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Bilayer tension-clamp system
Bubble pressure control
Figure S1 shows two pneumatic manipulators for manual 
operation (Narishige), on which a stepping motor (PKP523N12B, 
ORIENTAL MOTOR Co., Ltd, Japan) was mounted. A software 
switch is set to choose either manual or automatic control, 
which allows immediate switching-on manipulation.

Image analysis
A bubble image provides the geometry metrics prerequisite for 
tension evaluation involving bubble radii and contact angles. 
For the captured bubble images, we first detected the bubble 
boundaries. To avoid disturbances from the blurred pipette 
contour, two vertical lines were manually located at the bubble-
pipette borderline (Fig. S2) on a graphical user interface (GUI). 
The image is then trimmed into a region limited by two vertical 
lines. The upper and lower boundaries of the bubbles were 
detected in the region using a suitable edge-detection 
operator1. They were further separated into left and right 
boundaries at the corner points (Fig. S2A) based on corner 
detection operations in fundamental image processing techniques1.

The shape of the bubbles was well modeled with a slanted ellipse, and their geometric parameters were obtained 
by fitting each of the boundaries with the parametric equation of an ellipse:

　　　　　𝐹(𝑥,𝑦) = 𝑎 𝑥2 +𝑏 𝑥𝑦 + 𝑐 𝑦2 +𝑑 𝑥 + 𝑒 𝑦 = 1　　　　　　　　　　Eq. S1

Figure S1. Computer-controllable pneumatic 
injector. The stepping motor (PKP523N12B 
manufactured by ORIENTAL MORTOR Co., Ltd, 
Japan) was attached to the rotation axis of the 
original pneumatic microinjector (IM-11-2 
manufactured by NARISHIGE Co., Ltd, Japan). The 
power lines of the motor were carefully shielded 
to avoid electromagnetic interference for a 
channel current measurement.
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The coefficients a - e were obtained by the least square technique that minimizes

𝐸 = ∑𝑁―1
𝑛 𝑎 𝑥2

𝑛 + 𝑏 𝑥𝑛 𝑦𝑛 + 𝑐 𝑦2
𝑛 + 𝑑 𝑥𝑛 + 𝑒 𝑦𝑛 ― 1 

2
Eq. S2

with respect to parameters a - e, where (xn, yn) (n = 0, 1, …, N) represents the coordinates of each pixel on the bubble 
boundary. The geometric parameters of the bubbles were readily calculated from the coefficients a - e, yielding the 
center coordinate (cx, cy), the principal radii Rl and Rr, and the tilt angle φ, where φ is the angle between a principal 
radius and the horizontal line.

The contact angles θ were necessary to calculate γbil using Eqs. (1) – (5), which can be calculated by first solving 
FL(x,y) = 1 and FR(x,y) = 1 simultaneously to find the upper and lower contact points followed by calculating the 
tangential lines as shown in Fig. S2. The Newton-Raphson technique was employed to determine the coordinates of 
the contact points.

Software control unit
A block diagram of the control system is shown in Fig. 5, including three building blocks and internal signals: 

r(t): the reference (clamping target) value
y(t): the measured tension 
e(t): the difference tension 
u(t): the control block output 
ω(t): the rotation angle of the injector’s stepping motor 
p(t): the bubble pressure 
r(t): the bubble radius 
θ(t): the contact angle 

A simple proportional-integral-differential (PID) control technique was employed in the control block 38. Control block 
outputs, u(t),

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑑
𝑑𝑒(𝑡)

𝑑𝑡 Eq. S3

    
Figure S2. Extraction of the upper and lower boundaries of the bubbles. A. The vertical lines were placed to separate 
the bubbles from the blurred pipettes. The upper and lower boundaries were readily detected using an edge-
detection operator. B. Separation of the upper and the lower boundaries into the left and right at the corner points. 
C. Approximation of the left and right boundaries by the ellipse Fz(x,y) = 1, from which the geometric parameters 
can be extracted.
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for the difference e(t), where kp and kd are proportionality constants. The feedback signal into the pressure operating 
unit is the pulse count for the rotating axis u(t). Thereafter, the motor drive yields the rotation angle, ω(t), for the 
stepping motor. As the motor maintains its angle after rotation, the motor block acts as an integrator.

𝜔(𝑡) ∝ ∫𝑡
0 𝑢(𝑡)𝑑𝑡 Eq. S4

The fine pressure gauge continuously monitored changes in the bubble pressure p(t). Simultaneously, the image-
analysis unit retrieved the bubble radii (Ravg(t)) that were fed into the size-clamp system. 

Taking the Laplace transformation of each internal value, the transfer function H(s) from the input reference r(t) to 
the output y(t) is given by:

𝐻(𝑠) =
𝑌(𝑠)
𝑅(𝑠) =

𝑈(𝑠)
𝐸(𝑠)

 ∙ 𝛺(𝑠)
𝑈(𝑠)

 ∙ 𝑌(𝑠)
𝛺(𝑠)

 

1 𝑈(𝑠)
𝐸(𝑠)

 ∙ 𝛺(𝑠)
𝑈(𝑠)

 ∙ 𝑌(𝑠)
𝛺(𝑠)

  Eq. S5

where Y (s)/ Ω(s) denotes the transfer function of the bubble block: the ratio of the response y(t) (= Ravg(t)) against a 
variation of the injector pressure governed by (t) in the transformed domain. We have empirically confirmed that 
the transfer function Y (s)/ Ω(s) can be well modeled as a first-order lag system and is represented as

𝑌(𝑠)
𝛺(𝑠) ∝ 1

𝑠𝜏 1 Eq. S6

where τ is a time constant of the response determined by the bubble system’s chemical and physical features.
By substituting Eq. S6, and the Laplace transforms of Eqs. S3 and S4 into Eq. S5, the transfer function of the control 

system is given by:

𝐻(𝑠) =
𝑌(𝑠)
𝑅(𝑠) =

𝑘𝑑 𝑠  𝑘𝑝

𝜏 𝑠2 (𝑘𝑑 1) 𝑠 𝑘𝑝
 Eq. S7

which is a second-order transfer function. Application of the final value theorem,

lim
𝑡→∞

𝑦(𝑡) =  lim
𝑠→0

𝑠 𝐻(𝑠) 𝑅(𝑠) Eq. S8

where R(s) = 1/s (unit-step function) in Eq. S8 yields y(∞) = 1. This indicates that the control system produces no 
steady-state errors and justifies the exclusion of the integration term in the control block, as in Eq. S3.

In the PID control theory, the parameters kp and kd are determined such that the step response y(t) approaches 
critical dumping.2 However, the time-constant τ in Eq. S6 is highly dependent on the chemical and physical features 
of the system and is thus difficult to estimate. Accordingly, these values were empirically determined and set in our 
system using a GUI.

Thus far, the control system has been treated in the continuous-time domain for simplicity. The system was 
implemented as a discrete-time system on a control PC, which was temporally discretized to work in synchronization 
with the strobe signal of the video camera (currently fvideo = 10 or 20 [Hz]). More specifically, it is a discretized version 
of the control system.

1. captures a frame and reads out the injector pressure from the A/D converter
2. extracts the geometric parameters of the bubble and calculates the target output in focus
3. calculates the next pulse count by which the motor is rotated
4. issues a rotation instruction for the motor
5. returns to step 1 and repeats steps 1–5

Let rk, yk, ek, and uk be discretized versions of their corresponding values r(t), y(t), e(t), and u(t), respectively, at t = 
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Tsk, where Ts is the time interval (Ts = 1/fvideo = 0.05 [s] and k is an integer temporal index. In this case, the time 
constants τ of the bubble in Eq. S6 are significantly larger than Ts, and the differentiation de(t)/dt in Eqs. S3 can be 
replaced by the finite difference ek – ek-1. Based on this replacement, the control block in Figure 5 calculates the pulse 
count, uk by

𝑢𝑘 = 𝑘𝑝(𝑟𝑘 ― 𝑦𝑘) + 𝑘𝑑((𝑟𝑘 ― 𝑦𝑘) ― (𝑟𝑘―1 ― 𝑦𝑘―1)) Eq. S9

in step 3.

Chart program: Graphical interface for tension-control experiment
We developed a program for the experimental protocol by setting the time course of tension changes (chart program) 
using a graphical interface (Fig. S3). The time course of the bilayer tension with the start and end times for a certain 
tension (tension protocol) was manipulated on the display. The software was organized into an image panel.   

Tension step-changes
Upon step changes in the tension with the simultaneous operation of both bubbles, the time course of the changes in 
the bubble shape is shown as a video during 2 sec before and after the jump (Video 1; see also Fig. 4E). Upon 
simultaneous step changes in the both bubble pressure, the bubbles moved with a push-and-pull fashion due to bubble 
pressure unbalance. The contact angle changed immediately and slightly, reaching a new force balance between the 

Figure S3. Graphical interface of the Chart program for programmed tension control experiments. A screenshot of 
the program is shown. Moving a cursor for an arbitrary time course can set a tension schedule. Here, the left and 
right leaflet tension is jumped from 2 mN/m to 4 mN/m simultaneously, leading the bilayer tension changes from 
4 mN/m to 8 mN/m. Upon a step, the rate of tension changes is set arbitrarily at the left middle section, where the 
rate is set at 1.0 mN/m/sec. Moderate tension changes are recommended for stable operation in a long-run 
experiment covering a broad range of tension changes.
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leaflets and monolayers (Eq. 6 and 7). 
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