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Supplementary Note 

 

1. Summary of the clinical definitions of metabolic syndrome 

Metabolic syndrome (MetS) is a collection of risk factors that increase the risk of 

cardiovascular disease and type 2 diabetes (T2D). Despite its seemingly straightforward 

definition, it is still a challenge to diagnose MetS clinically1-3. 

The initial definition of MetS was established in 1998 by the World Health Organization4, 

highlighting insulin resistance along with any two of the following criteria: obesity, 

hypertension, high triglyceride (TG) levels, reduced high-density lipoprotein cholesterol 

(HDL-C) levels, or microalbuminuria. In 2001, the National Cholesterol Education Program 

Adult Treatment Panel III (ATP III)5 revised the criteria, neglecting insulin resistance as a 

mandatory requirement and requiring three out of five specific conditions for MetS diagnosis: 

abdominal obesity, elevated TG, reduced HDL-C, elevated BP, and elevated fasting glucose 

(FG). However, the American Association of Clinical Endocrinologists (AACE)6 once again 

underscored the importance of insulin resistance in 2003. 

By 2005, the International Diabetes Federation (IDF)7 and the American Heart 

Association/National Heart, Lung, and Blood Institute (AHA/NHLBI)8 had proposed 

definitions similar to ATP III, with the IDF emphasizing the centrality of abdominal obesity 

and the AHA/NHLBI deeming it less critical. Eventually, a consensus was reached on the 

following criteria: elevated waist circumference (WC), elevated TG, reduced HDL-C, elevated 

BP, and elevated FG, with abdominal obesity not being a mandatory factor for MetS diagnosis 

but requiring different WC thresholds based on sex and ethnicity. 

Similarly, the clinical definition of MetS undergoes periodic revisions and updates. The 
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ongoing progression of MetS can be attributed to several factors. As research on MetS advances, 

a new understanding of its underlying mechanisms and pathophysiology is continuously being 

incorporated, leading various organizations to emphasize different aspects of MetS. 

Additionally, the prevalence and significance of MetS components can differ among 

populations and ethnicities, necessitating modifications to the diagnostic criteria to reflect these 

variations. The challenge of reaching an agreement among organizations, each with its own set 

of perspectives and priorities, leads to a diversity of criteria for defining MetS. 

In this study, we adopted the definition of MetS outlined by the IDF and AHA/NHLBI, 

which specifies five criteria. However, we allowed for certain flexibility by including 

additional traits and diseases closely linked to these criteria, such as body mass index and T2D. 

The inclusion of additional genetically correlated traits can be advantageous for this study, as 

it uses various traits to conduct multivariate Genome-wide Association Studies (GWAS). This 

approach enhances the ability to identify new genetic associations by boosting statistical power 

and improving the accuracy of polygenic risk scores, as measurement of one trait can offer 

information on the genetic values of other related traits9-11. While MetS is recognized as a risk 

factor for T2D, T2D itself can be viewed as a component of MetS, especially because the 

AHA/NHLBI threshold for fasting glucose (≥100 mg/dL) encompasses most patients with T2D. 

The overlap of common risk factors between T2D and other MetS components, such as obesity, 

dyslipidemia, and hypertension, highlights the correlated nature of these conditions. This 

underscores the importance of identifying individuals at risk of both MetS and T2D to 

effectively implement early intervention and prevention strategies. 
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Summary of the metabolic syndrome diagnosis criteria 

Abbreviation: WHO, World Health Organization; ATP III, National Cholesterol Education Program Adult Treatment Panel III; AACE, American Association 

of Clinical Endocrinologists; IDF, International Diabetes Federation; AHA/NHLBI, American Heart Association/National Heart, Lung, and Blood Institute; 

MetS, metabolic syndrome; BMI, body mass index; WC, waist circumference; EUR, European; WHR, waist-to-hip ratio; BP, blood pressure; DM, diabetes 

mellitus; T2D, type 2 diabetes; FG, fasting glucose; IGT, impaired glucose intolerance; IFG, impaired fasting glucose; TG, triglycerides; HDL, high-density 

lipoprotein cholesterol

 Organization WHO4 ATP III5 AACE6 IDF7 AHA/NHLBI8 

 Year 1998 2001 2003 2005 2005 

Category 
MetS diagnosis 

criteria 

Mandate insulin 

resistance and ≥2 of the 

following 

≥3 of the following 

Mandate insulin 

resistance and any 

of the following 

Mandate obesity and ≥2 

of the following 
≥3 of the following 

Obesity BMI 
>30 kg/m2 (either BMI or 

WHR) 
- ≥25 kg/m2 

≥30 kg/m2 (if stratifies, 

WC is not required) 
- 

Obesity WC - 
Sex-specific; ≥102 cm in 

male, ≥80 cm in female 
- 

Population- and sex-

specific; ≥94 cm in EUR 

male, ≥80 cm in EUR 

female 

Sex-specific; ≥102 cm in male, ≥88 

cm in female 

Obesity WHR 
Sex-specific; >0.9 in 

male, >0.85 in female 
- - - - 

Hypertension BP 

Systolic ≥140 mm Hg 

and/or diastolic ≥90 mm 

Hg 

Systolic ≥130 mm Hg 

and/or diastolic ≥85 mm 

Hg; Hypertension 

prescription 

Systolic ≥130 

mm Hg and/or 

diastolic ≥85 mm 

Hg 

Systolic ≥130 mm Hg 

and/or diastolic ≥85 mm 

Hg; Hypertension 

prescription 

Systolic ≥130 mm Hg and/or 

diastolic ≥85 mm Hg; Treatment 

with antihypertensive drugs with a 

history of hypertension 

Insulin 

resistance 
DM Diagnosed with T2D 

FG criterion does not 

exclude diabetes8 
- Diagnosed with T2D 

Majority of patients with T2D 

included based on the FG criterion1 

Insulin 

resistance 
FG IGT or IFG >110 mg/dL 

IGT or IFG 

without diabetes 
≥100 mg/dL ≥100 mg/dL 

Dyslipidemia TG ≥150 mg/dL ≥150 mg/dL ≥150 mg/dL ≥150 mg/dL ≥150 mg/dL 

Dyslipidemia HDL 

Sex-specific; <35 mg/dL 

in male, <39 mg/dL in 

female 

Sex-specific; <40 mg/dL 

in male, <50 mg/dL in 

female 

Sex-specific; <40 

mg/dL in male, 

<50 mg/dL in 

female 

Sex-specific; <40 mg/dL 

in male, <50 mg/dL in 

female 

Sex-specific; <40 mg/dL in male, <50 

mg/dL in female 

Other Other Microalbuminuria - 
Family history of 

T2D 
- - 
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2. Functional annotation 

We performed functional annotation of metabolic syndrome (MetS) genetic signal from a 

multivariate genome-wide association study (GWAS) by using ANNOVAR12 implemented in 

FUMA13. The independent significant single-nucleotide polymorphisms (SNPs) and their 

SNPs in linkage disequilibrium (LD) were annotated with relevant biological functions. The 

annotation leveraging ANNOVAR is performed by matching the SNP’s chromosome, base 

position, reference allele, and alternative allele to the databases. 

The databases used for the functional annotation in this study were ANNOVAR 

categories12, CADD scores14, Regulome DB scores15, and chromatin states16,17. A detailed 

description of each database can be found from corresponding studies, as well as Jansen et al.18, 

and a summarized description can be found below: 

1) ANNOVAR categories are divided into exonic, intergenic, 5′/3′-UTR, splicing site, 

and upstream/downstream, where the SNPs are annotated by their genic position.  

2) The CADD scores are the predicted measure of how deleterious a SNP is for a protein 

function and higher scores represent higher deleteriousness. We used the default 

threshold of CADD score > 12.37 to define a SNP as being deleterious.  

3) The RegulomeDB scores are categorized from 1a to 7 based on eQTLs and chromatin 

marks, where 1a indicates that SNP is most likely to have a regulatory function. The 

categories are as follows: 1a: eQTL + transcription factor (TF) binding + matched TF 

motif + matched DNase footprint + DNase peak, 1b: eQTL + TF binding + any motif 

+ DNase footprint + DNase peak, 1c: eQTL + TF binding + matched TF motif + 

DNase peak, 1d: eQTL + TF binding + any motif + DNase peak, 1e: eQTL + TF 

binding + matched TF motif, 1f: eQTL + TF binding/DNase peak, 2a: TF binding + 

matched TF motif + matched DNase footprint + DNase peak, 2b: TF binding any motif 

+ DNase footprint + DNase peak, 2c: TF binding + matched TF motif + DNase peak, 



7 

 

3a: TF binding + any motif + DNase peak, 3b: TF binding + matched TF motif, 4: TF 

binding + DNase peak, 5: TF binding or DNase peak, 6: motif hit, and 7: other. The 

chromatin states represent the accessibility of the genomic region for every 200 bp 

using 15 categorical states predicted by ChromHMM17 using 5 chromatin marks for 

127 epigenomes.  

4) The chromatin states from 1 to 7 represent open chromatin states and the lower 

chromatin state indicates higher accessibility. The 15 chromatin states are as follows: 

1: active transcription start site (TSS), 2: flanking active TSS, 3: transcription at gene 

5′ and 3′, 4: strong transcription, 5: weak transcription, 6: genic enhancers, 7: 

enhancers, 8: zinc-finger protein and repeats, 9: heterochromatin, 10: bivalence/poised 

TSS, 11: flanking bivalent TSS/enhancer, 12: bivalent enhancer, 13: repressed 

polycomb, 14: weak repressed polycomb, and 15: quiescent/low. 

Most of COJO MetS SNPs were intronic (n SNP = 588, 45%) or intergenic (n SNP = 427, 

32.7%), yet 26 COJO SNPs (2%) were nonsynonymous. Based on the CADD score, an SNP 

with a CADD score greater than 12.35 is considered deleterious. We observed 112 COJO MetS 

SNPs being deleterious in which the SNP with the highest probability of exerting deleterious 

protein effect was rs3764002 (CADD score = 28.1). The RegulomeDB scores categorized 44 

COJO SNPs under RegulomeDB score 1 (i.e., a high likelihood of having a regulatory function) 

based on potential regulatory function. There were 365 COJO SNPs annotated under open 

chromatin states where 19 COJO SNPs were in the active transcription start site (TSS) with the 

highest accessibility (Supplementary Fig. 4 and Supplementary Table 13). 

 

3. SNP to gene mapping using FUMA and MAGMA gene-based analysis 

FUMA was leveraged to map independent significant SNPs of MetS GWAS and their SNPs in 
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LD to relevant genes. The gene mapping was performed by three different strategies available 

in FUMA, namely positional mapping, expression quantitative trait loci (eQTL) mapping, and 

chromatin interaction mapping. For all three mapping strategies, we additionally filtered the 

SNPs based on the functional annotations as follows: minimum CADD score ≥12.37, 

maximum Regulome DB score of 7, all tissue- and/or cell-types available for 15-core 

chromatin state, and maximum 15-core chromatin state of 7.  

A brief description of three gene mapping strategies is as follows: 

1) Positional mapping maps SNPs to protein-coding genes with the physical distance 

between the SNP and the gene with a default window of 10 kb. 

2) eQTL mapping maps independent significant SNPs and SNPs in LD to genes where 

these SNPs are likely to affect the expression of those genes within 1 Mb. We used a 

Benjamini-Hochberg FDR of 0.05 to define a significant eQTL association. All tissue 

types from data repositories available in FUMA for eQTL mapping which include 

EyeGEx19, eQTL catalogue20, PsychENCODE21, van der Wijst et al. scRNA eQTLs22, 

DICE23, eQTLGen24, Blood eQTLs25, MuTHER26, xQTL server27, ComminMind 

Consortium28, BRAINEAC29, and GTEx v830. 

3) Chromatin interaction mapping maps independent significant SNPs and SNPs in LD to 

a gene if there is three-dimensional DNA-DNA interaction between a region containing 

the SNP and another region that overlaps with the promoter region of the gene (250 bp 

upstream and 500 bp downstream of the TSS). The interacting region may span multiple 

genes as chromatin interactions are often defined with a certain resolution (e.g., 40 kb). 

Due to the absence of distance boundaries, chromatin interaction mapping can involve 

long-range interactions. We used an FDR P-value of 1 × 10−6 to define significant 

interactions. The data repositories used for chromatin interactions are 21 tissue and cell 
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types of Hi-C data31, adult and fetal cortex Hi-C data32, FANTOM33, and 

PsychENCODE21. 

The independent SNPs from MetS GWAS and SNPs in LD were mapped to genes using 

three gene mapping strategies. The positional mapping, eQTL mapping, and chromatin 

interaction mapping identified 885, 3,008, and 4,660 genes, respectively, where 505 genes were 

mapped by all three strategies (Supplementary Table 14). We also conducted the gene-based 

analysis using MAGMA34 which aggregates the association P-values of all SNPs physically 

located in a gene (Methods). MAGMA gene-based analysis identified 2,092 genes after 

Bonferroni correction (P-value <2.83 × 10−6) (Supplementary Table 15). In total, 414 genes 

were mapped by all three gene mapping strategies in FUMA and MAGMA gene-based analysis 

(Supplementary Fig. 5). 

 

4. Heterogeneity test of QSNP 

We conducted a heterogeneity test for the MetS factor using genomic SEM (Supplementary 

Fig. 8). This allows us to identify the SNPs having a pleiotropic effect that operates through 

the MetS factor from the SNPs having a heterogenous effect on one or more first-order factors 

(i.e., obesity factor, insulin resistance/hypertension factor, and dyslipidemia factor), which are 

referred to as QSNP. We could expect a majority of COJO MetS SNPs identified to be in different 

regions from the QSNP signal if the COJO MetS SNPs are true pleiotropic signals operating 

through the MetS factor35. Thus, we compared the independence between COJO SNPs of MetS 

GWAS and lead SNPs of MetS QSNP. In total, 1,203 QSNP lead SNPs were identified using an 

identical clumping approach, and 751 of 1,307 (57.5%) GWAS COJO SNPs were independent 

of QSNP lead SNPs. Additionally, only 273 of 1,307 (20.9%) COJO MetS SNPs showed 

genome-wide significance (P-value <5 × 10−8) in QSNP. 
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5. Cell- and tissue-specific enrichment and MAGMA gene-set and gene-property analyses 

We used LDSC regression for specifically expressed genes (LDSE-SEG)36 to investigate 

whether the MetS genetic signal is enriched in specific cell or tissue types by gene expression 

or activating histone marks. Using multi-tissue and cell gene expression data from Franke lab37, 

we observed 14 Bonferroni significant (P-value <0.05/205 = 2.44 × 10−4) enrichment which 

includes hippocampus (P-value = 1.30 × 10−10), limbic system (P-value = 1.40 × 10−10), and 

brain (P-value = 1.47 × 10−8). Especially, the enrichment in brain tissue was also validated from 

multi-tissue chromatin-based annotation data where 24 brain-related tissues were significantly 

enriched after Bonferroni correction (P-value <0.05/489 = 1.02 × 10−4), and enrichment in 

neurons (P-value = 0.013) among three brain cell types (Bonferroni correction at P-value 

<0.017) was observed as well (Supplementary Tables 22–24). We also conducted MAGMA 

gene-property analysis for gene expression from 54 specific tissues and found eight brain-

specific tissue associations with MetS after Bonferroni correction (P-value <0.05/54 = 9.26 × 

10−4), which aligns with the results from LDSC-SEG (Supplementary Table 25). The 

MAGMA gene-property analysis with 11 brain developmental stages further identified 

enrichment in prenatal stages (Supplementary Table 26). 

To further investigate the biological and molecular function of the genes, MAGMA gene-

set analysis was conducted against 15,481 curated and gene ontology (GO) gene sets from the 

Molecular Signature Database (MsigDB v7)38. In total, 25 gene sets were significantly 

associated with MetS and these were related to molecular functions, lipid-relevant functions, 

and neuronal functions (Supplementary Table 29). 
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6. Summary of 11 MetS genes prioritized using Summary-based Mendelian 

randomization 

A summary of the 11 genes associated with MetS is described below. This information was 

queried from GeneCards39, the Open Targets Platform40, and the International Mouse 

Phenotyping Consortium (IMPC)41 (accessed on 2024.04.01). 

AMHR2 

The AMHR2 (Anti-Mullerian Hormone Receptor Type 2) encodes a receptor that interacts with 

the anti-Mullerian hormone (AMH), playing a crucial role alongside testosterone in the 

differentiation of male sexual characteristics. AMH and testosterone are synthesized in the 

testes; they are produced by distinct cell types and exert divergent biological effects. While 

testosterone facilitates the formation of male genital structures, AMH binding to this receptor 

inhibits the development of Müllerian ducts into the uterus and fallopian tubes. Although it is 

highly associated with persistent Müllerian duct syndrome, it is associated with 

neurodegenerative diseases, vitamin D levels, and body mass index (BMI).  

BCL7B 

The BCL7B (BAF Chromatin Remodeling Complex Subunit BCL7B) belongs to the BCL7 

family, which comprises BCL7A, BCL7B, and BCL7C proteins, with this specific gene 

encoding the BCL7B protein. Moreover, it acts as a positive regulator of apoptosis. This gene 

is evolutionarily conserved from C. elegans to humans, highlighting its biological importance 

across species. Moreover, its GO annotation highlighted its role in actin binding. The metabolic 

traits associated with this gene include TG levels, BMI-adjusted waist-hip ratio, and diastolic 

blood pressure. IMPC showed a significant association with increased grip strength, abnormal 

retinal inner nuclear layer morphology, preweaning lethality (incomplete penetrance), and 
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decreased total retinal thickness. BCL7B was pinpointed as a pleiotropic gene that contributes 

to both MetS and inflammation and is associated with TG, high-density lipoprotein cholesterol 

(HDL), and C-reactive protein (CRP)42.  

FEZ2 

The FEZ2 (Fasciculation and elongation protein Zeta 2) plays a crucial role in normal axonal 

bundling and elongation of axon bundles. Moreover, it is associated with metabolic traits, such 

as body fat percentage, lean body mass, BMI, and HDL levels.  

HM13 

The HM13 (Histocompatibility Minor 13) encodes a protein localized to the endoplasmic 

reticulum, pivotal for the intramembrane proteolysis of signal peptides post-cleavage from a 

precursor protein, a process vital for producing human lymphocyte antigen-E epitopes for 

immune recognition and processing the hepatitis C virus core protein. Characterized by motifs 

typical of presenilin-type aspartic proteases, this protein is integral to the membrane, and 

research has uncovered multiple isoforms through various transcript variants. Moreover, it 

plays a role in the cellular response to stimuli and cytoprotection mediated by HMOX1. From 

IMPC, HM13 showed a significant association with abnormal snout morphology, increased 

bone mineral content, preweaning lethality (complete penetrance), and decreased fasting 

circulating glucose levels. Moreover, it is associated with diastolic blood pressure, BMI, and 

HDL and TG levels. HM13 has been suggested as a potential therapeutic target for 

hepatocellular carcinoma, in which MetS is a major risk factor43. 

MED23 

The MED23 (Mediator Complex Subunit 23) is a key component of the Mediator complex that 

plays a vital role in the transcriptional activation process by facilitating the interaction between 
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gene-specific regulatory proteins and the basal RNA polymerase II transcription machinery, 

and it is involved in various cellular pathways, including those activated by SP1 and thyroid 

hormone receptors, and is essential for the efficient transcription of nearly all RNA polymerase 

II-dependent genes. Additionally, MED23 has been implicated in disease processes, acting as 

a metastasis suppressor, and is associated with certain intellectual developmental disorders. 

From IMPC, MED23 showed a significant association with preweaning lethality (complete 

penetrance), decreased bone mineral content, increased red blood cell distribution width, 

decreased circulating fructosamine levels, increased circulating HDL levels, and increased lean 

body mass. Metabolic traits that showed an association were BMI, T2D, and fat body mass. In 

addition, MED23 may be associated with MetS and cardiovascular diseases owing to its 

functional involvement in adipocyte and smooth muscle cell differentiation44.  

MLXIPL 

The MLXIPL (MLX Interacting Protein Like) is a transcription factor belonging to the 

Myc/Max/Mad superfamily. This factor engages in the formation of a heterodimeric complex 

(in a glucose-dependent manner), which activates the carbohydrate response element (ChoRE) 

motifs observed in the promoters of genes involved in triglyceride synthesis. Additionally, it 

plays a role in pathways such as the integration of energy metabolism and the regulatory 

pathway of angiopoietin-like protein 8. GO annotations were ascribed to their functions in 

DNA-binding transcription factor activity and protein heterodimerization activity. Metabolic 

traits associated with this gene are TG measurement, HDL, low-density lipoprotein, and total 

cholesterol levels. This gene, like BCL7B, is associated with both metabolic traits (TG and 

HDL) and an inflammation marker (CRP)42. Given that MLXIPL is linked with the synthesis 

of TG from excess carbohydrates, which highlights its role in lipid metabolism, MLXIPL 

appears to be associated with MetS. 
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MYO1F 

Myosin functions as a molecular motor, transforming the energy derived from ATP hydrolysis 

into mechanical force exerted on actin filaments. MYO1F (Myosin IF) encodes a distinct type 

of myosin implicated in the transport of membrane-bound organelles within cells. The 

malfunction of this gene has been linked to hearing impairments. Characterized by their ATPase 

activity, myosins, particularly the unconventional types encoded by this gene, are key to 

intracellular transport processes. Moreover, it is associated with neurodegenerative diseases, 

but GWAS shows evidence of an association with BMI-adjusted waist circumference, smoking 

behavior, HDL measurement, and TG measurement. 

RBM6 

RBM6 (RNA Binding Motif Protein 6) has RNA-binding capabilities and is expected to play a 

significant role in mRNA splicing through the spliceosome mechanism. This protein is also 

expected to function in the nucleus. According to GO annotations, this gene is associated with 

nucleic acid- and RNA-binding functions, highlighting its critical role in genetic regulation. 

Regarding IMPC, RBM6 was significantly associated with decreased fasting circulating 

glucose levels and grip strength. Moreover, it has been associated with HDL cholesterol 

measurements, body fat distribution, and T2D. 

RFT1 

RFT1 (RFT1 homolog) encodes an enzyme crucial for N-glycosylation of proteins, specifically 

catalyzing the translocation of the Man(5)GlcNAc(2)-PP-Dol intermediate across the 

endoplasmic reticulum membrane. Mutations in this gene are linked to congenital disorders of 

glycosylation, and their function is essential in the glycosylation pathway and protein 

metabolism, with a notable role in lipid transporter activity. According to the IMPC database, 
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it is significantly associated with decreased erythrocyte cell number, decreased lymphocyte cell 

number, embryonic lethality before organogenesis, embryonic lethality before the tooth bud 

stage, increased basophil cell number, increased hemoglobin content, increased mean 

corpuscular hemoglobin, increased mean corpuscular volume, increased monocyte cell number, 

and long tibia. 

SP1 

The SP1 (Sp1 Transcription Factor) encodes a zinc finger transcription factor that plays a 

crucial role in various cellular processes such as differentiation, growth, apoptosis, immune 

response, DNA damage response, and chromatin remodeling, by binding to GC-rich motifs in 

many promoters, and it acts as both an activator and a repressor of transcription and is 

significantly influenced by post-translational modifications. They are strongly associated with 

neurodegenerative diseases. Although a direct relationship between SP1 and MetS has not yet 

been established, SP1 regulates genes associated with hyperinsulinemia, T2D, and MetS in 

response to insulin45. Moreover, it regulates insulin signaling by controlling the transcription 

of insulin receptors. 

STRA13 (CENPX) 

STRA13, also known as CENPX (Centromere Protein X), is a protein-coding gene involved in 

DNA binding that plays a crucial role in replication fork processing, resolution of meiotic 

recombination intermediates, and the Fanconi anemia pathway. The metabolic traits that 

showed an association with this gene included BMI-adjusted hip circumference, body height, 

and BMI-adjusted waist-hip ratio. Moreover, it is significantly associated with decreased 

locomotor activity (P = 1.88 × 10-11), according to IMPC. STRA13 regulates adipogenesis by 

influencing the activity of hypoxia-inducible factor 1-alpha (HIF-1), and it regulates 



16 

 

lipogenesis in the liver by acting as an insulin-responsive gene that is activated via the PI3K 

pathway and influences the expression of other insulin-sensitive genes. Additionally, STRA13 

expression is induced by glucose through the action of carbohydrate response element-binding 

protein (ChREBP) at its promoter and participates in a feedback mechanism that inhibits 

ChREBP’s activity to prevent excessive lipogenesis. The dysregulation of STRA13 may 

contribute to MetS, highlighting its importance in metabolic regulation46. 

 

7. Metabolic syndrome phenotyping in UK Biobank 

Since MetS phenotype is absent in UK Biobank (UKB) cohort, we assigned the dichotomous 

MetS status based on AHA/NHLBI1 that consists of five criteria as follows: population- and 

sex-specific elevated waist circumference (WC, European with WCmen ≥102 cm and WCwomen 

≥88 cm), elevated triglycerides (TG, TG ≥150 mg/dL), sex-specific reduced high-density 

lipoprotein cholesterol (HDL-C, HDL-Cmen <40 mg/dL and HDL-Cwomen < 50mg/dL), elevated 

blood pressure (BP, systolic ≥130 mmHg and diastolic ≥85 mmHg), and elevated fasting 

glucose (FG, FG ≥100 mg/dL). The individuals who satisfied three out of five criteria based 

on AHA/NHLBI were categorized as MetS positive. The phenotypic values of WC, TG, HDL-

C, systolic blood pressure, and diastolic blood pressure were available in UKB with data field 

ID of 48, 30870, 30760, 4080, and 4079, respectively. FG was not directly available in UKB; 

hence we defined the FG based on glucose level (UKB data field ID = 30740) and fasting time 

(UKB data field ID = 74). The glucose level of UKB individuals with fasting time greater than 

eight hours was considered as fasting glucose. The total number of UKB individuals considered 

for MetS dichotomization was 11,139 (4,641 and 6,498 assigned as MetS positive and negative, 

respectively). It is a relatively small sample size considering the total number of samples in 

UKB due to a limited number of individuals with fasting time greater than eight hours. 
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8. Korean Genome and Epidemiology Study (KoGES) 

8.1. KoGES description 

The KoGES47 is a large prospective cohort study, initiated by the South Korean government 

(National Research Institute of Health [NIH], Centers for Disease Control and Prevention and 

the Ministry of Health and Welfare, South Korea), and consists of three population-based 

studies as follows: Ansan and Ansung (Ansan/Ansung) study, Health Examinee (HEXA) study, 

and Cardiovascular Disease Association (CAVAS) study. All individuals in the studies were 

recruited from the national health examinee registry and the description of each study is as 

follows: 1) Ansan/Ansung study is a community-based cohort consisting of 10,030 individuals 

aged 40-69 years old who live in Asan or Ansung city, 2) HEXA study is an urban-based cohort 

consisting of 173,357 individuals aged 40-79 years old, and 3) CAVAS is a rural-based cohort 

consisting of 28,338 individuals aged 40-69 years old. The KoGES provides both epidemiology 

and genetic data from the aforementioned studies where we obtained 5,493, 58,693, and 8,105 

individuals from Ansan/Ansung, HEXA, and CAVAS studies, respectively. 

 

8.2. MetS phenotyping in KoGES 

We used criteria defined by AHA/NHLBI was used to define MetS for individuals in KoGES. 

The criteria are as follows: elevated waist circumference (Asian with WCmen ≥90 cm and 

WCwomen ≥80 cm, elevated TG (TG ≥150 mg/dL), sex-specific reduced HDL-C (HDL-Cmen 

<40 mg/dL and HDL-Cwomen <50 mg/dL), elevated blood pressure (systolic ≥130 mmHg and 

diastolic ≥85 mmHg), and elevated FG (FG ≥100 mg/dL). The individuals were categorized as 

MetS positive if they satisfied three out of five criteria. The individuals in the CAVAS study 

were excluded from the analysis as epidemiology data for FG was absent. 
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8.3. KoGES genotype data quality control and imputation 

The KoGES provides genome-wide genotype data from the Korean Biobank Array48, which is 

a Korean-specific chip. The genotype data QC was performed using PLINK v1.07, and sample 

and genotype QC filtering criteria were as follows: heterozygosity rate, exceeding ± 5 s.d.; sex 

mismatch; missing call rate, <0.02; MAF, <0.01; Hardy-Weinberg equilibrium, P < 1 × 10−6; 

removal of sex chromosomes. Then, the imputation was conducted using the Michigan 

Imputation Serve49 which utilizes Eagle v2.450 for phasing and Minimac 4 for genotype 

imputation with Haplotype Reference Consortium (HRC) r1.1 2016 as reference genome panel. 

The imputed SNPs were further filtered with genotype quality (R2 <0.8). We retained 64,100 

samples (n Ansan/Ansung = 5,487, n HEXA = 58,613) and 5,394,481 SNPs as a result of 

genotype QC and imputation. 

 

9. Polygenic risk score computation using PRSice–2 

The PRSice–251 employs a pruning and thresholding (P+T) strategy using various subsets of 

independent SNPs at different P-value cutoffs to calculate the polygenic risk score (PRS). First, 

SNPs underwent a process called clumping (also known as pruning) to identify independent 

SNPs (using a 500 kb window and an r2 of 0.1). Subsequently, these independent SNPs were 

categorized into subsets according to P-value thresholds (0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 

and 1), and the PRS was calculated for each group. The best P-value threshold is determined 

by identifying the PRS that accounts for the largest variance in the target phenotype (i.e., MetS) 

within the validation cohort. Although using the same validation data for the best P-value 

selection as the target data for the PRS analysis of incremental R2 might predispose to 

overfitting, this potential bias is substantially mitigated when the validation set is sufficiently 
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large52. 

 

10. Association between polygenic risk score and cardiovascular disease incidence rate 

through multivariable Cox regression analysis 

MetS is a known risk factor for cardiovascular disease (CVD). We assessed whether the MetS 

PRS showed better stratification and a stronger association with the CVD incidence rate in the 

UKB than the PRS of MetS components. We followed the previous work by Yun et al.53 to 

define CVD incidence and conducted multivariable Cox regression analyses.  

Briefly, individuals with ischemic stroke, hemorrhagic stroke, peripheral artery disease, 

heart failure, or arterial fibrillation/flutter were categorized as having CVD incidence. 

Collectively, among 352,781 individuals without prior CVD history, 35,711 individuals had 

CVD incidence with a median follow-up period of 11 years (interquartile range of 10.2–11.7). 

The overall CVD incidence rate was 9.67 incidence per 1000 persons-year (95% CI = 9.57–

9.77). Multivariable Cox regression analysis was used to assess the relationship between the 

PRS of interest and the incidence rate of CVD. This assessment was conducted by stratifying 

PRS into distinct groups and considering the PRS itself. The stratification of PRS resulted in 

four groups: low risk (<20%), intermediate risk (20–80%), high risk (80–99%), and very high 

risk (>99%). The hazard ratios (HRs) of PRS groups were computed using the low-risk group 

as a reference. Age, sex, and the first 10 principal genetic components were adjusted as 

covariates. The analysis was conducted using the R package survival v.3.5.7. 

The CVD incidence rate for the stratified PRS was evaluated (Supplementary Fig. 9). 

Moreover, it is evident from the visualization that the MetS PRS demonstrates the most 

pronounced discrimination in CVD incidence compared to the PRS of MetS components, 
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exhibiting the highest HR of 1.33 (95% CI = 1.28–1.38) in the very high-risk group relative to 

the low-risk group. Furthermore, the MetS PRS shows the strongest association with CVD 

incidence, with an HR of 1.11 per unit standard deviation (95% CI = 1.10–1.13, P-value = 4.66 

× 10-76) (Supplementary Table 35). Collectively, these findings suggest that the MetS PRS is 

superior in predicting adverse outcomes, such as CVD, compared to the PRS of its individual 

components. 

 

11. Causal effect estimation using constrained maximum likelihood and model averaging-

based (cML-MA) Mendelian randomization (MR) 

The cML-MA54 method employs maximum likelihood and model averaging to select valid 

instrumental variables (IVs), addressing both correlated and uncorrelated pleiotropic effects. 

Unlike MR-Egger, it does not assume Instrument Strength Independent of Direct Effect 

(InSIDE) and shows improved control over type I errors. Utilizing the Bayesian information 

criterion (BIC), it assigns weights and performs model averaging to accommodate model 

selection uncertainties. Data perturbation can supplement this approach by reducing the risk of 

overlooking weakly pleiotropic IVs. While cML-MA-BIC-DP is more conservative and offers 

better type-I error control, it requires more computational resources and may entail decreased 

power compared with cML-MA-BIC. The choice between cML-MA-BIC and cML-MA-BIC-

DP relied on two goodness-of-fit (GOF) tests to assess whether the variance estimates of both 

methods were equivalent. cML-MA-BIC-DP is preferred if the null hypothesis is rejected; 

cML-MA-BIC-DP is preferred. The parameters used to perform the cML-MA were 

random_start = 20, random_start_pert = 20, random_seed = 12345, and num_pert = 200. 

The cML-MA method was used to assess the robustness of 29 TSMR outcomes, as 

outlined in Table 3. The identified counts of invalid IVs ranged from zero to seven. Across all 
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TSMR outcomes represented in Table 3, a notable causal relationship was observed using 

cML-MA, with consistent odds ratio (OR) estimates, except for peripheral angiopathy in 

diseases classified elsewhere (Phecode = 443.7) (Supplementary Fig. 13–14). This deviation 

might be attributed to the relatively small number of cases (ncase = 385) compared to other 

outcomes, ranging from 1,333 to 38,715. 
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Supplementary Figures 

 

Supplementary Figure 1. Overview of multivariate GWAS of MetS 

The workflow of this study is illustrated. 
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Supplementary Figure 2. Scree plot from parallel analysis 

The scree plot was obtained by leveraging the genetic correlation matrix of seven MetS 

components from LD score regression. The x-axis represents the number of factors, and the y-

axis represents the difference between the eigenvalues computed from the LDSC-derived 

genetic correlation matrix and the Monte-Carlo simulated genetic correlation matrix. The 

dotted black line indicates the suggested number of factors to retain for exploratory factor 

analysis. 
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Supplementary Figure 3. Quantile-Quantile (QQ) plot for multivariate MetS GWAS 

The x- and y-axis represent the expected and observed uncorrected two-sided −log10(P), 

respectively, for the associations between SNPs and MetS. 
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Supplementary Figure 4. Distribution of COJO MetS SNPs annotated with CADD scores 

and RegulomeDB categories 

a, Distribution of CADD scores annotated for 1,307 COJO MetS SNPs. b, Distribution of 1,307 

COJO MetS SNPs annotated with RegulomeDB categories. 
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Supplementary Figure 5. Venn diagram for MetS SNP to gene mapping analysis 

A Venn diagram showing the overlap of genes mapped from MetS GWAS using three different 

strategies (i.e., positional mapping, eQTL mapping, and chromatin interaction mapping) from 

FUMA and MAGMA gene-based analysis. 
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Supplementary Figure 6. COJO MetS SNPs independent from MetS components, QSNP, 

and previous MetS studies 

The UpSet plot presents the number of COJO MetS SNPs that were independent of the lead 

SNPs of GWAS from MetS components, QSNP, and previous MetS studies. Bar chart shows the 

number of independent COJO MetS SNPs for each trait. The connected dots in the bottom 

panel represent traits that were considered simultaneously to determine the independence of 

the COJO MetS SNPs. 
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Supplementary Figure 7. GWAS effect estimates concordance of COJO MetS SNPs 

between UKB-included and UKB-excluded cohorts. 

The scatter plot of GWAS effect estimates from MetS GWAS of UKB-included cohorts and 

UKB-excluded cohorts for 1,307 COJO MetS SNPs identified from GWAS of UKB-included 

cohorts. The Pearson’s correlation between the GWAS effects is 0.95 (P from two-sided z-test 

<2.2 × 10−16). The x-axis represents GWAS effect estimates from UKB-included cohorts and 

the y-axis represents GWAS effect estimates from UKB-excluded cohorts. The red dashed line 

is the identity line. 
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Supplementary Figure 8. Manhattan and Quantile-Quantile (QQ) plot for heterogeneity 

test (i.e., QSNP) of MetS GWAS. 

a, The Manhattan plot of QSNP from heterogeneity test for the MetS factor from genomic SEM. 

The x-axis represents chromosomal position, and the y-axis represents uncorrected −log10(P) 

from one-sided χ²-test with 2 degrees of freedom for QSNP test of heterogeneity. b, The x- and 

y-axis represent the expected and observed uncorrected −log10(P), respectively, for QSNP test of 

heterogeneity for MetS. 
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Supplementary Figure 9. Hazard plot for PRS of MetS and its components with 

cardiovascular disease incidence rate in the UK Biobank 

Hazard plot for cardiovascular disease incidence rate in UK Biobank (UKB) with PRS stratified 

into four groups: low risk, intermediate risk, high risk, and very high risk. The HR of the 

intermediate-risk, high-risk, and very high-risk groups were annotated with low-risk as the 

reference group. a, MetS PRS. b, BMI PRS. c, WC PRS. d, HTN PRS. e, FG PRS. f, T2D PRS. 

g, HDL* PRS. h, TG PRS. HR, hazard ratio; MetS, metabolic syndrome; BMI, body mass index; 

WC, waist circumference; FG, fasting glucose; HTN, hypertension; T2D, type 2 diabetes; 

HDL*: high-density lipoprotein; TG, triglyceride. *Reverse-coded. 
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b. BMI PRS 
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c. WC PRS 
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d. HTN PRS 
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e. FG PRS 
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f. T2D PRS 
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g. HDL* PRS 
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h. TG PRS 
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Supplementary Figure 10. Manhattan and Quantile-Quantile (QQ) plot for MetS GWAS 

in East Asian population 

a, The Manhattan plot of dichotomized MetS GWAS in East-Asian population. The x-axis 

represents chromosomal position, and the y-axis represents uncorrected −log10(P) for two-sided 

z-test for the SNP association with MetS. b, The x- and y-axis represent the expected and 

observed uncorrected two-sided −log10(P), respectively, for the SNP associations with MetS. 
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Supplementary Figure 11. GWAS effect estimates concordance of COJO MetS SNPs from 

the European MetS GWAS to the East Asian MetS GWAS 

The scatter plot of GWAS effect estimates from MetS GWAS in the European and East Asian 

population for 1,016 COJO MetS SNPs identified from European GWAS (Note that the 

remaining 291 COJO MetS SNPs were unavailable in the East-Asian GWAS). The Pearson’s 

correlation between the GWAS effects is 0.34 (P from two-sided z-test = 3.85 × 10−28). The x-

axis represents MetS GWAS effect estimates from the European population and the y-axis 

represents MetS GWAS effect estimates from the East-Asian population. The red dashed line 

is the identity line. 
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Supplementary Figure 12. Scatter plot of odds ratio (OR) of PRS-PheWAS results that 

showed significant association with MetS PRS 

a, Comparison of OR from PRS-PheWAS between MetS PRS and F1 PRS. b, Comparison of 

OR from PRS-PheWAS between MetS PRS and F2 PRS. c, Comparison of OR from PRS-

PheWAS between MetS PRS and F3 PRS. In all panels, green dots represent the outcomes that 

were significantly associated with MetS and the corresponding factor PRS in comparison; red 

dots represent the outcomes that were significantly associated with only MetS PRS; grey bars 

are error bars with 95% confidence intervals, computed as OR ± 1.96 × standard error; the blue 

dashed line represents OR = 1; and the red dashed line represents the identity line. The sample 

size for each data point can be found in Supplementary Tables 40 and 41. 
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Supplementary Figure 13. BIC and scatter plot pairs for 29 health outcomes were tested 

for their causal association with MetS using constrained maximum likelihood and model 

averaging-based Mendelian randomization (cML-MA MR) 

The left panel shows the number of invalid instrumental variables (IVs) on the x-axis and BIC 

values on the y-axis. The right panel shows the beta from exposure (i.e., MetS) and outcome 

(i.e., health outcome) on the x-axis and y-axis, respectively, with their respective error bars. 

The green dots represent invalid IVs detected using cML-MA, the black dashed lines represent 

beta = 0, the blue line represents the causal estimate from the inverse variance weighted (IVW) 

method, and the red line represents the causal estimate from either cML-MA-BIC or cML-MA-

BIC-DP MR.  
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Supplementary Figure 14. Scatter plot of comparison between two-sample Mendelian 

randomization (TSMR) and constrained maximum likelihood and model averaging-

based Mendelian randomization (cML-MA MR) results for 29 health outcomes 

a, Scatter plot of uncorrected -log10(P) compared with x-axis from TSMR and the y-axis from 

cML-MA MR. The P for TSMR depends on the method used (e.g., two-sided z-test for inverse 

variance weighted and two-sided t-test for MR-PRESSO). The P for cML-MA MR is from 

two-sided z-test. The red dashed line represents the Bonferroni correction threshold of 0.05/29, 

and the gray dashed line represents the identity line. b, Scatter plot of odds ratio (OR) 

comparison with x-axis from TSMR and y-axis from cML-MA MR. The error bars represent 

95% confidence intervals, calculated as OR ± 1.96 × s.e. The red dashed line represents OR = 

1, and the gray dashed line represents the identity line. The sample size of health outcomes is 

available in Supplementary Table 49.
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Supplementary Figure 15. Scree plot from parallel analysis for UKB-excluded cohorts 

The scree plot was obtained by leveraging the genetic correlation matrix of seven MetS 

components from LD score regression. The x-axis represents the number of factors, and the y-

axis represents the difference between the eigenvalues computed from the LDSC-derived 

genetic correlation matrix and the Monte-Carlo simulated genetic correlation matrix. The 

dotted black line indicates the suggested number of factors to retain for exploratory factor 

analysis. 
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