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Dear Professor Won, 

 

Your Article "Multivariate genomic analysis of 5 million people elucidates the genetic architecture of 

the metabolic syndrome" has been seen by three referees. You will see from their comments below 

that, while they find your work of potential interest, they have raised substantial concerns that must 

be addressed. In light of these comments, we cannot accept the manuscript for publication at this 

time, but we would be interested in considering a suitably revised version that addresses the referees' 

concerns. 

 

We hope you will find the referees' comments useful as you decide how to proceed. If you wish to 

submit a substantially revised manuscript, please bear in mind that we will be reluctant to approach 

the referees again in the absence of major revisions. 

 

To guide the scope of the revisions, the editors discuss the referee reports in detail within the team, 

including with the chief editor, with a view to identifying key priorities that should be addressed in 

revision, and sometimes overruling referee requests that are deemed beyond the scope of the current 

study. In this case, we ask that you thoroughly address all technical queries related to the multivariate 

association analyses and their interpretation, including further assessment of the degree of overlap 

with the single-trait association signals for each component trait using stringent thresholds for 

claiming independence, and extend the downstream analyses where feasible to provide further 

biological insights. We hope you will find this prioritized set of referee points to be useful when 

revising your study. Please do not hesitate to get in touch if you would like to discuss these issues 

further. 

 

If you choose to revise your manuscript taking into account all reviewer and editor comments, please 

highlight all changes in the manuscript text file. At this stage, we will need you to upload a copy of the 

manuscript in MS Word .docx or similar editable format. 
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We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 

us if there are specific requests from the reviewers that you believe are technically impossible or 

unlikely to yield a meaningful outcome. 

 

If revising your manuscript: 

 

*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 

referee comment. If no action was taken to address a point, you must provide a compelling argument. 

This response will be sent back to the referees along with the revised manuscript. 

 

*2) If you have not done so already, please begin to revise your manuscript so that it conforms to our 

Article format instructions, available here. 

Refer also to any guidelines provided in this letter. 

 

*3) Include a revised version of any required Reporting Summary: 

https://www.nature.com/documents/nr-reporting-summary.pdf 

It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 

manuscript goes back for peer review. 

A revised checklist is essential for re-review of the paper. 

 

Please be aware of our guidelines on digital image standards. 

 

You may use the link below to submit your revised manuscript and related files: 

 

[redacted] 

 

Note: This URL links to your confidential home page and associated information about manuscripts 

you may have submitted, or that you are reviewing for us. If you wish to forward this email to co-

authors, please delete the link to your homepage. 

 

If you wish to submit a suitably revised manuscript, we hope to receive it within 3-6 months. If you 

cannot send it within this time, please let us know. We will be happy to consider your revision so long 

as nothing similar has been accepted for publication at Nature Genetics or published elsewhere. 

Should your manuscript be substantially delayed without notifying us in advance and your article is 

eventually published, the received date would be that of the revised, not the original, version. 

 

Please do not hesitate to contact me if you have any questions or would like to discuss the required 

revisions further. 

 

Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 

direction, we are requesting that all authors identified as ‘corresponding author’ on published papers 

create and link their Open Researcher and Contributor Identifier (ORCID) with their account on the 

Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community achieve 

unambiguous attribution of all scholarly contributions. You can create and link your ORCID from the 

home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more information, 

please visit www.springernature.com/orcid. 

 

Thank you for the opportunity to review your work. 

 

Sincerely, 

http://www.nature.com/ng/authors/article_types/index.html
https://www.nature.com/nature-research/editorial-policies/image-integrity
http://www.springernature.com/orcid
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Referee expertise: 

 

Referee #1: Genetics, cardiometabolic diseases, statistical methods 

 

Referee #2: Genetics, cardiometabolic diseases, statistical methods 

 

Referee #3: Genetics, cardiometabolic diseases, clinical translation 

 

 

Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

 

Multivariate genomic analysis of 5 million people elucidates the genetic architecture of the metabolic 

syndrome. 

 

Park et al. performed a large-scale multivariate GWAS of metabolic syndrome using genomic 

structural equation modelling. 

 

I have some comments here for the authors to consider: 

 

1. The authors used seven components of MetS including BMI, WC, T2D, FG, HTN, HDL-C and TG. Is 

T2D considered a component of MetS? 

 

2. It would be helpful to have a study design figure to link the different analyses in a pictorial 

summary. 

 

3. For the 1,270 variants that were independent of previous MetS GWAS, do they show stronger 

association with glycemic or dyslipidemia or both? Line 172 listed three numbers for four traits? How 

does these compare to the Qsnp? Some overlay tabulation or Venn diagram will be helpful to discuss 

the findings with respect to solely MetS, heterogenous effect, and which had been associated 

previously with the individual or multiple traits. 

 

4. For the MetS polygenic scores analysis, it seems surprising that FG has the lowest incremental R2 

and that the East Asian incremental R2 is relatively higher than European for HDL. Also, the 

incremental R2 is almost 30% for the MetS PRS in East Asian compared to European (62K for KoGES 

and 11K for European). This transferability seems much better than previously observed. Can the 

authors provide more insights to the observations? Also, what are F2, F1 and F3? Have the authors 

compared the PRS from PRS-CS with a simple genome-wide threshold lead variant PRS? 

 

Minor comments: 
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1. Methods Line 421: "...non-overlapping GWAS samples and the METAL.". Sentence needs revision. 

Please review. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

 

Park and colleagues conducted multivariate GWAS of seven metabolic syndrome (MetS) components 

(body mass index (BMI), waist circumference, type 2 diabetes, fasting glucose, hypertension, HDL-C, 

and triglycerides). Their data included European population summary statistics from large research 

consortia as well as from three biobanks (UK Biobank, FinnGen, MVP) yielding an observed sample 

size of 4.9M. They utilized genomic structural equation modelling (Genomic-SEM) to run their 

multitrait GWAS based on a hierarchical factor model with three latent factors that clustered to 

obesity, insulin resistance or hypertension, and dyslipidemia. Their multitrait GWAS based on 

Genomic-SEM identified 1,650 lead SNPs for MetS across 939 loci (~40% novel compared to 

component signals; 77% novel for MetS). 

 

The authors conducted a range of GWAS follow-up analyses, including genetic correlation analysis 

(method: LD score regression, LDSC; 96 significant genetic correlations with external factors; 

including brain grey matter volume), analysis of heritability (method: LDSC; SNP h2=11%), 

enrichment of heritability in functional categories (method: LDSC-SEG; genes at MetS loci enriched for 

expression in brain tissues and cells), gene prioritization (summary data-based Mendelian 

randomization, SMR; 6 genes prioritized robustly based on consistent effects in independent 

expression data), polygenic risk score analysis (method: PRS-CS; MetS PRS explains 19.3% of 

variation in UKB; performs equally well in ~60K independent East Asian individuals), PRS-PheWAS 

(method: logistic regression; 350 significant association with health outcomes in UKB) and causal 

association analyses (method: two-sample Mendelian randomization; MetS causally associated with 29 

of 350 health outcomes that were associated with the PGS). 

 

This is the largest multivariate GWAS of MetS to date. The data used and the Genomic-SEM method 

are appropriate to conduct a multivariate GWAS for MetS. Their main Genomic-SEM analysis included 

UKB. They excluded UKB to construct the PRS, which was then applied to an independent UKB data 

set, which is good. The methods for the follow-up analyses are state-of-the art, robust and the 

authors conducted useful sensitivity analyses. They did not conduct fine mapping for variant 

prioritization. 

 

While I think that the paper is well done and robust, I still have the following two major comments: 

 

1) Novelty of SNP associations: The authors identify 1,650 MetS lead variants. They claim that 704 

(42.7%) were independent of GWAS signals of the seven MetS components based on squared 

correlation between variants (r2<0.1) estimated from 1000 Genomes. Can the authors please include 

single trait GWAS results in their supplement and show what their multi-trait GWAS has identified in 

addition to the single trait GWAS’s? I cannot believe that Genomic-SEM identified >40% additional 

signals compared to single trait GWAS of the MetS components. For example, for BMI, there are 

>12,000 associations in GWAS Catalog and ~1,000 truly independent variants have been identified by 

Yengo and colleagues (PMID: 30124842) based on conditional analyses (which are state of the art to 

derive “independence”). Please detail what the reference of known variants was. Also, a r2<0.1 

criterion is too liberal to claim independence; it refers to a r~0.3 and does not account for the 

haplotype. Many “uncorrelated” variants based on r2<0.1 will not be truly independent signals in 

conditional analyses. Ideally, the authors conduct conditional analyses. If that is not possible, it would 
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be good if they revise their r2 criterion to be more stringent in their comparison with the single 

component GWAS’s. 

 

2) Specificity of results: The authors have identified an enrichment of expression effects in brain 

tissues for the genes harboring the MetS loci. How is that specific to MetS? This type of enrichment is 

well known for BMI genetic loci and I wonder whether the authors particularly picked up BMI genetics 

by their multitrait GWAS? Same for the PRS-PheWAS: a plethora of outcomes coming up would 

certainly also come up for BMI PRS. As with the first point, I am questioning on what is truly novel 

identified by this multitrait analysis (in comparison to single trait GWAS’s)? 

 

In addition, I have the following minor comments: 

 

3) In line 79, the authors write: “For example, a GWAS conducted by the Global Lipids Genetics 

Consortium (GLGC), including approximately 1.3 million European individuals, identified 380 and 388 

genetic variants associated with high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG), 

respectively5”. However, in the reference paper, there were >1700 distinct signals identified. It would 

be good if the authors could clarify the numbers. 

 

4) Line 116/120 Supplementary Table 2/3 should be exchanged in the xlsx. 

 

5) Line 186: Can the authors explain what type of pleiotropy is exerted via the MetS factor? 

 

6) The text states 80 significant genetic correlations among 117 external traits but the respective 

figure shows 96. 

 

7) The authors conducted robust MR analyses. Yet 22 of their 28 significant causal effects shown in 

Table 2 show significant heterogeneity. Even MR-PRESSO can be problematic for instrument selection 

in this case, and I suggest using a constrained maximum-likelihood method to select instruments 

(PMID 34214446). 

 

8) Their PRS explains ~20% of MetS in UKB but heritability was estimated at only ~11%. I know the 

outcomes are not completely comparable but some discussion on what can be expected from ever 

larger MetS GWAS would be helpful. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

 

Enjoyed reading this paper on the genetic architecture of the metabolic syndrome (MetS) in European 

populations. Found 6 “genes” associated. PRS translatable to East Asians. 

 

A major limitation is the focus on European populations especially since most data suggests other 

populations are higher risk (East and South Asian). This is acknowledged by the authors. 

 

The title is a little misleading. The term Metabolic Syndrome has been used by various clinical 

organizations to define a clinical entity with the goal of determining who may be at greater risk of 

ASCVD, T2D and other adverse outcomes. Some of these organizations have published their own 

definitions, which can differ slightly and undergo revisions periodically (some of these are below). In 

this case, the title needs to say something like the “shared genetic architecture of components of the 

metabolic syndrome” 



 
 

 

 6 

 

• Grundy, S. M., Brewer, H. B. Jr., Cleeman, J. I., Smith, S. C. Jr. & Lenfant, C. Definition of metabolic 

syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association 

conference on scientific issues related to definition. Circulation. 109(3), 433–438 (2004). 

• Einhorn, D. American College of Endocrinology position statement on the insulin resistance 

syndrome. Endocr. Pract. 9, 5–21 (2003). 

• Eckel, R. H., Grundy, S. M. & Zimmet, P. Z. The metabolic syndrome. Lancet. 365(9468), 1415–

1428 (2005). 

 

Lind did a GWAS for MetS based on criteria as above in the UKBB and was cited. 

 

However, in this case, the authors have not performed a GWAS for MetS but rather looked at many 

large GWAS for MetS broadly related traits. This was a reasonable choice, but it really needs to be 

clear how the authors defined MetS. 

 

It seems the motivation of this paper is a search for the genes underlying the overlapping part of the 

Venn diagram for these traits. This kind of clustering work has been done previously: Lotta, Dimas, 

Udler, Gloudemans, O’Rahilly etc. None of this prior work has been cited or used to place the current 

paper in context. 

 

Also, if the authors are using a loose way of defining MetS, why not be even more broad? The 

underlying common feature for MetS is thought to largely be related to insulin resistance. Indeed, 

Reaven originally used the Insulin Resistance Syndrome to describe to concepts that underlie the idea 

of the MetS. While no surrogates capture insulin resistance perfectly, what is the correlation and 

overlap with GWAS signals for fasting insulin (although this was not measured in the UKBB has been 

assessed many other large studies)? What about for NAFLD? 

 

While prioritizing MetS genes based on brain QTL data is reasonable especially for phenotypes related 

to BMI, the decision to use blood QTL data makes less sense. Why not use tissues known to be more 

strongly related to the phenotypes of the components of MetS (fat, liver, vascular tissue, muscle)? 

 

A PRS for MetS again is a reasonable thing to try to develop (and show it functions ok in non-White 

populations) and it is not surprising that the MetS PRS explained the largest variance for prediction of 

MetS. But was it better at predicting adverse outcomes (cardiovascular or diabetes or death) than PRS 

using things like HTN, TG, T2D, LDL? I don’t think a PRS for disease prediction will be that useful since 

we do not have interventions for MetS while we have many interventions for specific components of 

the MetS. 

 

The results and discussion of the likely causal genes (FEZ2, STRA13, RFT1, MED23, SP1, HM13) could 

be further developed. What do these genes do? Do they act through common pathways? What is 

known about the non-brain genes in other tissues? Are there rare variants in these genes in human 

populations? 

 

Marked limitations in literature review to build on the comments above. On a very cursory review, see 

that some but not all relevant papers were cited. 

 

Cited: 

Genome-Wide Association Study of the Metabolic Syndrome in UK Biobank. 

Lind L. Metab Syndr Relat Disord. 2019 Dec;17(10):505-511. doi: 10.1089/met.2019.0070. Epub 

2019 Oct 7. PMID: 31589552 
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Not cited: 

A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium. Kraja AT...Borecki 

IB. Diabetes. 2011 Apr;60(4):1329-39. Epub 2011 Mar 8. PMID: 21386085 

 

Transethnic meta-analysis of metabolic syndrome in a multiethnic study. Willems EL, Wan JY, Norden-

Krichmar TM, Edwards KL, Santorico SA. Genet Epidemiol. 2020 Jan;44(1):16-25. doi: 

10.1002/gepi.22267. Epub 2019 Oct 24. PMID: 31647587 

 

Genome-wide association analysis of metabolic syndrome quantitative traits in the GENNID 

multiethnic family study. Wan JY, Goodman DL, Willems EL, Freedland AR, Norden-Krichmar TM, 

Santorico SA, Edwards KL; American Diabetes GENNID Study Group. Diabetol Metab Syndr. 2021 Jun 

1;13(1):59. doi: 10.1186/s13098-021-00670-3. PMID: 34074324 
 

Author Rebuttal to Initial comments   

 

Manuscript Number: NG-A63720 

  

Manuscript: Multivariate genomic analysis of 5 million people elucidates the genetic architecture 

of shared components of the metabolic syndrome 

 

Responses from the Authors for Review Comments: 

We appreciate the reviewers for their insightful and constructive comments. We believe that our 

study has been significantly improved and strengthened by revising the manuscript in response to 

these comments. 

 

Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: Multivariate genomic analysis of 5 million people elucidates the genetic 

architecture of the metabolic syndrome. 

 

Park et al. performed a large-scale multivariate GWAS of metabolic syndrome using genomic 

structural equation modelling. 

 

I have some comments here for the authors to consider: 
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1. The authors used seven components of MetS including BMI, WC, T2D, FG, HTN, HDL-C and 

TG. Is T2D considered a component of MetS? 

 

Response: Thank you for your valuable insight and comments. We appreciate it for pointing this 

out. In defining MetS, we followed the clinical criteria outlined by the American Heart 

Association/National Heart, Lung, and Blood Institute (AHA/NHLBI). As per these criteria, one 

of the five components is elevated fasting glucose (FG) ≥100 mg/dL or treatment for diabetes. 

While type 2 diabetes (T2D) is often viewed as a risk factor for MetS, the AHA/NHLBI definition 

allows individuals with T2D exhibiting elevated FG levels (≥100 mg/dL) or receiving diabetes 

medication to be considered as meeting this component. This interpretation is supported by Alberti 

et al. (2009), who note that the FG threshold of ≥100 mg/dL captures most T2D cases. Therefore, 

in our study, we have included T2D as a component of MetS, in line with the widely accepted 

AHA/NHLBI guidelines. Additionally, there is a significant correlation between MetS 

components and T2D, both clinically and genetically, suggesting shared genetic factors. This is 

particularly relevant to our study’s aim of exploring the common genetic liability among these 

metabolic traits/diseases.  

 

Acknowledging that we lacked an explanation of the MetS definition and the rationale behind the 

selection of MetS components, we have explained this in the Supplementary Note. 

 

[Added to the Supplementary Note, pages 4–6, lines 69–116] 
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“1. Summary of the clinical definitions of metabolic syndrome 

Metabolic syndrome (MetS) is a collection of risk factors that increase the risk of cardiovascular 

disease and type 2 diabetes (T2D). Despite its seemingly straightforward definition, it is still a 

challenge to diagnose MetS clinically1-3. 

The initial definition of MetS was established in 1998 by … (omitted)” 

 

2. It would be helpful to have a study design figure to link the different analyses in a pictorial 

summary. 

 

Response: Thank you for the comment. We created an overall study design figure and added it to 

Supplementary Figure 1. 
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[Added to the Supplementary Figure] 

Supplementary Figure 1. Overview of multivariate GWAS of MetS 

The workflow of this study is illustrated. 
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[Added to the Main, page 7, lines 121–123] 

GWAS summary statistics

Collating publicly available 
GWASs of European populations

Computing pairwise genetic 
correlations using LDSC

Estimating SNP associations with MetS factor using Genomic SEM

Pairwise 
genetic correlation

Multivariate GWAS of MetS

MetS Genomic SEM

• 1,307 MetS COJO SNPs were identified

• 82 of 1,307 MetS COJO SNPs were 

independent of the genetic signals of 

MetS components

• 11% SNP-based heritability was 

estimated

• 414 genes were mapped by FUMA and 

MAGMA

Constructing the genetic 
architecture of MetS using 

Genomic SEM
• Body mass index (BMI; N = 806,834)

• Waist circumference (WC; N = 385,932)

• Type 2 diabetes (T2D; N = 597,437)

• Fasting glucose (FG; N = 151,188)

• Hypertension (HTN; N = 508,612)

• High-density lipoprotein cholesterol (HDL; N = 1,244,580)

• Triglycerides (TG; N = 1,253,277)

Genetic correlations
with external traits

Gene 
prioritization

Polygenic risk score 
analyses in 

European/East Asian

PRS-PheWAS and 
two-sample MR

Computing genetic 
correlations between 

MetS and 119 external 
traits using LDSC

Identifying the genes 
associated with MetS 

using SMR and eQTL of 
adipose, brain, muscle, 
and whole blood tissues

Investigating the MetS 
variance explained by the 

PRSs of MetS and its 
components

Investigating associations 
between MetS and 1,621 

health outcomes

• 82 traits exhibited signifi -

cant genetic correlations 

with MetS including the 

traits from cardiovascular 

and psychiatric disorders

• 11 genes (AMHR2, 

BCL7B, FEZ2, HM13, 

MED23, MLXIPL, MYO1F, 

RBM6, RFT1, SP1, and 

STRA13) were significantly 

associated with MetS

• MetS PRS explained 0.7% 

of MetS variance in UKB

• MetS PRS also explained 

the largest MetS variance 

in KoGES

• 29 health outcomes were 

in causal association with 

MetS

• 350 health outcomes were 

associated with MetS PRS

Genetic 
instrumental

variable MetS

Outcome:

eQTL

Exposure:

Confounder

MetS

Fasting insulin

Health satisfaction

Renal failure

...

External traits
MetS
PRS

Angina pectoris

Asthma

Gout

Health outcomes

Confounder

MetS
Health

outcome

Exposure: Outcome:Genetic
instrumental

variable

Investigating tissue enrichment in MetS

• MetS genetic signals were significantly 

enriched in brain tissues

Tissue enrichment analysis

UKB-included GWAS UKB-excluded GWAS
(to avoid sample overlap with target cohort )
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“Collectively, our results provided new insights into the complex genetic structure of MetS 

(Supplementary Fig. 1).” 

 

3. For the 1,270 variants that were independent of previous MetS GWAS, do they show stronger 

association with glycemic or dyslipidemia or both? 

 

Line 172 listed three numbers for four traits? 

 

How does these compare to the Qsnp? Some overlay tabulation or Venn diagram will be helpful 

to discuss the findings with respect to solely MetS, heterogenous effect, and which had been 

associated previously with the individual or multiple traits. 

 

Response: Thank you for this comment. In this revised version, we report independent signals 

identified through conditional analysis and the independence of SNPs determined with more 

stringent criteria in response to the comment from reviewer 2. Among the 1,307 MetS SNPs 

identified through conditional analysis (hereafter referred to as COJO MetS SNPs), 854 COJO 

MetS SNPs were independent of previous MetS GWASs. Among these, 245 (28.7%) COJO MetS 

SNPs exhibited genome-wide significant (GWS) association with dyslipidemia traits (triglyceride 

[TG] or high-density lipoprotein cholesterol [HDL] GWASs), and 143 (16.7%) COJO MetS SNPs 

showed GWS association with glycemic traits (fasting glucose [FG], type 2 diabetes [T2D], or 

hypertension [HTN]). Moreover, 66 (7.8%) COJO MetS SNPs were associated with GWS in both 

dyslipidemia and glycemic traits, highlighting the presence of a shared genetic architecture 

between them. Although a larger number of SNPs showed a significant genome-wide association 

with dyslipidemia compared with glycemic traits, it is insufficient to conclude that these COJO 

MetS SNPs have a stronger association with dyslipidemia relative to other constituent traits of 

MetS. This is because a simple comparison of p-values is subject to the statistical power of the 

GWAS for each trait. 
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In the previous version, we noted the number of independent SNPs identified for three first-order 

factors: F1 (obesity), F2 (insulin resistance/hypertension), and F3 (dyslipidemia) (line 172 in the 

previous version, line 191 in the revised version). We have rephrased this sentence to improve 

clarity and avoid confusion. 

 

In response to the reviewer's suggestion, we have modified Supplementary Table 12, which now 

presents an overlay tabulation of comparisons of our findings with heterogeneous effects, MetS 

components, and previous MetS GWASs to facilitate easier comparisons. In addition, we have 

included Supplementary Table 16 to allow for the query that signals from the GWAS in 

comparison were independent of MetS. Furthermore, we have added Supplementary Figure 6 to 

illustrate the number of COJO MetS SNPs that were independent of the GWASs used in the 

comparison. Table 1 has been updated accordingly.
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[Modified Table 1] 

Table 1. Summary of multivariate GWAS for MetS factor model 

Factor neff h2 (s.e.) 
Mean 

χ2 
λGC 

LDSC 

intercept (s.e.) 

Attenuation 

ratio (s.e.) 

N COJO 

SNP 

Independent 

from QSNP 

Independent from 

corresponding 

MetS components 

Independent 

from previous 

studies 

Unreported in 

GWAS catalog 

MetS 1,384,348 
0.1109 

(0.003) 
4.2501 2.8971 

1.1208 

(0.0259) 
0.0372 (0.008) 1,307 811 82 848 159 

F1 679,472 
0.1721 

(0.0048) 
3.515 2.5641 

1.1097 

(0.0191) 

0.0436 

(0.0076) 
718 677 14 - 40 

F2 728,556 
0.1136 

(0.0039) 
2.7305 1.9923 

1.0529 

(0.0208) 
0.0306 (0.012) 496 346 57 - 57 

F3 1,086,560 
0.0993 

(0.0069) 
3.0111 1.6831 

0.8766 

(0.0234) 
<0 608 329 0 - 85 

Abbreviations: neff, effective sample size; s.e., standard error; λGC, genomic inflation factor; SNP, single-nucleotide polymorphism; F1, obesity 

factor; F2, insulin resistance/hypertension factor; F3, dyslipidemia factor 
aPrevious studies include van Walree et al. and Lind. 
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[Modified the Supplementary Table] 

Supplementary Table 12. MetS GWAS lead SNPs and COJO SNPs 

Genomi

cLocus 
uniqID rsID 

C

H

R 

POS P 
CO

JO 
bJ bJ_se pJ 

TG SNP in 

LD 

HDL SNP in 

LD 

HTN 

SNP in 

LD 

FG SNP 

in LD 

T2D 

SNP in 

LD 

WC 

SNP in 

LD 

Genomi

cLocus 

(omit
ted) 

1 
1:186529

8:A:G 
rs2803

316 
1 

1865
298 

9.05
E-10 

Yes 

-

0.0076

6041 

0.001
25115 

9.2

0E-

10 

rs2076327 rs2377037 NA NA NA 
rs109071

95 
1 

2 
1:218803

2:A:G 

rs7546

430 
1 

2188

032 

3.20

E-08 
Yes 

-
0.0138

359 

0.002

43557 

1.3
4E-

08 

rs6605083;rs

12731820 
rs2377037 NA NA NA 

rs109071

95 
2 

2 
1:272547

5:A:C 

rs7537

581 
1 

2725

475 

7.48

E-11 
Yes 

-
0.0082

8681 

0.001

24947 

3.3
1E-

11 

NA NA NA NA NA NA 2 

3 
1:671539

0:G:T 

rs6577

584 
1 

6715

390 

2.74

E-22 
Yes 

-

0.0124
303 

0.001

31927 

4.4

2E-
21 

NA NA rs11892 NA 
rs657758

6 

rs657758

5 
3 

3 
1:706143

0:C:T 

rs7525

119 
1 

7061

430 

3.36

E-08 
No NA NA NA NA NA NA NA NA NA 3 

4 
1:772839

1:G:T 
rs1891

216 
1 

7728
391 

4.92
E-09 

Yes 

-

0.0075

2791 

0.001
27012 

3.0

9E-

09 

NA NA NA NA NA 
rs121285

26 
4 

4 
1:776681

6:C:G 
rs1212
0907 

1 
7766
816 

2.23
E-08 

No NA NA NA NA NA NA NA NA NA 4 

5 
1:855221

9:A:G 

rs4908

761 
1 

8552

219 

4.20

E-11 
Yes 

-

0.0087
5015 

0.001

28603 

1.0

2E-
11 

NA NA rs301802 NA NA NA 5 

6 
1:168514
40:C:T 

rs1090
7231 

1 
1685
1440 

9.86
E-09 

Yes 
0.0077

867 
0.001
3276 

4.4

9E-

09 

rs7538833 NA NA NA NA NA 6 

7 
1:222495
89:A:G 

rs9426
785 

1 
2224
9589 

8.56
E-11 

Yes 
0.0082
3814 

0.001
27868 

1.1

7E-

10 

NA rs11587362 
rs120812

98 
NA NA NA 7 

8 
1:232946

71:A:G 

rs6371

68 
1 

2329

4671 

2.56

E-09 
Yes 

0.0100

178 

0.001

70072 

3.8
5E-

09 

rs7551124;rs

2742967 

rs10753556;

rs2298632 
NA NA NA rs506004 8 

(omitted) 
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[Added to the Supplementary Table] 

Supplementary Table 16. Lead SNPs of MetS components, Qsnp, previous MetS GWAS that are independent from GWAS of this study 

Trait GenomicLocus uniqID SNP chr pos p nIndSigSNPs IndSigSNPs 
MetS COJO 

SNP in LD 

TG 1 1:1686962:C:T rs2076327 1 1686962 4.69E-08 1 rs2076327 rs2803316 

TG 2 1:2147162:C:T rs6605083 1 2147162 5.19E-13 3 
rs6605083;rs109
10028;rs262680 

rs7546430 

TG 2 1:2222368:A:G rs12731820 1 2222368 3.18E-08 1 rs12731820 rs7546430 

TG 3 1:15259476:C:T rs12563724 1 15259476 3.59E-08 1 rs12563724 NA 

TG 4 1:16504381:C:T rs7538833 1 16504381 3.72E-15 9 

rs7538833;rs112
60930;rs670442

2;rs34713890;rs

61769918;rs287
91627;rs753497

9;rs12084478;rs

4661712 

rs10907231 

TG 5 1:23785760:C:T rs7551124 1 23785760 2.89E-17 5 

rs7551124;rs198
6133;rs2811964;

rs2275355;rs107

53556 

rs637168 

TG 5 1:23827720:G:T rs2742967 1 23827720 3.25E-09 3 
rs2742967;rs227

5355;rs1986133 
rs637168 

TG 6 1:26232356:A:C rs213641 1 26232356 1.18E-11 1 rs213641 NA 

TG 7 1:26879792:C:T rs4970489 1 26879792 2.16E-15 4 
rs4970489;rs364
977;rs4274112;r

s71640328 

rs6666121 

TG 7 1:26919414:C:T rs12408288 1 26919414 4.31E-09 3 
rs12408288;rs11
809021;rs45891

35 

rs11810321;rs66

66121 

TG 7 1:27029551:G:T rs6666121 1 27029551 2.19E-12 4 

rs6666121;rs458

9135;rs1272759

0;rs11809021 

rs11810321;rs66

66121 

TG 7 1:27262545:C:T rs182050989 1 27262545 1.21E-38 7 

rs182050989;rs1

2125238;rs1241
0656;rs1860427

37;rs34517168;r

s11810321;rs12
727590 

rs11810321;rs66

66121 

TG 8 
1:32197257:A:

G 
rs3766823 1 32197257 3.48E-08 1 rs3766823 rs3766823 
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(omitted) 
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[Added to the Supplementary Figure] 

Supplementary Figure 6. COJO MetS SNPs independent from MetS components, QSNP, and previous 

MetS studies 

The UpSet plot presents the number of COJO MetS SNPs that were independent of the lead SNPs of 

GWAS from MetS components, QSNP, and previous MetS studies. Bar chart shows the number of 

independent COJO MetS SNPs for each trait. The connected dots in the bottom panel represent traits that 

were considered simultaneously to determine the independence of the COJO MetS SNPs.  

 

 

[Rephrased in the Results, page 9, lines 171–174] 

“We further conducted a conditional and joint analysis (COJO)21 on 1,650 MetS lead SNPs to 

report statistically significant and independent SNPs, of which 1,307 COJO MetS SNPs were 

identified (Supplementary Table 12).” 

 

[Rephrased in the Results, page 9, lines 181–187] 

“We then assessed the independence of the COJO MetS SNPs, with a window size of 500 kb and 

r2 threshold of <0.01, from previously reported signals. Among the 1,307 COJO MetS SNPs, 82 
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(6.3%) were independent of the GWAS signals of the seven MetS components included in the 

Genomic SEM, 848 (64.9%) were independent of previous MetS GWAS (Lind10 and van Walree 

et al.22), and 159 (12.2%) were previously unreported in the NHGRI-EBI GWAS Catalog23 using 

FUMA (Table 1, Supplementary Tables 11 and 16, Supplementary Fig. 6).” 

 

[Added to the Methods, page 24, lines 534–537] 

“The identified lead SNPs were subjected to GCTA-COJO21 v1.94.1 and determined whether they 

were conditionally and jointly associated SNPs through a stepwise model selection procedure with 

default parameters (i.e., P-value <5 × 10-8, window of 10 Mb, and collinearity <0.9).” 

 

4. For the MetS polygenic scores analysis, it seems surprising that FG has the lowest incremental 

R2 and that the East Asian incremental R2 is relatively higher than European for HDL. Also, the 

incremental R2 is almost 30% for the MetS PRS in East Asian compared to European (62K for 

KoGES and 11K for European). This transferability seems much better than previously observed. 

Can the authors provide more insights to the observations? Also, what are F2, F1 and F3? Have 

the authors compared the PRS from PRS-CS with a simple genome-wide threshold lead variant 

PRS? 

Response: We appreciate the reviewer’s keen comment regarding the PRS analysis. We 

acknowledge that our initial methodology, which used the relative increase in the incremental R2, 

may have led to misunderstandings. This approach notably resulted in higher incremental R2 values 

in the EAS populations than in the EUR populations for certain traits. In this revised version, we 

have calculated the incremental R2 by determining the difference in R2 values between the baseline 

and PRS models, rather than assessing the relative increase with respect to the baseline. We are 

grateful to the reviewer for the meticulous review and valuable insights that have allowed us to 

enhance our analysis and reduce the possibility of misinterpretations. 

 

In addition, we wish to clarify that the primary aim of conducting PRS analysis within the East 

Asian (EAS) population was to demonstrate the applicability of PRS derived from European 

GWAS to both the UKB and KoGES cohorts and not to compare PRS performance across 
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European (EUR) and EAS populations. In pursuit of this objective and to enhance clarity, we have 

modified Figure 4b to present separate bar plots for each target cohort, ensuring a more precise 

representation of our findings. 

 

F1, F2, and F3 are the first-order factors from the multivariate Genomic SEM model that represent 

obesity, insulin resistance/hypertension, and dyslipidemia, respectively. We have added the full 

forms of F1, F2, and F3 to Figure 4b. 

 

Following the reviewer’s suggestion, we have used PRSice–2 (described in Supplementary 

Note), which adopts a pruning and thresholding strategy to compute the PRS. Using the PRS from 

PRSice–2 confirmed that the MetS PRS explained the largest variance in both the UKB and 

KoGES cohorts (Supplementary Table 39). In addition, FG PRS showed the lowest PRS 

performance in both cohorts, which could be partly due to the FG GWAS summary statistics with 

a small sample size of 151,188 compared with other traits (n = 232,101–888,227). 

 

[Modified Figure 4] 

Figure 4b. Bar plot illustrating the incremental proportion of variance explained (ΔR2) by the polygenic 

risk score of seven MetS components and four latent factors for predicting MetS in UKB and KoGES as 

target cohorts. The error bars indicate 95% CIs for ΔR2, and they were computed using the percentile 

method of bootstrapping with 1,000 iterations. 
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[Added to the Supplementary Table] 

Supplementary Table 39. European and East Asian MetS polygenic risk score incremental R2 analyses using PRSice–2 

PRS 
Target 

cohort 

N 

observe

d 

PRS 

estimate 
SE P 

PRS 

estimate 

lower 

bound 

PRS 

estimate 

upper 

bound 

OR 

OR 

lower 

bound 

OR 

upper 

bound 

Null R2 PRS R2 

Increme

ntal R2 

(%) 

Increme

ntal R2 

(%) 

lower 

bound 

Increme

ntal R2 

(%) 

upper 

bound 

BMI UKB 11139 
0.19146

4301 
0.02013

0365 
1.88E-21 

0.15200
9511 

0.23091
9091 

1.21102
16 

1.16417
1309 

1.25975
731 

0.03873
3652 

0.04465
6975 

0.59% 0.36% 0.86% 

FG UKB 11139 
0.08818

8453 

0.01981

9369 
8.60E-06 

0.04934

3203 

0.12703

3702 

1.09219

3929 

1.05058

0852 

1.13545

5284 

0.03873

3652 

0.03991

3854 
0.12% 0.02% 0.25% 

HDL UKB 11139 
-

0.11974

18 

0.01986

3342 
1.66E-09 

-
0.15867

3236 

-
0.08081

0364 

0.88714

9469 

0.85327

5133 

0.92236

8589 

0.03873

3652 

0.04101

5848 
0.23% 0.10% 0.41% 

HTN UKB 11139 
0.11586

0411 

0.01978

0147 
4.70E-09 

0.07709

2035 

0.15462

8787 

1.12283

9125 

1.08014

1482 

1.16722

4592 

0.03873

3652 

0.04087

9843 
0.21% 0.09% 0.40% 

T2D UKB 11139 
0.19223

4847 

0.02006

5152 
9.65E-22 

0.15290

7871 

0.23156

1823 

1.21195

5107 

1.16521

7623 

1.26056

7256 

0.03873

3652 

0.04474

1318 
0.60% 0.37% 0.86% 

TG UKB 11139 
0.25586

9444 

0.02059

9424 
2.01E-35 

0.21549

5316 

0.29624

3572 

1.29158

4093 

1.24047

6173 

1.34479

7673 

0.03873

3652 

0.04901

9056 
1.03% 0.71% 1.39% 

WC UKB 11139 
0.19733

2953 

0.02006

2205 
7.87E-23 

0.15801

1753 

0.23665

4152 

1.21814

9559 

1.17117

996 

1.26700

2852 

0.03873

3652 

0.04508

3683 
0.64% 0.39% 0.91% 

F1 UKB 11139 
0.21731

1426 
0.02015

4613 
4.18E-27 

0.17780
9111 

0.25681
3742 

1.24273
1061 

1.19459
7264 

1.29280
4309 

0.03873
3652 

0.04641
1435 

0.77% 0.52% 1.09% 

F2 UKB 11139 
0.19505

6937 

0.01998

725 
1.69E-22 

0.15588

2646 

0.23423

1228 

1.21538

0185 

1.16868

9045 

1.26393

6716 

0.03873

3652 

0.04497

8565 
0.62% 0.39% 0.90% 

F3 UKB 11139 
0.21531

714 
0.02024

989 
2.09E-26 

0.17562
8086 

0.25500
6194 

1.24025
5169 

1.19199
4657 

1.29046
9614 

0.03873
3652 

0.04618
8609 

0.75% 0.49% 1.03% 

MetS UKB 11139 
0.30719

2368 

0.02064

4061 
4.42E-50 

0.26673

0752 

0.34765

3984 

1.35960

2487 

1.30568

8845 

1.41574

2296 

0.03873

3652 

0.05368

9833 
1.50% 1.12% 1.86% 

MetS KoGES 62314 
0.30513

6282 
0.01100

5274 
3.36E-

169 
0.28356

6341 
0.32670

6223 
1.35680

9899 
1.32785

6968 
1.38639

4126 
0.01440

4896 
0.02810

6846 
1.37% 1.18% 1.56% 

BMI KoGES 62314 
0.14621

9448 

0.01077

9425 
6.49E-42 

0.12509

2164 

0.16734

6733 

1.15745

0161 

1.13325

2893 

1.18216

4089 

0.01440

4896 

0.01760

6128 
0.32% 0.24% 0.42% 

WC KoGES 62314 
0.12500

2827 
0.01074

2174 
2.68E-31 

0.10394
8552 

0.14605
7102 

1.13315
1657 

1.10954
337 

1.15726
2268 

0.01440
4896 

0.01674
9869 

0.23% 0.16% 0.32% 

FG KoGES 62314 
0.07175

6353 

0.01071

3345 
2.12E-11 

0.05075

8583 

0.09275

4124 

1.07439

354 

1.05206

8875 

1.09719

1929 

0.01440

4896 

0.01515

6116 
0.08% 0.03% 0.13% 

T2D KoGES 62314 
0.15027

8752 
0.01087

29 
1.89E-43 

0.12896
8259 

0.17158
9246 

1.16215
8152 

1.13765
4013 

1.18719
0089 

0.01440
4896 

0.01773
0316 

0.33% 0.25% 0.44% 

HTN KoGES 62314 
0.08550

8167 

0.01076

1469 
1.93E-15 

0.06441

6076 

0.10660

0259 

1.08927

0458 

1.06653

6066 

1.112489

458 

0.01440

4896 

0.01547

7371 
0.11% 0.06% 0.17% 
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HDL KoGES 62314 
-

0.26620

2162 

0.01094

3998 

1.09E-

130 

-
0.28765

2004 

-
0.24475

2319 

0.76628

4199 

0.75002

2552 

0.78289

8423 

0.01440

4896 

0.02491

1739 
1.05% 0.89% 1.22% 

TG KoGES 62314 
0.26555

5193 
0.01100

5914 
1.26E-

128 
0.24398

3998 
0.28712

6388 
1.30415

4832 
1.27632

3907 
1.33259

2626 
0.01440

4896 
0.02472

7538 
1.03% 0.88% 1.20% 

F1 KoGES 62314 
0.14159

2833 

0.01076

7736 
1.71E-39 

0.12048

8457 

0.16269

7208 

1.15210

7452 

1.12804

772 

1.17668

0347 

0.01440

4896 

0.01741

0745 
0.30% 0.22% 0.40% 

F2 KoGES 62314 
0.15190

5577 

0.01085

2301 
1.61E-44 

0.13063

5459 

0.17317

5695 

1.16405

0318 

1.13955

2292 

1.18907

5002 

0.01440

4896 

0.01781

6874 
0.34% 0.25% 0.45% 

F3 KoGES 62314 
0.28918

0654 

0.01097

6137 

5.66E-

153 

0.26766

7821 

0.31069

3488 

1.33533

2941 

1.30691

2938 

1.36437

0961 

0.01440

4896 

0.02675

2941 
1.23% 1.06% 1.42% 
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[Added to the Supplementary Note, pages 19–20, lines 414–425] 

“9. Polygenic risk score computation using PRSice–2 

The PRSice–251 employs a pruning and thresholding (P+T) strategy using various subsets of 

independent SNPs at different P-value cutoffs to calculate the polygenic risk score (PRS). First, 

SNPs underwent a process called clumping (also known as pruning) to identify independent SNPs 

(using a 500 kb window and an r2 of 0.1). Subsequently, these independent SNPs were categorized 

into subsets according to P-value thresholds (0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 1), and the 

PRS was calculated for each group. The best P-value threshold is determined by identifying the 

PRS that accounts for the largest variance in the target phenotype (i.e., MetS) within the validation 

cohort. Although using the same validation data for the best P-value selection as the target data 

for the PRS analysis of incremental R2 might predispose to overfitting, this potential bias is 

substantially mitigated when the validation set is sufficiently large52.” 

 

[Rephrased in the Results, page 13, lines 283–285] 

“The MetS PRS explained the largest variance for predicting MetS (ΔR2 = 0.75%, 95% CI = 0.49–

1.04%), followed by the TG PRS (ΔR2 = 0.63%, 95% CI = 0.39–0.93%) and the T2D PRS (ΔR2 = 

0.5%, 95% CI = 0.3–0.75%).” 

 

[Rephrased in the Results, page 14, lines 306–310] 

“Similar to the UKB target, the MetS PRS demonstrated the largest ΔR2 in KoGES (UKB ΔR2 = 

0.75%, 95% CI = 0.49–1.04%; KoGES ΔR2 = 0.41%, 95% CI = 0.31–0.54%), and a similar ΔR2 

pattern was evident in PRS computed using PRSice–237 (Supplementary Note, Supplementary 

Table 39). These findings suggest the potential transferability of European MetS GWAS findings 

to diverse populations.” 

 

[Rephrased in the Discussion, page 19, lines 411–418] 

“The MetS PRS demonstrated superior predictive power for dichotomized MetS in both cohorts 

compared with the PRSs of its components, which is consistent with MetS exhibiting the highest 

PAT. In contrast, the FG accounted for the least MetS variance in both cohorts. This may be 
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attributed to the fact that the performance of PRS depends on the GWAS sample size59, and the 

sample size of the FG GWAS was comparatively smaller than that of the other components. These 

findings highlight a promising scope for wider application of the MetS PRS across different 

populations, yet they stress the need for GWAS with larger sample sizes.” 

 

Minor comments: 

Methods Line 421: “...non-overlapping GWAS samples and the METAL.”. Sentence needs 

revision. Please review. 

 

Response: We appreciate your comment. We have rephrased the sentence accordingly. 

 

[Rephrased in the Methods, page 21, lines 462–463] 

“We conducted a fixed-effects meta-analysis of T2D and HTN using METAL62 to increase the 

sample size of the corresponding GWAS.” 

  



 
 

 

 26 

Reviewer #2:  

Remarks to the Author: Park and colleagues conducted multivariate GWAS of seven metabolic 

syndrome (MetS) components (body mass index (BMI), waist circumference, type 2 diabetes, 

fasting glucose, hypertension, HDL-C, and triglycerides). Their data included European 

population summary statistics from large research consortia as well as from three biobanks (UK 

Biobank, FinnGen, MVP) yielding an observed sample size of 4.9M. They utilized genomic 

structural equation modelling (Genomic-SEM) to run their multitrait GWAS based on a 

hierarchical factor model with three latent factors that clustered to obesity, insulin resistance or 

hypertension, and dyslipidemia. Their multitrait GWAS based on Genomic-SEM identified 1,650 

lead SNPs for MetS across 939 loci (~40% novel compared to component signals; 77% novel for 

MetS). 

 

The authors conducted a range of GWAS follow-up analyses, including genetic correlation 

analysis (method: LD score regression, LDSC; 96 significant genetic correlations with external 

factors; including brain grey matter volume), analysis of heritability (method: LDSC; SNP 

h2=11%), enrichment of heritability in functional categories (method: LDSC-SEG; genes at MetS 

loci enriched for expression in brain tissues and cells), gene prioritization (summary data-based 

Mendelian randomization, SMR; 6 genes prioritized robustly based on consistent effects in 

independent expression data), polygenic risk score analysis (method: PRS-CS; MetS PRS explains 

19.3% of variation in UKB; performs equally well in ~60K independent East Asian individuals), 

PRS-PheWAS (method: logistic regression; 350 significant association with health outcomes in 

UKB) and causal association analyses (method: two-sample Mendelian randomization; MetS 

causally associated with 29 of 350 health outcomes that were associated with the PGS). 

 

This is the largest multivariate GWAS of MetS to date. The data used and the Genomic-SEM 

method are appropriate to conduct a multivariate GWAS for MetS. Their main Genomic-SEM 

analysis included UKB. They excluded UKB to construct the PRS, which was then applied to an 

independent UKB data set, which is good. The methods for the follow-up analyses are state-of-the 
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art, robust and the authors conducted useful sensitivity analyses. They did not conduct fine 

mapping for variant prioritization. 

 

While I think that the paper is well done and robust, I still have the following two major comments: 

 

1) Novelty of SNP associations: The authors identify 1,650 MetS lead variants. They claim that 

704 (42.7%) were independent of GWAS signals of the seven MetS components based on squared 

correlation between variants (r2<0.1) estimated from 1000 Genomes. Can the authors please 

include single trait GWAS results in their supplement and show what their multi-trait GWAS has 

identified in addition to the single trait GWAS’s? I cannot believe that Genomic-SEM identified 

>40% additional signals compared to single trait GWAS of the MetS components. For example, 

for BMI, there are >12,000 associations in GWAS Catalog and ~1,000 truly independent variants 

have been identified by Yengo and colleagues (PMID: 30124842) based on conditional analyses 

(which are state of the art to derive “independence”). Please detail what the reference of known 

variants was. Also, a r2<0.1 criterion is too liberal to claim independence; it refers to a r~0.3 and 

does not account for the haplotype. Many “uncorrelated” variants based on r2<0.1 will not be truly 

independent signals in conditional analyses. Ideally, the authors conduct conditional analyses. If 

that is not possible, it would be good if they revise their r2 criterion to be more stringent in their 

comparison with the single component GWAS’s. 

 

Response: We appreciate the reviewer’s insightful comment. As the reviewer pointed out, 

deciding on the independence of discovered genetic signals compared with the previously reported 

GWAS using r2 <0.1 could be a lenient threshold and may lead to reporting an inflated number of 

independent SNPs. Following the reviewer’s advice, to report the truly independent MetS genetic 

signal, we performed conditional analysis on the MetS GWAS from our study using conditional 

and joint analysis (COJO) implemented in the GCTA software and determined their independence 

from the GWASs of MetS components with a more stringent r2 criterion of <0.01.  

 



 
 

 

 28 

By clumping using FUMA, we initially identified 1,650 MetS lead SNPs associated with MetS. 

Applying the default stepwise model selection procedure to the lead SNPs, 1,307 SNPs remained 

significantly associated with MetS. These SNPs, refined through COJO analysis, are henceforth 

referred to as COJO MetS SNPs.  

 

To ensure novelty and independence, we have applied a stringent r2 threshold of <0.01, comparing 

these COJO MetS SNPs with previously reported SNPs in a MetS-component GWAS. Among the 

1,307 COJO MetS SNPs, we identified 734, 665, 1,073, 1,261, 875, 806, and 394 independent 

COJO MetS SNPs from the TG, HDL, HTN, FG, T2D, WC, and BMI GWAS, respectively. 

Overall, 82 COJO MetS SNPs were independent of all MetS component GWASs, and we report 

that these genetic signals are truly significant, independent, and specific to MetS. We have added 

Supplementary Figure 6 to illustrate the number of COJO MetS SNPs that were independent of 

the GWASs used in the comparison. In addition, we have added Supplementary Table 12 to allow 

readers to easily distinguish which COJO MetS SNPs were independent or identified from 

previous GWASs of MetS components, and Supplementary Table 16 for the opposite. Owing to 

the changes in the number of SNPs reported, we have updated the results of all relevant 

subsequence analyses, as shown in Table 1. 
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[Modified Table 1] 

Table 1. Summary of multivariate GWAS for MetS factor model 

Factor neff h2 (s.e.) 
Mean 

χ2 
λGC 

LDSC 

intercept (s.e.) 

Attenuation 

ratio (s.e.) 

N COJO 

SNP 

Independent 

from QSNP 

Independent from 

corresponding 

MetS components 

Independent 

from previous 

studies 

Unreported in 

GWAS catalog 

MetS 1,384,348 
0.1109 

(0.003) 
4.2501 2.8971 

1.1208 

(0.0259) 
0.0372 (0.008) 1,307 811 82 848 159 

F1 679,472 
0.1721 

(0.0048) 
3.515 2.5641 

1.1097 

(0.0191) 

0.0436 

(0.0076) 
718 677 14 - 40 

F2 728,556 
0.1136 

(0.0039) 
2.7305 1.9923 

1.0529 

(0.0208) 
0.0306 (0.012) 496 346 57 - 57 

F3 1,086,560 
0.0993 

(0.0069) 
3.0111 1.6831 

0.8766 

(0.0234) 
<0 608 329 0 - 85 

Abbreviations: neff, effective sample size; s.e., standard error; λGC, genomic inflation factor; SNP, single-nucleotide polymorphism; F1, obesity 

factor; F2, insulin-resistance/hypertension factor; F3, dyslipidemia factor 
aPrevious studies include van Walree et al. and Lind. 
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[Added to the Supplementary Figure] 

Supplementary Figure 6. COJO MetS SNPs independent from MetS components, QSNP, and 

previous MetS studies 

The UpSet plot presents the number of COJO MetS SNPs that were independent of the lead SNPs 

of GWAS from MetS components, QSNP, and previous MetS studies. Bar chart shows the number 

of independent COJO MetS SNPs for each trait. The connected dots in the bottom panel 

represent traits that were considered simultaneously to determine the independence of the COJO 

MetS SNPs. 
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[Modified the Supplementary Table] 

Supplementary Table 12. MetS GWAS lead SNPs and COJO SNPs 

Genomi

cLocus 
uniqID rsID 

C

H

R 

POS P 
CO

JO 
bJ bJ_se pJ 

TG SNP in 

LD 

HDL SNP 

in LD 

HTN 

SNP in 

LD 

FG SNP 

in LD 

T2D 

SNP in 

LD 

WC 

SNP in 

LD 

Genomi

cLocus 

(omi
tted) 

1 
1:186529

8:A:G 
rs280
3316 

1 
1865
298 

9.05
E-10 

Yes 

-

0.0076

6041 

0.001
25115 

9.20
E-10 

rs2076327 rs2377037 NA NA NA 
rs109071

95 
1 

2 
1:218803

2:A:G 

rs754

6430 
1 

2188

032 

3.20

E-08 
Yes 

-
0.0138

359 

0.002

43557 

1.34

E-08 

rs6605083;rs

12731820 
rs2377037 NA NA NA 

rs109071

95 
2 

2 
1:272547

5:A:C 

rs753

7581 
1 

2725

475 

7.48

E-11 
Yes 

-
0.0082

8681 

0.001

24947 

3.31

E-11 
NA NA NA NA NA NA 2 

3 
1:671539

0:G:T 

rs657

7584 
1 

6715

390 

2.74

E-22 
Yes 

-

0.0124
303 

0.001

31927 

4.42

E-21 
NA NA rs11892 NA 

rs657758

6 

rs657758

5 
3 

3 
1:706143

0:C:T 

rs752

5119 
1 

7061

430 

3.36

E-08 
No NA NA NA NA NA NA NA NA NA 3 

4 
1:772839

1:G:T 
rs189
1216 

1 
7728
391 

4.92
E-09 

Yes 

-

0.0075

2791 

0.001
27012 

3.09
E-09 

NA NA NA NA NA 
rs121285

26 
4 

4 
1:776681

6:C:G 
rs121
20907 

1 
7766
816 

2.23
E-08 

No NA NA NA NA NA NA NA NA NA 4 

5 
1:855221

9:A:G 

rs490

8761 
1 

8552

219 

4.20

E-11 
Yes 

-

0.0087
5015 

0.001

28603 

1.02

E-11 
NA NA rs301802 NA NA NA 5 

6 
1:168514

40:C:T 

rs109

07231 
1 

1685

1440 

9.86

E-09 
Yes 

0.0077

867 

0.001

3276 

4.49

E-09 
rs7538833 NA NA NA NA NA 6 

7 
1:222495
89:A:G 

rs942
6785 

1 
2224
9589 

8.56
E-11 

Yes 
0.0082
3814 

0.001
27868 

1.17
E-10 

NA rs11587362 
rs120812

98 
NA NA NA 7 

8 
1:232946

71:A:G 

rs637

168 
1 

2329

4671 

2.56

E-09 
Yes 

0.0100

178 

0.001

70072 

3.85

E-09 

rs7551124;rs

2742967 

rs10753556;

rs2298632 
NA NA NA rs506004 8 

(omitted) 
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[Added to the Supplementary Table] 

Supplementary Table 16. Lead SNPs of MetS components, Qsnp, and previous MetS GWAS that are independent from GWAS of this study 

Trait GenomicLocus uniqID SNP chr pos p nIndSigSNPs IndSigSNPs 
MetS COJO 

SNP in LD 

TG 1 1:1686962:C:T rs2076327 1 1686962 4.69E-08 1 rs2076327 rs2803316 

TG 2 1:2147162:C:T rs6605083 1 2147162 5.19E-13 3 
rs6605083;rs109
10028;rs262680 

rs7546430 

TG 2 1:2222368:A:G rs12731820 1 2222368 3.18E-08 1 rs12731820 rs7546430 

TG 3 1:15259476:C:T rs12563724 1 15259476 3.59E-08 1 rs12563724 NA 

TG 4 1:16504381:C:T rs7538833 1 16504381 3.72E-15 9 

rs7538833;rs112
60930;rs670442

2;rs34713890;rs

61769918;rs287
91627;rs753497

9;rs12084478;rs

4661712 

rs10907231 

TG 5 1:23785760:C:T rs7551124 1 23785760 2.89E-17 5 

rs7551124;rs198
6133;rs2811964;

rs2275355;rs107

53556 

rs637168 

TG 5 1:23827720:G:T rs2742967 1 23827720 3.25E-09 3 
rs2742967;rs227

5355;rs1986133 
rs637168 

TG 6 1:26232356:A:C rs213641 1 26232356 1.18E-11 1 rs213641 NA 

TG 7 1:26879792:C:T rs4970489 1 26879792 2.16E-15 4 
rs4970489;rs364
977;rs4274112;r

s71640328 

rs6666121 

TG 7 1:26919414:C:T rs12408288 1 26919414 4.31E-09 3 
rs12408288;rs11
809021;rs45891

35 

rs11810321;rs66

66121 

TG 7 1:27029551:G:T rs6666121 1 27029551 2.19E-12 4 

rs6666121;rs458

9135;rs1272759

0;rs11809021 

rs11810321;rs66

66121 

TG 7 1:27262545:C:T rs182050989 1 27262545 1.21E-38 7 

rs182050989;rs1

2125238;rs1241
0656;rs1860427

37;rs34517168;r

s11810321;rs12
727590 

rs11810321;rs66

66121 

TG 8 
1:32197257:A:

G 
rs3766823 1 32197257 3.48E-08 1 rs3766823 rs3766823 
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(omitted) 
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[Added to the Results, page 9, lines 171–174] 

“We further conducted a conditional and joint analysis (COJO)21 on 1,650 MetS lead SNPs to 

report statistically significant and independent SNPs, of which 1,307 COJO MetS SNPs were 

identified (Supplementary Table 12).” 

 

[Updated in the Results, page 9, lines 174–180] 

“Among them, 26 were non-synonymous, 44 had a RegulomeDB score of 1 (indicating a high 

likelihood of having a regulatory function), and 19 were located in the active transcription start 

site with the highest accessibility. Moreover, 414 genes were mapped using three gene-mapping 

strategies, including positional mapping, expression quantitative trait loci mapping (eQTL) 

mapping, and chromatin interaction mapping, in the FUMA and MAGMA gene-based analyses 

(Supplementary Note, Supplementary Tables 13–15, Supplementary Figs. 4–5).” 

 

[Updated in the Results, page 9, lines 181–187] 

“We then assessed the independence of the COJO MetS SNPs, with a window size of 500 kb and 

r2 threshold of <0.01, from previously reported signals. Among the 1,307 COJO MetS SNPs, 82 

(6.3%) were independent of the GWAS signals of the seven MetS components included in the 

Genomic SEM, 848 (64.9%) were independent of previous MetS GWAS (Lind10 and van Walree 

et al.22), and 159 (12.2%) were previously unreported in the NHGRI-EBI GWAS Catalog23 using 

FUMA (Table 1, Supplementary Tables 11 and 16, Supplementary Fig. 6).” 

 

[Updated in the Results, page 9, lines 189–191] 

“We identified a substantial number of COJO SNPs (718, 496, and 608) associated with obesity 

(F1), insulin resistance/hypertension (F2), and dyslipidemia (F3), respectively.” 

 

[Updated in the Results, page 10, lines 195–205] 

“Among the 1,307 COJO MetS SNPs, 62.1% (n COJO SNPs = 811) were independent of QSNP, 

and 20.9% (n COJO SNPs = 273) were genome-wide significant (GWS) in the heterogeneity test 

of QSNP. When we directly compared the direction of the effects of the COJO MetS SNPs with the 
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corresponding SNPs in the GWAS of MetS components, we observed that 59% of the COJO MetS 

SNPs (n = 772) had a perfect match in terms of effect direction. Additionally, 37.9% of the COJO 

MetS SNPs (n = 495) showed consistency in the effect direction with five or six MetS components. 

The Cohen’s kappa (κ) test indicated agreement in the effect direction between MetS and each of 

the seven MetS components, with κ values ranging from 0.47 to 0.96 (Supplementary Table 17). 

These findings suggest that the identified COJO MetS SNPs exhibit consistent and horizontal 

pleiotropic effects across MetS components via shared genetic liability (i.e., MetS factor).” 

 

[Updated in the Discussion, page 17, lines 365–368] 

“Genomic SEM identified genomic loci associated with MetS, of which 1,307 were significant 

COJO SNPs even after conditional analysis. Furthermore, 6.3% (n = 82) of the COJO MetS SNPs 

were independent of the genomic loci of the MetS components, and only 21% (n = 273) were GWS 

in the QSNP heterogeneity test.” 

 

[Added to the Methods, page 24, lines 534–543] 

“The identified lead SNPs were subjected to GCTA-COJO21 v1.94.1 and determined whether they 

were conditionally and jointly associated SNPs through a stepwise model selection procedure with 

default parameters (i.e., P-value <5 × 10-8, window of 10 Mb, and collinearity <0.9). To identify 

MetS COJO SNPs independent of other GWAS, we compared the lead SNPs with their 

independent significant SNPs within the 500 kb window of the MetS COJO SNP. A MetS COJO 

SNP was classified as “independent” if any lead SNPs and their independent significant SNPs with 

P-value <5 × 10-8 and r2 >0.01 were not identified. A MetS COJO SNP was classified as 

“previously reported” if the SNP was mapped from FUMA using NHGRI-EBI GWAS catalog23 

(last updated on 2023.08.02).” 

 

2) Specificity of results: The authors have identified an enrichment of expression effects in brain 

tissues for the genes harboring the MetS loci. How is that specific to MetS? This type of enrichment 

is well known for BMI genetic loci and I wonder whether the authors particularly picked up BMI 

genetics by their multitrait GWAS? Same for the PRS-PheWAS: a plethora of outcomes coming 
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up would certainly also come up for BMI PRS. As with the first point, I am questioning on what 

is truly novel identified by this multitrait analysis (in comparison to single trait GWAS’s)? 

 

Response: We appreciate the reviewer for this valuable feedback. To address the reviewer’s 

concerns regarding the specificity of our findings for MetS in tissue enrichment and PRS-

PheWAS, we have conducted detailed comparisons at the first-order factor levels: F1 (obesity 

factor), F2 (insulin resistance/hypertension factor), and F3 (dyslipidemia factor). 

 

Upon conducting LDSC-SEG and MAGMA analyses to assess tissue enrichment for each of the 

three first-order factors, we observed that not only F1 (the obesity factor that included BMI) 

demonstrated a significant presence of brain tissue enrichment, but F2 (the insulin 

resistance/hypertension factor) exhibited indications of brain tissue enrichment as well 

(Supplementary Tables 27–28). This finding suggests that the observed brain tissue enrichment 

in MetS may not be solely attributable to the genetic signals of BMI. 

 

In our PRS-PheWAS analysis, we investigated the association between each of the three first-order 

factors and various health outcomes. Through this analysis, we observed that the PRS for F2 and 

F3, which did not include BMI, were also associated with a range of health outcomes 

(Supplementary Table 41). We have identified 350 outcomes associated with PRS in patients 

with MetS. Among these, 201, 213, and 281 outcomes were significantly associated with the F1, 

F2, and F3 PRS, respectively. Moreover, of the 201 outcomes significantly associated with both 

MetS and F1 PRS, 170 and 182 were associated with F2 and F3 PRS, respectively. These findings 

revealed that most outcomes related to MetS and F1 were associated with F2 and F3, suggesting 

that BMI, represented within F1, is not the sole factor influencing these associations. 

 

In terms of the novelty of the PRS-PheWAS results from the MetS PRS, we further tested the 

association between significantly associated outcomes with MetS PRS and F1, F2, and F3 PRS. 

Among the 350 outcomes that were associated with MetS-PRS, 43 were solely associated with 
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MetS-PRS, including paroxysmal tachycardia (Phecode = 427.1, OR = 1.09) and delirium 

(Phecode = 290.2, OR = 1.10).   

 

We are thankful for the reviewer's comments, which have helped highlight the novel findings from 

our research and will enable a better explanation of the impact of MetS on health for our readers. 

 

[Added to the Supplementary Figure] 

Supplementary Figure 12. Scatter plot of odds ratio (OR) of PRS-PheWAS results that showed 

significant association with MetS PRS 

a, Comparison of OR from PRS-PheWAS between MetS PRS and F1 PRS. b, Comparison of OR from 

PRS-PheWAS between MetS PRS and F2 PRS. c, Comparison of OR from PRS-PheWAS between MetS 

PRS and F3 PRS. In all panels, green dots represent the outcomes that were significantly associated with 

MetS and the corresponding factor PRS in comparison; red dots represent the outcomes that were 

significantly associated with only MetS PRS; grey bars are error bars with 95% confidence intervals; the 

blue dashed line represents OR = 1; and the red dashed line represents the identity line. 
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[Added to the Supplementary Table] 

Supplementary Table 27. LDSC-SEG enrichment in multi-tissue gene expression for F1–3 (FDR-correction significant results) 

Factor Name Coefficient Coefficient_std_error Coefficient_P_value Bonferroni P-value 

F1 
A08.186.211.464.405.Hippoc

ampus 
1.17E-08 1.97E-09 1.32E-09 2.71E-07 

F1 
A08.186.211.464.Limbic.Syst

em 
1.21E-08 2.09E-09 3.66E-09 7.51E-07 

F1 
A08.186.211.730.885.287.50

0.Cerebral.Cortex 
1.12E-08 2.00E-09 1.15E-08 2.35E-06 

F1 A08.186.211.Brain 1.14E-08 2.05E-09 1.63E-08 3.35E-06 

F1 Brain_Frontal_Cortex_(BA9) 9.88E-09 1.93E-09 1.43E-07 2.93E-05 

F1 
A08.186.211.464.710.225.Ent

orhinal.Cortex 
1.20E-08 2.37E-09 2.18E-07 4.47E-05 

F1 
Brain_Nucleus_accumbens_(

basal_ganglia) 
8.56E-09 1.90E-09 3.45E-06 0.000707971 

F1 
Brain_Putamen_(basal_gangli

a) 
8.16E-09 1.86E-09 5.70E-06 0.001167591 

F1 A08.186.211.132.Brain.Stem 9.07E-09 2.08E-09 6.75E-06 0.001384703 

F1 
A08.186.211.132.810.428.20

0.Cerebellum 
8.63E-09 2.01E-09 8.55E-06 0.001752272 

F1 
Brain_Caudate_(basal_gangli

a) 
8.12E-09 1.89E-09 8.86E-06 0.001816765 

F1 
A08.186.211.730.885.287.50

0.270.Frontal.Lobe 
9.81E-09 2.31E-09 1.05E-05 0.002150155 

F1 
Brain_Anterior_cingulate_cor

tex_(BA24) 
8.13E-09 1.92E-09 1.12E-05 0.0023029 

F1 
A08.186.211.865.428.Metenc

ephalon 
8.08E-09 1.99E-09 2.58E-05 0.005293623 

F1 Brain_Hypothalamus 7.55E-09 1.92E-09 4.10E-05 0.00841122 

F1 
Brain_Cerebellar_Hemispher

e 
7.32E-09 1.88E-09 5.01E-05 0.010266094 

F1 Brain_Cerebellum 7.52E-09 1.97E-09 6.73E-05 0.013787566 

F1 A09.371.729.Retina 9.64E-09 2.60E-09 0.000106628 0.021858662 

F1 
A08.186.211.730.885.287.50

0.571.735.Visual.Cortex 
7.40E-09 2.13E-09 0.00025821 0.052932959 
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F1 Brain_Cortex 6.99E-09 2.04E-09 0.000304534 0.062429532 

F1 
A08.186.211.730.885.287.50

0.670.Parietal.Lobe 
7.09E-09 2.26E-09 0.000853082 0.174881711 

F1 
A08.186.211.730.885.287.24

9.Basal.Ganglia 
6.41E-09 2.12E-09 0.001236649 0.253513053 

F1 Brain_Hippocampus 5.97E-09 2.03E-09 0.001658895 0.34007355 

F1 Brain_Amygdala 5.07E-09 1.97E-09 0.005124746 1 

F3 
Adipose_Visceral_(Omentum

) 
1.39E-08 4.06E-09 0.0003005 0.061602511 

F3 A03.620.Liver 1.62E-08 4.73E-09 0.000303685 0.062255351 

F3 Liver 1.54E-08 4.72E-09 0.000546571 0.112047122 

 

Supplementary Table 28. MAGMA gene-property analysis for average gene expression per tissue types in the GTEx v8 for F1–3 (FDR-correction 

significant results) 

Factor Tissue N genes Beta Beta STD SE P-value Bonferroni P-value 

F1 
Brain Cerebellar 

Hemisphere 
16312 0.078874 0.15723 0.0096002 1.14E-16 6.04E-15 

F1 Brain Cerebellum 16312 0.081215 0.16005 0.0099135 1.38E-16 7.34E-15 

F1 
Brain Frontal Cortex 

BA9 
16312 0.066812 0.12189 0.010873 4.10E-10 2.17E-08 

F1 Brain Cortex 16312 0.067854 0.1225 0.011286 9.38E-10 4.97E-08 

F1 

Brain Anterior 

cingulate cortex 
BA24 

16312 0.059261 0.10361 0.011437 1.12E-07 5.91E-06 

F1 Brain Hypothalamus 16312 0.058327 0.099223 0.012879 2.99E-06 0.000158507 

F1 

Brain Nucleus 

accumbens basal 
ganglia 

16312 0.051681 0.088693 0.012052 9.06E-06 0.0004801 

F1 Pituitary 16312 0.059025 0.1087 0.014146 1.51E-05 0.000802685 

F1 Brain Hippocampus 16312 0.048437 0.081107 0.012668 6.61E-05 0.003501498 

F1 Brain Amygdala 16312 0.046279 0.077994 0.012466 0.00010304 0.00546112 

F1 
Brain Caudate basal 

ganglia 
16312 0.042943 0.073383 0.012491 0.00029406 0.01558518 
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F1 
Brain Putamen basal 

ganglia 
16312 0.036253 0.06105 0.012584 0.0019858 0.1052474 

F1 
Brain Spinal cord 

cervical c-1 
16312 0.033565 0.059735 0.0135 0.0064608 0.3424224 

F2 Brain Cerebellum 16312 0.035196 0.06936 0.0096114 0.00012561 0.00665733 

F2 
Brain Cerebellar 

Hemisphere 
16312 0.031212 0.062219 0.0093085 0.0004006 0.0212318 

F2 Uterus 16312 0.051749 0.10448 0.01663 0.00093169 0.04937957 

F3 Uterus 16312 0.0858 0.17323 0.018564 1.92E-06 0.000103567 

F3 
Adipose 

Subcutaneous 
16312 0.066687 0.13195 0.018319 0.00013664 0.00737856 

F3 Ovary 16312 0.052444 0.10541 0.016499 0.00074153 0.04004262 

F3 Cervix Endocervix 16312 0.061778 0.12099 0.019752 0.00088279 0.04767066 

F3 Fallopian Tube 16312 0.056708 0.10881 0.020174 0.0024727 0.1335258 

F3 
Adipose Visceral 

Omentum 
16312 0.050863 0.097896 0.019024 0.0037562 0.2028348 

F3 
Breast Mammary 

Tissue 
16312 0.054727 0.10418 0.021443 0.0053581 0.2893374 

F3 Thyroid 16312 0.039844 0.078137 0.016351 0.0074133 0.4003182 

F3 Liver 16312 0.025786 0.046076 0.010708 0.0080215 0.433161 

F3 Nerve Tibial 16312 0.040022 0.079767 0.017103 0.0096455 0.520857 

F3 Cervix Ectocervix 16312 0.048457 0.094008 0.020724 0.0096948 0.5235192 
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[Added to the Results, page 12, lines 241–243] 

“Furthermore, both F1 and F2 were enriched in brain tissues, whereas F3 was enriched in adipose 

and liver tissues (Supplementary Tables 27–28).” 

 

[Added to the Results, page 15, lines 319–323] 

“Additionally, we conducted PRS-PheWAS for F1, F2, and F3, and 205, 213, and 294 health 

outcomes exhibited significant associations, respectively (Supplementary Table 41). Moreover, 

43 health outcomes showed significant associations solely with the MetS PRS, including 

paroxysmal tachycardia (OR = 1.09) and delirium (OR = 1.10) (Supplementary Fig. 12).” 

 

In addition, I have the following minor comments: 

3) In line 79, the authors write: “For example, a GWAS conducted by the Global Lipids Genetics 

Consortium (GLGC), including approximately 1.3 million European individuals, identified 380 

and 388 genetic variants associated with high-density lipoprotein cholesterol (HDL-C) and 

triglycerides (TG), respectively5”. However, in the reference paper, there were >1700 distinct 

signals identified. It would be good if the authors could clarify the numbers. 

 

Response: Thank you for the detailed examination of these numbers. Graham et al. (2021) 

conducted a multi-ancestral meta-analysis of lipid traits from the Global Lipids Genetics 

Consortium (GLGC). They reported 1,765 distinct index variants across various ancestry groups 

and lipid traits. In this study, we focused specifically on European populations. Hence, in the main 

text, we refer to the subset of these signals that were distinctly identified within the European 

cohort, as reported by Graham et al. (2021). In the revised version, to clarify this point, we have 

specified that the results pertain to European ancestry. 

  

[Rephrased in the Main, page 5, lines 80–83] 

“For example, a GWAS conducted by the Global Lipids Genetics Consortium has identified 380 

and 388 genetic variants associated with high-density lipoprotein cholesterol (HDL) and 

triglycerides (TG), respectively, in the European population5.” 
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4) Line 116/120 Supplementary Table 2/3 should be exchanged in the xlsx. 

 

Response: Thank you for your thorough review. We have revised the content of Supplementary 

Table 2 and Supplementary Table 3. We have updated the indices in the Supplementary Tables. 

 

5) Line 186: Can the authors explain what type of pleiotropy is exerted via the MetS factor? 

 

Response: Thank you for the feedback. The meaning of “pleiotropy” denoted in the text aligns 

with the context of horizontal pleiotropy. Observations from the genetic correlation analysis of 

various GWASs show the presence of pervasive pleiotropy across different phenotypes. In other 

words, genetic variants have significant effects on different traits. Genomic SEM uses the genetic 

covariance between traits to construct a common factor. A significant SNP association with this 

factor was considered to be an SNP exerting a consistent effect across the traits involved with the 

factor. In the context of a MetS GWAS, an SNP that is significantly associated with the MetS 

factor is considered to have a consistent, pleiotropic effect on the seven MetS components 

(Grotzinger et al. [2019] and Karlsson Linnér et al. [2021]). We have rephrased the sentence to 

clarify this point. 

 

[Rephrased in the Results, page 10, lines 203–205] 

“These findings suggest that the identified COJO MetS SNPs exhibit consistent and horizontal 

pleiotropic effects across MetS components via shared genetic liability (i.e., MetS factor).” 

  

6) The text states 80 significant genetic correlations among 117 external traits but the respective 

figure shows 96. 

 

Response: Thank you for the comment. We aimed to highlight the results of genetic correlations 

between MetS and external traits that have passed the Bonferroni correction, which are 80 genetic 
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correlation results. However, we have incorrectly written the results that passed the Benjamini-

Hochberg false discovery rate (FDR) threshold below 0.05 in the Results. 

 

Meanwhile, we added three traits (fasting insulin, HOMA-IR, and non-alcoholic fatty liver 

disease) in response to the feedback from reviewer 3. Hence, the total number of external traits 

analyzed was 119, with 82 traits exhibiting significant genetic correlations with MetS. We have 

updated Figure 2, Results, and Supplementary Tables 18–19. 
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[Updated Figure 2] 

Figure 2. Genetic correlation between MetS and external traits 

The genetic correlation (rg) between MetS and external traits was estimated using LD score regression. 

Among the 119 external traits, 82 Bonferroni significant rg values are illustrated (Supplementary Table 19 

reports all rg values with 119 traits). Error bars represent 95% confidence intervals (CIs) for rg, calculated 

as 1.96 times the standard error. The black dotted line indicates a rg of 0. 
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[Modified the Supplementary Table] 

Supplementary Table 18. Summary of the external traits used in genetic correlation analysis 

Category Trait Reference Trait type N case N control N total 

Laboratory and physical findings Fasting insulin [28] continuous - - 105,056 

Laboratory and physical findings HOMA-IR [29] continuous - - 51,750 

Physical health Non-alcoholic fatty liver disease [30] binary 8,434 770,180 778,614 

ROI101 101 GWAS summary statistics of ROI [27] continuous - - 19,629 

DTI110 110 GWAS summary statistics of DTI [26] continuous - - 17,706 

Neurological diseases Alzheimer's disease [1] binary 71,880 383,378 455,258 

(omitted) 

 

Supplementary Table 19. Genetic correlation between MetS and external traits 

Category Trait rg SE Z-score P 
95% CI lower 

bound 

95% CI upper 

bound 
Bonferroni P 

Bonferroni 

significant 

Physical health 

Non-alcoholic 

fatty liver 

disease 
(NAFLD) 

0.8441 0.1492 5.659 1.52E-08 0.551668 1.136532 1.82E-06 Yes 

Physical health Renal failure 0.825 0.2126 3.8805 1.00E-04 0.408304 1.241696 0.012 Yes 

Laboratory and 
physical 

findings 

HOMA-IR 0.816 0.0641 12.7262 4.23E-37 0.690364 0.941636 5.08E-35 Yes 

Laboratory and 

physical 
findings 

Body fat 

percentage 
0.7836 0.0127 61.9461 0 0.758708 0.808492 0 Yes 

Laboratory and 

physical 
findings 

Fasting insulin 0.7344 0.0444 16.5492 1.62E-61 0.647376 0.821424 1.94E-59 Yes 

(omitted) 
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[Updated the Results, pages 10–11, lines 208–217] 

“We estimated the genetic correlation (rg) between MetS and 119 external traits categorized into 

eight groups using LDSC regression (Fig. 2, Supplementary Table 18). Among the 119 

examined traits, 82 exhibited significant associations after Bonferroni correction. Given that the 

link between MetS and CVD is widely acknowleged24, our findings reveal a moderate genetic 

overlap with angina pectoris (rg = 0.51, 95% CI = 0.46–0.56) and ischemic heart disease (rg = 

0.50, 95% CI = 0.46–0.55). 

Besides, we observed a substantial positive genetic correlation between MetS and non-alcoholic 

fatty liver disease (NAFLD) (rg = 0.84, 95% CI = 0.55–1.14) and a negative correlation with 

health satisfaction (rg = −0.53, 95% CI = −0.57–−0.49) (Supplementary Table 19).” 

 

7) The authors conducted robust MR analyses. Yet 22 of their 28 significant causal effects shown 

in Table 2 show significant heterogeneity. Even MR-PRESSO can be problematic for instrument 

selection in this case, and I suggest using a constrained maximum-likelihood method to select 

instruments (PMID 34214446). 

 

Response: We thank the reviewer for suggesting a new method for robust MR analysis. We agree 

that MR-PRESSO may result in an inflated type-I error when there is significant heterogeneity. 

By contrast, the proposed method (i.e., constrained maximum likelihood and model-averaging-

based MR [cML-MA]) can control type I errors because it is robust against invalid IVs with 

correlated and uncorrelated pleiotropic effects. Therefore, we performed MR using cML-MA for 

all 29 significant results, as shown in Table 3.   

 

Using cML-MA, we identified 0–7 instrumental variables (IVs) to be removed depending on the 

outcome of interest. The significance and direction of the causal associations were identical to the 

results of our TSMR analysis. Peripheral angiopathy in diseases classified elsewhere showed a 

higher OR compared to previous results, which could be due to a small number of cases (N = 385) 

compared to other outcomes whose sample size ranged from 1,333 to 38,715. We have added the 

results from cML-MA to Supplementary Table 44. We have added BIC and scatter plot pairs for 
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29 health outcomes and compared the TSMR and cML-MA MR figures in Supplementary Figure 

13 and Supplementary Figure 14, respectively. The cML-MA method is described in the 

Supplementary Note. 

 

[Added to the Supplementary Figure] 

Supplementary Figure 13. BIC and scatter plot pairs for 29 health outcomes were tested for their 

causal association with MetS using constrained maximum likelihood and model averaging-based 

Mendelian randomization (cML-MA MR) 

The left panel shows the number of invalid instrumental variables (IVs) on the x-axis and BIC values on the 

y-axis. The right panel shows the beta from exposure (i.e., MetS) and outcome (i.e., health outcome) on the 

x-axis and y-axis, respectively, with their respective error bars. The green dots represent invalid IVs 

detected using cML-MA, the black dashed lines represent beta = 0, the blue line represents the causal 

estimate from the inverse variance weighted (IVW) method, and the red line represents the causal estimate 

from either cML-MA-BIC or cML-MA-BIC-DP MR. 
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(omitted) 

Supplementary Figure 14. Scatter plot of comparison between two-sample Mendelian randomization 

(TSMR) and constrained maximum likelihood and model averaging-based Mendelian randomization 

(cML-MA MR) results for 29 health outcomes 

a, Scatter plot of -log10(P) comparison with the x-axis from TSMR and the y-axis from cML-MA MR. The 

red dashed line represents the Bonferroni correction threshold of 0.05/29, and the gray dashed line 

represents the identity line. b, Scatter plot of odds ratio (OR) comparison with x-axis from TSMR and y-

axis from cML-MA MR. The red dashed line represents OR = 1, and the gray dashed line represents the 

identity line. 
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[Added to the Supplementary Table] 

Supplementary Table 44. cML-MA MR result 

Phecode Outcome 
approach_

selection 

BIC_invali

d_N 

BIC_invali

d_SNP 

MA_BIC_t

heta 

MA_BIC_s

e 

MA_BIC_

p 

MA_BIC_

DP_theta 

MA_BIC_

DP_se 

MA_BIC_

DP_p 
GOF1_p GOF2_p 

274.1 Gout MA_BIC 1 rs12476704 0.820 0.137 2.32E-09 0.826 0.164 4.57E-07 3.04.E-01 2.94.E-01 

306 
Other 
mental 

disorder 

MA_BIC 0  0.416 0.049 1.81E-17 0.394 0.058 1.06E-11 5.37.E-01 5.76.E-01 

318 
Tobacco 

use disorder 

MA_BIC_

DP 
4 

rs10853981
;rs1339609

1;rs205262;

rs2820311 

0.368 0.058 2.41E-10 0.368 0.077 1.97E-06 1.20.E-02 5.82.E-03 

411 

Ischemic 

Heart 

Disease 

MA_BIC_
DP 

5 

rs1558902;r
s2575876;r

s4599845;r

s6857;rs99
87289 

0.979 0.052 1.13E-77 0.967 0.079 4.29E-34 1.02.E-06 3.97.E-07 

411.1 

Unstable 

angina 

(intermediat

e coronary 

syndrome) 

MA_BIC 2 
rs4755720;r

s6857 
0.910 0.110 1.43E-16 0.956 0.132 5.14E-13 6.08.E-02 6.14.E-02 

411.2 
Myocardial 
infarction 

MA_BIC_
DP 

3 

rs1558902;r

s17821274;

rs6857 

1.024 0.091 1.12E-29 1.021 0.114 3.83E-19 2.73.E-03 5.97.E-03 

411.3 
Angina 
pectoris 

MA_BIC_
DP 

2 
rs1558902;r

s6857 
1.026 0.075 6.03E-43 1.052 0.104 5.67E-24 3.44.E-04 1.11.E-03 

411.4 
Coronary 

atherosclero

sis 

MA_BIC_

DP 
5 

rs1558902;r

s2575876;r
s4599845;r

s6857;rs99

87289 

1.037 0.063 5.94E-61 1.009 0.091 2.28E-28 1.58.E-07 3.02.E-06 

411.8 

Other 

chronic 

ischemic 

heart 
disease, 

unspecified 

MA_BIC_

DP 
1 rs6857 0.959 0.072 7.76E-41 0.989 0.100 5.88E-23 8.12.E-03 4.42.E-03 

414 

Other forms 
of chronic 

heart 

disease 

MA_BIC 0  0.813 0.178 4.72E-06 0.825 0.191 1.63E-05 7.15.E-01 7.43.E-01 
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(omitted) 
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[Added to the Supplementary Note, pages 21–22, lines 455–476] 

“11. Causal effect estimation using constrained maximum likelihood and model averaging-

based (cML-MA) Mendelian randomization (MR) 

The cML-MA54 method employs maximum likelihood and model averaging to select valid 

instrumental variables (IVs), addressing both correlated and uncorrelated pleiotropic effects. 

Unlike MR-Egger, it does not assume Instrument Strength Independent of Direct Effect 

(InSIDE) and shows improved control over type I errors. Utilizing the Bayesian information 

criterion (BIC), it assigns weights and performs model averaging to accommodate model 

selection uncertainties. Data perturbation … (omitted)” 

 

[Added to the Results, page 16, lines 347–350] 

“We observed robustness in the identified causal associations through constrained maximum 

likelihood and model averaging-based MR (cML-MA)43, and the bi-directional TSMR suggested 

insufficient evidence for the potential reverse causation (Supplementary Tables 44–46, 

Supplementary Figs. 13–14).” 

 

8) Their PRS explains ~20% of MetS in UKB but heritability was estimated at only ~11%. I know 

the outcomes are not completely comparable but some discussion on what can be expected from 

ever larger MetS GWAS would be helpful. 

 

Response: We appreciate the reviewers’ comments and critical insights. We acknowledge that our 

initial methodology, which used the relative increase in the incremental R2, may have led to 

misunderstandings. In this revised version, based on previous studies (Turley et al. [2018], Lee et 

al. [2018], and Karlsson Linnér et al. [2021]), we have calculated incremental R2 by determining 

the difference in R2 values between the baseline and PRS models, rather than assessing the relative 

increase with respect to the baseline. Using this revised definition, we observed that MetS PRS 

accounts for a 0.75% increase in the variance of MetS within the UKB cohort, which is lower than 

the 11% explained by SNP heritability. However, these two values are not directly comparable 

because the PRS analysis excluded GWAS from the UKB, whereas SNP heritability was estimated 
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based on the GWAS, including the UKB. Nonetheless, this discrepancy highlights the importance 

of conducting further research on MetS, ideally with a larger sample size, to enhance our 

understanding of the unexplained genetic architecture of MetS. 

 

[Modified Figure 4b] 

Figure 4. MetS polygenic risk score analysis in European and East Asian populations 

b, Bar plot illustrating the incremental proportion of variance explained (ΔR2) by the polygenic risk score 

of seven MetS components and four latent factors for predicting MetS in UKB and KoGES as target cohorts. 

The error bars indicate 95% CIs for ΔR2, and they were computed using the percentile method of 

bootstrapping with 1,000 iterations. 

 

 

[Added to the Discussion, page 19, lines 411–418] 

“The MetS PRS demonstrated superior predictive power for dichotomized MetS in both cohorts 

compared with the PRSs of its components, which is consistent with MetS exhibiting the highest 

PAT. In contrast, the FG accounted for the least MetS variance in both cohorts. This may be 

attributed to the fact that the performance of PRS depends on the GWAS sample size59, and the 

sample size of the FG GWAS was comparatively smaller than that of the other components. These 



 
 

 

 56 

findings highlight a promising scope for wider application of the MetS PRS across different 

populations, yet they stress the need for GWAS with larger sample sizes.”  
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Reviewer #3: 

Remarks to the Author: 

Enjoyed reading this paper on the genetic architecture of the metabolic syndrome (MetS) in 

European populations. Found 6 “genes” associated. PRS translatable to East Asians. 

 

A major limitation is the focus on European populations especially since most data suggests other 

populations are higher risk (East and South Asian). This is acknowledged by the authors. 

 

1. The title is a little misleading. The term Metabolic Syndrome has been used by various clinical 

organizations to define a clinical entity with the goal of determining who may be at greater risk of 

ASCVD, T2D and other adverse outcomes. Some of these organizations have published their own 

definitions, which can differ slightly and undergo revisions periodically (some of these are below). 

In this case, the title needs to say something like the “shared genetic architecture of components 

of the metabolic syndrome” 

 

• Grundy, S. M., Brewer, H. B. Jr., Cleeman, J. I., Smith, S. C. Jr. & Lenfant, C. Definition of 

metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart 

Association conference on scientific issues related to definition. Circulation. 109(3), 433–438 

(2004). 

• Einhorn, D. American College of Endocrinology position statement on the insulin resistance 

syndrome. Endocr. Pract. 9, 5–21 (2003). 

 Eckel, R. H., Grundy, S. M. & Zimmet, P. Z. The metabolic syndrome. Lancet. 365(9468), 1415–

1428 (2005). 

  

Lind did a GWAS for MetS based on criteria as above in the UKBB and was cited. 

 

However, in this case, the authors have not performed a GWAS for MetS but rather looked at many 

large GWAS for MetS broadly related traits. This was a reasonable choice, but it really needs to 

be clear how the authors defined MetS. 
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Response: Thank you for your thoughtful comment and suggestion. The definition of metabolic 

syndrome has been periodically updated, and the current title of our study may mislead readers. 

We have updated the title as follows to reflect the reviewer’s comment: “Multivariate genomic 

analysis of 5 million people elucidates the genetic architecture of shared components of the 

metabolic syndrome”. 

 

We did not provide a detailed explanation for the definition of MetS or the selection of specific 

traits/diseases as components of MetS. These points have been thoroughly addressed in the 

Supplementary Note. 

 

[Revised Title] 

“Multivariate genomic analysis of 5 million people elucidates the genetic architecture of shared 

components of the metabolic syndrome” 

 

[Added to the Supplementary Note, pages 4–6, lines 69–116] 

“1. Summary of the clinical definitions of metabolic syndrome 

Metabolic syndrome (MetS) is a collection of risk factors that increase the risk of cardiovascular 

disease and type 2 diabetes (T2D). Despite its seemingly straightforward definition, it is still a 

challenge to diagnose MetS clinically1-3. 

The initial definition of MetS was established in 1998 by … (omitted)” 

 

2. It seems the motivation of this paper is a search for the genes underlying the overlapping part 

of the Venn diagram for these traits. This kind of clustering work has been done previously: Lotta, 

Dimas, Udler, Gloudemans, O’Rahilly etc. None of this prior work has been cited or used to place 

the current paper in context. 

 

Response: Thank you for pointing this out. We reviewed the articles mentioned by the reviewer 

and referenced them accordingly. 
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[Added in the Main, pages 5–6, lines 85–101] 

“The co-occurrence of unhealthy metabolic traits has prompted ongoing endeavors to unveil their 

common genetic underpinnings. For instance, five categories of T2D mechanistic pathways were 

identified using T2D-associated variants through clustering analyses, and the genes and traits 

associated with each cluster were investigated6,7. Similarly, colocalization analyses were 

conducted between cardiometabolic traits and quantitative trait loci (QTL) to identify shared genes 

across various traits8. However, these clustering analyses were constrained to T2D-associated 

variants, and the mere overlap between colocalized genes may lack substantial evidence of a shared 

genetic basis across all components of MetS. 

Most previous MetS GWAS have focused on a binary definition of MetS. Kraja et al.9 expanded 

on this by conducting a GWAS for MetS and pairwise combinations of its components and 

identified 29 common variants; however, these studies lacked robust evidence for a consistent 

association across all MetS components. Lind10 examined 291,107 individuals from the UK 

Biobank (UKB) and identified 93 independent loci associated with MetS. Despite the different 

definitions of MetS, both studies categorized MetS based on the number of MetS criteria met. Such 

an approach may potentially introduce variability due to the different combinations of criteria met, 

thus limiting the representativeness of MetS and leading to an incomplete understanding of the 

genetic architecture of MetS11.” 

 

[Added in the Discussion, page 17, lines 376–377] 

“MetS has strong connections with brain functions45, and its association with various psychiatric 

disorders has been consistently suggested46,47.” 

 

3. Also, if the authors are using a loose way of defining MetS, why not be even more broad? The 

underlying common feature for MetS is thought to largely be related to insulin resistance. Indeed, 

Reaven originally used the Insulin Resistance Syndrome to describe to concepts that underlie the 
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idea of the MetS. While no surrogates capture insulin resistance perfectly, what is the correlation 

and overlap with GWAS signals for fasting insulin (although this was not measured in the UKBB 

has been assessed many other large studies)? What about for NAFLD? 

 

Response: Thank you for your comment. Insulin resistance has been identified as a key factor in 

MetS, as evidenced by definitions proposed by the WHO (1998) and AACE (2003). However, 

other organizations, such as ATP III (2001), IDF (2005), and AHA/NHLBI (2005), have not made 

insulin resistance a compulsory criterion, instead placing a greater emphasis on central obesity or 

a combination of various conditions. We have summarized the definitions of MetS from various 

organizations in Supplementary Note. This variation in the criteria for defining MetS complicates 

the selection of a definitive set of traits or diseases that accurately represent MetS.  

 

Nonetheless, this diversity in definitions provides an opportunity to explore additional traits or 

diseases that may share genetic links with MetS under a more flexible definition. However, in this 

study, we focused on the most commonly discussed components, thereby excluding other insulin 

resistance traits and NAFLD. Moreover, well-powered and well-phenotyped GWAS for these 

traits and disorders remain limited. FG GWAS included in our study, which had the smallest 

sample size (n = 151,188), indicates that traits associated with insulin resistance, such as fasting 

insulin (FI, n = 105,056; Lagou et al. [2021]) and HOMA-IR (n = 51,750; Manning et al. [2012]), 

were relatively underpowered compared with other metabolic traits (n = 385,932–1,253,277). 

Similarly, the largest GWAS for NAFLD (Ghodsian et al. [2021]) features a relatively small 

sample size (ncase = 8,434, ntotal = 778,614), as the definitive method for diagnosing NAFLD 

requires a liver biopsy, leading to a scarcity of properly phenotyped samples. Again, we emphasize 

that, within the scope of this study, we concentrated on the MetS components commonly 

recognized by various organizations. Including a broader range of traits and diseases could be a 

potential direction for future MetS GWAS studies, as described in the Discussion. 

 

In response to the reviewer’s advice, we have investigated the genetic correlation among MetS, 

insulin resistance indicators (specifically FI and HOMA-IR), and NAFLD. We observed a 
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significant genetic correlation between these conditions and MetS, with FI (rg = 0.73, s.e. = 0.04), 

HOMA-IR (rg = 0.82, s.e. = 0.06), and NAFLD (rg = 0.84, s.e. = 0.15). These results, together with 

the various MetS definitions, underscore the importance of adopting a more inclusive definition of 

MetS in future research. We have added these three traits to the genetic correlation analysis, 

comprising 119 analyzed traits and 82 traits that exhibited a significant genetic correlation with 

MetS after Bonferroni correction. Consequently, we have updated Figure 2, Results, and 

Supplementary Tables 18–19. 
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[Updated Figure 2] 

Figure 2. Genetic correlation between MetS and external traits 

The genetic correlation (rg) between MetS and external traits was estimated using LD score regression. 

Among the 119 external traits, 82 Bonferroni significant rg values are illustrated (Supplementary Table 19 

reports all rg values with 119 traits). Error bars represent 95% confidence intervals (CIs) for rg, calculated 

as 1.96 times the standard error. The black dotted line indicates a rg of 0. 
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[Modified the Supplementary Table] 

Supplementary Table 18. Summary of the external traits used in genetic correlation analysis 

Category Trait Reference Trait type N case N control N total 

Laboratory and physical findings Fasting insulin [28] continuous - - 105,056 

Laboratory and physical findings HOMA-IR [29] continuous - - 51,750 

Physical health Non-alcoholic fatty liver disease [30] binary 8,434 770,180 778,614 

ROI101 101 GWAS summary statistics of ROI [27] continuous - - 19,629 

DTI110 110 GWAS summary statistics of DTI [26] continuous - - 17,706 

Neurological diseases Alzheimer's disease [1] binary 71,880 383,378 455,258 

(omitted) 

 

Supplementary Table 19. Genetic correlation between MetS and external traits 

Category Trait rg SE Z-score P 
95% CI lower 

bound 

95% CI upper 

bound 
Bonferroni P 

Bonferroni 

significant 

Physical health 

Non-alcoholic 

fatty liver 

disease 
(NAFLD) 

0.8441 0.1492 5.659 1.52E-08 0.551668 1.136532 1.82E-06 Yes 

Physical health Renal failure 0.825 0.2126 3.8805 1.00E-04 0.408304 1.241696 0.012 Yes 

Laboratory and 
physical 

findings 

HOMA-IR 0.816 0.0641 12.7262 4.23E-37 0.690364 0.941636 5.08E-35 Yes 

Laboratory and 

physical 
findings 

Body fat 

percentage 
0.7836 0.0127 61.9461 0 0.758708 0.808492 0 Yes 

Laboratory and 

physical 
findings 

Fasting insulin 0.7344 0.0444 16.5492 1.62E-61 0.647376 0.821424 1.94E-59 Yes 

(omitted) 
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[Updated the Results, pages 10–11, lines 208–217] 

“We estimated the genetic correlation (rg) between MetS and 119 external traits categorized into 

eight groups using LDSC regression (Fig. 2, Supplementary Table 18). Among the 119 examined 

traits, 82 exhibited significant associations after Bonferroni correction. Given that the link between 

MetS and CVD is widely acknowleged24, our findings reveal a moderate genetic overlap with 

angina pectoris (rg = 0.51, 95% CI = 0.46–0.56) and ischemic heart disease (rg = 0.50, 95% CI = 

0.46–0.55). 

Besides, we observed a substantial positive genetic correlation between MetS and non-alcoholic 

fatty liver disease (NAFLD) (rg = 0.84, 95% CI = 0.55–1.14) and a negative correlation with health 

satisfaction (rg = −0.53, 95% CI = −0.57–−0.49) (Supplementary Table 19).” 

 

[Added in the Discussion, page 20, lines 436–438] 

“Furthermore, considering that the definition of MetS undergoes periodic updates, encompassing 

a broader spectrum of metabolic traits or diseases, such as insulin resistance and NAFLD, will 

provide more comprehensive insights into the genetic underpinnings of MetS.” 

 

4. While prioritizing MetS genes based on brain QTL data is reasonable especially for phenotypes 

related to BMI, the decision to use blood QTL data makes less sense. Why not use tissues known 

to be more strongly related to the phenotypes of the components of MetS (fat, liver, vascular tissue, 

muscle)? 

 

Response: Thank you for the comment. As you mentioned, conducting gene prioritization analysis 

using the eQTL of brain tissues is well established, given that our tissue enrichment analysis 

provided indications of MetS genetic signals being enriched in brain tissues. 

 

There were three reasons for conducting gene prioritization analysis using blood tissue. First, the 

purpose of gene prioritization using SMR is to identify genes associated with MetS that may act 

as potential therapeutic targets for MetS. However, it might be challenging to deliver drugs to 

targeted tissues such as the brain, whereas it is more feasible and efficient to target them if we can 
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identify the genes that are causally involved in the etiology of the blood tissue as a medium. 

Secondly, the identified genes may serve as potential drug targets and biomarkers. Moreover, it is 

less invasive and more practical to perform biomarker measurements using blood tests. Third, the 

eQTL data for blood tissue from the eQTLGen cohort comprised a large number of samples (N = 

31,684). The sample size is an essential component that determines the statistical power for 

identifying significant results from an exploratory perspective. This can be observed from 

Extended Data Figure 1 of Võsa et al. [2021], which compares the replicability of cis-eQTL from 

eQTLGen in GTEx. Although 94.9% of cis-eQTLs from eQTLGen showed a concordant allelic 

direction in GTEx, only 14.8% cis-eQTLs were replicated in GTEx because of the low statistical 

power of the small sample size (max N GTEx = 620). These points highlight the importance of 

conducting gene prioritization analyses in blood tissue (van Rheenen et al. [2021], Storm et al. 

[2021], Wang et al. [2022]). We have addressed these points in the Discussion.  

 

In response to the reviewer’s advice, we have conducted a gene prioritization analysis on five 

additional tissues, namely subcutaneous adipose, skeletal muscle, liver, aorta, and coronary artery, 

in addition to the brain and whole blood tissue. Owing to the limited public availability of eQTL 

data for such tissues, we have utilized GTEx eQTL for the aforementioned tissues as a discovery 

set. We used independent eQTL data available for replication in the adipose subcutaneous and 

skeletal muscles from METSIM and FUSION, respectively. For the liver, aorta, and coronary 

artery tissues, we have noted genes that were identified from the discovery set (i.e., GTEx). A 

summary of the gene prioritization results is provided below. 

 

We have identified 14, 16, 5, 14, and 5 genes associated with MetS in the subcutaneous adipose, 

skeletal muscle, liver, aorta, and coronary artery tissues, respectively. Replication of genes 

identified in subcutaneous adipose and skeletal muscle tissues identified five and three genes, 

respectively. We have obtained five genes (RBM6, BCL7B, MLXIPL, MYO1F, and AMHR2) in 

addition to six genes identified in the brain and whole blood tissues (STRA13, FEZ2, RFT1, 

MED23, SP1, and HM13). To discuss the results for the four tissues, we have replaced Figure 3c 
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with a circular Manhattan plot. Thank you for your advice, which has helped expand and advance 

our research. 
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Summarized table of SMR analysis findings 

Tissue 
Discovery 

cohort 
N genes 

N genes 

significant 

Replication 

cohort 

N genes 

present 

N genes 

replicated 
Genes replicated 

Unique genes 

replicated 

Brain BrainMeta v2 15,131 43 

GTEx (cortex) 2 2 

STRA13, FEZ2 STRA13, FEZ2 
GTEx (frontal 

cortex) 
2 2 

GTEx (anterior 

cingulate cortex) 
2 2 

Whole blood eQTLGen 15,155 136 GTEx 95 4 
RFT1, MED23, 

SP1, HM13 

RFT1, MED23, SP1, 

HM13 

Adipose 

subcutaneous 
GTEx 7,207 14 METSIM 12 5 

RBM6, BCL7B, 

MLXIPL, STRA13, 

MYO1F 

RBM6, BCL7B, 

MLXIPL, STRA13, 

MYO1F 

Skeletal muscle GTEx 6,245 16 FUSION 13 3 
MED23, AMHR2, 

STRA13 

MED23, AMHR2, 

STRA13 

Liver GTEx 2,157 5 - - - - - 

Artery aorta GTEx 5,692 14 - - - - - 

Artery coronary GTEx 2,378 5 - - - - - 

 

[Modified Figure 3] 

Figure 3c. Circos plot83 for gene prioritization using SMR in the subcutaneous adipose tissue, brain, 

skeletal muscle, and whole blood (inner to outer circles). The y-axis represents the -log10(P) of the gene 

association. Red dots with annotations show replicated genes. The dashed black line represents the 

Bonferroni significance threshold for the corresponding tissue. 
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[Added Table 2] 

Table 2. MetS genes prioritized from the SMR analysis 

Gene Tissue Chr Top SNP PeQTL PGWAS Beta SE PSMR PHEIDI 

RBM6 Adipose subcutaneous 3 rs9814664 1.27 × 10-116 1.28 × 10-47 0.034 0.003 1.54 × 10-34 - 

MLXIPL Adipose subcutaneous 7 rs17145813 5.19 × 10-12 1.03 × 10-34 0.111 0.018 1.78 × 10-9 6.78 × 10-2 

BCL7B Adipose subcutaneous 7 rs11972595 1.54 × 10-14 4.55 × 10-9 -0.054 0.012 3.15 × 10-6 5.69 × 10-1 

MYO1F Adipose subcutaneous 19 rs4804311 2.59 × 10-20 8.05 × 10-30 0.095 0.013 7.98 × 10-13 1.30 × 10-1 

STRA13 

(a.k.a. CENPX) 
Adipose subcutaneous 17 rs4995642 2.78 × 10-47 1.61 × 10-7 -0.016 0.003 8.41 × 10-7 1.32 × 10-1 

STRA13 

(a.k.a. CENPX) 
Brain cortex 17 rs4995642 2.17 × 10-192 1.61 × 10-7 -0.007 0.001 2.48 × 10-7 6.13 × 10-2 

FEZ2 Brain cortex 2 rs10172196 2.72 × 10-88 1.05 × 10-9 0.013 0.002 5.42 × 10-9 1.00 × 10-1 

MED23 Skeletal muscle 6 rs2608954 7.35 × 10-16 1.44 × 10-16 0.048 0.008 7.89 × 10-9 3.10 × 10-1 

AMHR2 Skeletal muscle 12 rs2272002 3.15 × 10-11 6.98 × 10-12 -0.046 0.010 1.84 × 10-6 1.92 × 10-1 

STRA13 

(a.k.a. CENPX) 
Skeletal muscle 17 rs4995642 2.99 × 10-45 1.61 × 10-7 -0.016 0.003 9.00 × 10-7 1.03 × 10-1 

HM13 Whole blood 20 rs6120704 0 1.41 × 10-11 0.021 0.003 2.14 × 10-11 7.32 × 10-2 

MED23 Whole blood 6 rs2245133 3.75 × 10-181 2.04 × 10-19 0.051 0.006 8.14 × 10-18 6.95 × 10-2 

RFT1 Whole blood 3 rs2336725 6.08 × 10-263 7.37 × 10-21 -0.038 0.004 1.52 × 10-19 - 

SP1 Whole blood 12 rs10876447 1.66 × 10-139 9.12 × 10-14 -0.032 0.004 8.95 × 10-13 9.21 × 10-1 

PeQTL is the P-value for the top associated cis-eQTL in the eQTL, PGWAS is the P-value for the top associated cis-eQTL in the GWAS, Beta is the 

effect estimate from SMR, SE is the corresponding standard error, PSMR is the P-value for SMR, and PHEIDI is the P-value for the HEIDI test. 

Abbreviations: Chr, chromosome; HEIDI, heterogeneity in dependent instruments 
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[Added to the Supplementary Table] 

Supplementary Table 30. Overview of eQTL data used in discovery and replication set 

Tissue Discovery or replication Cohort N sample N gene Reference 

Brain cortex Discovery BrainMeta v2 2,865 15,131 [1] 

Brain cortex Replication GTEx v8 205 3,348 [2] 

Brain frontal cortex Replication GTEx v8 175 2,551 [2] 

Brain anterior cingulate cortex Replication GTEx v8 147 1,737 [2] 

Whole blood Discovery eQTLGen 31,684 15,155 [3] 

Whole blood Replication GTEx v8 670 6,104 [2] 

Subcutaneous adipose Replication METSIM 434 6,347 [4] 

Subcutaneous adipose Discovery GTEx v8 581 7,207 [2] 

Skeletal muscle Replication FUSION 301 6,452 [5] 

Skeletal muscle Discovery GTEx v8 706 6,245 [2] 

Liver Discovery GTEx v8 208 2,157 [2] 

Artery aorta Discovery GTEx v8 387 5,692 [2] 

Artery coronary Discovery GTEx v8 213 2,378 [2] 

(omitted) 
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Supplementary Table 32. SMR analysis results in replication 
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[Added to the Results, page 12, lines 249–253] 

“We used summary data-based Mendelian randomization (SMR) using gene expression data from 

the following tissues to prioritize MetS genes: brain cortex (BrainMeta v228, n = 2,865), whole 

blood (eQTLGen29, n = 31,684), subcutaneous adipose (GTEx30, n = 581), skeletal muscle (GTEx, 

n = 706), liver (GTEx, n = 208), aorta (GTEx, n = 387), and coronary artery (GTEx, n = 213) 

(Supplementary Table 30).” 

 

[Added to the Results, pages 12–13, lines 255–267] 

“Significant associations with MetS were identified in various tissues, including the brain cortex, 

whole blood, subcutaneous adipose, skeletal muscle, liver, aorta, and coronary artery, with 43, 

136, 14, 16, 5, 14, and 5 genes, respectively, meeting the criteria after Bonferroni correction (P-

value <0.05/n genes tested) and passing the HEIDI test (P-value >0.05) (Fig. 3c, Table 2, and 

Supplementary Table 31). Among these, 11 genes (AMHR2, BCL7B, FEZ2, HM13, MED23, 

MLXIPL, MYO1F, RBM6, RFT1, SP1, and STRA13) were replicated in an independent cohort 

across the corresponding tissues, except for the liver, aorta, and coronary artery because of the lack 

of available independent data (Supplementary Table 32). Nonetheless, among the 11 replicated 

genes, significant associations were observed for STRA13 in the aorta and coronary artery tissues, 

and MYO1F in the coronary artery tissue. Besides, HM13, AMHR2, RFT1, and SP1 were identified 

through positional, eQTL, and chromatin interaction mapping using FUMA, and demonstrated 

significant gene associations with MAGMA.” 

 

[Added to the Discussion, page 18, lines 386–390] 

“We prioritized 11 potential genes (AMHR2, BCL7B, FEZ2, HM13, MED23, MLXIPL, MYO1F, 

RBM6, RFT1, SP1, and STRA13) strongly associated with MetS through SMR analyses across 

MetS-relevant tissues. Additionally, whole blood tissue from the eQTLGen cohort was included 

because of its drug delivery suitability, biomarker measurement convenience, and large sample 

size enhancing statistical power50-52.” 

 

[Added to the Methods, page 27, lines 605–614] 
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“We used publicly available cis-eQTL data from BrainMeta v228 (n = 2,865) for the brain, 

eQTLGen29 (n = 31,684) for whole blood, and GTEx v830 for subcutaneous adipose tissue (n = 

581), skeletal muscle (n = 706), liver (n = 208), aorta (n = 387), and coronary arteries (n = 213) as 

our discovery set. The results were then validated in brain cortical tissues (cortex [n = 205], frontal 

cortex [n = 175], anterior cingulate cortex [n = 147]), and whole blood (n = 670) using GTEx v8. 

Brain cortical tissues in the GTEx were considered specifically because the genotype and RNA 

sequencing data of BrainMeta v2 were obtained from brain cortical tissue. The results for 

subcutaneous adipose and skeletal muscles were validated using METSIM78 (n = 434) and 

FUSION79 (n = 301), respectively (an overview of the eQTL data used can be obtained in 

Supplementary Table 30).” 

 

5. A PRS for MetS again is a reasonable thing to try to develop (and show it functions ok in non-

White populations) and it is not surprising that the MetS PRS explained the largest variance for 

prediction of MetS. But was it better at predicting adverse outcomes (cardiovascular or diabetes 

or death) than PRS using things like HTN, TG, T2D, LDL? I don’t think a PRS for disease 

prediction will be that useful since we do not have interventions for MetS while we have many 

interventions for specific components of the MetS. 

 

Response: We appreciate your insight into the oversight in our work. In response to your advice, 

we have performed multivariable Cox regression analyses to evaluate the performance of various 

PRS in predicting cardiovascular disease (CVD) incidences in the UK Biobank (Yun et al. [2022]).  

 

Briefly, individuals with ischemic stroke, hemorrhagic stroke, peripheral artery disease, heart 

failure, or arterial fibrillation/flutter were categorized as having CVD incidence. Collectively, 

among 352,781 individuals without prior CVD history, 35,711 individuals had CVD incidence 

with a median follow-up period of 11 years (interquartile range of 10.2–11.7). The overall CVD 

incidence rate was 9.67 incidence per 1,000 persons year (95% CI = 9.57–9.77). 
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Multivariable Cox regression was performed to evaluate the hazard ratio (HR) of each PRS for 

CVD incidence. The HR of the PRS were assessed using both quantitative and categorical 

variables. The resultant HR of the quantitative PRS was investigated using the scaled PRS as a 

predictor and interpreted as the CVD incidence rate per unit standard deviation. In addition, the 

PRS was categorized into four groups: low risk (1–20th percentile), intermediate risk (21–80th 

percentile), high risk (81–99th percentile), and very high risk (100th percentile). The HR for each 

group were computed using the low-risk group as a reference. All multivariable Cox regression 

analyses were performed after adjusting for age, sex, and the first 10 principal components of 

genetic ancestry. 

 

First, we compared the hazard ratios (HR) for CVD risk among different PRS risk groups. A non-

overlapping HR confidence interval (CI) between the PRS groups can be seen for MetS and HTN 

PRS, where clear discrimination in the cumulative CVD incidence rate between the groups can be 

observed. The largest HR, relative to the low risk, was observed as 1.33 (95% CI = 1.28–1.38) and 

1.69 (95% CI = 1.53–1.87) in high-risk and very high-risk, respectively, for the MetS PRS. Second, 

although all quantitative PRS showed a significant association with CVD incidence rate, the MetS 

PRS showed the strongest association with HR = 1.11 per unit SD (95% CI = 1.10–1.13, P-value 

= 4.66 × 10-76). These findings suggest that the MetS PRS provides additional predictive value 

beyond the predictive capabilities of the individual PRS components. A further description of this 

analysis is provided in the Supplementary Note. 

 

We concur that the utility of PRS for disease prediction may seem limited given the lack of direct 

interventions for MetS. However, identifying high-risk groups through PRS could facilitate the 

implementation of preventive measures, such as lifestyle modifications. Furthermore, if new 

treatments, such as GLP-1 inhibitors, are shown to be effective for MetS, PRS could help identify 

which groups are likely to gain the most clinical benefit from these interventions. In the revised 

manuscript, we have added a discussion on this topic. We are grateful for your advice, which has 

enriched the outcome of our research. 
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[Added Supplementary Figure] 

Supplementary Figure 9. Hazard plot for PRS of MetS and its components with cardiovascular disease 

incidence rate in the UK Biobank 

Hazard plot for cardiovascular disease incidence rate in UK Biobank (UKB) with PRS stratified into four 

groups: low risk, intermediate risk, high risk, and very high risk. The HR of the intermediate-risk, high-

risk, and very high-risk groups were annotated with low-risk as the reference group. a, MetS PRS. b, BMI 

PRS. c, WC PRS. d, HTN PRS. e, FG PRS. f, T2D PRS. g, HDL* PRS. h, TG PRS. HR, hazard ratio; 

MetS, metabolic syndrome; BMI, body mass index; WC, waist circumference; FG, fasting glucose; HTN, 

hypertension; T2D, type 2 diabetes; HDL*: high-density lipoprotein; TG, triglyceride. *Reverse-coded. 
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[Added Supplementary Table] 

Supplementary Table 35. Multivariable Cox regression analysis for PRS of MetS and its components with cardiovascular disease incidence rate in 

UK Biobank 

PRS Term Beta SE P Beta.95%CI_lo Beta.95%CI_up HR HR.95%CI_lo HR.95%CI_up 

WC PRS_scaled.WC 0.056236027 0.005725372 9.03E-23 0.045014299 0.067457756 1.057847335 1.046042817 1.069785067 

TG PRS_scaled.TG 0.072674067 0.005837153 1.39E-35 0.061233247 0.084114887 1.075379978 1.063146861 1.087753856 

T2D PRS_scaled.T2D 0.071325741 0.005740044 1.89E-35 0.060075255 0.082576227 1.073930992 1.061916458 1.086081459 

MetS PRS_scaled.MetS 0.10643637 0.005767016 4.66E-76 0.095133019 0.11773972 1.112307148 1.09980514 1.124951271 

HTN PRS_scaled.HTN 0.093738639 0.005733443 4.39E-60 0.082501091 0.104976187 1.098272663 1.085999859 1.110684161 

HDL PRS_scaled.HDL.rev 0.0803673 0.005776564 5.31E-44 0.069045234 0.091689366 1.083685032 1.071484676 1.096024307 

FG PRS_scaled.FG 0.027162899 0.005729991 2.13E-06 0.015932116 0.038393681 1.027535173 1.016059709 1.039140242 

BMI PRS_scaled.BMI 0.055744507 0.005735703 2.51E-22 0.044502529 0.066986485 1.057327509 1.04550762 1.069281027 

(omitted) 
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[Added to the Supplementary Note, pages 20–21, lines 427–453] 

“10. Association between polygenic risk score and cardiovascular disease incidence rate 

through multivariable Cox regression analysis 

MetS is a known risk factor for cardiovascular disease (CVD). We assessed whether the MetS 

PRS showed better stratification and a stronger association with the CVD incidence rate in the 

UKB than the PRS of MetS components. We followed the previous work by Yun et al.53 to 

define CVD incidence and conducted multivariable Cox regression analyses.  

Briefly, individuals with ischemic stroke … (omitted)” 

 

[Added to the Results, pages 13–14, lines 286–290] 

“We further investigated the relationship between MetS PRS and the incidence rate of CVD in the 

UKB. The MetS PRS showed distinct differences in CVD incidence rates across stratified genetic 

risk groups, and a notable association between the MetS PRS and CVD incidence rate (hazard ratio 

= 1.11, 95% CI = 1.10–1.13) was identified through multivariable Cox regression analysis 

(Supplementary Fig. 9 and Supplementary Table 35).” 

 

[Added to the Discussion, pages 18–19, lines 404–408] 

“Furthermore, the MetS PRS exhibited slightly improved discrimination in identifying individuals 

at an elevated risk of developing CVD compared with the PRS of its components. These findings 

emphasize the utility of the MetS PRS in identifying individuals at high CVD risk and in 

implementing proactive lifestyle adjustments and clinical interventions.” 

 

6. The results and discussion of the likely causal genes (FEZ2, STRA13, RFT1, MED23, SP1, 

HM13) could be further developed. What do these genes do? Do they act through common 

pathways? What is known about the non-brain genes in other tissues? Are there rare variants in 

these genes in human populations? 

 

Response: Thank you for the comment. In response to your previous feedback, we have identified 

five additional genes linked to MetS. Drawing on information from GeneCards, the Open Targets 
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Platform, the International Mouse Phenotyping Consortium, and pertinent previous studies, we 

have updated the Supplementary Note with a summary of each prioritized gene. We conducted 

over-representation analyses using the Web-based Gene Set Analysis Toolkit (WebGestalt) to 

investigate common pathways, such as biological processes, molecular functions, KEGG, and 

Reactome, among the prioritized MetS genes (Wang et al. [2017]). Although individual genes 

demonstrated an association with MetS, none of these pathways reached significance when 

collectively analyzed after adjusting for multiple tests. The key points have been summarized, and 

the Discussion has been revised accordingly. 

 

[Added to the Supplementary Note, pages 12–17, lines 237–358] 

“6. Summary of 11 MetS genes prioritized using Summary-based Mendelian randomization 

A summary of the 11 genes associated with MetS is described below. This information was queried 

from GeneCards39, the Open Targets Platform40, and the International Mouse Phenotyping 

Consortium (IMPC)41 (accessed on 2024.04.01). 

AMHR2 

The AMHR2 (Anti-Mullerian Hormone Receptor Type 2) encodes a receptor … (omitted)” 

 

[Rephrased in the Discussion, page 18, lines 386–401] 

“We prioritized 11 potential genes (AMHR2, BCL7B, FEZ2, HM13, MED23, MLXIPL, MYO1F, 

RBM6, RFT1, SP1, and STRA13) strongly associated with MetS through SMR analyses across 

MetS-relevant tissues. Additionally, whole blood tissue from the eQTLGen cohort was included 

because of its drug delivery suitability, biomarker measurement convenience, and large sample 

size enhancing statistical power50-52. Using resources such as GeneCards53, the Open Targets 

Platform54, and the International Mouse Phenotyping Consortium (IMPC)55, the majority of these 

genes were linked to MetS components (Supplementary Note). STRA13 regulates adipogenesis 

and lipogenesis56 and SP1 is crucial for the transcription of genes associated with 

hyperinsulinemia, T2D, and MetS in response to insulin levels57. Both BCL7B and MLXIPL are 

associated with MetS and inflammation, whereas MLXIPL is specifically associated with lipid 

metabolism58. Furthermore, MED23 knockout mice had higher HDL and lean body mass, whereas 
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HM13 and RBM6 deletions led to lower fasting glucose levels, which is concordant with the 

direction of the genetic effect from SMR analyses. The prioritized MetS genes demonstrated 

substantial evidence of their relevance to metabolic traits, supporting their use as potential targets 

for therapeutic interventions in MetS.” 

7. Marked limitations in literature review to build on the comments above. On a very cursory 

review, see that some but not all relevant papers were cited. 

 

Cited: Genome-Wide Association Study of the Metabolic Syndrome in UK Biobank. Lind L. 

Metab Syndr Relat Disord. 2019 Dec;17(10):505-511. doi: 10.1089/met.2019.0070. Epub 2019 

Oct 7. PMID: 31589552 

 

Not cited:  

 

A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium. Kraja 

AT...Borecki IB. Diabetes. 2011 Apr;60(4):1329-39. Epub 2011 Mar 8. PMID: 21386085 

 

Transethnic meta-analysis of metabolic syndrome in a multiethnic study. Willems EL, Wan JY, 

Norden-Krichmar TM, Edwards KL, Santorico SA. Genet Epidemiol. 2020 Jan;44(1):16-25. doi: 

10.1002/gepi.22267. Epub 2019 Oct 24. PMID: 31647587  

 

Genome-wide association analysis of metabolic syndrome quantitative traits in the GENNID 

multiethnic family study. Wan JY, Goodman DL, Willems EL, Freedland AR, Norden-Krichmar 

TM, Santorico SA, Edwards KL; American Diabetes GENNID Study Group. Diabetol Metab 

Syndr. 2021 Jun 1;13(1):59. doi: 10.1186/s13098-021-00670-3. PMID: 34074324 

  

Response: Thank you for providing the relevant papers. We have cited the references in the text 

in the appropriate context.  

 

[Added to the Main, page 5, lines 93–96] 
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“Most previous MetS GWAS have focused on a binary definition of MetS. Kraja et al.9 expanded 

on this by conducting a GWAS for MetS and pairwise combinations of its components and 

identified 29 common variants; however, these studies lacked robust evidence for a consistent 

association across all MetS components.” 

 

 

[Added to the Discussion, pages 19–20, lines 429–432] 

“However, the potential heterogeneity in SNP effects on MetS components among various 

ancestral backgrounds suggests that genetic signals for MetS may vary across populations60,61. 

These findings highlight the importance of conducting analyses that include multiple ancestral 

groups.” 
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Additional comments from the authors 

We have updated the main figures and tables accordingly while addressing the reviewers’ comments. The updates and rearrangements 

of the main figures and tables are listed below. 

Figures and 

tables 
Initially After revision 

Comment on changes in the 

structure 

Figure 1 

Panel A) Pair-wise genetic correlation 

Panel B) Genomic structural equation 

modeling of MetS 

Panel A) Pair-wise genetic correlation 

Panel B) Genomic structural equation modeling of 

MetS 

Panel C) Manhattan plot of multivariate GWAS of 

MetS 

Figure 1 has been merged with 

Figure 2. 

Figure 2 
Manhattan plot of multivariate GWAs of 

MetS 
Genetic correlation of MetS with external traits Initial Figure 3 is now Figure 2. 

Figure 3 
Genetic correlation of MetS with external 

traits 

Panel A) Partitioned SNP-heritability analysis 

Panel B) Tissue enrichment analysis 

Panel C) Circos plot of SMR analyses 

Initial Figure 4 is now Figure 3 

with a modified figure for the 

Panel C. 

Figure 4 

Panel A) Partitioned SNP-heritability analysis 

Panel B) Tissue enrichment analysis 

Panel C) Miami plot of SMR analyses 

Panel A) OR per MetS PRS decile 

Panel B) Incremental R2 of PRSs in UKB and 

KoGES cohorts 

Initial Figure 5 is now Figure 4. 

Panel B has been modified with 

respect to the reviewer’s 

comments. 

Figure 5 

Panel A) OR per MetS PRS decile 

Panel B) Incremental R2 of PRSs in UKB and 

KoGES cohorts 

PRS-PheWAS of MetS Initial Figure 6 is now Figure 5. 

Figure 6 PRS-PheWAS of MetS Deleted There is no Figure 6 now. 

Table 1 
Summary of multivariate GWAS for MetS 

factor model 

Summary of multivariate GWAS for MetS factor 

model 
No change. 

Table 2 
Two-sample Mendelian Randomization 

analysis 
MetS genes prioritized from the SMR analysis 

Now added Table 2 for SMR 

analysis result listing 14 genes 

that have been replicated. 

Table 3 There was no Table 3. Two-sample Mendelian Randomization analysis Initial Table 2 is now Table 3. 
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Decision Letter, first revision: 

 
 31st May 2024 

 

Dear Dr. Won, 

 

Your revised manuscript "Multivariate genomic analysis of 5 million people elucidates the genetic 

architecture of shared components of the metabolic syndrome" (NG-A63720R) has been seen by the 

original referees. As you will see from their comments below, they find that the paper has improved in 

revision, and they have no further requests. Therefore, we will be happy in principle to publish your 

study in Nature Genetics as an Article pending final revisions to comply with our editorial and 

formatting guidelines. 

 

We are now performing detailed checks on your paper, and we will send you a checklist detailing our 

editorial and formatting requirements soon. Please do not upload the final materials or make any 

revisions until you receive this additional information from us. 

 

Thank you again for your interest in Nature Genetics. Please do not hesitate to contact me if you have 

any questions. 

 

Sincerely, 

Kyle 

 

 

Kyle Vogan, PhD 
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Senior Editor 

Nature Genetics 

https://orcid.org/0000-0001-9565-9665 

 

 

Reviewer #1 (Remarks to the Author): 

 

Thanks for the detailed responses to the comments. The updates to the manuscript have made it 

clearer and cognizant of other developments in the same area. I do not have further comments. 

 

 

Reviewer #2 (Remarks to the Author): 

 

I have thoroughly reviewed the revised version. I appreciate that the authors have well addressed my 

main concerns regarding the novel variants being claimed and specificity of results. I have no further 

concerns. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The paper is massively improved. Thanks for the detailed responses. 
 

Final Decision Letter: 

 
29th August 2024 

 

Dear Dr. Won, 

 

I am delighted to say that your manuscript "Multivariate genomic analysis of 5 million people 

elucidates the genetic architecture of shared components of the metabolic syndrome" has been 

accepted for publication in an upcoming issue of Nature Genetics. 

 

Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature Genetics 

style. Once your paper is typeset, you will receive an email with a link to choose the appropriate 

publishing options for your paper and our Author Services team will be in touch regarding any 

additional information that may be required. 

 

After the grant of rights is completed, you will receive a link to your electronic proof via email with a 

request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet 

this deadline, please inform us at rjsproduction@springernature.com immediately. 

 

You will not receive your proofs until the publishing agreement has been received through our system. 

 

Due to the importance of these deadlines, we ask that you please let us know now whether you will be 

difficult to contact over the next month. If this is the case, we ask you provide us with the contact 

information (email, phone and fax) of someone who will be able to check the proofs on your behalf, 

and who will be available to address any last-minute problems. 

 

Your paper will be published online after we receive your corrections and will appear in print in the 

next available issue. You can find out your date of online publication by contacting the Nature Press 
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Office (press@nature.com) after sending your e-proof corrections. 

 

You may wish to make your media relations office aware of your accepted publication, in case they 

consider it appropriate to organize some internal or external publicity. Once your paper has been 

scheduled, you will receive an email confirming the publication details. This is normally 3-4 working 

days in advance of publication. If you need additional notice of the date and time of publication, 

please let the production team know when you receive the proof of your article to ensure there is 

sufficient time to coordinate. Further information on our embargo policies can be found here: 

https://www.nature.com/authors/policies/embargo.html 

 

Before your paper is published online, we will be distributing a press release to news organizations 

worldwide, which may very well include details of your work. We are happy for your institution or 

funding agency to prepare its own press release, but it must mention the embargo date and Nature 

Genetics. Our Press Office may contact you closer to the time of publication, but if you or your Press 

Office have any enquiries in the meantime, please contact press@nature.com. 

 

Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced 

in the print or electronic media, until the embargo/publication date. These restrictions are not 

intended to deter you from presenting your data at academic meetings and conferences, but any 

enquiries from the media about papers not yet scheduled for publication should be referred to us. 

 

Please note that Nature Genetics is a Transformative Journal (TJ). Authors may publish their research 

with us through the traditional subscription access route or make their paper immediately open access 

through payment of an article-processing charge (APC). Authors will not be required to make a final 

decision about access to their article until it has been accepted. Find out more about Transformative 

Journals 

 

Authors may need to take specific actions to achieve compliance with funder and 

institutional open access mandates. If your research is supported by a funder that requires 

immediate open access (e.g. according to Plan S principles) then you should select the gold OA route, 

and we will direct you to the compliant route where possible. For authors selecting the subscription 

publication route, the journal’s standard licensing terms will need to be accepted, including <a 

href="https://www.nature.com/nature-portfolio/editorial-policies/self-archiving-and-license-to-

publish. Those licensing terms will supersede any other terms that the author or any third party may 

assert apply to any version of the manuscript. 

 

If you have any questions about our publishing options, costs, Open Access requirements, or our legal 

forms, please contact ASJournals@springernature.com 

 

If you have posted a preprint on any preprint server, please ensure that the preprint details are 

updated with a publication reference, including the DOI and a URL to the published version of the 

article on the journal website. 

 

To assist our authors in disseminating their research to the broader community, our SharedIt initiative 

provides you with a unique shareable link that will allow anyone (with or without a subscription) to 

read the published article. Recipients of the link with a subscription will also be able to download and 

print the PDF. 

 

As soon as your article is published, you will receive an automated email with your shareable link. 

 

You can now use a single sign-on for all your accounts, view the status of all your manuscript 

https://www.springernature.com/gp/open-research/transformative-journals
https://www.springernature.com/gp/open-research/transformative-journals
https://www.springernature.com/gp/open-research/funding/policy-compliance-faqs
https://www.springernature.com/gp/open-research/plan-s-compliance
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submissions and reviews, access usage statistics for your published articles and download a record of 

your refereeing activity for the Nature journals. 

 

An online order form for reprints of your paper is available 

at https://www.nature.com/reprints/author-reprints.html. Please let your coauthors and your 

institutions' public affairs office know that they are also welcome to order reprints by this method. 

 

If you have not already done so, we strongly recommend that you upload the step-by-step protocols 

used in this manuscript to protocols.io. protocols.io is an open online resource that allows researchers 

to share their detailed experimental know-how. All uploaded protocols are made freely available and 

are assigned DOIs for ease of citation. Protocols can be linked to any publications in which they are 

used and will be linked to from your article. You can also establish a dedicated workspace to collect all 

your lab Protocols. By uploading your Protocols to protocols.io, you are enabling researchers to more 

readily reproduce or adapt the methodology you use, as well as increasing the visibility of your 

protocols and papers. Upload your Protocols at https://protocols.io. Further information can be found 

at https://www.protocols.io/help/publish-articles. 

 

Sincerely, 

Kyle 

 

 

Kyle Vogan, PhD 

Senior Editor 

Nature Genetics 

https://orcid.org/0000-0001-9565-9665 

https://www.nature.com/reprints/author-reprints.html

