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1. General  

Unless otherwise noted, all reactants or reagents including dry solvents were obtained from commercial 

suppliers and used as received. Benzophenone, trifluoroacetic anhydride (TFAA), L-proline tert-butyl 

ester hydrochloride, L-proline methyl ester hydrochloride, L-proline benzyl ester hydrochloride, (S)-

pyrrolidine-2-carboxamide, (S)-2-(methoxymethyl)pyrrolidine, 3-chloropropylamine hydrochloride, 

4,4′-di-tert-butylbiphenyl (DTBB), nitrocyclohexane, (S)-2-methylpyrrolidine-2-carboxylic acid, L-

proline, benzyl (S,S,S)-2-azabicyclo[3.3.0]octane-3-carboxylate hydrochloride, L-prolinol, L-

methionine methyl ester hydrochloride, L-serine methyl ester hydrochloride, L-tyrosine methyl ester 

hydrochloride, L-proline methyl ester hydrochloride, Raney Ni, (1S,4S)-2,5-diazabicyclo[2.2.1]heptane 

dihydrobromide, lithium hydroxide anhydrous (LiOH), p-toluenesulfonyl chloride (TsCl), sodium 

hydride (NaH: 60%, dispersion in paraffin liquid), 4-ethynyltoluene, azetidine-2-carboxylic acid, 

(trimethylsilyl)diazomethane, hexane solution (abt. 10%), N-(triphenylmethyl)-L-serine methyl ester, 

azepane, methyl chloroformate, methyl pipecolinate hydrochloride, lithium chloride anhydrous (LiCl), 

p-anisic acid, p-toluic acid, 4-chlorobenzoic acid, 4-(trifluoromethyl)benzoic acid, 4-cyanobenzoic acid, 

and o-toluic acid were obtained from Tokyo Chemical Industry (TCI). Pyrrolidine, methyl lithium 

(MeLi), trifluoroacetic acid (TFA), benzoyl chloride (BzCl), triethylamine (Et3N), acetic anhydride 

(Ac2O), N,N-dimethylaminopyridine (DMAP), benzyl bromide (BnBr), lithium, lump, in paraffin liquid, 

methyl acrylate, potassium hydroxide, thionyl chloride (SOCl2), ethylamine hydrochloride, di‐tert‐butyl 

dicarbonate (Boc2O), picolinic acid, pivaloyl chloride (PivCl), methanesulfonyl chloride (MsCl), and 

sodium borohydride (NaBH4) were obtained from KANTO Chemical. Zinc(II) 

trifluoromethanesulfonate (Zn(OTf)2), L-phenylalanine methyl ester hydrochloride, and sodium 

carbonate were obtained from FUJIFILM Wako Pure Chemical Corporation. 1,4-Cyclohexadiene (1,4-

CHD) was obtained from ACROS Chemical and purified by distillation before use. Lithium aluminum 

hydride (LiAlH4) was obtained from Sigma-Aldrich. EDC·HCl was obtained from Peptide Institute. 

CH2Cl2 was purified by a Glass Contour Ultimate Solvent System. Tris[5-fluoro-2-(2-pyridinyl-

κN)phenyl-κC]iridium(III) (Ir(4-Fppy)3),[1]  methyl (S)-1-benzoylpiperidine-2-carboxylate (S13),[2] 

and 2-methyl-1-phenylpyrrolidine (1ai)[3] were synthesized according to procedures and the spectra 

matched with those of compounds reported in the literature. Unless otherwise noted, all reactions were 

performed with dry solvents under an atmosphere of N2 in dried glassware using standard vacuum-line 

techniques. All work-up and purification procedures were carried out with reagent-grade solvents in the 

air.  

Analytical thin-layer chromatography (TLC) was performed using Silica-gel 70 TLC Plate-Wako 

(0.25 mm). The developed chromatogram was analyzed by UV lamp (254 nm). Flash column 

chromatography was performed with Biotage Isolera® equipped with Biotage Sfär Silica (HC) D Duo 

columns. Preparative thin-layer chromatography (PTLC) was performed using Wakogel B5-F silica 

coated plates (0.75 mm) prepared in our laboratory. Preparative recycling gel permeation 

chromatography (GPC) was performed with a JAI LaboACE LC-5060 instrument equipped with 
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JAIGEL-2HR columns using CHCl3 as an eluent. High-resolution mass spectra (HRMS) were 

conducted on Thermo Fisher Scientific ExactivePlus Orbitrap (ESI) and Bruker Compact QTOF (APCI). 

Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL JNM-ECS-400 and JNM-ECZ-

400S (1H 400 MHz, 13C{1H} 101 MHz, 19F 376 MHz) spectrometer. Chemical shifts for 1H NMR are 

expressed in parts per million (ppm) relative to tetramethylsilane (δ 0.00 ppm) in CDCl3, (CD3)2SO, and 

benzene-d6, and CHD2CN (δ 1.94 ppm) in CD3CN. Chemical shifts for 13C{1H} NMR are expressed in 

ppm relative to CDCl3 (δ 77.0 ppm), C6D6 (δ 128.0 ppm), C4D8O (δ 67.0 ppm), (CD3)2SO (δ 40.0 ppm), 

and CD3CN (δ 118.0 ppm). Chemical shifts for 19F NMR are expressed in ppm relative to PhF (δ –

113.15 ppm) or C6F6 (δ –164.90 ppm). Data are reported as follows: chemical shift, multiplicity (s = 

singlet, d = doublet, dd = doublet of doublets, t = triplet, dt = doublet of triplets, td = triplet of doublets, 

q = quartet, qd = quartet of doublets, ddd = doublet of doublets of doublets, tdd = triplet of doublets of 

doublets, dtd = doublet of doublets of doublets, m = multiplet, br s = broad singlet), coupling constant 

(Hz), and integration. 
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2. Preparation of the Starting Materials 

2-1. Synthesis of 1a, 1ab, and 1ac 

 
General Procedure A 

2-Methylpyrrolidine TFA salt (S1) was synthesized according to the reported procedure.[4] To a solution 

of pyrrolidine (821 μL, 10 mmol, 1.0 equiv) and benzophenone (2.19 g, 12 mmol, 1.2 equiv) in Et2O 

(20 mL, 0.50 M) was added MeLi (1.0 M in Et2O, 25 mL, 25 mmol, 2.5 equiv) dropwise at –78 °C under 

an atmosphere of N2. After being stirred at the same temperature for 10 min, the reaction mixture was 

allowed to warm to room temperature and stirred for 7 h. The reaction was quenched with MeOH at 

0 °C, and the mixture was diluted with water and extracted with 6.0 M HCl aq. (pH = 1). The aqueous 

layer was basified to pH = 13 with 6.0 M NaOH aq. The mixture was extracted three times with CH2Cl2. 

The combined organic layer was acidified to pH = 1 with TFA, dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude product was used for the next step without further purification. 

To a solution of the crude product obtained above (1.0 equiv) and Et3N (3.0 equiv) in CH2Cl2 (25 mL, 

0.40 M) was added BzCl (1.2 equiv), Ac2O (1.5 equiv), or TFAA (1.5 equiv) dropwise at 0 °C. The 

reaction mixture was allowed to warm to room temperature and stirred for 1 h, which was then quenched 

with a saturated NaHCO3 aqueous solution and extracted three times with CH2Cl2. The combined 

organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by 

Isolera® to afford N-acyl pyrrolidine 1. 

 

 
(2-Methylpyrrolidin-1-yl)(phenyl)methanone (1a)  

According to General Procedure A, 1a was prepared using BzCl (1.4 mL, 12 mmol, 1.2 equiv). 

Purification by Isolera® (9:1 to 4:1 hexane/EtOAc) afforded 1a (986.5 mg, 52% over 2 steps) as a 

colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.53–7.34 (m, 5H), 4.40–4.28 (m, 0.7H), 4.05–3.95 (m, 

0.3H), 3.80–3.60 (m, 0.6H), 3.52–3.34 (m, 1.4H), 2.20–1.85 (m, 2H), 1.80–1.69 (m, 0.7H), 1.66–1.56 

(m, 1.3H), 1.36 (d, J = 6.0 Hz, 2.2H), 0.91 (br s, 0.8H); 13C{1H} NMR (101 MHz, CDCl3, 323 K) δ 

169.7, 137.8, 129.5, 128.2, 127.0, 53.3, 49.8, 32.9, 24.8, 19.9; HRMS (ESI) m/z: [M+H]+ Calcd for 

C12H16ON 190.1226; found 190.1227. 
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1-(2-Methylpyrrolidin-1-yl)ethan-1-one (1ab)  

According to General Procedure A, 1ab was prepared using Ac2O (1.4 mL, 15 mmol, 1.5 equiv). 

Purification by Isolera® (19:1 CHCl3/MeOH) afforded 1y (461.8 mg, 36% over 2 steps) as a light-yellow 

oil. The spectra are in accordance with those reported in the literature.[5] 

 

 
2,2,2-Trifluoro-1-(2-methylpyrrolidin-1-yl)ethan-1-one (1ac)  

According to General Procedure A, 1ac was prepared using TFAA (2.1 mL, 15 mmol, 1.5 equiv). 

Purification by Isolera® (19:1 to 5:1 hexane/EtOAc) afforded 1z (697.4 mg, 39% yield over 2 steps) as 

a brown oil. 1H NMR (400 MHz, CDCl3, 323 K) δ 4.38–4.21 (m, 1H), 3.70–3.53 (m, 2H), 2.11–1.88 

(m, 3H), 1.68–1.58 (m, 1H), 1.28–1.21 (m, 3H); 13C{1H} NMR (101 MHz, CDCl3, 323 K) δ 155.5 (q, 

JC–F = 36.7 Hz), 116.4 (q, JC–F = 289.9 Hz), 55.1, 54.0 (m), 46.5 (m), 33.1, 31.3, 24.1, 20.7, 20.4, 18.5 

(four excess peaks are observed due to rotamer); 19F NMR (376 MHz, CDCl3, 323 K) δ –70.9, –72.6; 

HRMS (ESI) m/z: [M+Na]+ Calcd for C7H10ONF3Na 204.0607; found 204.0608. 

 

2-2. Synthesis of 1b, 1g–1j, and 1m 

 
General Procedure B 

To a solution of pyrrolidine (1.0 equiv) and Et3N (3.0 equiv–4.0 equiv, see Note) in CH2Cl2 (0.40 M) 

was added benzoyl chloride (BzCl: 1.2 equiv) dropwise at 0 °C. The reaction mixture was allowed to 

warm to room temperature and stirred for 30 min, which was then quenched with a saturated NaHCO3 

aqueous solution. The mixture was extracted three times with CH2Cl2. The combined organic layer was 

dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by Isolera® to afford 

pyrrolidine 1.  

(Note: Et3N (3.0 equiv) was used for 1b and 1j; Et3N (4.0 equiv) was used for 1g, 1h, 1i, and 1m.) 
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(S)-(2-(Methoxymethyl)pyrrolidin-1-yl)(phenyl)methanone (1b) 

According to General Procedure B, 1b was prepared from (S)-2-(methoxymethyl)pyrrolidine (517.1 

mg, 4.5 mmol). Purification by Isolera® (19:1 to 2:1 hexane/EtOAc) afforded 1b (899.2 mg, 91% yield) 

as a colorless oil. 1H NMR (400 MHz, C6D6, 338 K) δ 7.52–7.48 (m, 2H), 7.13–7.08 (m, 3H), 4.41 (br 

s, 1H), 3.50 (br s, 2H), 3.25–3.00 (m, 5H), 1.83–1.75 (m, 1H), 1.74–1.62 (m, 1H), 1.54–1.44 (m, 1H), 

1.28–1.21 (m, 1H); 13C{1H} NMR (101 MHz, CD3CN, 338 K) δ 170.5, 139.3, 130.5, 129.35, 129.26, 

129.2, 128.0, 74.0, 59.4, 58.0, 50.4, 29.0, 25.1; HRMS (ESI) m/z: [M+H]+ Calcd for C13H18O2N 

220.1332; found 220.1333. 

 

 
tert-Butyl benzoyl-L-prolinate (1g)  

According to General Procedure B, 1g was prepared from L-proline tert-butyl ester hydrochloride 

(1.66 g, 8.0 mmol). Purification by Isolera® (9:1 to 3:2 hexane/EtOAc) afforded 1g (1.47 g, 67% yield) 

as a white solid. The spectra are in accordance with those reported in the literature.[6] 

 

 
Methyl benzoyl-L-prolinate (1h)  

According to General Procedure B, 1h was prepared from L-proline methyl ester hydrochloride (1.35 

g, 8.1 mmol). Purification by Isolera® (9:1 to 3:2 hexane/EtOAc) afforded 1h (1.46 g, 77% yield) as a 

white solid. The spectra are in accordance with those reported in the literature.[7] 

 

 
Benzyl benzoyl-L-prolinate (1i)  

According to General Procedure B, 1i was prepared from L-proline benzyl ester hydrochloride (482.9 

mg, 2.0 mmol). Purification by Isolera® (4:1 to 1:1 hexane/EtOAc) afforded 1i (613.4 mg, 99% yield) 

as a colorless oil. The spectra are in accordance with those reported in the literature.[8] 
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(S)-1-Benzoylpyrrolidine-2-carboxamide (1j)  

According to General Procedure B, 1j was prepared from (S)-pyrrolidine-2-carboxamide (456.6 mg, 

4.0 mmol). Purification by Isolera® (19:1 CHCl3/MeOH) afforded 1j (805.9 mg, 92% yield) as a 

colorless oil. 1H NMR (400 MHz, CDCl3, 323 K) δ 7.54–7.48 (m, 2H), 7.40–7.35 (m, 3H), 6.93 (br s, 

1H), 5.40 (br s, 1H), 4.80 (br s, 1H), 3.60–3.40 (m, 2H), 2.47 (br s, 1H), 2.12–1.95 (m, 2H), 1.85 (br s, 

1H); 13C{1H} NMR (101 MHz, CDCl3, 323 K) δ 174.1, 170.1, 136.1, 129.7, 127.9, 126.8, 59.6, 50.0, 

28.4, 24.9; HRMS (ESI) m/z: [M+H]+ Calcd for C12H15O2N2 219.1128; found 219.1129. 

 

 
Benzyl (2S)-1-benzoyloctahydrocyclopenta[b]pyrrole-2-carboxylate (1m) 

According to General Procedure B, 1m was prepared from benzyl (S,S,S)-2-azabicyclo[3.3.0]octane-

3-carboxylate hydrochloride (229.6 mg, 0.8 mmol). Purification by Isolera® (9:1 to 1:1 hexane/EtOAc) 

afforded 1m (261.5 mg, 92% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3, 323 K) δ 7.51–7.26 

(m, 10H), 5.16 (br s, 2H), 4.81 (br s, 1H), 4.23 (br s, 1H), 2.74–2.65 (m, 1H), 2.48–2.40 (m, 1H), 1.93–

1.65 (m, 5H), 1.49–1.27 (m, 2H); 13C{1H} NMR (101 MHz, CDCl3, 323 K) δ 172.3, 170.2, 137.1, 135.6, 

129.4, 128.5, 128.2, 128.1, 126.7, 66.9, 65.5, 61.1, 43.6, 33.7, 31.1, 24.9 (two peaks are missing due to 

overlapping); HRMS (ESI) m/z: [M+H]+ calcd for C22H24O3N 350.1751; found 350.1751. 

 

2-3. Synthesis of (S)-(1-benzoylpyrrolidin-2-yl)methyl acetate (1c) 

 
To a solution of L-prolinol (210.9 mg, 2.1 mmol, 1.0 equiv) and Et3N (872 μL, 6.3 mmol, 3.0 equiv) in 

CH2Cl2 (4.2 mL, 0.50 M) was added BzCl (291 μL, 2.5 mmol, 1.2 equiv) dropwise at 0 °C. After the 

mixture had been allowed to warm to room temperature and stirred for 30 min, to the mixture were 

added Ac2O (296 μL, 3.1 mmol, 1.5 equiv) and DMAP (26.2 mg, 0.21 mmol, 10 mol%). After being 

stirred at room temperature for 3.5 h, the reaction was quenched with a saturated NaHCO3 aqueous 

solution. The mixture was extracted three times with CH2Cl2 using ISOLUTE® phase separator. The 

combined organic layer was concentrated in vacuo. The residue was purified by Isolera® (9:1 to 1:1 

hexane/EtOAc) to afford 1c (400.8 mg, 78% yield over 2 steps) as a colorless oil. 1H NMR (400 MHz, 

CDCl3, 323 K) δ 7.52–7.46 (m, 2H), 7.43–7.35 (m, 3H), 4.54 (br s, 1H), 4.37–4.12 (m, 2H), 3.52–3.37 
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(m, 2H), 2.14–2.02 (m, 4H), 2.00–1.90 (m, 1H), 1.89–1.76 (m, 2H); 13C{1H} NMR (101 MHz, CDCl3, 

323 K) δ 170.7, 170.2, 137.1, 129.8, 128.2, 127.0, 64.4, 55.8, 50.0, 27.7, 24.7, 20.7; HRMS (ESI) m/z: 

[M+H]+ Calcd for C14H18O3N 248.1281; found 248.1281. 

 

2-4. Synthesis of (S)-(2-((benzyloxy)methyl)pyrrolidin-1-yl)(phenyl)methanone (1d) 

 
To a solution of L-prolinol (820.8 mg, 8.1 mmol, 1.0 equiv) and Et3N (3.4 mL, 24 mmol, 3.0 equiv) in 

CH2Cl2 (20 mL, 0.40 M) was added BzCl (1.0 mL, 8.9 mmol, 1.1 equiv) dropwise at 0 °C. After being 

stirred at room temperature for 30 min, the reaction was quenched with a saturated NaHCO3 aqueous 

solution. The mixture was extracted three times with CH2Cl2. The combined organic layer was dried 

over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by Isolera® (9:1 to 1:2 

hexane/EtOAc) to afford (S)-(2-(hydroxymethyl)pyrrolidin-1-yl)(phenyl)methanone (S2) (1.43 g, 86% 

yield) as a colorless oil.  

To a solution of S2 (515.5 mg, 2.5 mmol, 1.0 equiv) in THF (6.3 mL, 0.40 M) was slowly added sodium 

hydride (NaH: 60% dispersion in paraffin liquid, 150.1 mg, 3.8 mmol, 1.5 equiv). To the mixture was 

added benzyl bromide (BnBr: 358 μL, 3.0 mmol, 1.2 equiv) dropwise at 0 °C. After the mixture was 

allowed to warm to room temperature and stirred for 30 min, the reaction was quenched with water. The 

mixture was extracted three times with Et2O. The combined organic layer was dried over MgSO4, 

filtered, and concentrated in vacuo. The residue was purified by Isolera® (9:1 to 3:2 hexane/EtOAc) to 

afford 1d (666.3 mg, 90% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3, 323 K) δ 7.55–7.26 (m, 

10H), 4.65–4.30 (m, 3H), 3.90–3.31 (m, 4H), 2.12–1.88 (m, 3H), 1.85–1.65 (m, 1H); 13C{1H} NMR 

(101 MHz, CDCl3, 323 K) δ 169.8, 138.5, 137.4, 129.5, 128.1, 128.0, 127.4, 127.3, 127.0, 73.1, 70.5, 

56.8, 50.3, 27.8, 24.9; HRMS (ESI) m/z: [M+H]+ Calcd for C19H22O2N 296.1645; found 296.1645. 

 

2-5. Synthesis of phenyl(2-phenylpyrrolidin-1-yl)methanone (1e) 

 
To a solution of 3-chloropropan-1-amine hydrochloride (715.1 mg, 5.5 mmol, 1.0 equiv) and Na2CO3 

(529.9 mg, 5.0 mmol, 1.0 equiv) in H2O (25 mL, 0.20 M) was added benzaldehyde (530.6 mg, 5.0 mmol, 

1.0 equiv). After being stirred at room temperature for 18 h, the reaction was diluted with EtOAc. The 

mixture was extracted three times with EtOAc. The combined organic layer was washed with brine, 
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dried over Na2SO4, filtered, and concentrated in vacuo. The crude product was used for the next step 

without further purification. 

To a solution of 4,4'-di-tert-butylbiphenyl (66.6 mg, 0.25 mmol, 5.0 mol%) in THF (25 mL, 0.20 M) 

was added lithium (ca. 347 mg, 50 mmol, 10 equiv). After the mixture was stirred for 1 h at –78 °C, the 

crude product obtained above was added to the mixture. After being stirred for 5 h, the reaction was 

quenched with water. The mixture was allowed to warm to room temperature and extracted three times 

with EtOAc. The combined organic layer was washed with brine, dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude product was used for the next step without further purification. 

To a solution of the crude product obtained above and Et3N (2.09 mL, 15 mmol, 3.0 equiv) in CH2Cl2 

(12.5 mL, 0.40 M) was added BzCl (871 µL, 7.5 mmol, 1.5 equiv). After being stirred for 3 h, the 

reaction was quenched with water. The mixture was extracted three times with CH2Cl2. The combined 

organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by 

Isolera® (92:8 to 1:2 hexane/EtOAc) to afford 1e (1.04 g, 83% yield in 3 steps) as a yellow oil. The 

spectra are in accordance with those reported in the literature.[9] 

 

2-6. Synthesis of phenyl(1-azaspiro[4.5]decan-1-yl)methanone (1f) 

 
To a solution of nitrocyclohexane (609 μL, 5.0 mmol, 1.0 equiv) and KOH (8.0 mg, 0.15 mmol, 3.0 

mol%) in Et2O (1.0 mL, 4.8 M) was added methyl acrylate (673 μL, 7.5 mmol, 1.5 equiv). After the 

mixture had been stirred at room temperature for 17 h, the mixture was acidified to ca. pH = 5 with 

acetic acid. The mixture was concentrated in vacuo and the residue was purified by Isolera® (49:1 to 

19:1 hexane/EtOAc) to afford methyl 3-(1-nitrocyclohexyl)propanoate (S7) (956.7 mg, 89% yield) as a 

colorless oil. 

To a 50 mL round-bottom flask containing a magnetic stirring bar were added S7 (162.7 mg, 0.76 mmol, 

1.0 equiv), Raney Ni (a suitable amount, a spatula), and EtOH (7.5 mL, 0.10 M). The flask was subjected 

to H2 gas with a balloon (1 atm). After being stirred at room temperature for 12 h, the mixture was 

passed through a pad of Celite® with EtOAc as an eluent. The filtrate was concentrated in vacuo and 

recrystallized (hot MeOH/Et2O) to afford 1-azaspiro[4.5]decan-2-one (S8) (93.1 mg, 80% yield) as a 

white solid. 

To a solution of lithium aluminum hydride (LiAlH4: 57.0 mg, 1.5 mmol, 2.5 equiv) in THF (0.60 mL, 

1.0 M) was added S8 (90.9 mg, 0.60 mmol, 1.0 equiv) at 0 °C. The reaction mixture was refluxed for 
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22 h. After being cooled to room temperature, the mixture was diluted with Et2O (1.0 mL) and quenched 

with water (60 μL), 3.0 M NaOH aq. (60 μL), and water (180 μL). The precipitates were removed by 

passing through a pad of Celite® with EtOAc as an eluent. To the filtrate was added 1.0 M HCl aq. and 

concentrated in vacuo. The crude product was used for the next step without further purification. 

To a solution of the crude product obtained above and Et3N (330 μL, 2.4 mmol, 4.0 equiv) in CH2Cl2 

(1.5 mL, 0.40 M) was added BzCl (83 μL, 0.71 mmol, 1.2 equiv) dropwise at 0 °C. After the mixture 

was allowed to warm to room temperature and stirred for 30 min, the reaction was quenched with a 

saturated NaHCO3 aqueous solution. The mixture was extracted three times with CH2Cl2 using 

ISOLUTE® phase separator. The combined organic layer was concentrated in vacuo. The residue was 

purified by Isolera® (19:1 to 4:1 hexane/EtOAc) to afford 1f (66.9 mg, 46% yield over 2 steps) as a 

white solid. 1H NMR (400 MHz, CDCl3) δ 7.48–7.33 (m, 5H), 3.35 (t, J = 6.8 Hz, 2H), 2.94–2.87 (m, 

2H), 1.95 (t, J = 6.8 Hz, 2H), 1.77–1.73 (m, 4H), 1.62 (br s, 1H), 1.48–1.42 (m, 2H), 1.38–1.29 (m, 3H); 
13C{1H} NMR (101 MHz, CDCl3, 323 K) δ 169.5, 139.8, 128.8, 128.1, 126.1, 66.4, 51.5, 36.3, 32.9, 

25.0, 24.2, 23.2; HRMS (ESI) m/z: [M+H]+ Calcd for C16H22ON 244.1696; found 244.1694. 

 

2-7. Synthesis of 1k and 1n–1r 

 
General Procedure C 

To a solution of L-proline (1.0 equiv) and Et3N (3.0 equiv) in CH2Cl2 (0.50 M) was added BzCl (1.2 

equiv) dropwise and stirred at room temperature for 30 min, which was then quenched with water. The 

mixture was extracted with 6.0 M NaOH aq. The aqueous layer was acidified to pH = 1 with 6.0 M HCl 

aq. The mixture was extracted three times with CH2Cl2 using ISOLUTE® phase separator. The combined 

organic layer was concentrated in vacuo. The crude product was used for the next step without further 

purification. 

To a solution of the crude product obtained above (1.0 equiv) in CH2Cl2 (0.50 M) was added EDC·HCl 

(1.2 equiv). After the mixture had been stirred at room temperature for 30 min, to a mixture were added 

Et3N (1.5 equiv) and amine (1.2 equiv). The solution was stirred for several hours while the reaction 

progress was being monitored by TLC. After the starting material had been completely consumed, the 

reaction was quenched with water. The mixture was extracted three times with CH2Cl2 using ISOLUTE® 

phase separator. The combined organic layer was concentrated in vacuo. The residue was purified by 

Isolera® to afford pyrrolidine 1. 
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(S)-1-Benzoyl-N-ethylpyrrolidine-2-carboxamide (1k) 

According to General Procedure C (3.0 mmol scale), 1k was prepared with ethylamine hydrochloride 

(293.7 mg, 3.6 mmol). Purification by Isolera® (9:1 to 2:3 hexane/EtOAc) afforded 1k (263.3 mg, 36% 

yield over 2 steps) as a colorless oil. 1H NMR (400 MHz, C6D6, 338 K) δ 7.42–7.37 (m, 2H), 7.11–7.02 

(m, 3H), 4.64 (br s, 1H), 3.22–2.84 (m, 4H), 2.45 (br s, 1H), 1.75–1.65 (m, 1H), 1.56–1.46 (m, 1H), 

1.28–1.17 (m, 1H), 0.90 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (101 MHz, C6D6, 338 K) δ 171.3, 170.5, 

137.6, 129.9, 78.1, 60.5, 50.2, 34.6, 28.2, 25.3, 14.9 (one peak is missing due to overlapping); HRMS 

(ESI) m/z: [M+Na]+ Calcd for C14H18O2N2Na 269.1261; found 269.1259. 

 

 
Methyl benzoylprolyl-L-phenylalaninate (1n) 

According to General Procedure C (2.0 mmol scale), 1n was prepared with L-phenylalanine methyl 

ester hydrochloride (517.4 mg, 2.4 mmol). Purification by Isolera® (4:1 to 1:5 hexane/EtOAc) afforded 

1n (316.5 mg, 42% yield over 2 steps, as a mixture of diastereomers) as a white solid. 1H NMR of the 

mixture of the diastereomers (400 MHz, CDCl3, 323 K) δ 7.47–7.35 (m, 5H), 7.24–7.10 (m, 5H), 4.89–

4.70 (m, 2H), 3.75–3.67 (m, 3H), 3.54–3.36 (m, 2H), 3.23–3.13 (m, 1H), 3.10–3.00 (m, 1H), 2.36 (br s, 

1H), 2.06–1.73 (m, 3H); 13C{1H} NMR of the mixture of the diastereomers (101 MHz, CDCl3, 323 K) 

δ 171.4, 170.7, 170.6, 136.0, 129.8, 128.9, 128.2, 128.1, 127.9, 126.8, 126.5, 59.5, 53.1, 51.8, 49.8, 37.5, 

27.2, 24.9; HRMS (ESI) m/z: [M+H]+ Calcd for C22H25O4N2 381.1809; found 381.1808. 

 

 
Methyl benzoylprolyl-L-methioninate (1o) 

According to General Procedure C (3.0 mmol scale), 1o was prepared with L-methionine methyl ester 

hydrochloride (718.4 mg, 3.6 mmol). Purification by Isolera® (4:1 to 1:2 hexane/EtOAc) afforded 1o 

(476.7 mg, 44% yield over 2 steps, as a mixture of diastereomers) as a light-yellow solid. 1H NMR of 

the mixture of the diastereomers (400 MHz, CDCl3, 323 K) δ 7.56–7.48 (m, 2H), 7.46–7.34 (m, 3H), 

4.90–4.65 (m, 2H), 3.77–3.70 (m, 3H), 3.62–3.42 (m, 2H), 2.60–2.30 (m, 3H), 2.25–1.95 (m, 7H), 1.91–

1.78 (m, 1H); 13C{1H} NMR of the mixture of the diastereomers (101 MHz, CDCl3, 323 K) δ 171.6, 
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170.9, 170.5, 170.2, 136.0, 129.7, 127.8, 126.6, 59.5, 51.8, 51.19, 51.17, 49.9, 31.1, 30.9, 29.7, 29.6, 

27.4, 24.9, 14.9 (four excess peaks are observed due to diastereomers); HRMS (ESI) m/z: [M+H]+ Calcd 

for C18H25O4N2S 365.1530; found 365.1530. 

 

 
Methyl benzoylprolyl-L-serinate (1p) 

According to General Procedure C (3.0 mmol scale), 1p was prepared with L-serine methyl ester 

hydrochloride (559.8 mg, 3.6 mmol). Purification by Isolera® (19:1 to 9:1 CHCl3/MeOH) afforded 1p 

(556.7 mg, 59% yield over 2 steps, as a mixture of diastereomers) as a white solid. 1H NMR of the 

mixture of the diastereomers (400 MHz, CDCl3, 323 K) δ 7.56–7.50 (m, 2H), 7.45–7.36 (m, 3H), 7.20 

(br s, 1H), 4.85–4.50 (m, 2H), 4.10–3.88 (m, 2H), 3.80–3.74 (m, 3H), 3.68–3.46 (m, 2H), 2.36–1.98 (m, 

3H), 1.94–1.80 (m, 1H); 13C{1H} NMR of the mixture of the diastereomers (101 MHz, CD3OD, 328 K) 

δ 174.4, 172.2, 172.1, 137.6, 131.4, 129.4, 128.1, 62.8, 61.7, 56.3, 52.8, 51.6, 30.7, 26.1; HRMS (ESI) 

m/z: [M+H]+ Calcd for C16H21O5N2 321.1445; found 321.1444. 

 

 
Methyl benzoylprolyl-L-tyrosinate (1q) 

According to General Procedure C (3.0 mmol scale), 1q was prepared with L-tyrosine methyl ester 

hydrochloride (834.0 mg, 3.6 mmol). Purification by Isolera® (4:1 to 1:9 hexane/EtOAc) afforded 1q 

(807.0 mg, 68% yield over 2 steps, as a mixture of diastereomers) as a colorless oil. 1H NMR of the 

mixture of the diastereomers (400 MHz, CDCl3, 323 K) δ 7.46–7.33 (m, 5H), 7.20–7.15 (m, 1H), 6.98–

6.93 (m, 2H), 6.66–6.57 (m, 2H), 6.36 (br s, 1H), 4.85–4.66 (m, 2H), 3.73–3.67 (m, 3H), 3.55–3.35 (m, 

2H), 3.13–3.04 (m, 1H), 2.96 (dd, J = 14.4, 6.8 Hz, 1H), 2.30 (br s, 1H), 2.10–1.90 (m, 2H), 1.85–1.75 

(m, 1H); 13C{1H} NMR of the mixture of the diastereomers (101 MHz, CDCl3, 323 K) δ 171.6, 171.3, 

171.0, 170.8, 155.8, 135.6, 130.0, 129.9, 128.1, 126.8, 126.4, 115.3, 59.9, 53.4, 51.9, 50.0, 36.7, 28.0, 

24.9 (one excess peak is observed due to diastereomers); HRMS (ESI) m/z: [M+H]+ Calcd for 

C22H25O5N2 397.1758; found 397.1758. 
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Methyl benzoylprolyl-L-prolinate (1r) 

According to General Procedure C (3.0 mmol scale), 1r was prepared with L-proline methyl ester 

hydrochloride (596.8 mg, 3.6 mmol). Purification by Isolera® (99:1 to 19:1 CHCl3/MeOH) afforded 1r 

(538.0 mg, 54% yield over 2 steps, as a mixture of diastereomers) as a colorless oil. 1H NMR of the 

mixture of the diastereomers (400 MHz, (CD3)2SO, 413 K) δ 7.43–7.35 (m, 5H), 4.75–4.50 (m, 1H), 

4.31 (br s, 1H), 3.67–3.59 (m, 3H), 3.57–3.26 (m, 2H), 2.83–2.76 (m, 2H), 2.30–1.75 (m, 8H); 13C{1H} 

NMR of the mixture of the diastereomers (101 MHz, (CD3)2SO, 413 K) δ 171.8, 170.2, 168.3, 137.3, 

137.1, 129.2, 129.0, 127.83, 127.77, 126.5, 126.4, 58.7, 58.3, 51.2, 48.3, 46.0, 28.6, 28.2, 24.1, 23.6 

(four excess peaks are observed due to diastereomers); HRMS (ESI) m/z: [M+H]+ Calcd for C18H23O4N2 

331.1652; found 331.1652. 

 

2-8. Synthesis of methyl (S)-1-benzoyl-2-methylpyrrolidine-2-carboxylate (1l) 

 

To a solution of (S)-2-methylpyrrolidine-2-carboxylic acid (258.5 mg, 2.0 mmol, 1.0 equiv) in MeOH 

(4.0 mL, 0.50 M) was added thionyl chloride (SOCl2: 92 μL, 4.0 mmol, 2.0 equiv) dropwise at 0 °C. 

The reaction mixture was refluxed for 3 h. After the reaction mixture had been cooled to room 

temperature, the mixture was concentrated in vacuo. The crude product was used for the next step 

without further purification. 

To a solution of the crude product obtained above (1.0 equiv) and Et3N (836 μL, 6.0 mmol, 3.0 equiv) 

in CH2Cl2 (5.0 mL, 0.40 M) was added BzCl (279 μL, 2.4 mmol, 1.2 equiv) dropwise at 0 °C. After the 

mixture was allwed to warm to room temperature and stirred for 1 h, the reaction was quenched with a 

saturated NaHCO3 aqueous solution. The mixture was extracted three times with CH2Cl2 using 

ISOLUTE® phase separator. The combined organic layer was concentrated in vacuo. The residue was 

purified by Isolera® (9:1 to 1:1 hexane/EtOAc) to afford 1l (438.7 mg, 89% yield) as a colorless oil. 1H 

NMR (400 MHz, CDCl3) δ 7.62–7.40 (m, 2H), 7.42–7.35 (m, 3H), 3.77 (s, 3H), 3.65–3.52 (m, 2H), 

2.27–2.17 (m, 1H), 2.07–1.85 (m, 3H), 1.73 (s, 3H); 13C{1H} NMR (101 MHz, CDCl3, 323 K) δ 174.0, 

168.8, 136.8, 129.5, 127.9, 126.5, 65.8, 51.9, 50.6, 38.7, 23.9, 21.7; HRMS (ESI) m/z: [M+H]+ Calcd 

for C14H18O3N 248.1281; found 248.1281. 
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2-9. Synthesis of 1-((1S,4S)-5-benzoyl-2,5-diazabicyclo[2.2.1]heptan-2-yl)-2,2,2-trifluoroethan-1-

one (1s) 

 
To a solution of (1S,4S)-2,5-diazabicyclo[2.2.1]heptane dihydrobromide (434.4 mg, 1.7 mmol, 1.0 

equiv) in CH2Cl2 (4.0 mL, 0.40 M) were added Et3N (1.16 mL, 8.4 mmol, 5.0 equiv), BzCl (194 µL, 1.7 

mL, 1.0 equiv), and TFAA (232 µL, 1.7 mmol, 1.0 equiv) at 0 °C. After the mixture was allowed to 

warm to room temperature and stirred for 8 h, the reaction was quenched with water. The mixture was 

extracted three times with CH2Cl2 and the combined organic layer was dried over Na2SO4, filtered, and 

concentrated in vacuo. The residue was purified by Isolera® (92:8 to 1:2 hexane/EtOAc) to afford 1s 

(89.4 mg, 11% yield) as a light yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.53–7.39 (m, 5H), 5.15–4.54 

(m, 2H), 3.99 (d, J = 10.4 Hz, 0.2H), 3.87–3.57 (m, 3.3H), 3.51–3.40 (m, 0.5H), 2.14–1.97 (m, 1.8H), 

1.91–1.85 (m, 0.2H); 13C{1H} NMR (101 MHz, CDCl3) δ 170.5, 170.2, 169.3, 155.8–154.2 (m), 135.4, 

134.9, 130.9, 130.6, 128.7, 128.5, 127.3, 127.2, 127.0, 116.0 (q, J = 289 Hz), 59.6 , 58.8, 58.1, 58.0, 

57.6, 57.1, 56.9, 56.4, 56.3, 55.3, 55.1, 54.8, 54.3, 53.8, 53.4, 52.8, 38.5, 36.9, 36.3, 34.8 (21 excess 

peaks are observed due to rotamer); 19F NMR (376 MHz, CDCl3) δ –71.6, –71.7, –72.8, –73.0 (three 

excess peaks are observed due to rotamer); HRMS (ESI) m/z: [M+Na]+ Calcd for C14H13O2F3N2Na 

321.0821; found 321.0820. 

 

2-10. Synthesis of other aza-heterocycles 

Methyl 1-(4-methoxybenzoyl)indoline-2-carboxylate (1t) 

 

To a solution of indoline-2-carboxylic acid (244.8 mg, 1.5 mmol, 1.0 equiv) in MeOH (3.0 mL, 0.50 M) 

was added SOCl2 (219 µL, 3.0 mmol, 2.0 equiv). After being heated at 70 °C for 3 h, the reaction mixture 

was concentrated in vacuo. To the residue were added CH2Cl2 (5.0 mL, 0.40 M), Et3N (1.1 mL, 8.0 

mmol, 4.0 equiv), and BzCl (406 µL, 3.0 mmol, 1.5 equiv). After being stirred for 2 h, the reaction was 

quenched with a saturated NaHCO3 aq. The mixture was extracted three times with CH2Cl2. The 

combined organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The residue was 

purified by Isolera® (19:1 to 3:1 hexane/EtOAc) to afford S13 (350.0 mg, 83% yield) as an orange oil. 

The spectra are in accordance with those reported in the literature.[10] 
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Methyl 1-(4-methoxybenzoyl)indoline-2-carboxylate (1t) 

 
To a solution of indoline-2-carboxylic acid (336.5 mg, 2.0 mmol, 1.0 equiv) in MeOH (4.0 mL, 0.50 M) 

was added SOCl2 (292 µL, 4.0 mmol, 2.0 equiv). After being heated at 70 °C for 3 h, the reaction mixture 

was concentrated in vacuo. To the residue were added CH2Cl2 (5.0 mL, 0.40 M), Et3N (1.1 mL, 8.0 

mmol, 4.0 equiv), and 4-methoxybenzoyl chloride (406 µL, 3.0 mmol, 1.5 equiv). After being stirred 

for 20 min, the reaction was quenched with a saturated NaHCO3 aq. The mixture was extracted three 

times with CH2Cl2. The combined organic layer was dried over Na2SO4, filtered, and concentrated in 

vacuo. The residue was purified by Isolera® (9:1 to 3:1 hexane/EtOAc) to afford 1t (304.2 mg, 49% 

yield) as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.54 (d, J = 8.4 Hz, 2H), 7.18–7.16 (m, 1H), 7.00–

6.93 (m, 4H), 5.13 (dd, J = 10.8, 4.4 Hz, 1H), 3.87 (s, 3H), 3.73 (s, 3H), 3.55 (dd, J = 16.0, 10.8 Hz, 

1H), 3.17 (dd, J = 16.0, 4.4 Hz, 1H); 13C{1H} NMR (101 MHz, CDCl3) δ 171.8, 168.9, 161.6, 142.3, 

129.8, 129.6, 128.0, 127.3, 125.0, 123.4, 115.3, 113.9, 61.8, 55.3, 52.5, 32.3; HRMS (ESI) m/z: [M+H]+ 

Calcd for C18H18O4N 312.1230; found 312.1225. 

 

Methyl (R)-1-benzoylaziridine-2-carboxylate (1u) 

 
To a solution of N-(triphenylmethyl)-L-serine methyl ester (1.03 g, 2.9 mmol, 1.0 equiv) and Et3N (797 

µL, 5.7 mmol, 2.0 equiv) in CH2Cl2 (8.7 mL, 0.30 M) was added TsCl (599.9 mg, 3.2 mmol, 1.1 equiv) 

at 0 °C. The mixture was allowed to warm to room temperature and stirred for 21 h. The reaction was 

quenched with water. The mixture was extracted three times with CH2Cl2, and the combined organic 

layer was dried over Na2SO4, filtered, and concentrated in vacuo. The crude product was used for the 

next step without further purification. 

To a solution of the crude product obtained above in THF (1.7 mL, 1.7 M) was added Et3N (797 µL, 5.7 

mmol, 2.0 equiv). The reaction was heated at 70 °C for 11 h and concentrated in vacuo. The residue was 
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purified by Isolera® (97:3 to 4:1 hexane/EtOAc) to afford S15 (790.5 mg, 80% yield in 2 steps) as a 

colorless oil. 

To a solution of S15 (790.5 mg, 2.3 mmol, 1.0 equiv) in CH2Cl2/MeOH (3.0 mL/ 4.0 mL, 0.30 M) was 

added TFA (881 µL, 11.5 mmol, 5.0 equiv). After the reaction was stirred for 1 h at room temperature 

and cooled to 0 °C, to the mixture were added Et3N (2.57 mL, 18.4 mmol, 8.0 equiv) and BzCl (539 µL, 

4.6 mmol, 2.0 equiv) at 0 °C. After the reaction was allowed to warm to room temperature and stirred 

for 2 h, to the mixture were added Et3N (856 µL, 6.1 mmol, 2.3 equiv) and BzCl (539 µL, 4.6 mmol, 

2.0 equiv). After being stirred for 7 h, the reaction was quenched with a saturated NaHCO3 aq. The 

mixture was extracted three times with CH2Cl2. The combined organic layer was dried over Na2SO4, 

filtered, and concentrated in vacuo. The residue was purified by Isolera® (92:8 to 1:2 hexane/EtOAc) to 

afford 1u (282.4 mg, 36% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 8.03–8.00 (m, 2H), 

7.59–7.55 (m, 1H), 7.48–7.44 (m, 2H), 3.74 (s, 3H), 3.28 (dd, J = 5.6, 2.8 Hz, 1H), 2.77 (dd, J = 2.8, 

1.2 Hz, 1H), 2.69 (dd, J = 5.6, 1.2 Hz, 1H); 13C{1H} NMR (101 MHz, CDCl3) δ 176.7, 168.6, 133.1, 

132.3, 128.9, 128.5, 52.6, 35.3, 31.3; HRMS (ESI) m/z: [M+Na]+ Calcd for C11H11O3NNa 228.0631; 

found 228.0632. 

 
Methyl 1-benzoylazetidine-2-carboxylate (1v) 

 

To a solution of azetidine-2-carboxylic acid (198.3 mg, 2.0 mmol, 1.0 equiv) in CH2Cl2 (5.0 mL, 0.40 

M) were added Et3N (820 µL, 5.9 mmol, 3.0 equiv) and BzCl (250 µL, 2.2 mmol, 1.1 equiv). After 

being stirred for 3 h, the reaction was quenched with 1.0 M HCl aq. The mixture was extracted three 

times with CH2Cl2. The combined organic layer was dried over Na2SO4, filtered, and concentrated in 

vacuo. The crude product was used for the next step without further purification. 

To a solution of the crude product obtained above in MeOH (5.0 mL, 0.40 M) was added TMSCHN2 (in 

ca. 0.60 M hexane, 6.0 mL, 3.6 mmol, 1.8 equiv) slowly. After being stirred for 15 min, the reaction 

mixture was concentrated in vacuo. The residue was purified by Isolera® (92:8 to 1:2 hexane/EtOAc) to 

afford 1v (90.3 mg, 14% yield) as a light yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.74–7.62 (m, 2H), 

7.50–7.37 (m, 3H), 4.96 (dd, J = 9.2, 5.2 Hz, 1H), 4.51–4.38 (m, 1H), 4.25–4.13 (m, 1H), 3.88–3.47 (m, 

3H), 2.77–2.59 (m, 1H), 2.43–2.22 (m, 1H); 13C{1H} NMR (101 MHz, CDCl3) δ 171.4, 169.9, 132.5, 

131.3, 128.4, 128.0, 59.7, 52.3, 51.7, 20.6; HRMS (APCI) m/z: [M+H]+ Calcd for C12H14O3N 220.0968; 

found 220.0962. 
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Methyl 1-(4-methoxybenzoyl)piperidine-2-carboxylate (1w) 

 
To a solution of 4-methoxybenzoic acid (286.9 mg, 1.9 mmol, 3.6 equiv) in CH2Cl2 (4.0 mL, 0.10 M) 

were added (COCl)2 (171 µL, 2.0 mmol, 4.0 equiv) and DMF (5 drops). After the reaction was stirred 

for 20 min, to the solution were added Et3N (1.3 mL, 9.2 mmol, 23.8 equiv) and methyl pipecolinate 

hydrochloride (92.1 mg, 0.39 mmol, 1.0 equiv) at 0 °C. The mixture was allowed to warm to room 

temperature and stirred for 3 h. The reaction was quenched with water. The mixture was extracted three 

times with CH2Cl2. The combined organic layer was dried over Na2SO4, filtered, and concentrated in 

vacuo. The residue was purified by Isolera® (92:8 to 1:2 hexane/EtOAc) to afford 1w (100.8 mg, 94% 

yield) as a colorless oil. The spectra are in accordance with those reported in the literature.[11] 

 
Methyl 1-benzoylpiperidine-2-carboxylate (S17) 

 

To a solution of methyl pipecolinate hydrochloride (409.0 mg, 2.3 mmol, 1.0 equiv) and Et3N (793 µL, 

5.7 mmol, 2.5 equiv) in CH2Cl2 was added BzCl (317 µL, 2.7 mmol, 1.2 equiv) at 0 °C. The mixture 

was allowed to warm to room temperature and stirred for 5 h. The reaction was quenched with water. 

The mixture was extracted three times with CH2Cl2. The combined organic layer was dried over Na2SO4, 

filtered, and concentrated in vacuo. The residue was purified by Isolera® (92:8 to 1:2 hexane/EtOAc) to 

afford S17 (560 mg, 99% yield) as a colorless oil. The spectra are in accordance with those reported in 

the literature.[12] 
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(4-Methoxyphenyl)(2-methylazepan-1-yl)methanone (1x) 

 

To a solution of azepane (313.2 mg, 3.0 mmol, 1.0 equiv) and benzophenone (656.0 mg, 3.6 mmol, 1.2 

equiv) in Et2O (6.0 mL, 0.50 M) was added MeLi (1.1 M in Et2O, 7.1 mL, 7.5 mmol, 2.5 equiv) at –

78 °C. After being stirred for 30 min, the reaction was allowed to warm to room temperature and stirred 

for 14 h. The reaction was quenched with 1.0 M HCl aq. and acidified to pH = 1 with 6.0 M HCl aq. 

The mixture was extracted with Et2O and the aqueous layer was basified to pH = 14 with 6.0 M NaOH 

aq. The mixture was extracted three times with CH2Cl2 and the combined organic layer was acidified to 

pH = 1 with TFA. The mixture was dried over Na2SO4, filtered, and concentrated in vacuo. The crude 

product was used for the next step without further purification. 

To a solution of the crude product obtained above in CH2Cl2 (7.5 mL, 0.40 M) were added Et3N (2.1 

mL, 15.0 mmol, 5.0 equiv), EDC·HCl (632.6 mg, 3.3 mmol, 1.1 equiv), DMAP (110.0 mg, 0.90 mmol, 

30 mol%) and 4-methoxybenzoic acid (547.7 mg, 3.6 mmol, 1.2 equiv). After being stirred for 3.5 h, 

the reaction was quenched with 1.0 M HCl aq. The mixture was extracted three times with CH2Cl2 and 

the combined organic layer was washed with a saturated NaHCO3 aq. dried over Na2SO4, filtered, and 

concentrated in vacuo. The residue was purified by Isolera® (97:3 to 9:1 CHCl3/MeOH) and GPC to 

afford 1x (122.0 mg, 16% yield in 2 steps) as a colorless oil. 1H NMR (400 MHz, C6D6) δ 7.30 (d, J = 

8.4 Hz, 2H), 6.69 (d, J = 8.4 Hz, 2H), 4.98–4.78 (m, 0.2H), 4.50–4.31 (m, 0.8H), 3.75–3.57 (m, 0.8H), 

3.44–3.28 (m, 0.2H), 3.24 (s, 3H), 2.68–2.32 (m, 1H), 2.14–1.93 (m, 0.8H), 1.81–0.66 (m, 10.2H); 
13C{1H} NMR (101 MHz, CDCl3) δ 171.9, 171.1, 159.7, 130.2, 127.7, 127.5, 113.8, 113.6, 55.2, 53.5, 

50.1, 43.4, 39.9, 36.4, 35.4, 30.7, 30.1, 29.1, 27.6, 25.2, 24.9, 20.9, 19.6 (10 excess peaks are observed 

due to rotamer); HRMS (ESI) m/z: [M+H]+ Calcd for C15H22O2N 248.1645; found 248.1650. 
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(2-Methylazepan-1-yl)(phenyl)methanone (S19) 

 

To a solution of azepane (308.5 mg, 3.1 mmol, 1.0 equiv) and benzophenone (680.2 mg, 3.7 mmol, 1.2 

equiv) in Et2O (6.2 mL, 0.50 M) was added MeLi (1.1 M in Et2O, 6.9 mL, 7.8 mmol, 2.5 equiv) at –

78 °C. After being stirred for 5 min, the reaction was allowed to warm to room temperature and stirred 

for 10 h. The reaction was quenched with 1.0 M HCl aq. and acidified to pH = 1 with 6.0 M HCl aq. 

The mixture was extracted with Et2O and the aqueous layer was basified to pH = 14 with 6.0 M NaOH 

aq. The mixture was extracted three times with CH2Cl2 and the combined organic layer was acidified to 

pH = 1 with TFA. The mixture was dried over Na2SO4, filtered, and concentrated in vacuo. The crude 

product was used for the next step without further purification. 

To a solution of the crude product above in CH2Cl2 were added Et3N (2.2 mL, 15.6 mmol, 5.0 equiv) 

and BzCl (434 µL, 3.7 mmol, 1.2 equiv) at 0 °C. The mixture was allowed to warm to room temperature 

and stirred for 1 h. The reaction was quenched with water. The mixture was extracted three times with 

CH2Cl2 and the combined organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The 

residue was purified by Isolera® (92:8 hexane/EtOAc to EtOAc) to afford S17 (128.3 mg, 13% yield in 

2 steps) as a light yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.42–7.37 (m, 2H), 7.34–7.30 (m, 3H), 

4.72–4.66 (m, 0.4H), 4.29–4.22 (m, 0.6H), 3.72–3.64 (m, 0.6H), 3.47–3.40 (m, 0.4H), 3.03–2.97 (m, 

0.4H), 2.82–2.75 (m, 0.6H), 2.14–2.06 (m, 0.4H), 1.98–1.87 (m, 1.4H), 1.84–1.72 (m, 2.6H), 1.40–1.24 

(m, 3.6H), 1.20 (d, J = 6.4 Hz, 1.2H), 1.05 (d, J = 6.4 Hz, 1.8H); 13C{1H} NMR (101 MHz, CDCl3) δ 

171.9, 171.1, 137.9, 137.7, 128.5, 128.44, 128.40, 128.3, 125.8, 125.7, 53.4, 50.0, 43.2, 39.7, 36.2, 35.3, 

30.6, 30.0, 29.0, 27.6, 25.1, 24.8, 20.8, 19.5 (twelve excess peaks are observed due to rotamer); HRMS 

(ESI) m/z: [M+H]+ Calcd for C14H20ON 218.1539; found 218.1540. 

 

Azetidin-1-yl(phenyl)methanone (1y) 

 
To a solution of azetidine hydrochloride (280.7 mg, 3.0 mmol, 1.0 equiv) and Et3N (627 µL, 4.5 mmol, 

1.5 equiv) in CH2Cl2 (10 mL, 0.30 M) was added BzCl (418 µL, 3.6 mmol, 1.2 equiv) at 0 °C. The 

mixture was allowed to warm to room temperature and stirred for 3 h. The reaction was quenched with 

water. The mixture was extracted three times with CH2Cl2. The combined organic layer was washed 

with brine, dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by Isolera® 
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(92:8 to 2:1 hexane/EtOAc) to afford a mixture of 1y and BzOH. The mixture was diluted with CH2Cl2 

and to the mixture was added 1.0 M NaOH aq. The mixture was extracted three times with CH2Cl2. The 

combined organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The residue was 

purified by Isolera® (97:3 to 9:1 CHCl3/MeOH) to afford 1y (60.8 mg, 9% yield) as a colorless oil. The 

spectra are in accordance with those reported in the literature.[6] 

 
(4-Methoxyphenyl)(pyrrolidin-1-yl)methanone (1z) 

 
To a solution of 4-methoxybenzoic acid (284.5 mg, 1.9 mmol, 1.1 equiv) in CH2Cl2 (4.0 mL, 0.40 M) 

were added (COCl)2 (190 µL, 2.2 mmol, 1.3 equiv) and DMF (5 drops). After the mixture was stirred 

for 30 min, the reaction was cooled to 0 °C. To the mixture were added Et3N (1.04 mL, 7.5 mmol, 4.4 

equiv) and pyrrolidine (139.6 µL, 1.7 mmol, 1.0 equiv) at 0 °C. After the mixture was allowed to warm 

to room temperature and stirred for 3 h, the reaction was quenched with a saturated NaHCO3 aq. The 

mixture was extracted three times with CH2Cl2. The combined organic layer was dried over Na2SO4, 

filtered, and concentrated in vacuo. The residue was purified by Isolera® (92:8 to 1:2 hexane/EtOAc) to 

afford 1z (373.9 mg, quant.) as a white solid. The spectra are in accordance with those reported in the 

literature.[13] 
 

Phenyl(pyrrolidin-1-yl)methanone (S20) 

 
To a solution of pyrrolidine (145.1 mg, 2.0 mmol, 1.0 equiv) and Et3N (853 µL, 6.1 mmol, 3.0 equiv) 

in CH2Cl2 (8.0 mL, 0.25 M) was added BzCl (284 µL, 2.5 mmol, 1.2 equiv). After being stirred for 30 

min, the reaction was quenched with water. The mixture was extracted three times with CH2Cl2. The 

combined organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The residue was 

purified by Isolera® (19:1 to 4:1 hexane/EtOAc) to afford S20 (342.5 mg, 96% yield) as a yellow oil. 

The spectra are in accordance with those reported in the literature.[13] 
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2-11. Synthesis of (2-cyclopropylpyrrolidin-1-yl)(phenyl)methanone (1aa) 

 
Cyclopropyl lithium[14] and 2-cyclopropylpyrrolidine TFA salt (S17)[4] were synthesized according to 

the reported procedures. To a solution of cyclopropyl lithium (9.0 mmol, 3.0 equiv) in Et2O (5.0 mL, 

1.8 M) were added pyrrolidine (246 μL, 3.0 mmol, 1.0 equiv), benzophenone (655 mg, 3.6 mmol, 1.2 

equiv), and Et2O (1.0 mL) at –78 °C under an atmosphere of N2. After being stirred at the same 

temperature for 10 min, the reaction mixture was allowed to warm to room temperature and stirred for 

7 h, which was then quenched with MeOH at 0 °C. The mixture was diluted with water and extracted 

with 6.0 M HCl aq. (pH = 1). The aqueous layer was basified to pH = 13 with 6.0 M NaOH aq. The 

mixture was extracted three times with CH2Cl2. The combined organic layer was acidified to pH = 1 

with TFA, dried over Na2SO4, filtered, and concentrated in vacuo. The crude product was used for the 

next step without further purification. 

To a solution of the crude product obtained above and Et3N (1.67 mL, 12.0 mmol, 4.0 equiv) in CH2Cl2 

(7.5 mL, 0.40 M) was added BzCl (523 μL, 3.6 mmol, 1.2 equiv) dropwise. The reaction mixture was 

stirred at room temperature for 1 h, which was then quenched with a saturated NaHCO3 aqueous solution. 

The mixture was extracted three times with CH2Cl2. The combined organic layer was dried over Na2SO4, 

filtered, and concentrated in vacuo. The residue was purified by Isolera® (19:1 to 1:1 hexane/EtOAc) 

and GPC (CHCl3) to afford 1aa (57.1 mg, 9% yield over 2 steps) as a colorless oil. 1H NMR (400 MHz, 

C6D6, 348 K) δ 7.50–7.45 (m, 2H), 7.11–7.07 (m, 3H), 4.25 (br s, 0.1H), 3.94 (br s, 0.9H), 3.30–3.10 

(m, 2H), 1.75–1.15 (m, 4H), 0.87–0.77 (m, 1H), 0.60–0.43 (m, 1H), 0.40–0.31 (m, 1H), 0.30–0.21 

(m,1H), 0.16–0.04 (m, 1H); 13C{1H} NMR (101 MHz, CDCl3, 323 K) δ 170.4, 169.9, 137.9, 137.3, 

129.8, 129.5, 128.1, 127.1, 60.1, 49.8, 30.2, 24.6, 22.7, 15.5, 4.2, 1.7 (four excess peaks are observed 

due to rotamer); HRMS (ESI) m/z: [M+Na]+ Calcd for C14H17ONNa 238.1202; found 238.1202. 
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2-12. Synthesis of N-aroyl prolines 

 
General Procedure D 

To a solution of benzoic acid (2.0 mmol, 1.1 equiv) in CH2Cl2 (5.0 mL, 0.40 M) were added (COCl)2 

(223 µL, 2.6 mmol, 1.3 equiv) and DMF (5 drops) at 0 °C. After the mixture was allowed to warm to 

room temperature and stirred for 30 min, the reaction was cooled to 0 °C. To the mixture were added 

Et3N (1.12 mL, 8.0 mmol, 4.4 equiv) and L-proline tert-butyl ester hydrochloride (374.2 mg, 1.8 mmol, 

1.0 equiv) at 0 °C. After the mixture was allowed to warm to room temperature and stirred for 1 h, the 

reaction was quenched with a saturated NaHCO3 aq. The mixture was extracted three times with CH2Cl2. 

The combined organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The residue 

was purified by Isolera® to afford the corresponding N-aroyl pyrrolidines. 

 

 
tert-Butyl (4-methoxybenzoyl)-L-prolinate (1ad) 

According to Gereral Procedure D, 1ad was prepared using 4-methoxybenzoic acid (304.3 mg, 2.0 

mmol, 1.1 equiv). Purification by Isolera (9:1 to 2:1 hexane/EtOAc) afforded 1ad (362.3 mg, 66% yield) 

as a white solid. The spectra are in accordance with those reported in the literature.[15] 

 

 
tert-Butyl (4-methylbenzoyl)-L-prolinate (1ae) 

According to Gereral Procedure D, 1ae was prepared using 4-toluic acid (272.3 mg, 2.0 mmol, 1.1 

equiv). Purification by Isolera (9:1 to 2:1 hexane/EtOAc) afforded 1ae (348.2 mg, 67% yield) as a white 

solid. The spectra are in accordance with those reported in the literature.[16] 
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tert-Butyl (4-chlorobenzoyl)-L-prolinate (1af) 

According to Gereral Procedure D, 1af was prepared using 4-chlorobenzoic acid (313.1 mg, 2.0 mmol, 

1.1 equiv). Purification by Isolera (9:1 to 1:1 hexane/EtOAc) afforded 1af (395.9 mg, 71% yield) as a 

white solid. 1H NMR (400 MHz, CDCl3) δ 7.53–7.50 (m, 1.4H), 7.39–7.32 (m, 2.6H), 4.54 (dd, J = 8.4, 

5.2 Hz, 0.7H), 4.23–4.17 (m, 0.3H), 3.77 (t, J = 7.2 Hz, 0.6H), 3.64–3.58 (m, 0.7H), 3.51–3.45 (m, 

0.7H), 2.36–2.17 (m, 1H), 2.06–1.82 (m, 3H), 1.49 (s, 6.3H), 1.33 (s, 2.7H); 13C{1H} NMR (101 MHz, 

CDCl3) δ 171.2, 169.3, 168.4, 136.1, 135.7, 135.5, 134.8, 128.7, 128.5, 128.3, 81.9, 81.3, 61.9, 60.0, 

49.9, 46.7, 31.6, 29.3, 28.0, 27.7, 25.3, 22.5 (10 excess peaks are observed due to rotamer); HRMS 

(ESI) m/z: [M+H]+ Calcd for C16H21O3NCl 310.1205; found 310.1203. 

 

 
tert-Butyl (4-(trifluoromethyl)benzoyl)-L-prolinate (1ag) 
According to Gereral Procedure D, 1ag was prepared using 4-trifluoromethylbenzoic acid (380.2 mg, 

2.0 mmol, 1.1 equiv). Purification by Isolera (9:1 to 1:1 hexane/EtOAc) afforded 1ag (390.6 mg, 63% 

yield) as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.70–7.62 (m, 3.4H), 7.54 (d, J = 8.0 Hz, 0.6H), 

4.56 (dd, J = 8.4, 5.2 Hz, 0.7H), 4.18 (dd, J = 8.4, 2.8 Hz, 0.3H), 3.82–3.77 (m, 0.6H), 3.62–3.56 (m, 

0.7H), 3.47–3.42 (m, 0.7H), 2.38–2.18 (m, 1H), 2.06–1.84 (m, 3H), 1.50 (s, 6.3H), 1.30 (s, 2.7H); 
13C{1H} NMR (101 MHz, CDCl3) δ 171.1, 169.0, 168.1, 140.5, 139.9, 131.9 (q, J = 32.5 Hz), 127.5, 

127.2, 125.3, 123.7 (q, J = 274 Hz), 82.0, 81.5, 61.8, 59.9, 49.8, 46.8, 31.6, 29.3, 28.0, 27.6, 25.2, 22.5 

(9 excess peaks are observed due to rotamer); 19F NMR (376 MHz, CDCl3) δ –62.96, –63.02 (one excess 

peak is observed due to rotamer); HRMS (ESI) m/z: [M+H]+ Calcd for C17H21O3NF3 344.1468; found 

344.1469. 
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tert-Butyl (4-cyanobenzoyl)-L-prolinate (1ah) 

According to Gereral Procedure D, 1ah was prepared using 4-cyanobenzoic acid (294.3 mg, 2.0 mmol, 

1.1 equiv). Purification by Isolera® (9:1 to 1:1 hexane/EtOAc) afforded a mixture of 1ah and 4-

cyanomethylbenzoic acid. The residue was diluted with CH2Cl2 and a saturated NaHCO3 aq. The 

mixture was extracted three times with CH2Cl2. The combined organic layer was dried over Na2SO4, 

filtered, and concentrated in vacuo to afford 1ah (439.6 mg, 81% yield) as a white solid. 1H NMR (400 

MHz, CDCl3) δ 7.73–7.64 (m, 3.4H), 7.53 (d, J = 8.0 Hz, 0.6H), 4.55 (dd, J = 8.8, 5.2 Hz, 0.7H), 4.14 

(dd, J = 8.4, 2.8 Hz, 0.3H), 3.81–3.72 (m, 0.6H), 3.60–3.54 (m, 0.7H), 3.45–3.40 (m, 0.7H), 2.35–2.21 

(m, 1H), 2.08–1.97 (m, 2.3H), 1.94–1.85 (m, 0.7H), 1.50 (s, 6.3H), 1.31 (s, 2.7H); 13C{1H} NMR (101 

MHz, CDCl3) δ 170.9, 168.4, 167.5, 141.3, 140.6, 132.21, 132.17, 127.8, 127.6, 118.1, 113.8, 113.4, 

82.2, 81.6, 61.7, 59.9, 49.8, 46.8, 31.6, 29.3, 28.0, 27.7, 25.2, 22.5 (11 excess peaks are observed due to 

rotamer); HRMS (ESI) m/z: [M+Na]+ Calcd for C17H20O3N2Na 323.1366; found 323.1360. 

 

 
tert-Butyl (furan-3-carbonyl)-L-prolinate (1ak) 

According to General Procedure D, 1ak was prepared using 3-furoic acid (224.2 mg, 2.0 mmol, 1.1 

equiv). Purification by Isolera® (19:1 to 2:3 hexane/EtOAc) afforded 1ak (252.1 mg, 57% yield) as a 

white solid. 1H NMR (400 MHz, CDCl3) δ 7.84 (br s, 0.7H), 7.71 (br s, 0.3H), 7.42–7.39 (m, 1H), 6.76 

(d, J = 0.8 Hz, 0.7H), 6.65 (br s, 0.3H), 4.53 (dd, J = 8.4, 4.8 Hz, 0.7H), 4.45 (d, J = 8.4 Hz, 0.3H), 3.83–

3.70 (m, 2H), 2.30–2.04 (m, 2H), 2.02–1.92 (m, 2H), 1.48 (s, 6.3H), 1.40 (s, 2.7H); 13C{1H} NMR (101 

MHz, CDCl3) δ 171.4, 162.3, 144.5, 143.4, 142.7, 122.2, 110.6, 110.2, 82.1, 81.2, 61.2, 60.3, 48.5, 47.0, 

31.7, 28.9, 27.9, 27.7, 25.1, 22.2 (8 excess peaks are observed due to rotamer); HRMS (ESI) m/z: 

[M+H]+ Calcd for C14H20O4N 266.1387; found 266.1382. 
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tert-Butyl (2-methylbenzoyl)-L-prolinate (1ai) 

 
To a solution of L-proline (345.3 mg, 3.0 mmol, 1.0 equiv) and Et3N (125 µL, 0.90 mmol, 30 mol%) in 
tBuOH (6.0 mL, 0.50 M) were added Boc2O (1.86 mL, 8.1 mmol, 2.7 equiv) and DMAP (110.0 mg, 

0.90 mmol, 30 mol%). After being stirred for 3 h, the mixture was diluted with Et2O. The mixture was 

washed with 1.0 M HCl aq. a saturated NaHCO3 aq. and brine. The organic layer was dried over Na2SO4, 

filtered, and concentrated in vacuo. The crude product was used for the next step without further 

purification. 

To a solution of the crude product obtained above was added HCl (4.0 M in dioxane, 750 µL, 3.0 mmol, 

1.0 equiv). After being stirred for 1 h, the mixture was concentrated in vacuo. To the residue were added 

CH2Cl2 (7.5 mL, 0.40 M), o-toluic acid (490.1 mg, 3.6 mmol, 1.2 equiv), Et3N (2.1 mL, 15 mmol, 5.0 

equiv), DMAP (144.2 mg, 1.2 mmol, 40 mol%), and EDC·HCl (632.6 mg, 3.3 mmol, 1.1 equiv). After 

being stirred for 12 h, the reaction was quenched with water. The mixture was extracted three times with 

CH2Cl2. The combined organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The 

residue was purified by Isolera® (88:12 hexane/EtOAc to EtOAc) and GPC to afford 1ai (291.1 mg, 

34% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.26–7.14 (m 4H), 4.55 (dd, J = 8.4, 4.0 

Hz, 0.7H), 4.04–3.99 (m, 0.3H), 3.86–3.76 (m, 0.6H), 3.39–3.31 (m, 0.7H), 3.25–3.18 (m, 0.7H), 2.39 

(s, 2.1 H), 2.33–1.80 (m, 4.9H), 1.51 (s, 6.3H), 1.29 (s, 2.7H); 13C{1H} NMR (101 MHz, CDCl3) δ 171.4, 

171.2, 170.2, 169.8, 137.0, 134.5, 134.4, 130.5, 130.4, 128.9, 126.0, 125.73, 125.67, 125.5, 81.6, 81.4, 

61.3, 59.2, 48.8, 46.0, 31.4, 29.6, 28.0, 27.7, 24.8, 22.7, 19.1, 18.9 (13 excess peaks are observed due to 

rotamer); HRMS (ESI) m/z: [M+H]+ Calcd for C17H24O3N 290.1751; found 290.1748. 

 

tert-Butyl picolinoyl-L-prolinate (1aj) 

 
To a solution of L-proline (345.3 mg, 3.0 mmol, 1.0 equiv) and Et3N (125 µL, 0.90 mmol, 30 mol%) in 
tBuOH (6.0 mL, 0.50 M) were added Boc2O (1.86 mL, 8.1 mmol, 2.7 equiv) and DMAP (110.0 mg, 

0.90 mmol, 30 mol%). After being stirred for 3 h, the mixture was diluted with Et2O. The mixture was 
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washed with 1.0 M HCl aq. a saturated NaHCO3 aq. and brine. The organic layer was dried over Na2SO4, 

filtered, and concentrated in vacuo. The crude product was used for the next step without further 

purification. 

To a solution of the crude product obtained above was added HCl (4.0 M in dioxane, 750 µL, 3.0 mmol, 

1.0 equiv). After being stirred for 1 h, the mixture was concentrated in vacuo. To the residue were added 

CH2Cl2 (7.5 mL, 0.40 M), picolinic acid (443.2 mg, 3.6 mmol, 1.2 equiv), Et3N (2.1 mL, 15 mmol, 5.0 

equiv), DMAP (144.2 mg, 1.2 mmol, 40 mol%), and EDC·HCl (632.6 mg, 3.3 mmol, 1.1 equiv). After 

being stirred for 12 h, the reaction was quenched with water. The mixture was extracted three times with 

CH2Cl2. The combined organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The 

residue was purified by Isolera® (88:12 hexane/EtOAc to EtOAc) and Isolera® (97:3 to 9:1 

CHCl3/MeOH) to afford 1aj (240.7 mg, 29% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 

8.59 (ddd, J = 4.8, 2.0, 0.8 Hz, 0.3H), 8.50 (ddd, J = 4.8, 2.0, 0.8 Hz, 0.7H), 8.03 (dt, J = 8.0, 0.8 Hz, 

0.7H), 7.89 (dt, J = 8.0, 0.8 Hz, 0.3H), 7.78 (td, J = 8.0, 2.0 Hz, 1H), 7.36–7.30 (m, 1H), 5.08 (dd, J = 

8.8, 3.6 Hz, 0.7H), 4.57 (dd, J = 8.4, 4.0 Hz, 0.3H), 4.00–3.77 (m, 2H), 2.34–2.22 (m, 1H), 2.16–1.91 

(m, 3H), 1.50 (s, 2.7H), 1.33 (s, 6.3H); 13C{1H} NMR (101 MHz, CDCl3) δ 171.9, 171.3, 166.2, 165.8, 

153.8, 153.3, 147.9, 147.2, 136.8, 136.7, 124.9, 124.6, 124.2, 81.1, 80.8, 62.1, 60.8, 49.6, 48.2, 31.9, 

28.9, 28.0, 27.9, 27.8, 25.3, 22.0 (13 excess peaks are observed due to rotamer); HRMS (ESI) m/z: 

[M+Na]+ Calcd for C15H20O3N2Na 299.1366; found 299.1369. 
 

 

2-13. Synthesis of methyl (2S,4R)-1-benzoyl-4-hydroxypyrrolidine-2-carboxylate (1al) 

and methyl (2S,4R)-4-acetoxy-1-benzoylpyrrolidine-2-carboxylate (1am) 

 

To a solution of trans-4-hydroxy-L-proline (1.31 g, 10 mmol, 1.0 equiv) in MeOH (20 mL, 0.50 M) was 

added conc. HCl (1.1 mL, 12 mmol, 1.2 equiv). After being refluxed for 20 h, the mixture was 

concentrated in vacuo. The crude product was used for the next step without further purification. 

To a solution of the crude product obtained above and Et3N (5.6 mL, 40 mmol, 4.0 equiv) in CH2Cl2 

(25 mL, 0.40 M) was added BzCl (1.16 mL, 10 mmol, 1.0 equiv) dropwise at 0 °C. After the mixture 

was allowed to warm to room temperature and stirred for 30 min, the reaction was quenched with a 

saturated NaHCO3 aq. The mixture was extracted three times with CH2Cl2. The combined organic layer 

was dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by Isolera® (9:1 

to 1:4 hexane/EtOAc) to afford 1al (2.05 g, 82% yield over 2 steps) as a white solid. The spectra are in 

accordance with those reported in the literature.[17] 
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H
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To a solution of 1al (249.6 mg, 1.0 mmol, 1.0 equiv) in pyridine (2.0 mL, 0.50 M) was added Ac2O 

(142 μL, 1.5 mmol, 1.5 equiv) dropwise at 0 °C. After the mixture was allowed to warm to room 

temperature, stirred for 4 h, and then diluted with EtOAc, the reaction was quenched with a 3.0 M HCl 

aq. The mixture was extracted three times with EtOAc. The combined organic layer was dried over 

Na2SO4, filtered, and concentrated in vacuo. The residue was purified by Isolera® (9:1 to 1:4 

hexane/EtOAc) to afford 1am (303.8 mg, quant.) as a colorless oil. 1H NMR (400 MHz, CD3CN, 348 

K) δ 7.54–7.42 (m, 5H), 5.25 (br s, 1H), 4.69 (br s, 1H), 3.86 (dd, J = 12.4, 4.4 Hz, 1H), 3.80–3.45 (m, 

4H), 2.50–2.41 (m, 1H), 2.32–2.23 (m, 1H), 1.99 (s, 3 H); 13C{1H} NMR (101 MHz, CDCl3, 323 K) δ 

171.7, 169.7, 169.5, 135.2, 130.2, 128.0, 127.0, 72.5, 57.4, 54.7, 51.9, 34.5, 20.4; HRMS (ESI) m/z: 

[M+H]+ Calcd for C15H18O5N 292.1180; found 292.1188. 

 

2-14. Synthesis of methyl (2S,4R)-1-benzoyl-4-((methylsulfonyl)oxy)pyrrolidine-2-

carboxylate (1an) 

 
To a solution of 1al (see section 2-13, 201.5 mg, 0.81 mmol, 1.0 equiv), methanesulfonyl chloride 

(MsCl: 94 μL, 1.2 mmol, 1.5 equiv), and DMAP (19.4 mg, 0.16 mmol, 10 mol%) in CH2Cl2 (4.0 mL, 

0.20 M) was added Et3N (203 μL, 1.5 mmol, 1.8 equiv) dropwise at 0 °C. After the mixture was allowed 

to warm to room temperature, the reaction mixture was quenched with water. The mixture was extracted 

three times with CH2Cl2 using ISOLUTE® phase separator. The combined organic layer was 

concentrated in vacuo. The residue was purified by Isolera® (4:1 to 1:4 hexane/EtOAc) and 

recrystallization (CH2Cl2/hexane) to afford 1an (159.4 mg, 60% yield) as a white solid. The spectra are 

in accordance with those reported in the literature.[9]  

 

2-15. Synthesis of ((1S,4S)-2-oxa-5-azabicyclo[2.2.1]heptan-5-yl)(phenyl)methanone (1ao) 

 

To a solution of 1al (see section 2-13, 1.37 g, 5.5 mmol, 1.0 equiv) and p-toluenesulfonyl chloride (TsCl: 

2.10 g, 11 mmol, 2.0 equiv) was added pyridine (11 mL, 0.50 M). After being stirred at room 

temperature for 23 h, the reaction mixture was diluted with EtOAc and the reaction was quenched with 
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a 3.0 M HCl aq. The mixture was extracted three times with EtOAc. The combined organic layer was 

dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by Isolera® (9:1 to 1:4 

hexane/EtOAc) to afford S24 (2.03 g, 91% yield) as a white solid.  

To a solution of S24 (806.9 mg, 2.0 mmol, 1.0 equiv) and lithium chloride (LiCl: 166.3 mg, 4.0 mmol, 

2.0 equiv) in THF/EtOH (2.7 mL/5.4 mL, 0.25 M) was added sodium borohydride (NaBH4: 151.6 mg, 

4.0 mmol, 2.0 equiv) at 0 °C. After being stirred at 0 °C for 1 h, the reaction was refluxed for 3 h while 

the reaction progress was being monitored by LC/MS and quenched with a saturated NH4Cl aq. The 

mixture was extracted three times with CH2Cl2. The combined organic layer was dried over Na2SO4, 

filtered, and concentrated in vacuo. The residue was purified by Isolera® (9:1 to 0:100 hexane/EtOAc) 

to afford S25 (590.3 mg, 79% yield) as a white solid. 

To a solution of S25 (590.3 mg, 1.57 mmol, 1.0 equiv) in MeOH (24 mL, 0.065 M) was added sodium 

methoxide (NaOMe: 170.0 mg, 3.14 mmol, 2.0 equiv). The reaction was refluxed for 3.5 h while the 

reaction progress was being monitored by LC/MS and quenched with water. The solvent was removed 

under reduced pressure, and the residue was extracted three times with EtOAc. The combined organic 

layer was dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by Isolera® 

(9:1 hexane/EtOAc to EtOAc) to afford 1ao (297.8 mg, 93% yield) as a colorless oil. 1H NMR (400 

MHz, CDCl3) δ 7.55–7.37 (m, 5H), 5.06 (s, 0.4H), 4.73 (s, 0.6H), 4.58 (s, 0.4H), 4.43 (d, J = 1.2 Hz, 

0.6H), 4.06 (d, J = 7.6 Hz, 0.4H), 3.99 (d, J = 7.6 Hz, 0.6H), 3.88 (dd, J = 7.6, 1.2 Hz, 0.4H), 3.82 (dd, 

J = 7.6, 1.2 Hz, 0.6H), 3.70–3.57 (m, 1H), 3.44 (s, 1H), 1.99–1.85 (m, 2H); 13C{1H} NMR (101 MHz, 

CDCl3) δ 169.6, 168.3, 135.6, 135.2, 129.9, 129.7, 128.0, 127.8, 126.8, 126.7, 75.6, 75.3, 73.7, 73.4, 

59.6, 57.5, 56.0, 53.8, 36.6, 35.1 (ten excess peaks are observed due to rotamer); HRMS (ESI) m/z: 

[M+H]+ Calcd for C12H14O2N: 204.1019; found 204.1019. 

 

2-16. Synthesis of (1S,4S)-5-benzoyl-2-oxa-5-azabicyclo[2.2.1]heptan-3-one (1ap) 

 
To a solution of S24 (see section 2-15, 671.4 mg, 1.7 mmol, 1.0 equiv) in MeOH/H2O (3.3 mL/3.3 mL, 

0.25 M) was added lithium hydroxide anhydrous (LiOH: 120.0 mg, 5.0 mmol, 3.0 equiv). After being 

stirred at room temperature for 5 min, the reaction was quenched with a 3.0 M HCl aq. (pH = 1) and 

extracted three times with CH2Cl2. The combined organic layer was dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude product was used for the next step without further purification. 
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To a solution of the crude product obtained above in acetone (8.1 mL, 0.10 M) was added sodium 

carbonate (Na2CO3: 129.1 mg, 1.22 mmol, 1.5 equiv). The mixture was stirred at 60 °C for 7 h while 

the reaction progress was being monitored by LC/MS. The solvent was removed under reduced pressure. 

The residue was diluted with water and extracted three times with EtOAc. The combined organic layer 

was dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by Isolera® 

(hexane/EtOAc = 9:1 to 1:4) to afford 1ap (123.3 mg, 70% yield) as a white solid. 1H NMR (400 MHz, 

CDCl3, 323 K) δ 7.65–7.60 (m, 2H), 7.52–7.42 (m, 3H), 5.19 (s, 1H), 4.69 (br s, 1H), 3.85 (d, J = 11.6 

Hz, 1H), 3.67 (d, J = 11.6 Hz, 1H), 2.27 (d, J = 11.2 Hz, 1H), 2.08 (dd, J = 11.2, 2.0 Hz, 1H); 13C{1H} 

NMR (101 MHz, CDCl3, 323 K) δ 170.6, 169.2, 134.5, 131.0, 128.5, 127.6, 78.2, 59.5, 50.5, 39.3; 

HRMS (ESI) m/z: [M+H]+ Calcd for C12H12O3N 218.0812; found 218.0815. 

 

2-17. Synthesis of N-substituted 2-methylpyrrolidines 

 
General Procedure E 

To a solution of 2-methyl pyrrolidine (68.1 mg, 0.80 mmol, 1.0 equiv) in CH2Cl2 (2.0 mL, 0.40 M) were 

added Et3N (167 µL, 1.2 mmol, 1.5 equiv) and RCOX (1.2 equiv) at 0 °C. The reaction was allowed to 

warm to room temperature and stirred for 8 h. The reaction was quenched with water and extracted three 

times with CH2Cl2. The combined organic layer was dried over Na2SO4, filtered, and concentrated in 

vacuo. The residue was purified by Isolera® to afford 1. 

 

 
2,2-Dimethyl-1-(2-methylpyrrolidin-1-yl)propan-1-one (S26) 

According to Gereneal Procedure E, S26 was prepared using PivCl (118 µL, 0.96 mmol, 1.2 equiv). 

Purification by Isolera® (94:6 to 1:1 hexane/EtOAc) afforded S26 (74.5 mg, 55% yield) as a colorless 

oil. The spectra are in accordance with those reported in the literature.[18] 
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tert-Butyl 2-methylpyrrolidine-1-carboxylate (S27) 

According to Gereral Procedure E, S27 was prepared using Boc2O (221 µL, 0.96 mmol, 1.2 equiv) 

without Et3N. Purification by Isolera® (99:1 to 9:1 hexane/EtOAc) without extraction afforded S27 (93.4 

mg, 63% yield) as a colorless oil. The spectra are in accordance with those reported in the literature.[19] 

 

 
Methyl 2-methylpyrrolidine-1-carboxylate (S28) 

According to Gereral Procedure E, S28 was prepared using ClCO2Me (74 µL, 0.96 mmol, 1.2 equiv). 

Purification by Isolera (88:12 hexane/EtOAc to EtOAc) afforded S28 (44.3 mg, 39% yield) as a colorless 

oil. The spectra are in accordance with those reported in the literature.[20] 
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3. Ring-Opening Reactions 

3-1. Photochemical Reaction Setup 
The blue LED lamps (PR160L-456 nm Kessil® LED lamp, λmax = 456 nm) were used with the intensity 

dial set to 100. The reaction tubes were placed 4.0 cm away from the LED lamps (Figure S1). During 

the reaction, an overhead fan was turned on to keep the external temperature at approximately 35 °C. 

On the other hand, when the fan is off, the reaction temperature was approximately 40 °C. 

 

 
Figure S1. Photochemical reaction setup 

 
3-2. Condition screening 

To an 8-mL glass tube equipped with a magnetic stirring bar were added pyrrolidine 1 (0.10 mmol, 1.0 

equiv), photocatalyst (1.0 µmol, 1.0 mol%), and Lewis acid (5.0 µmol, 5.0 mol%). After being sealed 

with a screw cap, the tube was evacuated and backfilled three times with N2 gas. To this tube were added 

CH2Cl2 (1.0 mL, 0.10 M) and γ-terpinene (48 μL, 0.30 mmol, 3.0 equiv). After being stirred under the 

irradiation with blue LEDs (Kessil®, 456 nm) for 12 h, the reaction mixture was diluted with water and 

extracted three times with CH2Cl2 using ISOLUTE® phase separator. The combined organic layer was 

concentrated in vacuo. Yields were determined by 1H NMR of the crude product using CH2Br2 as an 

internal standard. 
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3-2-1. Lewis acid 

 
Table S1. Lewis acid screening 

 

3-2-2. Photocatalyst 

 

Table S2. Photocatalyst screening 

 

3-2-3. Solvent 

 
Table S3. Solvent screening 

N

O

Me

O

H
NMe

H

1.0 mol% Ir(ppy)3
5.0 mol% Lewis acid
γ-terpinene (3.0 equiv)

CH2Cl2 (0.10 M)
Blue LEDs, 35 °C, 12 h

1a
(0.10 mmol)

2a

Entry

1
2
3
4
5
6
7
8

Lewis acid

none
Sc(OTf)3
Mg(OTf)2
Zn(OTf)2
BF3·Et2O
TMSOTf
Zn(OAc)2

TfOH

Yield of 2a /%

0
1
2

30
5
6

trace
13

Yields were determined by 1H NMR using CH2Br2 as an internal standard.

Recovery of 1a /%

88
quant.
quant.

82
72
94
92
84

N

O

Me

O

H
NMe

H

1.0 mol% photocatalyst
5.0 mol% Zn(OTf)2

γ-terpinene (3.0 equiv)

CH2Cl2 (0.10 M)
Blue LEDs, 35 °C, 12 h

1a
(0.10 mmol)

2a

Entry

1
2
3
4
5

photocatalyst

Ir(ppy)3
Ir(4-tBuppy)3
Ir(4-Fppy)3
Ir(dFppy)3

[Ir(dFCF3ppy)2·dtbbpy]·PF6

Yield of 2a /%

30
trace
92
0
3

Yields were determined by 1H NMR using CH2Br2 as an internal standard.

Recovery of 1a /%

82
86
5

quant.
98

N

O

Me

O

H
NMe

H

1.0 mol% Ir(4-Fppy)3
5.0 mol% Zn(OTf)2

γ-terpinene (3.0 equiv)

solvent (0.10 M)
Blue LEDs, 35 °C, 12 h

1a
(0.10 mmol)

2a

Entry

1
2
3

solvent

CH2Cl2
THF
DMF

Yield of 2a /%

92
2
0

Yields were determined by 1H NMR using CH2Br2 as an internal standard.

Recovery of 1a /%

5
96
74



 S33 

3-2-4. H-atom donor 

 

Table S4. H-atom donor screening 

 

3-2-5. Control experiments 

 
Table S5. Control experiments 

 

3-2-6. Effect of N-substituent 

 
Table S6. Effect of N-substituent 

 

N

O

Me

O

H
NMe

H

1.0 mol% Ir(4-Fppy)3
5.0 mol% Zn(OTf)2

H-atom donor (3.0 equiv)

CH2Cl2 (0.10 M)
Blue LEDs, 35 °C, 12 h

1a
(0.10 mmol)

2a

Entry

1
2
3
4
5

H-atom donor

γ-terpinene
1,4-CHD

Hantzsch ester
Et3SiH
TTMSS

Yield of 2a /%

92
84
0
4

12

Yields were determined by 1H NMR using CH2Br2 as an internal standard.
[a] Isolated yield.

Recovery of 1a /%

5
25

quant.
93
90a

N

O

Me

O

H
NMe

H

1.0 mol% Ir(4-Fppy)3
5.0 mol% Zn(OTf)2

γ-terpinene (3.0 equiv)

CH2Cl2 (0.10 M)
Blue LEDs, 35 °C, 12 h

1a
(0.10 mmol)

2a

Entry

1
2
3

Deviations

none
without irradiation
without Zn(OTf)2

Yield of 2a /%

92
0
0

Yields were determined by 1H NMR using CH2Br2 as an internal standard.

Recovery of 1a /%

5
88
88

N
R

Me

R
H
NMe

H

1.0 mol% Ir(4-Fppy)3
5.0 mol% Zn(OTf)2

γ-terpinene (3.0 equiv)

CH2Cl2 (0.10 M)
Blue LEDs, 35 °C, 12 h1a

(0.10 mmol)
2a

Entry

1
2
3
4
5
6
7
8

Yield of 2a /%

92
0
0
0
0
0
0
0

Yields were determined by 1H NMR using CH2Br2 as an internal standard.

R

Bz
Ac

CF3CO
Ts
Piv
Boc

CO2Me
Ph

Recovery of 1a /%

0
quant.

72
quant.

95
81
92

quant.
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3-2-7. Effect of substituent on the aroyl group 

 
Table S7. Effect of substituent on the aroyl group 

 

  

N

1.0 mol% Ir(4-Fppy)3
5.0 mol% Zn(OTf)2

γ-terpinene (3.0 equiv)

CH2Cl2 (0.10 M)
Blue LEDs, 35 °C, 12 h

1
(0.20 mmol) 2

Entry

1
2
3
4
5
6
7
8
9b

Yield of 2 /%

92
99
88
94
59

trace
39
0
0

[a] Yields were determined by 1H NMR using CH2Br2 as an internal standard.
[b] 0.10 mmol.

Ar or Het

1ad
1ae
1g
1af
1ag
1ah
1ai
1aj
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O
Ar
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O

N

O
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O

X
Het
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O
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O
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O
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O

X
Het
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N

O
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O

MeO

N

O
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O

Me

N

O
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O

H

N

O
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O

Cl

N

O
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O

F3C

N

O

OtBu

O

NC

N

O

OtBu

O

O

1ad 1ae 1g 1af 1ag

1ah 1ak

Recovery of 1 /%a

0
0
0
0

20
88
57
79

100

N

O
N

OtBu

O

1aj

N

O

OtBu

O
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3-2-8. Effect of substituent on the aroyl group for other substrates 

 
Table S8. Effect of substituent on the aroyl group for other substrates 

  

Ar

Ar

Ar

Ar

Ar
Ar

Ar

Ar

N

1.0 mol% Ir(4-Fppy)3
5.0 mol% Zn(OTf)2

γ-terpinene (3.0 equiv)

CH2Cl2 (0.10 M)
Blue LEDs, fan off, 12 h

(0.20 mmol)

O
O

H
N

H

N

O

N

O

CO2Me

N

O

Me

n

n

PC Zn

PC Zn

PC Zn

H

CO2MeO

H
N

Me

O

H
N

H

H
O

H
N

S17 S30

24% yielda

1w 2w

47% yield

S19 S31

4% yieldb,c

1x 2x

11% yield

S20 S32

0% yieldc,d,e

1z 2z

24% yield

[a] 72 h. [b] 120 h. [c] Yields were determined by 1H NMR using CH2Br2 as an internal standard. [d] fan on. [e] 0.10 mmol.

S17 (Ar = Ph)
1w (Ar = 4-MeOC6H4)

S19 (Ar = Ph)
1x (Ar = 4-MeOC6H4)

S20 (Ar = Ph)
1z (Ar = 4-MeOC6H4)

S30 (Ar = Ph)
2w (Ar = 4-MeOC6H4)

S31 (Ar = Ph)
2x (Ar = 4-MeOC6H4)

S32 (Ar = Ph)
2z (Ar = 4-MeOC6H4)

N
O

CO2Me

PC Zn
NH

O

CO2Me

S13 (Ar = Ph)
1t (Ar = 4-MeOC6H4)

S29 (Ar = Ph)
2t (Ar = 4-MeOC6H4)

Ar Ar

S13 S29

1t 2t

87% yield

6% yield
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3-3. Ring opening of Pyrrolidines 

 
General Procedure F 

To an 8-mL glass tube equipped with a magnetic stirring bar were added pyrrolidine 1 (0.20 mmol, 1.0 

equiv), Ir(4-Fppy)3 (1.4 mg, 2.0 μmol, 1.0 mol%), and zinc trifluoromethanesulfonate (Zn(OTf)2: 3.6 

mg, 10 μmol, 5.0 mol%). After being sealed with a screw cap, the tube was evacuated and backfilled 

three times with N2 gas. To this tube were added CH2Cl2 (2.0 mL, 0.10 M) and γ-terpinene (96 μL, 0.60 

mmol, 3.0 equiv). After being stirred under the irradiation with blue LEDs (Kessil®, 456 nm) for 12 h, 

the reaction mixture was diluted with water and extracted three times with CH2Cl2 using ISOLUTE® 

phase separator. The combined organic layer was concentrated in vacuo, and the residue was purified 

to afford the corresponding product 2. 

 

 
N-Pentylbenzamide (2a) 

Purification by PTLC (2:1 hexane/EtOAc) afforded 2a (33.7 mg, 88% yield) as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ 7.78–7.74 (m, 2H), 7.52–7.40 (m, 3H), 6.10 (br s, 1H), 3.46 (td, J = 7.2, 5.6 Hz, 

2H), 1.66–1.58 (m, 2H), 1.42–1.32 (m, 4H), 0.95–0.89 (m, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 

167.5, 134.8, 131.2, 128.4, 126.8, 40.0, 29.3, 29.1, 22.3, 13.9; HRMS (ESI) m/z: [M+H]+ Calcd for 

C12H18ON 192.1383; found 192.1384. The spectra are in accordance with those reported in the 

literature.[21] 

 

 
N-(5-Methoxypentyl)benzamide (2b) 

Purification by PTLC (19:1 CHCl3/MeOH) afforded 2b (34.7mg, 78% yield) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 7.78–7.74 (m, 2H), 7.52–7.40 (m, 3H), 6.20 (br s, 1H), 3.47 (td, J = 7.2, 5.6 Hz, 

2H), 3.39 (t, J = 6.4 Hz, 2H), 3.33 (s, 3H), 1.70–1.57 (m, 4H), 1.52–1.45 (m, 2H); 13C{1H} NMR (101 

MHz, CDCl3) δ 167.5, 134.7, 131.2, 128.4, 126.8, 72.5, 58.5, 39.9, 29.3, 29.2, 23.6; HRMS (ESI) m/z: 

[M+H]+ Calcd for C13H20O2N 222.1489; found 222.1488. 

 

1.0 mol% Ir(4-Fppy)3
5.0 mol% Zn(OTf)2

γ-terpinene (3.0 equiv) 

CH2Cl2 (0.10 M)
Blue LEDs, 35 °C, 12 h

N

O

1: 0.20 mmol

R’ H
N

O

R’

2

H

H
N

O
H

2a

Me

H
N

O
H

2b

OMe
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5-Benzamidopentyl acetate (2c) 

Purification by PTLC (1:1 hexane/EtOAc) afforded 2c (40.3 mg, 81% yield) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 7.78–7.74 (m, 2H), 7.53–7.41 (m, 3H), 6.14 (br s, 1H), 4.08 (t, J = 6.8 Hz, 2H), 

3.47 (td, J = 7.2, 6.0 Hz, 2H), 2.04 (s, 3H), 1.74–1.63 (m, 4H), 1.51–1.42 (m, 2H); 13C{1H} NMR (101 

MHz, CDCl3) δ 171.2, 167.5, 134.6, 131.3, 128.4, 126.8, 64.1, 39.8, 29.2, 28.2, 23.3, 20.9; HRMS (ESI) 

m/z: [M+H]+ Calcd for C14H20O3N 250.1438; found 250.1438. 

 

 
N-(5-(Benzyloxy)pentyl)benzamide (2d) 

Purification by PTLC (3:1 hexane/EtOAc) and GPC (CHCl3) afforded 2d (40.3 mg, 68% yield) as a 

colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.77–7.73 (m, 2H), 7.52–7.46 (m, 3H), 7.45–7.27 (m, 5H), 

6.14 (br s, 1H), 4.50 (s, 2H), 3.52–3.43 (m, 4H), 1.72–1.61 (m, 4H), 1.54–1.45 (m, 2H); 13C{1H} NMR 

(101 MHz, CDCl3) δ 167.5, 138.5, 134.8, 131.2, 128.5, 128.3, 127.6, 127.5, 126.8, 72.9, 70.1, 39.9, 

29.33, 29.29, 23.7; HRMS (ESI) m/z: [M+H]+ Calcd for C19H24O2N 298.1802; found 298.1800. 

 

 
N-(4-Phenylbutyl)benzamide (2e) 

Purification by PTLC (2:1 hexane/EtOAc) afforded 2e (21.3 mg, 43% yield) as a white solid. 1H NMR 

(400 MHz, CDCl3) δ 7.75–7.72 (m, 2H), 7.51–7.47 (m, 1H), 7.45–7.40 (m, 2H), 7.31–7.26 (m, 2H), 

7.21–7.17 (m, 3H), 6.06 (br s, 1H), 3.48 (td, J = 7.2, 5.6 Hz, 2H), 2.68 (t, J = 7.2 Hz, 2H), 1.77–1.62 

(m, 4H); 13C{1H} NMR (101 MHz, CDCl3) δ 167.5, 142.0, 134.7, 131.3, 128.5, 128.4, 128.3, 126.8, 

125.8, 39.9, 35.5, 29.2, 28.7. The spectra are in accordance with those reported in the literature.[22] 

 

 
N-(3-Cyclohexylpropyl)benzamide (2f) 

Purification by PTLC (4:1 hexane/EtOAc) afforded a mixture of 2f and inseparable olefin as a byproduct 

(43.8 mg, ca. 14:1 (determined by 1H NMR analysis)). To the solution of this mixture (43.8 mg, 0.18 
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mmol (calculated as 2f), 1.0 equiv) in CH2Cl2 (450 μL, 0.40 M) was added 3-chlorobenzoperoxoic acid 

(mCPBA: 77% purity, 3.8 mg, 17 μmol, 0.094 equiv). After being stirred for 7 h, the reaction was 

quenched with a saturated NaHCO3 aqueous solution and a saturated Na2S2O3 aqueous solution. The 

reaction mixture was extracted three times with CH2Cl2 using ISOLUTE® phase separator. The 

combined organic layer was concentrated in vacuo, and the residue was purified by PTLC (2:1 

hexane/EtOAc) to afford 2f (39.2 mg, 80% yield over 2 steps) as a white solid. 1H NMR (400 MHz, 

CDCl3) δ 7.77–7.73 (m, 2H), 7.52–7.40 (m, 3H), 6.09 (br s, 1H), 3.43 (td, J = 7.2, 6.0 Hz, 2H), 1.75–

1.57 (m, 7H), 1.30–1.07 (m, 6H), 0.95–0.85 (m, 2H); 13C{1H} NMR (101 MHz, CDCl3) δ 167.5, 134.9, 

131.2, 128.5, 126.8, 40.4, 37.4, 34.7, 33.3, 27.0, 26.6, 26.3; HRMS (ESI) m/z: [M+H]+ Calcd for 

C16H24ON 246.1852; found 246.1853. 

 

 
tert-Butyl 5-benzamidopentanoate (2g) 

Purification by PTLC (2:1 hexane/EtOAc) afforded 2g (55.1 mg, 82% yield) as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ 7.82–7.76 (m, 2H), 7.52–7.38 (m, 3H), 6.36 (br s, 1H), 3.47 (td, J = 6.0, 5.6 Hz, 

2H), 2.29 (t, J = 6.8 Hz, 2H), 1.76–1.63 (m, 4H), 1.45 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 

173.1, 167.5, 134.7, 131.3, 128.5, 126.9, 80.4, 39.5, 34.9, 28.9, 28.1, 22.1; HRMS (ESI) m/z: [M+Na]+ 

Calcd for C16H23O3NNa 300.1570; found 300.1569. 

 

 
Methyl 5-benzamidopentanoate (2h) 

Purification by PTLC (2:1 hexane/EtOAc) afforded 2h (42.6 mg, 90% yield) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 7.80–7.75 (m, 2H), 7.52–7.40 (m, 3H), 6.35 (br s, 1H), 3.68 (s, 3H), 3.47 (td, J = 

6.4, 6.0 Hz, 2H), 2.38 (t, J = 6.8 Hz, 2H), 1.78–1.63 (m, 4H); 13C{1H} NMR (101 MHz, CDCl3) δ 174.0, 

167.6, 134.5, 131.3, 128.4, 126.8, 51.5, 39.4, 33.4, 28.9, 21.9; HRMS (ESI) m/z: [M+Na]+ Calcd for 

C13H17O3NNa 258.1101; found 258.1102. The spectra are in accordance with those reported in the 

literature.[23] 
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Benzyl 5-benzamidopentanoate (2i) 

Purification by PTLC (2:1 hexane/EtOAc) afforded 2d (49.4 mg, 80% yield) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 7.78–7.75 (m, 2H), 7.52–7.30 (m, 8H), 6.26 (br s, 1H), 5.13 (s, 2H), 3.46 (td, J = 

6.4, 6.0 Hz, 2H), 2.43 (t, J = 6.8 Hz, 2H), 1.79–1.62 (m, 4H); 13C{1H} NMR (101 MHz, CDCl3) δ 173.4, 

167.5, 135.9, 134.7, 131.4, 128.6, 128.5, 128.3, 128.2, 126.9, 66.3, 39.5, 33.7, 28.9, 22.0; HRMS (ESI) 

m/z: [M+H]+ Calcd for C19H22O3N 312.1594; found 312.1593. 

 

 
N-(5-Amino-5-oxopentyl)benzamide (2j) 

The reaction was conducted with CH2Cl2/DMF (0.10 M, 9:1) due to the low solubility of 2j in CH2Cl2. 

After the reaction, the solvent was removed under reduced pressure, and the residue was purified by 

Isolera® (19:1 to 9:1 CHCl3/MeOH) to afford 2e (24.2 mg, 55% yield) as a white solid. 1H NMR (400 

MHz, CD3OD) δ 7.83–7.79 (m, 2H), 7.55–7.42 (m, 3H), 3.40 (t, J = 6.8 Hz, 2H), 2.27 (t, J = 7.2 Hz, 

2H), 1.75–1.61 (m, 4H); 13C{1H} NMR (101 MHz, CD3OD, 323 K) δ 178.9, 170.3, 136.0, 132.5, 129.5, 

128.2, 40.6, 36.0, 30.0, 24.2; HRMS (ESI) m/z: [M+H]+ Calcd for C12H17O2N2 221.1285; found 

221.1286. 

 

 
N-(5-(Ethylamino)-5-oxopentyl)benzamide (2k) 

Purification by PTLC (19:1 CHCl3/MeOH) afforded 2k (39.2 mg, 78% yield) as a white solid. 1H NMR 

(400 MHz, CDCl3) δ 7.84–7.79 (m, 2H), 7.53–7.40 (m, 3H), 6.62 (br s, 1H), 5.61 (br s, 1H), 3.47 (td, J 

= 6.4, 6.0 Hz, 2H), 3.29 (qd, J = 7.2, 5.6 Hz, 2H), 2.25 (t, J = 6.8 Hz, 2H), 1.80–1.63 (m, 4H), 1.14 (t, J 

= 7.2 Hz, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 172.9, 167.6, 134.5, 131.3, 128.4, 126.9, 39.2, 35.6, 

34.3, 28.8, 22.5, 14.7; HRMS (ESI) m/z: [M+Na]+ Calcd for C14H20O2N2Na 271.1417; found 271.1418. 
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Methyl 5-benzamido-2-methylpentanoate (2l) 

When the reaction time was 12 h, purification by PTLC (1:1 hexane/EtOAc) and GPC (CHCl3) afforded 

2j (29.9 mg, 59% yield) as a colorless oil. When the reaction time was 24 h, purification by PTLC (1:1 

hexane/EtOAc) afforded 2j (45.2 mg, 90% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.80–

7.75 (m, 2H), 7.52–7.40 (m, 3H), 6.25 (br s, 1H), 3.68 (s, 3H), 3.53–3.38 (m, 2H), 2.56–2.46 (m, 1H), 

1.81–1.48 (m, 4H), 1.18 (d, J = 6.8 Hz, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 177.0, 167.5, 134.6, 

131.3, 128.5, 126.8, 51.6, 39.7, 39.1, 30.8, 27.2, 17.2; HRMS (ESI) m/z: [M+H]+ Calcd for C14H20O3N 

250.1438; found 250.1438. 

 

 
Benzyl 3-((1S,2S)-2-benzamidocyclopentyl)propanoate (2m) 

Purification by PTLC (2:1 hexane/EtOAc) afforded 2m (53.2 mg, 76% yield) as a white solid. 1H NMR 

(400 MHz, CDCl3) δ 7.75–7.71 (m, 2H), 7.52–7.47 (m, 1H), 7.45–7.40 (m, 2H), 7.36–7.29 (m, 5H), 

5.95 (d, J = 8.8 Hz, 1H), 5.08 (s, 2H), 4.59–4.52 (m, 1H), 2.44 (t, J = 7.6 Hz, 2H), 2.09–1.99 (m, 2H), 

1.95–1.55 (m, 6H), 1.37–1.26 (m, 1H); 13C{1H} NMR (101 MHz, CDCl3) δ 173.5, 167.2, 135.9, 134.9, 

131.3, 128.5, 128.4, 128.1, 126.8, 66.1, 52.8, 42.5, 33.1, 32.2, 29.4, 24.9, 21.6 (one peak is missing due 

to overlapping); HRMS (ESI) m/z: [M+H]+ Calcd for C22H26O3N 352.1907; found 352.1907. 

 

 
Methyl (5-benzamidopentanoyl)-L-phenylalaninate (2n) 

Purification by PTLC (1:5 hexane/EtOAc) afforded 2n (49.2 mg, 64% yield) as a yellow solid. 1H NMR 

(400 MHz, CDCl3) δ 7.81–7.78 (m, 2H), 7.52–7.41 (m, 3H), 7.30–7.27 (m, 1H), 7.26–7.20 (m, 2H), 

7.11–7.08 (m, 2H), 6.53 (br s, 1H), 5.99 (d, J = 7.6 Hz, 1H), 4.90 (dt, J = 7.6, 6.4 Hz, 1H), 3.72 (s, 3H), 

3.48–3.38 (m, 2H), 3.16 (dd, J = 14.0, 5.6 Hz, 1H), 3.06 (dd, J = 14.0, 6.4 Hz, 1H), 2.32–2.19 (m, 2H), 

1.75–1.66 (m, 2H), 1.62–1.56 (m, 2H); 13C{1H} NMR (101 MHz, CDCl3) δ 172.6, 172.1, 167.5, 135.9, 

134.5, 131.2, 129.1, 128.5, 128.4, 127.0, 126.9, 53.0, 52.2, 39.1, 37.7, 35.3, 28.5, 22.2; HRMS (ESI) 

m/z: [M+H]+ Calcd for C22H27O4N2 383.1965; found 383.1966. 
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Methyl (5-benzamidopentanoyl)-L-methioninate (2o) 

Purification by PTLC (19:1 CHCl3/MeOH) afforded 2o (60.9 mg, 83% yield) as a light yellow solid. 1H 

NMR (400 MHz, CDCl3) δ 7.82–7.78 (m, 2H), 7.52–7.40 (m, 3H), 6.60 (br s, 1H), 6.37 (d, J = 7.6 Hz, 

1H), 4.72 (td, J = 7.6, 5.2 Hz, 1H), 3.74 (s, 3H), 3.48 (td, J = 6.4, 6.4 Hz, 2H), 2.51 (t, J = 7.2 Hz, 2H), 

2.33 (t, J = 7.2 Hz, 2H), 2.20–2.11 (m, 1H), 2.08 (s, 3H), 2.04–1.94 (m, 1H), 1.80–1.72 (m, 2H), 1.71–

1.64 (m, 2H); 13C{1H} NMR (101 MHz, CDCl3) δ 173.0, 172.5, 167.6, 134.5, 131.3, 128.4, 126.9, 52.4, 

51.4, 39.1, 35.3, 31.4, 30.0, 28.7, 22.3, 15.4; HRMS (ESI) m/z: [M+Na]+ Calcd for C18H26O4N2NaS 

389.1506; found 389.1506. 

 

 
Methyl (5-benzamidopentanoyl)-L-serinate (2p) 

Purification by PTLC (9:1 CHCl3/MeOH) afforded 2p (34.1 mg, 53% yield) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 7.80–7.75 (m, 2H), 7.52–7.40 (m, 3H), 6.84 (d, J = 7.6 Hz, 1H), 6.73–6.67 (m, 

1H), 4.68 (dt, J = 7.6, 3.6 Hz, 1H), 4.00 (dd, J = 11.4, 3.6 Hz, 1H), 3.91 (dd, J = 11.4, 3.6 Hz, 1H), 3.77 

(s, 3H), 3.70 (br s, 1H), 3.55–3.35 (m, 2H), 2.42–2.30 (m, 2H), 1.85–1.65 (m, 4H); 13C{1H} NMR (101 

MHz, CDCl3) δ 173.5, 171.1, 168.1, 134.2, 131.5, 128.5, 126.9, 62.9, 54.8, 52.5, 39.2, 35.2, 28.4, 22.3; 

HRMS (ESI) m/z: [M+H]+ calcd for C16H23O5N2 323.1602; found 323.1603. 

 

 
Methyl (5-benzamidopentanoyl)-L-tyrosinate (2q) 

Purification by PTLC (9:1 CHCl3/MeOH) afforded 2q (57.6 mg, 72% yield) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 7.82–7.78 (m, 2H), 7.52–7.39 (m, 3H), 7.32 (br s, 1H), 6.93 (d, J = 8.8 Hz, 2H), 

6.74 (d, J = 8.8 Hz, 3H), 6.13 (d, J = 8.0 Hz, 1H), 4.88 (td, J = 8.0, 5.2 Hz, 1H), 3.73 (s, 3H), 3.34 (q, J 

= 6.4 Hz, 2H), 3.13 (dd, J = 14.0, 5.2 Hz, 1H), 2.87 (dd, J = 14.0, 8.0 Hz, 1H), 2.26–2.11 (m, 2H), 1.66–

1.38 (m, 4H); 13C{1H} NMR (101 MHz, CDCl3) δ 173.3, 172.3, 168.1, 155.8, 134.2, 131.5, 130.1, 128.5, 
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127.0, 126.9, 115.7, 53.2, 52.3, 39.3, 37.0, 35.3, 28.4, 22.4; HRMS (ESI) m/z: [M+H]+ Calcd for 

C22H27O5N2 399.1915; found 399.1915. 

 

 
Methyl (5-benzamidopentanoyl)-L-prolinate (2r) 

Purification by PTLC (1:5 hexane/EtOAc) afforded 2r (63.8 mg, 95% yield) as a colorless oil. 1H NMR 

(400 MHz, CDCl3, 323 K) δ 7.84–7.80 (m, 2H), 7.48–7.37 (m, 3H), 6.85–6.70 (m, 1H), 4.49 (dd, J = 

8.4, 4.0 Hz, 0.8H), 4.40 (dd, J = 8.4, 2.4 Hz, 0.2H), 3.75 (s, 0.5H), 3.69 (s, 2.5H), 3.66–3.59 (m, 1H), 

3.55–3.37 (m, 3H), 2.46–1.85 (m, 6H), 1.84–1.63 (m, 4H); 13C{1H} NMR (101 MHz, CDCl3, 323 K) δ 

172.8, 172.6, 171.9, 167.5, 134.8, 131.0, 128.3, 127.0, 59.3, 58.7, 52.0, 47.0, 46.4, 39.3, 33.5, 33.4, 31.3, 

29.1, 28.6, 24.7, 22.5, 21.3 (six excess peaks are observed due to rotamer); HRMS (ESI) m/z: [M+H]+ 

Calcd for C18H25O4N2 333.1809; found 333.1809. 

 

 
N-((1-(2,2,2-Trifluoroacetyl)pyrrolidin-2-yl)methyl)benzamide (2s) 

The reaction was conducted for 24 h without fan cooling. Purification by PTLC (3:2 hexane/EtOAc) 

afforded 2s (19.6 mg, 33% yield) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.81–7.78 (m, 2H), 

7.51–7.41 (m, 4H), 4.46–4.41 (m, 1H), 3.83–3.68 (m, 3H), 3.50 (ddd, J = 14.0, 8.8, 4.0 Hz, 1H), 2.20–

2.09 (m, 2H), 2.05–1.97 (m, 1H), 1.93–1.86 (m, 1H); 13C{1H} NMR (101 MHz, CDCl3) δ 167.6, 157.5 

(q, J = 33.7 Hz), 133.8, 131.5, 128.6, 126.9, 116.3 (q, J = 289 Hz), 59.5, 47.3 (q, J = 3.9 Hz), 44.3, 28.6, 

24.3; 19F NMR (376 MHz, CDCl3) δ –70.3, –72.2 (one excess peak was observed due to rotamer); 

HRMS (ESI) m/z: [M+Na]+ Calcd for C14H15F3O2N2Na 323.0978; found 323.0991. 

 

 
Methyl 3-(2-(4-methoxybenzamido)phenyl)propanoate (2t) 

The reaction was conducted without fan cooling. Purification by PTLC (2:1 hexane/EtOAc) afforded 2t 

(53.9 mg, 87% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 9.49 (br s, 1H), 8.10–8.06 (m, 

2H), 7.83 (dd, J = 8.0, 1.2 Hz, 1H), 7.29–7.25 (m, 1H), 7.21–7.13 (m, 2H), 7.03–6.99 (m, 2H), 3.89 (s, 
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3H), 3.68 (s, 3H), 2.93 (dd, J = 8.0, 4.4 Hz, 2H), 2.79 (dd, J = 8.0, 4.4 Hz, 2H); 13C{1H} NMR (101 

MHz, CDCl3) δ 175.3, 165.4, 162.3, 135.8, 133.0, 129.8, 129.3, 127.1, 127.0, 125.6, 125.4, 113.8, 55.4, 

52.2, 35.5, 25.0; HRMS (ESI) m/z: [M+Na]+ Calcd for C18H19O4NNa 336.1206; found 336.1220. 

 

 
Methyl 3-benzamidopropanoate (2u) 

The reaction was conducted using 3.0 mol% Ir(4-Fppy)3. Purification by PTLC (2:1 hexane/EtOAc) 

afforded 2u (19.4 mg, 47% yield) as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.78–7.75 (m, 2H), 

7.52–7.48 (m, 1H), 7.46–7.41 (m, 2H), 6.83 (br s, 1H), 3.74 (q, J = 6.0 Hz, 2H), 3.72 (s, 3H), 2.67 (t, J 

= 6.0 Hz, 2H); 13C{1H} NMR (101 MHz, CDCl3) δ 173.4, 167.3, 134.3, 131.5, 128.5, 126.9, 51.8, 35.2, 

33.7. The spectra are in accordance with those reported in the literature.[24] 

 

 
Methyl 4-benzamidobutanoate (2v) 

Purification by PTLC (2:1 hexane/EtOAc) afforded 2v (34.8 mg, 72% yield) as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ 7.79–7.77 (m, 2H), 7.52–7.48 (m, 1H), 7.46–7.41 (m, 2H), 6.52 (br s, 1H), 3.67 (s, 

3H), 3.52 (q, J = 6.8 Hz, 2H), 2.46 (t, J = 6.8 Hz, 2H), 2.01–1.94 (m, 2H); 13C{1H} NMR (101 MHz, 

CDCl3) δ 174.2, 167.6, 134.4, 131.3, 128.4, 126.8, 51.7, 39.6, 31.6, 24.4; HRMS (ESI) m/z: [M+Na]+ 

Calcd for C12H15O3NNa 244.0944; found 244.0944. 

 

 
Methyl 6-benzamidohexanoate (2w) 

The reaction was conducted without fan cooling. Purification by PTLC (3:2 hexane/EtOAc) afforded 

2w (26.2 mg, 47% yield) as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.74–7.72 (m, 2H), 6.93–6.91 

(m, 2H), 6.08 (br s, 1H), 3.85 (s, 3H), 3.67 (s, 3H), 3.46–3.43 (m, 2H), 2.34 (t, J = 7.6 Hz, 2H), 1.72–

1.60 (m, 4H), 1.46–1.38 (m, 2H); 13C{1H} NMR (101 MHz, CDCl3) δ 174.1, 167.0, 162.0, 128.6, 127.0, 

113.6, 55.3, 51.5, 39.6, 33.8, 29.3, 26.3, 24.4. The spectra are in accordance with those reported in the 

literature.[25] 
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N-Heptyl-4-methoxybenzamide (2x) 

The reaction was conducted without fan cooling. Purification by PTLC (3:2 hexane/EtOAc) and 

followed by PTLC (39:1 CHCl3/MeOH) afforded 2x (5.6 mg, 11% yield) as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ 7.75–7.70 (m, 2H), 7.00–6.90 (m, 2H), 6.04 (br s, 1H), 3.85 (s, 3H), 3.43 (q, J = 

6.8 Hz, 2H), 1.64–1.58 (m, 2H), 1.40–1.20 (m, 8H), 0.88 (t, J = 6.8 Hz, 3H); 13C{1H} NMR (101 MHz, 

CDCl3) δ 167.0, 162.0, 128.6, 127.1, 113.7, 55.4, 40.0, 31.7, 29.7, 29.0, 27.0, 22.6, 14.1. The spectra 

are in accordance with those reported in the literature.[26] 

 

 
N-Propylbenzamide (2y) 

Purification by PTLC (2:3 hexane/EtOAc) afforded 2y (22.7 mg, 66% yield) as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ 7.78–7.75 (m, 2H), 7.52–7.48 (m, 1H), 7.46–7.41 (m, 2H), 6.10 (br s, 1H), 3.46–

3.41 (m, 2H), 1.68–1.60 (m, 2H), 1.00 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 167.6, 

134.8, 131.2, 128.5, 126.8, 41.7, 22.9, 11.4. The spectra are in accordance with those reported in the 

literature.[27] 

 

 
N-Butyl-4-methoxybenzamide (2z) 

The reaction was conducted without fan cooling. Purification by PTLC (3:2 hexane/EtOAc) afforded 2z 

(6.2 mg, 15% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.73 (d, J = 8.8 Hz, 2H), 6.92 (d, 

J = 8.8 Hz, 2H), 6.02 (br s, 1H), 3.85 (s, 3H), 3.44 (q, J = 7.2 Hz, 2H), 1.63–1.55 (m, 2H), 1.46–1.37 

(m, 2H), 0.96 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 167.0, 162.0, 128.6, 127.1, 113.7, 

55.4, 39.7, 31.8, 20.2, 13.8. The spectra are in accordance with those reported in the literature.[28] 
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N-(Hept-4-en-1-yl)benzamide (2aa) 

The reaction was conducted on 0.15 mmol scale. Purification by PTLC (1:1 hexane/EtOAc) afforded 

2aa (27.6 mg, 85% yield, as an E/Z mixture ; the ratio could not be determined by 1H NMR analysis) as 

a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.77–7.72 (m, 2H), 7.52–7.40 (m, 3H), 6.15 (br s, 1H), 

5.56–5.32 (m, 2H), 3.47 (dt, J = 8.4, 7.2 Hz, 2H), 2.18–1.97 (m, 4H), 1.74–1.65 (m, 2H), 0.97 (t, J = 7.2 

Hz, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 167.5, 134.8, 133.0, 132.6, 131.2, 128.5, 128.0, 127.9, 

126.8, 39.8, 39.7, 30.0, 29.5, 29.3, 25.5, 24.6, 20.5, 14.2, 13.8 (seven excess peaks are observed due to 

E/Z isomers); HRMS (ESI) m/z: [M+Na]+ Calcd for C14H19ONNa 240.1359; found 240.1358. 

 

 
tert-Butyl 5-(4-methoxybenzamido)pentanoate (2ad) 

Purification by PTLC (2:1 hexane/EtOAc) afforded 2ad (56.6 mg, 92% yield) as a white solid. 1H NMR 

(400 MHz, CDCl3) δ 7.75 (d, J = 8.4 Hz, 2H), 6.92 (d, J = 8.4 Hz, 2H), 6.28 (br s, 1H), 3.85 (s, 3H), 

3.45 (q, J = 6.0 Hz, 2H), 2.28 (t, J = 6.8 Hz, 2H), 1.72–1.62 (m, 4H), 1.45 (s, 9H); 13C{1H} NMR (101 

MHz, CDCl3) δ 173.1, 167.0, 161.9, 128.6, 126.9, 113.5, 80.2, 55.3, 39.4, 34.8, 28.8, 28.0, 22.1; HRMS 

(ESI) m/z: [M+H]+ Calcd for C17H26O4N 308.1856; found 308.1857. 

 

 
tert-Butyl 5-(4-methylbenzamido)pentanoate (2ae) 

Purification by PTLC (2:1 hexane/EtOAc) afforded 2ae (58.2 mg, 99% yield) as a colorless oil. 1H 

NMR (400 MHz, CDCl3) δ 7.68 (d, J = 7.6 Hz, 2H), 7.27–7.22 (m, 2H), 6.31 (br s, 1H), 3.45 (q, J = 6.0 

Hz, 2H), 2.39 (s, 3H), 2.28 (t, J = 7.2 Hz, 2H), 1.73–1.61 (m, 4H), 1.45 (s, 9H); 13C{1H} NMR (101 

MHz, CDCl3) δ 173.1, 167.4, 141.7, 131.9, 129.2, 126.8, 80.4, 39.5, 34.9, 28.9, 28.1, 22.1, 21.4; HRMS 

(ESI) m/z: [M+H]+ Calcd for C17H26O3N 292.1907; found 292.1907. 
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tert-Butyl 5-(4-chlorobenzamido)pentanoate (2af) 

Purification by PTLC (2:1 hexane/EtOAc) afforded 2af (58.4 mg, 94% yield) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 7.75–7.73 (m, 2H), 7.42–7.39 (m, 2H), 6.43 (br s, 1H), 3.47–3.43 (m, 2H), 2.29 (t, 

J = 6.8 Hz, 2H), 1.72–1.62 (m, 4H), 1.45 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 173.2, 166.4, 

137.5, 133.1, 128.7, 128.4, 80.5, 39.6, 34.8, 28.7, 28.1, 21.9; HRMS (ESI) m/z: [M+H]+ Calcd for 

C16H23O3NCl 312.1361; found 312.1359. 

 

 
tert-Butyl 5-(4-(trifluoromethyl)benzamido)pentanoate (2ag) 

Purification by PTLC (2:1 hexane/EtOAc, three times) afforded 2ag (40.5 mg, 59% yield) as a yellow 

solid. 1H NMR (400 MHz, CDCl3) δ 7.92 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.0 Hz, 2H), 6.55 (br s, 1H), 

3.48 (q, J = 6.4 Hz, 2H), 2.30 (t, J = 6.8 Hz, 2H), 1.74–1.65 (m, 4H), 1.46 (s, 9H); 13C{1H} NMR (101 

MHz, CDCl3) δ 173.2, 166.2, 137.9, 133.0 (q, J = 32.7 Hz), 127.4, 125.5 (q, J = 3.8 Hz), 123.7 (q, J = 

274 Hz), 80.5, 39.7, 34.7, 28.6, 28.0, 21.9; 19F NMR (376 MHz, CDCl3) δ –63.0; HRMS (ESI) m/z: 

[M+Na]+ Calcd for C17H22O3F3NNa 368.1444; found 368.1444. 

 

 
tert-Butyl 5-(2-methylbenzamido)pentanoate (2ai) 

Purification by PTLC (2:1 hexane/EtOAc) afforded 2ai (22.6 mg, 39% yield) as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ 7.36–7.27 (m, 2H), 7.22–7.16 (m, 2H), 5.92 (br s, 1H), 3.44 (q, J = 6.0 Hz, 2H), 

2.44 (s, 3H), 2.27 (t, J = 6.8 Hz, 2H), 1.73–1.59 (m, 4H), 1.44 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) 

δ 172.9, 170.1, 136.6, 135.9, 130.9, 129.7, 126.6, 125.7, 80.3, 39.3, 34.9, 29.0, 28.1, 22.2, 19.7; HRMS 

(ESI) m/z: [M+Na]+ Calcd for C17H25O3NNa 314.1727; found 314.1728. 
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(R)-N-((5-Oxotetrahydrofuran-2-yl)methyl)benzamide (2al) 

Purification by PTLC (19:1 CHCl3/MeOH) afforded 2al (42.6 mg, 97% yield) as a yellow solid. 1H 

NMR (400 MHz, CDCl3) δ 7.80–7.76 (m, 2H), 7.56–7.43 (m, 3H), 6.53 (br s, 1H), 4.74 (tdd, J = 7.6, 

7.2, 3.2 Hz, 1H), 3.99 (ddd, J = 14.0, 7.2, 3.2 Hz, 1H), 3.54 (ddd, J = 14.0, 7.2, 5.6 Hz, 1H), 2.62–2.56 

(m, 2H), 2.43–2.34 (m, 1H), 2.09–1.98 (m, 1H); 13C{1H} NMR (101 MHz, CDCl3) δ 176.9, 167.9, 133.7, 

131.8, 128.5, 127.0, 79.6, 43.3, 28.5, 24.7; HRMS (ESI) m/z: [M+H]+ Calcd for C12H14O3N 220.0968; 

found 220.0969. 

 

 
Methyl (R)-4-acetoxy-5-benzamidopentanoate (2am) 

Purification by PTLC (1:2 hexane/EtOAc) afforded 2am (52.3 mg, 88% yield) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 7.78–7.74 (m, 2H), 7.53–7.41 (m, 3H), 6.63 (br s, 1H), 5.11–5.04 (m, 1H), 3.69 (s, 

3H), 3.67–3.63 (m, 2H), 2.44 (t, J = 7.2 Hz, 2H), 2.09 (s, 3H), 2.07–1.95 (m, 2H); 13C{1H} NMR (101 

MHz, CDCl3) δ 173.2, 171.4, 167.5, 134.1, 131.5, 128.5, 126.9, 72.4, 51.7, 43.2, 29.7, 26.8, 21.0; 

HRMS (ESI) m/z: [M+H]+ Calcd for C15H20O5N 294.1336; found 294.1343. 

 

 
Methyl (S)-3-(1-benzoylaziridin-2-yl)propanoate (2an) 

The reaction was conducted with Ir(4-Fppy)3 (5.2 mg, 6.0 μmol, 3.0 mol%) for 24 h. Purification by 

PTLC (2:1 hexane/EtOAc) afforded 2an (19.2 mg, 41% yield) as a yellow solid. 1H NMR (400 MHz, 

CDCl3) δ 7.95–7.91 (m, 2H), 7.50–7.45 (m, 1H), 7.43–7.38 (m, 2H), 4.81–4.73 (m, 1H), 4.16 (dd, J = 

14.8, 9.6 Hz, 1H), 3.688 (dd, J = 14.8, 7.2 Hz), 3.685 (s, 3H), 2.60–2.47 (m, 2H), 2.09–1.95 (m, 2H); 

13C{1H} NMR (101 MHz, CDCl3) δ 173.3, 163.7, 131.3, 128.3, 128.1, 127.7, 78.7, 59.9, 51.7, 30.6, 

29.8; HRMS (ESI) m/z: [M+H]+ Calcd for C13H16O3N 234.1125; found 234.1126. 

 

  

H
N

O

O
O

2al

H

O

H
N OMe

O

AcO H

2am

O N

OMe

OH

2an



 S48 

 
(S)-N-((Tetrahydrofuran-2-yl)methyl)benzamide (2ao) 

Purification by PTLC (20:1 CHCl3/MeOH) afforded 2ao (34.6 mg, 84% yield) as a yellow oil. 1H NMR 

(400 MHz, CDCl3) δ 7.80–7.77 (m, 2H), 7.52–7.47 (m, 1H), 7.46–7.41 (m, 2H), 6.52 (br s, 1H), 4.11–

4.04 (m, 1H), 3.90 (dt, J = 8.0, 6.8 Hz, 1H), 3.83–3.75 (m, 2H), 3.35 (ddd, J = 13.6, 7.2, 4.8 Hz, 1H), 

2.08–1.99 (m, 1H), 1.97–1.89 (m, 2H), 1.67–1.57 (m, 1H); 13C{1H} NMR (101 MHz, CDCl3) δ 167.5, 

134.4, 131.3, 128.4, 126.9, 77.8, 68.1, 43.5, 28.6, 25.8; HRMS (ESI) m/z: [M+H]+ Calcd for C12H16O2N 

206.1176; found 206.1177. The spectra are in accordance with those reported in the literature.[29] 

 

 
(S)-N-((5-Oxotetrahydrofuran-2-yl)methyl)benzamide (2ap) 

Purification by PTLC (20:1 CHCl3/MeOH) afforded 2ap (38.5 mg, 88% yield) as a white solid. 1H 

NMR (400 MHz, CDCl3) δ 7.80–7.76 (m, 2H), 7.56–7.51 (m, 1H), 7.48–7.43 (m, 2H), 6.56 (br s, 1H), 

4.74 (dtd, J = 8.0, 7.2, 3.2 Hz, 1H), 3.98 (ddd, J = 14.8, 7.2, 3.2 Hz, 1H), 3.54 (ddd, J = 14.8, 7.2, 5.6 

Hz, 1H), 2.62–2.56 (m, 2H), 2.43–2.34 (m, 1H), 2.09–1.98 (m, 1H); 13C{1H} NMR (101 MHz, CDCl3) 

δ 176.9, 167.9, 133.7, 131.8, 128.5, 127.0, 79.6, 43.3, 28.5, 24.7; HRMS (ESI) m/z: [M+H]+ Calcd for 

C12H14O3N 220.0968; found 220.0972. 

 

 
Methyl 6-benzamidohexanoate (S30) 

The reaction was irradiated with blue LEDs for 72 h without fan cooling. Purification by PTLC (3:2 

hexane/EtOAc) afforded S30 (13.3 mg, 24% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 

7.78–7.75 (m, 2H), 7.52–7.48 (m, 1H), 7.46–7.41 (m, 2H), 6.18 (br s, 1H), 3.67 (s, 3H), 3.47 (td, J = 

7.2, 6.0 Hz, 2H), 2.34 (t, J = 7.2 Hz, 2H), 1.71–1.61 (m, 4H), 1.47–1.39 (m, 2H); 13C{1H} NMR (101 

MHz, CDCl3) δ 174.1, 167.5, 134.7, 131.3, 128.5, 126.8, 51.5, 39.7, 33.8, 29.2, 26.3, 24.4. The spectra 

are in accordance with those reported in the literature.[25] 
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N-Heptylbenzamide (S31) 

The reaction was irradiated with blue LEDs for 120 h without fan cooling. Yields were determined by 
1H NMR using CH2Br2 as an internal standard. In the case of General Procedure F, purification by 

PTLC (2:1 hexane/EtOAc) afforded S31 (1.1 mg, 3% yield) as a colorless oil. 1H NMR (400 MHz, 

CDCl3) δ 7.77–7.74 (m, 2H), 7.52–7.46 (m, 1H), 7.45–7.41 (m, 2H), 6.08 (br s, 1H), 3.46 (td, J = 7.2, 

6.4 Hz, 2H), 1.66–1.56 (m, 2H), 1.39–1.24 (m, 8H), 0.89 (t, J = 6.8 Hz, 3H). The spectrum is in 

accordance with those reported in the literature.[30] 

 

3-4. Intermolecular Radical Addition 

3-4-1. Ring-Opening/Alkenylation 

 
General Procedure G 

To an 8-mL glass tube equipped with a magnetic stirring bar were added pyrrolidine 1a (38.0 mg, 0.20 

mmol, 1.0 equiv), Ir(4-Fppy)3 (1.4 mg, 2.0 μmol, 1.0 mol%), and zinc trifluoromethanesulfonate 

(Zn(OTf)2: 3.6 mg, 10 μmol, 5.0 mol%). After being sealed with a screw cap, the tube was evacuated 

and backfilled with N2 gas three times. To this tube were added CH2Cl2 (2.0 mL, 0.10 M) and alkene 3 

(0.60 mmol, 3.0 equiv). After being stirred under the irradiation with blue LEDs (Kessil®, 456 nm) for 

48 h, the reaction mixture was diluted with water and extracted three times with CH2Cl2. The combined 

organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. Purification by PTLC or PTLC 

and GPC afforded the corresponding styrene 4. 

 

N-(4-Methyl-6-phenylhex-5-en-1-yl)benzamide (4a) 

 
Purification by PTLC (2:1 hexane/EtOAc) followed by GPC afforded 4a (18.7 mg, 32% yield, a mixture 

of diasteromers, E/Z = 19:81) as a colorless oil. Characterization of 4a as a mixture of E/Z isomers was 

done as follows; 1H NMR (400 MHz, CDCl3) δ 7.76–7.71 (m, 2H), 7.52–7.47 (m, 1H), 7.45–7.40 (m, 
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2H), 7.34–7.29 (m, 2H), 7.26–7.19 (m, 3H), 6.41 (Z isomer, d, J = 11.6 Hz, 0.81H), 6.36 (E isomer: d, 

J = 15.6 Hz, 0.19H), 6.11–5.98 (m, 1.19H), 5.43 (Z isomer, dd, J = 11.6, 10.4 Hz, 0.81H), 3.49–3.30 

(m, 2H), 2.83–2.72 (m, 1H), 1.67–1.58 (m, 1H), 1.55–1.32 (m, 3H), 1.11 (E isomer, d, J = 6.8 Hz, 

0.57H), 1.08 (Z isomer, d, J = 6.4 Hz, 2.43H); 13C{1H} NMR (101 MHz, CDCl3, for Z isomer) δ 167.5, 

138.7, 137.7, 134.8, 131.3, 128.5, 128.2, 128.0, 126.8, 126.5, 126.0, 40.1, 34.8, 31.9, 27.6, 21.1; HRMS 

(ESI) m/z: [M+Na]+ Calcd for C20H23ONNa 316.1672; found 316.1682. 

 

N-(4-Methyl-6-(p-tolyl)hex-5-en-1-yl)benzamide (4b) 

 
Purification by PTLC (2:1 hexane/EtOAc), GPC, and followed by PTLC (4:1 hexane/acetone) afforded 

4b (a mixture of diasteromers, 19.1 mg, 31% yield, E/Z = 12:88) as a colorless oil. Characterization of 

4b as a mixture of E/Z isomers was done as follows; 1H NMR (400 MHz, CDCl3) δ 7.76–7.71 (m, 2H), 

7.51–7.46 (m, 1H), 7.44–7.40 (m, 2H), 7.25–7.05 (m, 4H), 6.38–6.31 (m, 1H), 6.07–5.98 (m, 1.17H), 

5.38 (Z isomer, dd, J = 11.6, 10.4 Hz, 0.83H), 3.49–3.30 (m, 2H), 2.85–2.74 (m, 1H), 2.33–2.32 (m, 

3H), 1.66–1.59 (m, 1H), 1.55–1.32 (m, 3H), 1.10–1.06 (m, 3H); 13C{1H} NMR (101 MHz, CDCl3, for 

Z isomer) δ 167.4, 138.1, 136.2, 134.80, 134.77, 131.3, 128.9, 128.5, 128.4, 127.9, 126.8, 40.1, 34.8, 

31.9, 27.6, 21.11, 21.08; HRMS (ESI) m/z: [M+Na]+ Calcd for C21H25ONNa 330.1828; found 330.1830. 

 

N-(6-(4-Fluorophenyl)-4-methylhex-5-en-1-yl)benzamide (4c) 

 
Purification by PTLC (2:1 hexane/EtOAc) followed by GPC afforded N-(6-(4-fluorophenyl)-4-

methylhex-5-en-1-yl)benzamide (a mixture of diasteromers, 18.7 mg, 32% yield, E/Z = 8:92) as a 

colorless oil. Characterization of 4c as a mixture of E/Z isomers was done as follows; 1H NMR (400 

MHz, CDCl3) δ 7.76–7.71 (m, 2H), 7.51–7.47 (m, 1H), 7.44–7.40 (m, 2H), 7.21–7.18 (m, 2H), 7.03–

6.98 (m, 2H), 6.37–6.30 (m, 1H), 6.11–5.95 (m, 1.08H), 5.41 (Z isomer, dd, J = 11.6, 10.4 Hz, 0.92H), 

3.49–3.32 (m, 2H), 2.76–2.68 (m, 1H), 1.66–1.58 (m, 1H), 1.55–1.32 (m, 3H), 1.11 (E isomer, d, J = 
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6.8 Hz, 0.24H), 1.07 (Z isomer, d, J = 6.8 Hz, 2.76H); 13C{1H} NMR (101 MHz, CDCl3, for Z isomer) 

δ 167.4, 161.5 (d, J = 247 Hz), 138.7, 134.7, 133.7 (d, J = 3.6 Hz), 131.3, 130.0 (d, J = 8.2 Hz), 128.5, 

126.9, 126.8, 115.1 (d, J = 21.4 Hz), 40.1, 34.8, 31.9, 27.7, 21.0; 19F NMR (376 MHz, CDCl3) δ –118.9; 

HRMS (ESI) m/z: [M+Na]+ Calcd for C20H22OFNNa 334.1578; found 334.1575. 

 
3-4-2. Synthesis of methyl 2-(3-benzamidopropyl)-4-methylpent-4-enoate (5) 

 
To an 8-mL glass tube equipped with a magnetic stirring bar were added pyrrolidine 1h (46.6 mg, 0.20 

mmol, 1.0 equiv), alkene 3d (84.0 mg, 0.40 mmol, 2.0 equiv), Ir(4-Fppy)3 (1.4 mg, 2.0 μmol, 1.0 mol%), 

and zinc trifluoromethanesulfonate (Zn(OTf)2: 3.6 mg, 10 μmol, 5.0 mol%). After being sealed with a 

screw cap, the tube was evacuated and backfilled with N2 gas three times. To this tube were added 

CH2Cl2 (2.0 mL, 0.10 M) and γ-terpinene (96 μL, 0.60 mmol, 3.0 equiv). After being stirred under the 

irradiation with blue LEDs (Kessil®, 456 nm) for 24 h, the reaction mixture was diluted with water and 

extracted three times with CH2Cl2 using ISOLUTE® phase separator. The combined organic layer was 

concentrated in vacuo. Purification by PTLC (2:1 hexane/EtOAc) afforded 5 (26.0 mg, 45% yield) as a 

colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.79–7.74 (m, 2H), 7.52–7.40 (m, 3H), 6.24 (br s, 1H), 

4.77–4.75 (m, 1H), 4.71–4.68 (m, 1H), 3.67 (s, 3H), 3.52–3.38 (m, 2H), 2.68–2.59 (m, 1H), 2.37 (dd, J 

= 14.0, 8.4 Hz, 1H), 2.15 (dd, J = 14.0, 6.4 Hz, 1H), 1.71 (s, 3H), 1.70–1.53 (m, 4H); 13C{1H} NMR 

(101 MHz, CDCl3) δ 176.2, 167.5, 142.6, 134.7, 131.4, 128.5, 126.8, 112.4, 51.6, 43.5, 40.7, 39.7, 29.2, 

27.4, 22.1; HRMS (ESI) m/z: [M+H]+ Calcd for C17H24O3N 290.1751; found 290.1751. 

 

3-4-3. Radical Addition to Alkenes 3a–c and 3e 

 
General Procedure H 

To an 8-mL glass tube equipped with a magnetic stirring bar were added pyrrolidine 1g (55.1 mg, 0.20 

mmol, 1.0 equiv), Ir(4-Fppy)3 (1.4 mg, 2.0 μmol, 1.0 mol%), and zinc trifluoromethanesulfonate 

(Zn(OTf)2: 3.6 mg, 10 μmol, 5.0 mol%). After being sealed with a screw cap, the tube was evacuated 

and backfilled with N2 gas three times. To this tube were added CH2Cl2 (2.0 mL, 0.10 M) and alkene 3 

(0.60 mmol, 3.0 equiv). After being stirred under the irradiation with blue LEDs (Kessil®, 456 nm) for 

48 h, the reaction mixture was diluted with water and extracted three times with CH2Cl2 using 
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ISOLUTE® phase separator. The combined organic layer was concentrated in vacuo. Purification by 

PTLC or Isolera® afforded the corresponding lactone 6. 

 

 
N-(3-(2-Oxo-5-phenyltetrahydrofuran-3-yl)propyl)benzamide (6a) 

Purification by PTLC (7:1 Et2O/EtOAc) afforded separable two diastereomers of 6a (35.5 mg, 55% 

yield, dr = 1.9:1): major diastereomer (23.3 mg, 36%) as a white solid and minor diastereomer (12.2 

mg, 19%) as a colorless oil.  

   For a major diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.80–7.75 (m, 2H), 7.52–7.31 (m, 8H), 

6.43 (br s, 1H), 5.38 (dd, J = 10.8, 5.6 Hz, 1H), 3.57–3.44 (m, 2H), 2.89–2.75 (m, 2H), 2.05–1.64 (m, 

5H); 13C{1H} NMR (101 MHz, CDCl3) δ 178.6, 167.6, 138.8, 134.5, 131.4, 128.7, 128.6, 126.9, 125.4, 

79.5, 41.0, 39.4, 37.8, 27.1, 27.0 (one peak is missing due to overlapping); HRMS (ESI) m/z: [M+H]+ 

Calcd for C21H24O3N 346.1414; found 346.1412.  

   For a minor diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.80–7.76 (m, 2H), 7.53–7.27 (m, 8H), 

6.41 (br s, 1H), 5.58 (t, J = 6.4 Hz, 1H), 3.57–3.45 (m, 2H), 2.76–2.68 (m, 1H), 2.43 (dd, J = 8.4, 6.4 

Hz, 2H), 2.01–1.92 (m, 1H), 1.88–1.64 (m, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 179.2, 167.6, 

139.6, 134.4, 131.5, 128.8, 128.6, 128.3, 126.9, 124.9, 78.7, 39.6, 38.4, 36.5, 27.7, 27.1. 

 

 
N-(3-(2-Oxo-5-(p-tolyl)tetrahydrofuran-3-yl)propyl)benzamide (6b)  

Purification by Isolera® (4:1 to 0:100 hexane/EtOAc) afforded an inseparable diastereomeric mixture of 

6b (55.9 mg, 83% yield, dr = 2.2:1) as a yellow solid. Characterization of 6b as a mixture of 

diastereomers was done as follows; 1H NMR (400 MHz, CDCl3) δ 7.80–7.75 (m, 2H), 7.52–7.41 (m, 

3H), 7.25–7.17 (m, 4H), 6.04 (br s, 1H), 5.55 (dd, J = 6.8, 5.6 Hz, 0.31H), 5.35 (dd, J = 6.8, 5.6 Hz, 

0.69H), 3.56–3.46 (m, 2H), 2.88–2.68 (m, 1.38H), 2.43–2.38 (m, 0.62H), 2.36 (s, 3H), 2.05–1.62 (m, 

5H); 13C{1H} NMR (101 MHz, CDCl3) δ 179.2, 178.7, 167.6, 138.4, 138.0, 136.4, 135.6, 134.4, 131.3, 

129.34, 129.30, 128.4, 126.9, 125.5, 124.9, 79.6, 78.8, 41.0, 39.5, 39.4, 38.5, 37.6, 36.3, 27.7, 27.05, 

27.02, 21.1, 21.0 (four peaks are missing due to overlapping); HRMS (ESI) m/z: [M+Na]+ Calcd for 

C21H23O3NNa 360.1570; found 360.1569. 
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N-(3-(5-(4-Fluorophenyl)-2-oxotetrahydrofuran-3-yl)propyl)benzamide (6c) 

Purification by PTLC (7:1 Et2O/EtOAc) afforded separable two diastereomers of 6c (40.4 mg, 59% 

yield, dr = 2.0:1): major diastereomer (26.9 mg, 39%) as a white solid and minor diastereomer (13.5 

mg, 20%) as a white solid.  

   For a major diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.80–7.76 (m, 2H), 7.53–7.48 (m, 1H), 

7.46–7.41 (m, 2H), 7.35–7.30 (m, 2H), 7.11–7.05 (m, 2H), 6.36 (br s, 1H), 5.36 (dd, J = 10.8, 5.6 Hz, 

1H), 3.58–3.45 (m, 2H), 2.90–2.75 (m, 2H), 2.06–1.97 (m, 1H), 1.93–1.61 (m, 4H); 13C{1H} NMR (101 

MHz, CDCl3) δ 178.3, 167.6, 162.7 (d, JC–F = 249.0 Hz), 134.5 (d, JC–F = 3.2 Hz), 134.4, 131.5, 128.6, 

127.4 (d, JC–F = 8.3 Hz), 126.8, 115.7 (d, JC–F = 22.0 Hz), 78.9, 41.0, 39.4, 37.8, 27.1, 27.0; 19F NMR 

(376 MHz, CDCl3) δ –116.3; HRMS (ESI) m/z: [M+Na]+ Calcd for C21H23O3NFNa 364.1319; found 

364.1317.  

   For a minor diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.80–7.75 (m, 2H), 7.53–7.41 (m, 3H), 

7.30–7.25 (m, 2H), 7.10–7.04 (m, 2H), 6.41 (br s, 1H), 5.55 (t, J = 6.4 Hz, 1H), 3.58–3.44 (m, 2H), 

2.76–2.68 (m, 1H), 2.47–2.35 (m, 2H), 2.01–1.91 (m, 1H), 1.88–1.66 (m, 3H); 13C{1H} NMR (101 MHz, 

CDCl3) δ 178.9, 167.6, 162.5 (d, JC–F = 248.7 Hz), 135.3 (d, JC–F = 3.3 Hz), 134.4, 131.5, 128.6, 126.85 

(d, JC–F = 8.3 Hz), 126.84, 115.8 (d, JC–F = 21.8 Hz), 78.2, 39.6, 38.5, 36.5, 27.7, 27.1; 19F NMR (376 

MHz, CDCl3) δ –116.8. 

 

 
N-(3-(5-Methyl-2-oxo-5-phenyltetrahydrofuran-3-yl)propyl)benzamide (6e) 

Purification by PTLC (1:1 hexane/EtOAc) afforded separable two diastereomers of 6e (56.7 mg, 84% 

yield, dr = 3.5:1): major diastereomer (44.1 mg, 65%) as a yellow solid and minor diastereomer (12.6 

mg, 19%) as a yellow oil.  

   For a major diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.78–7.74 (m, 2H), 7.51–7.46 (m, 1H), 

7.45–7.39 (m, 2H), 7.38–7.33 (m, 4H), 7.31–7.26 (m, 1H), 6.50–6.30 (m, 1H), 3.52–3.38 (m, 2H), 2.98–

2.87 (m, 1H), 2.68 (dd, J = 12.8, 8.8 Hz, 1H), 2.13 (dd, J = 12.8, 11.2 Hz, 1H), 1.95–1.86 (m, 1H), 1.84–

1.64 (m, 5H), 1.60–1.48 (m, 1H); 13C{1H} NMR (101 MHz, CDCl3) δ 178.2, 167.6, 145.1, 134.4, 131.4, 

128.6, 128.5, 127.6, 126.8, 123.8, 84.9, 41.8, 40.0, 39.4, 28.8, 27.5, 27.0; HRMS (ESI) m/z: [M+H]+ 

Calcd for C21H24O3N 338.1751; found 338.1750.  

   For a minor diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.78–7.75 (m, 2H), 7.52–7.47 (m, 1H), 

7.45–7.40 (m, 2H), 7.39–7.34 (m, 4H), 7.33–7.27 (m, 1H), 6.41 (m, 1H), 3.52–3.39 (m, 2H), 2.75 (dd, 

6c

H
N

O

OO

F

6e
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J = 12.0, 8.4 Hz, 1H), 2.54–2.45 (m, 1H), 2.09 (t, J = 12.0 Hz, 1H), 1.97–1.88 (m, 1H), 1.81–1.67 (m, 

5H), 1.66–1.55 (m, 2H); 13C{1H} NMR (101 MHz, CDCl3) δ 178.7, 167.5, 143.6, 134.5, 131.4, 128.6, 

128.5, 127.7, 126.8, 124.1, 84.9, 42.8, 39.8, 39.6, 30.3, 27.1, 26.9.  

 

3-4-4. Synthesis of N-(6,6-dimethyl-4-(4-methylstyryl)-5-oxoheptyl)benzamide (8) 

 
To an 8-mL glass tube equipped with a magnetic stirring bar were added pyrrolidine 1g (55.1 mg, 0.20 

mmol, 1.0 equiv), Ir(4-Fppy)3 (1.4 mg, 2.0 μmol, 1.0 mol%), and zinc trifluoromethanesulfonate 

(Zn(OTf)2: 3.6 mg, 10 μmol, 5.0 mol%). After being sealed with a screw cap, the tube was evacuated 

and backfilled with N2 gas three times. To this tube were added CH2Cl2 (2.0 mL, 0.10 M), alkyne 7 

(51 μL, 0.40 mmol, 2.0 equiv), and γ-terpinene (96 μL, 0.60 mmol, 3.0 equiv). After being stirred under 

the irradiation with blue LEDs (Kessil®, 456 nm) for 24 h, the reaction mixture was diluted with water 

and extracted three times with CH2Cl2 using ISOLUTE® phase separator. The combined organic layer 

was concentrated in vacuo. Purification by PTLC (20:1 CHCl3/EtOAc) afforded 8 (29.1 mg, 37% yield, 

as a mixture of E/Z isomers; E:Z = 1:11) as a yellow oil. Characterization of 8 as a mixture of E/Z 

isomers was done as follows; 1H NMR (400 MHz, CDCl3) δ 7.78–7.72 (m, 2H), 7.51–7.46 (m, 1H), 

7.45–7.39 (m, 2H), 7.27–7.23 (m, 2H), 7.16–7.10 (m, 2H), 6.55 (Z isomer: d, J = 11.2 Hz, 0.91H), 6.44 

(E isomer: d, J = 16.4 Hz, 0.09H), 6.25–6.14 (m, 1H), 6.13–6.07 (m, 0.09H), 5.54 (t, J = 11.2 Hz, 0.91H), 

3.55–3.43 (m, 1.09H), 3.39 (Z isomer: q, J = 6.4 Hz, 1.82H), 3.07 (E isomer: q, J = 6.4 Hz, 0.09H), 2.34 

(s, 3H), 1.94–1.80 (m, 1H), 1.74–1.52 (m, 3H), 1.51–1.42 (m, 9H); 13C{1H} NMR (101 MHz, CDCl3) 

δ 173.4, 167.4, 136.9, 134.7, 133.8, 131.34, 131.28, 129.1, 129.0, 128.6, 128.5, 126.8, 81.0, 45.4, 39.7, 

30.3, 28.0, 26.9, 21.1; HRMS (ESI) m/z: [M+Na]+ Calcd for C25H31O3NNa 416.2196; found 416.2196. 

 

  

N
OtBu

O
O

+

O

H
N

tBuO2C
1.0 mol% Ir(4-Fppy)3
5.0 mol% Zn(OTf)2

γ-terpinene (3.0 equiv)

CH2Cl2 (0.10 M)
Blue LEDs, 35 °C , 24 h

1g: 0.20 mmol 7: 2.0 equiv 8: 37% (E:Z = 1:11)

Me

Me
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3-5. Control experiments for the detection of carbanion intermediate 

When the reaction affords carbanion intermediates, the addition of D2O would deuterate the 

product. However, the addition of D2O in the reaction did not afford any deuterated products. 

Then, we concluded that the reaction proceeds in radical mechanism without any carbanion 

intermediates. 

 
To an 8-mL glass tube equipped with a magnetic stirring bar were added Ir(4-Fppy)3 (0.7 mg, 1.0 μmol, 

1.0 mol%) and zinc trifluoromethanesulfonate (Zn(OTf)2: 1.8 mg, 5.0 μmol, 5.0 mol%). After being 

sealed with a screw cap, the tube was evacuated and backfilled with N2 gas three times. To this tube 

were added CH2Cl2 (1.0 mL, 0.10 M), pyrrolidine (0.10 mmol, 1.0 equiv), D2O, and γ-terpinene (48 

μL, 0.30 mmol, 3.0 equiv). After being stirred under the irradiation with blue LEDs (Kessil®, 456 nm) 

for 12 h, the reaction mixture was diluted with water and extracted three times with CH2Cl2 and the 

combined organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. Purification by 

PTLC (2:1 hexane/EtOAc) to afford the corresponding ring-opening product and the deuterated ratio 

was determined by 1H NMR. 

 

3-6. Control experiments for the ring opening of N-Bz aziridine and azetidine 

 

N

Ph O

R

1.0 mol% Ir(4-Fppy)3
5.0 mol% Zn(OTf)2

γ-terpinene (3.0 equiv)
D2O (X equiv)

CH2Cl2 (0.10 M)
Blue LEDs, 35 °C, 12 h

R
O

Ph
H
N

H/D

1
(0.10 mmol)

2

Entry

1
2
3
4
5
6

Yield of 2 /%

72
36
21
14
11
48

Recovery of 1 /%

22
40
71
75
80
50

Yields were determined by 1H NMR using CH2Br2 as an internal standard.
[a] Deuterated ratio was determined after isolation.

R

Me
Me
Me
Me
Me

CO2Bn

X

1
3
5

10
20
1

Deuterated ratio /% D

<5a

<5a

<5a

<5a

<5a

<5a

CO2Me

Ph O

1.0 mol% Ir(4-Fppy)3
γ-terpinene (3.0 equiv)

CH2Cl2 (0.10 M)
Blue LEDs, 35 °C, 12 h

H

CO2MeN
H

O

PhN

n

n

1
(0.10 mmol)

2

Entry

1
2

n

0 (1u)
1 (1v)

Yield of 2 /%

28
21

Recovery of 1 /%

59
38

Total /%

87
59

Yields were determined by 1H NMR using CH2Br2 as an internal standard.
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To a 3 mL glass tube equipped with a magnetic stirring bar was added Ir(4-Fppy)3 (0.7 mg, 1.0 μmol, 

1.0 mol%). After being sealed with a screw cap, the tube was evacuated and backfilled with N2 gas three 

times. To this tube were added CH2Cl2 (1.0 mL, 0.10 M), aziridine or azetidine (0.10 mmol, 1.0 equiv), 

and γ-terpinene (48 μL, 0.30 mmol, 3.0 equiv). After being stirred under the irradiation with blue LEDs 

(Kessil®, 456 nm) for 12 h, the reaction mixture was diluted with water and extracted three times with 

CH2Cl2 and the combined organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. 

Yields were determined by 1H NMR using CH2Br2 as an internal standard.  
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4. Cyclic Voltammetry 

Cyclic voltammograms were collected with an HSV-110 (Hokuto Denko). Each sample was prepared 

by dissolving appropriate substrates in 3 mL of 0.1 M [nBu4N][BF4] in dry, degassed acetonitrile. 

Measurements employed a glassy carbon as a working electrode (electrode surface = 7.07 mm2), 

platinum wire as a counter electrode, Ag/Ag+ (in 0.1 M [nBu4N][ClO4]/0.01 M AgNO3 in MeCN) as a 

reference electrode, and a scan rate of 100 mV/s. Reductions were measured by scanning potentials in 

the negative direction; the glassy carbon electrode was polished between each scan. 

 

 

(2-Methylpyrrolidin-1-yl)(phenyl)methanone (1a) 

 

Figure S2. Cyclic Voltammogram of 1a 
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1-(2-Methylpyrrolidin-1-yl)ethan-1-one (1ab) 

 
Figure S3. Cyclic Voltammogram of 1ab 
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1ab
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2,2,2-Trifluoro-1-(2-methylpyrrolidin-1-yl)ethan-1-one (1ac)  

 

Figure S4. Cyclic Voltammogram of 1ac  
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5. NMR Studies  
13C{1H} NMR spectra of N-acyl pyrrolidines 1 (0.40 mmol for 1a (N-COPh), 0.60 mmol for 1s (N-

COMe) and 1t (N-COCF3), 1.0 equiv) in the presence of Zn(OTf)2 (5.0 mol%, 10 mol%, and 30 mol%) 

were measured in tetrahydrofuran-d8 (550 μL) at 338 K. CHCl3 (1.0 equiv, δ 79.0 ppm) was added as a 

reference standard. Although CH2Cl2 was used in the optimal conditions of the ring opening of 

pyrrolidines, in NMR studies, tetrahydrofuran-d8 was used due to the low solubility of Zn(OTf)2 in 

CD2Cl2. 

 
Figure S4. 13C{1H} NMR spectra of pyrrolidine 1a with different equivalents of Zn(OTf)2 in THF-d8 
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Figure S5. 13C{1H} NMR spectra of pyrrolidine 1y with different equivalents of Zn(OTf)2 in THF-d8 

 

Figure S6. 13C{1H} NMR spectra of pyrrolidine 1z with different equivalents of Zn(OTf)2 in THF-d8 

1y

1z
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7. NMR Spectral Data 
1H NMR of 1a (400 MHz, CDCl3)  
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13C{1H} NMR of 1a (101 MHz, CDCl3, 323 K)  
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1H NMR of 1z (400 MHz, CDCl3, 323 K)  
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13C{1H} NMR of 1z (101 MHz, CDCl3, 323 K) 
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19F NMR of 1t (376 MHz, CDCl3, 323 K)  
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1H NMR of 1b (400 MHz, C6D6, 338 K)  
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6e (minor diastereomer)
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 S233 

13C{1H} NMR of 6e (101 MHz, CDCl3): minor diastereomer 
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 S234 

1H NMR of 8 (400 MHz, CDCl3): diastereomeric mixture  
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 S235 

13C{1H} NMR of 8 (101 MHz, CDCl3): diastereomeric mixture  
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