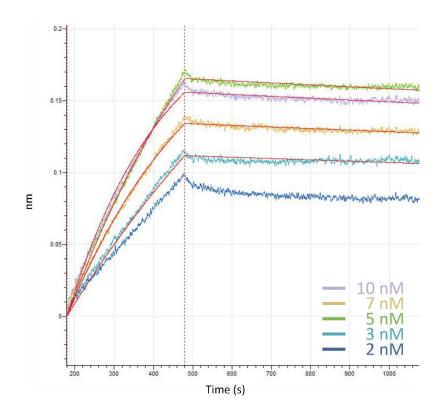
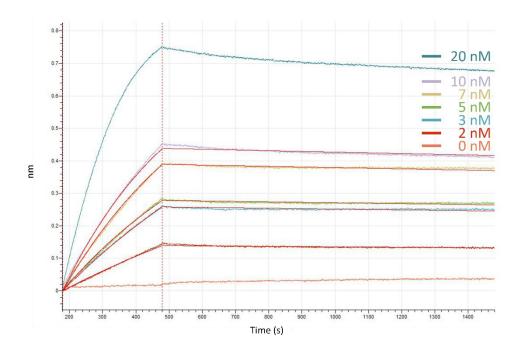




Figure S6. BLI curves of Avi-tagged Stl^{NT} and $MtDUT^{\Delta loop}$. The binding data suggest a case of heterogeneous binding.

Figure S7. BLI curves of Avi-tagged MtDUT^{WT} and Stl^{WT}. A 1:1 binding model has been fitted to the binding data (K_D =215±2 pM, χ^2 =0.0964).

Figure S8. BLI curves of Avi-tagged MtDUT^{Δ loop} and Stl^{WT}. A 1:1 binding model has been fitted to the binding data (K_D =335±3 pM, χ^2 =0.3497).

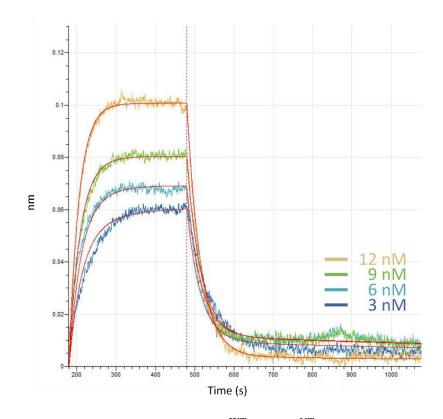
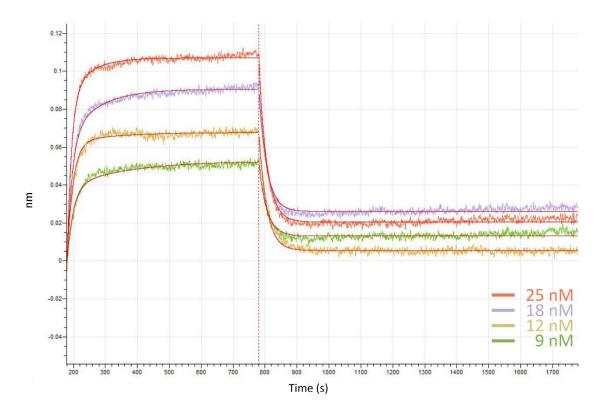
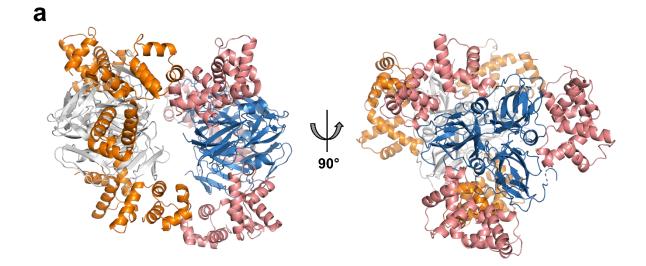
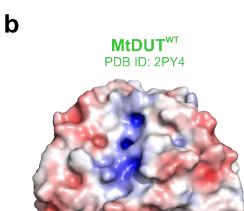
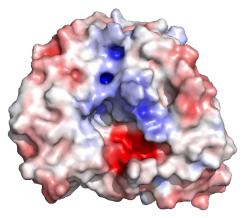
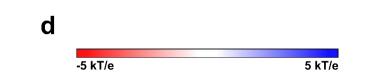


Figure S9. BLI curves of Avi-tagged MtDUT^{WT} and Stl^{NT}. The binding data suggest a case of heterogeneous binding.


Figure S10. BLI curves of Avi-tagged MtDUT^{Δ loop} and Stl^{NT}. The binding data suggest a case of heterogeneous binding.



С

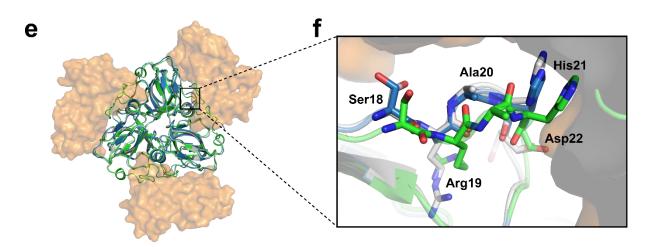


Figure S11. Comparison of MtDUT^{WT} structure in complex with substrate analogue and with Stl^{NT}. a) Composition of MtDUT^{WT}-Stl^{NT} structure asymmetric unit. The two MtDUT^{WT} trimers are displayed as grey and blue cartoons, and StNT monomers are represented as orange and light pink cartoons. b-c) Electrostatic potential of the molecular surfaces of MtDUT^{WT} in complex with dUPNPP substrate analogue (b) (the representation is the same as on Figure 4f) and MtDUT^{WT}in complex with Stl^{NT} (c). d) The colouring of the electrostatic surface potential scale. e) Overall fold comparison of MtDUT^{WT} (PDB ID: 2PY4) and the two MtDUT^{WT} trimers (PDB ID: 8P8O) The two MtDUT^{WT} trimers (PDB ID:8P8O) share a high degree of overall similarity based on root mean square deviation (RMSD) of 0.31 Å for 362 Ca atoms. The deviations from the substrate analogue bound structure based on RMSD values are 0.47 Å and 0.55 Å for 348 and 356 Cα atoms, respectively. MtDUT^{WT} (PDB ID: 2PY4) is represented as green cartoon, MtDUT^{WT} trimers in complex with Stl^{NT} (PDB ID: 8P8O) are represented as grey and blue cartoon and Stl^{NT} is represented as partially transparent orange surface. f) Conformational change of the N-terminal Ser18-Asp22 segment of MtDUT^{WT} upon complex formation with Stl^{NT}. The Ser18-Asp22 peptide segment is highlighted as sticks, the representation of molecules is the same as on panel (e). Individual panels were created using PyMOL 2.5.4 (Schrodinger, LLC; https://www.pymol.org/). The figure was assembled using CorelDRAW 2020 (Corel Corporation; https://www.coreldraw.com).

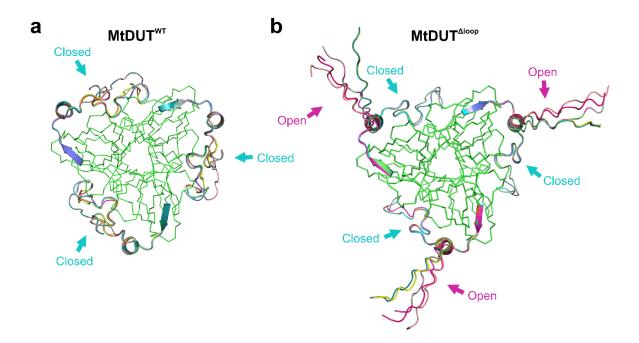


Figure S12. Mobility analysis of C-terminal arm of MtDUT using AlphaFold. a-b) Ten models representing possible conformations of MtDUT^{WT} (a) and MtDUT^{Δ loop} (b) C-terminal arm. The protein core is shown as green ribbon, the C-terminal domains are shown from the last beta sheet secondary structure element and represented as multiple-coloured cartoons. The turquoise arrows indicate the closed or partially closed conformations of the C-terminal arm, while the magenta arrows indicate the open conformations of the C-terminal arm. The representation of protein structures was created using PyMOL 2.5.4 (Schrodinger, LLC; https://www.pymol.org/). The figure was assembled using CorelDRAW 2020 (Corel Corporation; https://www.coreldraw.com).

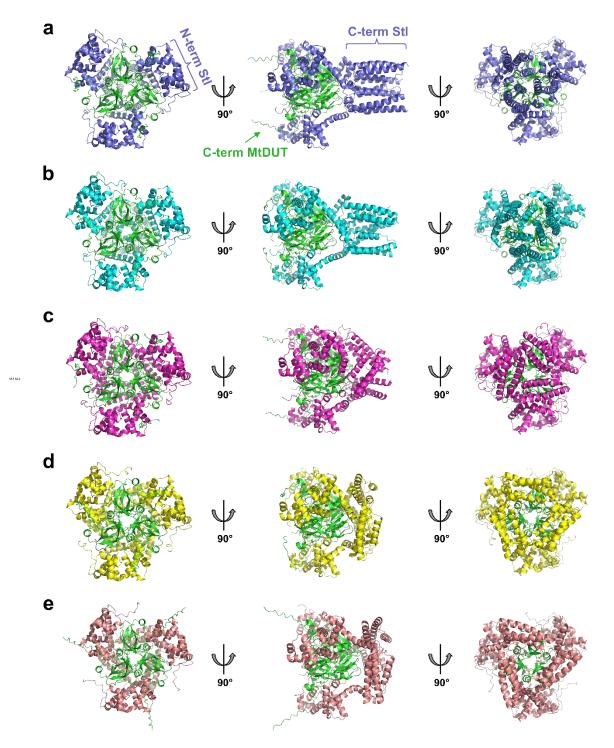


Figure S13. AlphaFold modelling of MtDUT^{WT}-Stl^{WT} complex structure.

a-e) 5 MtDUT^{WT}-Stl^{WT} complex models showing possible complex assemblies of 3:3 binding stoichiometry. The models are shown in 3 different orientations, the MtDUT^{WT} is displayed in green cartoon in all cases, while Stl is represented as different coloured cartoons. Predicted models are in descending order from (a) to (e) based on the prediction ranking scores. The representation of protein structures was created using PyMOL 2.5.4 (Schrodinger, LLC; https://www.pymol.org/). The figure was assembled using CorelDRAW 2020 (Corel Corporation; https://www.coreldraw.com).

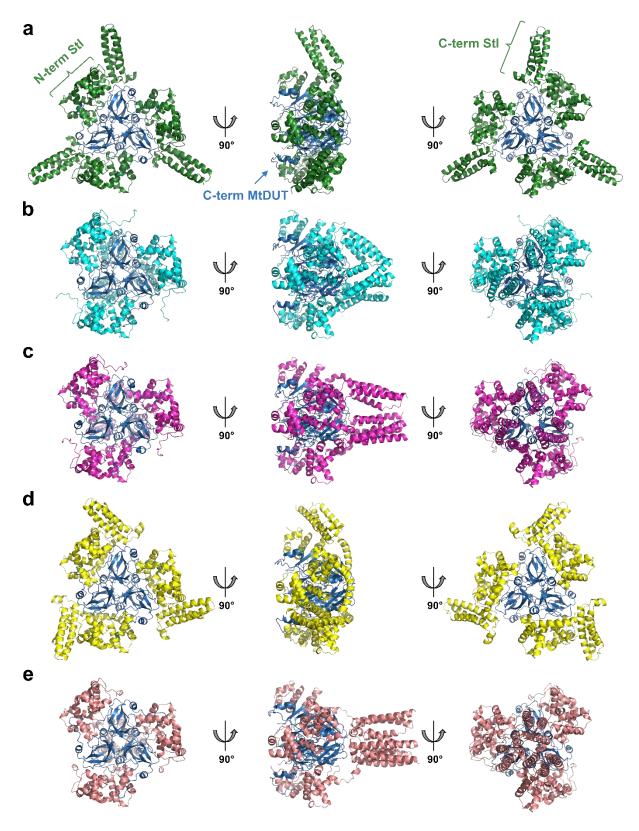
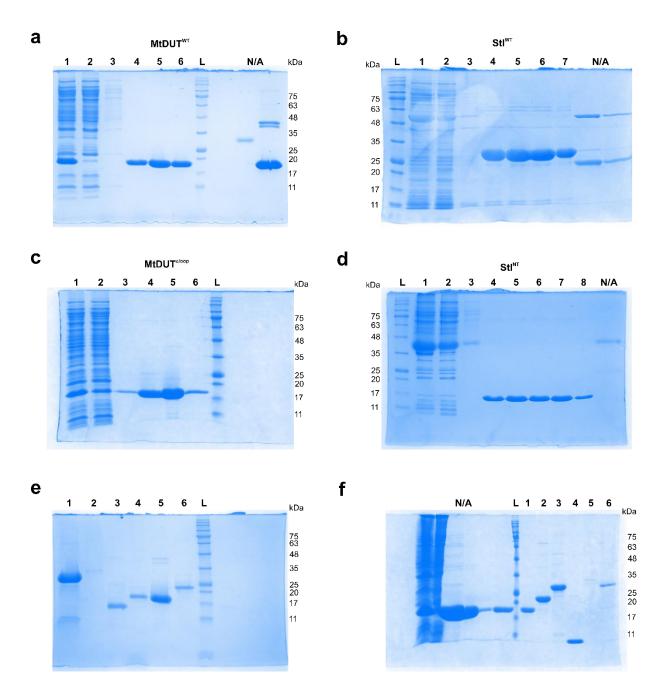




Figure S14. AlphaFold modelling of $MtDUT^{\Delta loop}$ -Stl^{WT} complex structure.

a-e) 5 MtDUT^{$\Delta loop$}-Stl^{WT} complex models showing possible complex assemblies of 3:3 binding stoichiometry. The models are shown in 3 different orientations, the MtDUT^{$\Delta loop$} is displayed in dark blue cartoon in all cases, while Stl is represented as different coloured cartoons. Predicted models are in descending order from (a) to (e) based on the prediction ranking scores. The representation of protein structures was created using PyMOL 2.5.4 (Schrodinger, LLC;

https://www.pymol.org/). The figure was assembled using CorelDRAW 2020 (Corel Corporation; https://www.coreldraw.com).

Figure S15. SDS-PAGE images of protein preparations used in this study, purified by affinity chromatography. a) MtDUT^{WT} protein. 1. Supernatant fraction; 2. Flowthrough fraction; 3. Salt wash fraction; 4-6. Elution fractions; L. Protein ladder. b) Stl^{WT} protein. L. Protein ladder; 1. Supernatant fraction; 2. Flowthrough fraction; 3. Salt wash fraction; 4-7. Elution fractions (N/A not applicable). c) MtDUT^{Δloop} protein. 1. Supernatant fraction; 2. Flowthrough fraction; 3. Wash fraction; 4-6. Elution fractions; L. Protein ladder. d) Stl^{NT} protein. L. Protein ladder; 1. Supernatant fraction; 2. Flowthrough fraction; 3. Wash fraction; 4-8. Elution fractions (N/A not applicable) e-f) Final protein preparations used in BLI experiments. e) 1. Stl^{WT}; 2. Avi-tagged Stl^{WT}; 3. Stl^{NT}; 4. MtDUT^{WT}; 5. MtDUT^{Δloop}; 6. Avitagged MtDUT^{Δloop}; L. Protein ladder. f) (N/A); L. Protein ladder; 1. MtDUT^{WT}; 2. Avi-tagged Stl^{WT}; 6. Avi-tagged Stl^{NT}.

Figure S16. SDS-PAGE image of MtDUT^{WT}, Stl^{WT} proteins and MtDUT^{WT}:Stl^{WT} protein complex analysed by size-exclusion chromatography. 1-3. Protein samples of first peak (peak elution volume: 11.1 ml) of MtDUT^{WT}:Stl^{WT} complex. 4. Protein sample of second peak (peak elution volume: 13.0 ml) of MtDUT^{WT}:Stl^{WT} complex. 5-6. Protein samples of Stl^{WT} peak (peak elution volume: 14.5 ml). 7. Protein sample of MtDUT^{WT} peak (peak elution volume: 14.5 ml).

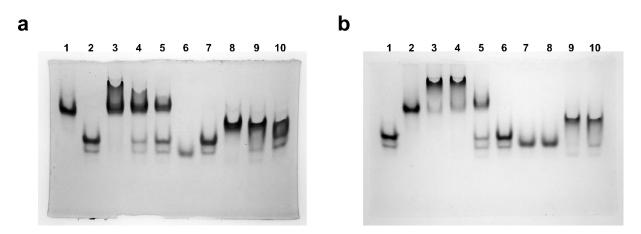


Figure S17. Native gel electrophoresis images analysing MtDUT^{WT}-Stl^{WT} and MtDUT^{WT}-Stl^{WT} complex formation at different mixing concentrations. a) 1. 9 μ M Stl^{WT}; 2. 9 μ M MtDUT^{WT}; 3. 9 μ M Stl^{WT} + 9 μ M MtDUT^{WT}; 4. 6 μ M Stl^{WT} + 9 μ M MtDUT^{WT}; 5. 3 μ M Stl^{WT} + 9 μ M MtDUT^{WT}; 6. 9 μ M Stl^{NT}; 7. 9 μ M MtDUT^{WT}; 8. 9 μ M Stl^{NT} + 9 μ M MtDUT^{WT}; 9. 6 μ M Stl^{NT} + 9 μ M MtDUT^{WT}; 10. 3 μ M Stl^{NT} + 9 μ M MtDUT^{WT}. b) 1. 9 μ M MtDUT^{WT}; 2. 9 μ M Stl^{WT} + 3. 4.5 μ M Stl^{WT} + 4.5 μ M MtDUT^{WT}; 4. 3.6 μ M Stl^{WT} + 5.4 μ M MtDUT^{WT}; 5. 2.25 μ M Stl^{WT} + 6.75 μ M MtDUT^{WT}; 6. 9 μ M Stl^{NT} + 5.4 μ M MtDUT^{WT}; 8. 9 μ M Stl^{NT}; 9. 4.5 μ M Stl^{NT} + 4.5 μ M MtDUT^{WT}; 7. 9 μ M Stl^{NT}; 8. 9 μ M Stl^{NT}; 9. 4.5 μ M Stl^{NT} + 4.5 μ M MtDUT^{WT}; 7. 9 μ M Stl^{NT}; 8. 9 μ M Stl^{NT}; 9. 4.5 μ M Stl^{NT} + 4.5 μ M MtDUT^{WT}; 10. 3.6 μ M Stl^{NT} + 5.4 μ M MtDUT^{WT}; 9. 4.5 μ M Stl^{NT} + 4.5 μ M MtDUT^{WT}; 10. 3.6 μ M Stl^{NT} + 5.4 μ M MtDUT^{WT}.

References

- 1. Nyíri, K., Gál, E., Laczkovich, M. & Vértessy, B. G. Antirepressor specificity is shaped by highly efficient dimerization of the staphylococcal pathogenicity island regulating repressors: Stl repressor dimerization perturbed by dUTPases. *Sci. Rep.* **14**, 1953 (2024).
- 2. Ciges-Tomas, J. R. *et al.* The structure of a polygamous repressor reveals how phageinducible chromosomal islands spread in nature. *Nat. Commun.* **10**, 3676 (2019).