nature genetics

Supplementary information

https://doi.org/10.1038/s41588-024-01939-9

GWAS of multiple neuropathology endophenotypes identifies new risk loci and provides insights into the genetic risk of dementia

In the format provided by the authors and unedited

6

Table of Contents

Table of Contents

Table of Contents
Supplementary Methods
Quality control
NACC Exclusion Criteria2
Harmonization of NPE2
Sensitivity analyses for APOC2 locus association with CAA4
Software4
Supplementary Results
Polychoric Correlations of Neuropathology Endophenotypes5
Suggestive Loci Identified in NPE GWAS5
rs7247551 shows consistent association with CAA across <i>APOE</i> ε diplotypes6
Consortium Authors and Affiliations7
Nationals Alzheimer's Coordinating Center Investigators7
Nationals Alzheimer's Coordinating Center Investigator Affiliations
Alzheimer's Disease Genetics Consortium Investigators7
Alzheimer's Disease Genetics Consortium Investigator Affiliations
Alzheimer's Disease Genetics Consortium Full Acknowledgments
Supplement References

Supplementary Methods

Quality control

Quality control on genotype data was performed separately for each data source. Quality control and inclusion/exclusion criteria closely followed that used in our previous brain arteriolosclerosis genome-wide association study (GWAS)¹. After imputation, we first identified and subsequently removed duplicate samples using the KING software "-duplicate" option². We then removed participants without autopsy data available by merging genotype sample identification data with neuropathology data sets and retaining only samples present in both data sets. We then iteratively removed genetic variants and participants until no variants were missing in more than 5% of participants and no participants were missing more than 5% of variants (however, average genotype coverage was 99.7%, and no variants or participants were actually removed during this process). We then excluded participants with unusually high or low (+ 3 standard deviations from mean) genetic heterogeneity, as measured by the PLINK 1.9 "--het" flag (https://www.coggenomics.org/plink/1.9/). Finally, we merged participants with the 1000 Genomes Phase 3 (1000 Genomes) cohorts³ and performed principal components analysis (PCA) on a subset of independent variants (measured by pairwise $r^2 < 0.2$). We excluded participants with substantial non-European ancestry, as determined by distance from the 1000 Genomes EUR superpopulation centroid using the first two principal components (PCs).

NACC Exclusion Criteria

National Alzheimer's Coordinating Center (NACC) participants were excluded if they had any of the conditions in the NACC Neuropathology Data Set shown in **Supplementary Table 6**. Variable names and descriptions are taken from

https://files.alz.washington.edu/documentation/rdd-np.pdf. Variable descriptions may be lightly edited. Participants were not excluding for missing data in any fields.

Harmonization of NPE

We harmonized 11 neuropathology endophenotypes (NPE) across the three data sources used: NACC, Religious Orders Study (ROS) and the Memory and Aging Project (MAP; together, ROSMAP), and Adult Changes in Thought (ACT). Arteriolosclerosis, Braak neurofibrillary tangle (NFT) stage, cerebral amylois angiopathy (CAA), atherosclerosis, Consortium to Establish a Registry for Alzheimer's Disease (CERAD) score for neuritic plaques, microinfarcts, and gross infarcts had variables in each cohort with directly comparable coding definitions and were straightforwardly harmonized with minimal recoding. Arteriolosclerosis, CAA, atherosclerosis, and CERAD score variables each had four stages with the following labels: 0 ("none"), 1 ("mild"), 2 ("moderate"), and 3 ("severe"). Microinfarcts and gross infarcts were labeled either 0 ("absent") or 1 ("present"). Braak NFT Stage followed the staging criteria previously described in the literature and had seven levels, ranging from 0 (absent NFT) to six (diffuse NFT throughout cortex and large loss of neurons)⁴.

Limbic-predominant age-related transactive response DNA-binding protein 43 (TDP-43) encephalopathy (LATE) neuropathologic change (LATE-NC) was recorded differently in several of the data sets and was harmonized to a four-level outcome variable following the simplified staging of TDP-43 pathology outlined in Figure 3B of the 2019 LATE working group report⁵. The following levels were used in the analyzed LATE-NC variable: 0, indicating lack of recorded TDP-43 proteinopathy; 1, indicating TDP-43 deposits in the amygdala only; 2, indicating deposits in the hippocampus or entorhinal cortex; and 3, indicating deposits in the neocortex. In ROSMAP, TDP-43 pathology is recorded as a single variable following the same staging detailed above. In NACC, the presence of TDP-43 pathology in each region of the brain is recorded as a separate binary indicator variable. To collapse TDP-43 pathology to a single ordinal variable, we assigned a value based on the presence of the "highest" region where TDP-43 was present (*e.g.* a participant with TDP-43 pathology in both the hippocampus and the neocortex would be assigned a value of 3). Participants were labeled as 0 if they met two conditions: (1) they had recorded TDP-43 data available for at least one of the brain regions used for staging and (2) TDP-43 pathology was noted as absent in all the regions for which they had data available.

Diffuse amyloid plaque pathology was recorded as a four-stage Thal phase of amyloid deposition in NACC, ACT, and ADNI with the following levels: 0 ("none"), 1 ("mild"), 2 ("moderate"), and 3 ("severe"). In ROSMAP, diffuse plaques were examined and quantified in five regions (midfrontal cortex, entorhinal cortex, inferior parietal cortex, and hippocampus), then scaled by each region's standard deviation and averaged. To discretize this continuous variable in ROSMAP participants to a four-level variable, as recorded in the other data sets, we assigned participants a value of 0 ("none") if their averaged score was equal to 0 (18.8%), 1 ("mild") if their score was higher than 0 but ≤ 0.5 (29.7%), 2 ("moderate") if their score was between 0.5 and one (23.5%), and 3 ("severe") if their score was above 1 (26.8%). These labels roughly corresponded to score quartiles in ROSMAP (**Table 1** in main text).

Hippocampal sclerosis is recorded as a binary indicator of the presence or absence of pathology in the NACC Neuropathology data set form version 1-9, ROSMAP, and ACT. In versions 10 and 11 of the NACC Neuropathology form, hippocampal sclerosis pathology is recorded as being absent, unilateral, or bilateral. To harmonize, we dichotomized hippocampal sclerosis pathology as being present if either unilateral or bilateral pathology was indicated.

The Lewy body pathology variable we analyzed had four levels: 0, indicating absent Lewy body pathology in all regions examined or limited to the olfactory bulb; 1, indicating Lewy body pathology limited to the brainstem, including the substantia nigra; 2, indicating Lewy body pathology involving the limbic system or amygdala; and 3, indicating Lewy body involvement in the neocortex. In NACC and ROSMAP, Lewy body pathology was graded in ordinal variables with levels corresponding to the levels in the final harmonized outcome variable analyzed. In ACT, separate binary indicator variables were used to indicate presence of Lewy body pathology in each brain region checked. To harmonize, we created a new variable that coded Lewy body pathology stage according to the "highest" stage present in an individual (*e.g.* if pathology was present in both the amygdala and the neocortex, we assigned a value of 3).

Sensitivity analyses for APOC2 locus association with CAA

We performed several sensitivity analyses to further investigate the novel CAA-associated locus on Chromosome 19 near *APOC2* identified when adjusting for *APOE* ϵ diplotype with individual cohorts (NACC n = 5,927, ROSMAP n = 1,172, ACT n = 677) and meta-analysis (n = 7,776) using METAL. First, for each of the NACC, ROSMAP, and ACT data sources, we reanalyzed the association between CAA and lead variant rs7247551 from the meta-analysis while stratifying by *APOE* ϵ diplotype and visually compared effect sizes across groups. Due to low sample sizes preventing model convergence, APOE ϵ 4 carriers (diplotypes $\epsilon 3/\epsilon 4$, $\epsilon 4/\epsilon 4$, $\epsilon 3/\epsilon 4$) were merged in analyses for ROSMAP and ACT. Then, for each data source, we performed an association analysis between CAA and rs7247551 that included interaction effects between rs7247551 and *APOE* ϵ diplotype. We then performed ANOVA between these models and nested models which did not include interaction effects and performed Chi-Square tests to test whether any interaction terms were significant. We used *P* <0.05 for the significance threshold.

Software

The following software was used in the current study. Links to websites containing downloads for software are provided.

bcftools 1.10.2 https://samtools.github.io/bcftools/ KING 2.2.7 https://www.kingrelatedness.com/Download.shtml MAGMA 1.10 https://cncr.nl/research/magma/ METAL 2011-03-25 https://csg.sph.umich.edu/abecasis/Metal/download/ Minimac 4 https://github.com/statgen/Minimac4 PLINK 1.9 and 2.0 https://www.cog-genomics.org/plink/ Python 3.8.16 and 3.10.8 https://www.python.org/downloads/ R 4.2.1 and 4.2.2 https://cran.r-project.org/ R package coloc 5.2.2 https://github.com/chr1swallace/coloc R package data.table 1.14.10 https://cran.r-project.org/ R package GENESIS 2.26.0 https://bioconductor.org/packages/3.18/bioc/ R package ggplot2 3.4.2 https://cran.r-project.org/ R package GRAB 0.1.1 https://wenjianbi.github.io/grab.github.io/ R package GWASTools 1.42.1 https://bioconductor.org/packages/3.18/bioc/ R package LDlinkR 1.2.3 https://bioconductor.org/packages/3.18/bioc/ R package ordinal 2023.12-04 https://cran.r-project.org/ R package pheatmap 1.012 https://cran.r-project.org/ R package POLMM 0.2.3 https://github.com/WenjianBI/POLMM R package SAIGE 1.1.3 https://saigegit.github.io/SAIGE-doc/ R package SNPRelate 1.30.1 https://bioconductor.org/packages/3.18/bioc/ R package stringi 1.8.3 https://cran.r-project.org/ R package polycor 0.8-1 https://cran.r-project.org/package=polycor R package psych 2.3.3 https://cran.r-project.org/package=psych samtools 1.10 https://github.com/samtools/samtools TOPMed Imputation Server 1.7.3 https://imputation.biodatacatalyst.nhlbi.nih.gov/#!

Supplementary Results

Polychoric Correlations of Neuropathology Endophenotypes

We identified three positively correlated clusters of endophenotypes: a "vascular" cluster consisting of gross infarcts, microinfarcts, arteriolosclerosis, and atherosclerosis; an "Alzheimer's disease" cluster consisting of Braak NFT stage, neuritic plaques, amyloid-beta plaques, and CAA; and a "LATE" cluster consisting of LATE-NC and hippocampal sclerosis (**Extended data Figure 1**). These results demonstrate that, as expected, many NPEs are not independent, though our GWAS results also suggest the genetic underpinnings are not identical.

Suggestive Loci Identified in NPE GWAS

Here, we report suggestive hits from the NPE GWAS meta-analysis that met at least one of two criteria (**Figure 2**): (1) a suggestive threshold of $P < 5 \times 10^{-7}$, or (2) were previously reported by other studies (e.g., Bellenguez et al.⁶) as a disease-associated locus and met a threshold of $P < 1 \times 10^{-5}$. See **Supplementary Table 7** for gene list reported by other studies, beyond Bellenguez et al.

For previously reported loci meeting the threshold of $P < 1 \times 10^{-5}$, we observed twelve potential associations (**Figure 2** in main text purple; **Supplementary Table 8**). Nine of the twelve were reported in Bellenguez et al., including: (1) *CASS4* and amyloid- β plaques (single-nucleotide polymorphism (SNP) located at chr20:56451506; odds ratio (OR) = 0.82; $P = 1.8 \times 10^{-6}$; **Figure 2a**); (2) *EED* (from the broader *PICALM* locus) and CERAD (rs3851179; OR = 0.84; $P = 1.1 \times 10^{-6}$; **Figure 2c**); (3) *RIN3* and CERAD (rs8015844; OR = 0.85; $P = 5.3 \times 10^{-6}$; **Figure 2c**); (4) *PTK2B* and CAA (rs4733054; OR = 1.15; P =9.9 × 10⁻⁶; **Figure 2g**); (5) *TMEM106B* and gross infarcts (rs12534231; OR = 0.75, P =2.4 × 10⁻⁶; **Figure 2g**); (6) *GRN* and LATE-NC (rs5848; OR = 1.32; $P = 1.3 \times 10^{-6}$; **Figure 2i**); (7) *APOE* and Lewy bodies (rs429358; OR = 1.23; $P = 1.1 \times 10^{-6}$; **Figure 2j**); (8) *FOXF1* and hippocampal sclerosis (rs1728394; OR = 0.74 $P = 6.4 \times 10^{-6}$; **Figure 2k**); and (9) *MAPT* and hippocampal sclerosis (rs7210219; OR = 0.71; $P = 4.9 \times 10^{-6}$; **Figure 2k**).

The other three loci, where we observed a single suggestive association each, were reported in previous phenotype association studies, including: (1) *LINC-PINT* and CERAD score (rs62471587; OR = 1.19; $P = 4.0 \times 10^{-6}$; **Supplementary Table 8; Figure 2c**); (2) *HLA-C* and atherosclerosis (position chr6:31265340; OR = 0.53; $P = 6.9 \times 10^{-6}$; **Figure 2e**); and (3) *ABCC9* and hippocampal sclerosis (rs4148674; OR = 1.30; $P = 5.8 \times 10^{-6}$; **Figure 2k**). *HLA-C* (and *HLA-B*) was previously associated with atherosclerosis in the carotid arteries of patients with psoriasis⁷—a different cohort and tissue, but the same underlying pathology. Similarly, *LINC-PINT* was previously associated with CAA in non-*APOE* $\epsilon 4$ carriers by Reddy et al.⁸ while *ABCC9* was previously associated with hippocampal sclerosis in several studies⁹⁻¹¹.

For genes meeting the suggestive threshold of $P < 5 \times 10^{-7}$ (**Figure 2** in gold), we observed 27 suggestive associations, where three were from previously reported loci: (1) *BIN1* and CERAD score (rs6733839; OR = 1.19; $P = 3.2 \times 10^{-7}$; **Supplementary Table 8**;

Figure 2c); (2) *PICALM* and CAA (rs57929351; OR = 1.23; $P = 1.7 \times 10^{-7}$; **Figure 2f**); and (3) *CTNNA3* and hippocampal sclerosis (rs10997204; OR = 1.53; $P = 4.7 \times 10^{-6}$; Figure **2k**). *PICALM*¹² and *BIN1*¹³ have long been associated with clinical AD diagnosis, while the CTNNA3 locus was only recently associated with Lewy body dementia¹⁴. Of the other 24 (novel) suggestive loci reaching $P < 5 \times 10^{-7}$, twelve were associated with hippocampal sclerosis (**Figure 2k**), whereas the next highest number of suggestive associations was gross infarcts, with four. One intronic locus of SPATA48 (formerly C7orf72) was close to genome-wide significance with circle of Willis atherosclerosis (rs62447817; OR = 1.35; $P = 5.5 \times 10^{-8}$; Figure 2e), but future studies will need to assess these suggestive associations more carefully. Notably, there were zero genome-wide significant associations with gross infarcts, microinfarcts, or Lewy body pathologies. Of the four suggestive loci for gross infarct pathology, one was from a known gene in TMEM106B (rs12534231; OR = 0.75; $P = 2.4 \times 10^{-6}$). Microinfarct pathology had a single suggestive association in *HSD17B12* (SNP located at chr11:43817807; OR = 1.74; $P = 4.0 \times 10^{-7}$; Figure 2h). There were two suggestive associations for Lewy bodies in *HMOX1* (rs75125910; OR = 14.52, $P = 3.5 \times 10^{-7}$; Figure 2j) and APOE (rs429358; OR = $1.23 P = 1.1 \times 10^{-6}$).

rs7247551 shows consistent association with CAA across APOE ϵ diplotypes

Forest plots for study- and *APOE* ε diplotype-stratified analysis for association between rs7247551 and CAA are shown in **Extended data Figure 3**. Visual inspection of forest plots did not reveal substantial variation in effect size across diplotypes within data sources. Point estimates of OR for all diplotypes studied in NACC and ROSMAP were <1, consistent with meta-analysis, and only 95% CI for $\varepsilon 4/\varepsilon 4$ in NACC and $\varepsilon 2/\varepsilon 3$ in ROSMAP crossed 1. In ACT, $\varepsilon 3/\varepsilon 3$ and $\varepsilon 4$ carriers had point estimates of OR <1, but the OR of the smallest group, $\varepsilon 2/\varepsilon 3$, was ~1.4, although it still overlapped with the estimates of $\varepsilon 3/\varepsilon 3$ and $\varepsilon 4$ carriers. No interaction terms between rs7247551 and diplotype were significant in the models testing interaction effects in any of the data sources (NACC Chi-Square P = 0.84; ROSMAP Chi-Square P = 0.13; ACT Chi-Square P = 0.91). These results indicate that rs7247551 shows a consistent pattern of association with CAA in each of the data sources used in our study.

Consortium Authors and Affiliations

Nationals Alzheimer's Coordinating Center Investigators

Walter A. Kukull¹, Sarah Biber¹, Marilyn Albert², Sanjay Asthana³, David Bennett⁴, James Brewer⁵, Helena Chui⁶, Suzanne Craft⁷, Charles DeCarli⁸, Todd Golde⁹, Thomas Grabowski¹, Victor Henderson¹⁰, Bradley Hyman¹¹, Jeffrey Kaye¹², Neil Kowall¹³, Frank LaFerla¹⁴, Allan Levey¹⁵, Oscar Lopez¹⁶, Bruce Miller¹⁷, John Morris¹⁸, Henry Paulson¹⁹, Ronald Petersen²⁰, Eric Reiman²¹, Roger Rosenberg²², Mary Sano²³, Andrew Saykin²⁴, Scott Small²⁵, Stephen Strittmatter²⁶, Russell Swerdlow²⁷, John Trojanowski²⁸, Linda Van Eldik²⁹, Robert Vassar³⁰, Thomas Wisniewski³¹, Kari A. Stephens¹, Kwun C. G. Chan¹, Heather O'Connell¹, Kathryn Gauthreaux¹, Charles Mock¹, Yen-Chi Chen¹, Stacy Oswald¹, Zack Miller¹, Dean K. Shibata¹, Kyle Ormsby¹, Jessica Culhane¹, Sarah Yasuda¹

Nationals Alzheimer's Coordinating Center Investigator Affiliations

¹University of Washington, Seattle, WA, USA. ²Johns Hopkins University School of Medicine, Baltimore, MD, USA. ³University of Wisconsin - Madison, Madison, WI, USA. ⁴Rush University Medical Center, Chicago, IL, USA. ⁵University of California, San Diego, La Jolla, CA, USA. ⁶Keck School of Medicine at University of Southern California, Los Angeles, CA, USA. ⁷Wake Forest School of Medicine, Winston-Salem, NC, USA. ⁸University of California, Davis School of Medicine, Sacramento, CA, USA. 9Emory University School of Medicine, Atlanta, GA, USA. ¹⁰Stanford University, Palo Alto, CA, USA. ¹¹Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA. ¹²Oregon Health & Science University, Portland, OR, USA. ¹³Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA. ¹⁴University of California, Irvine, Irvine, CA, USA. ¹⁵Emory University, Atlanta, GA, USA. ¹⁶University of Pittsburgh, Pittsburgh, PA, USA. ¹⁷University of California San Francisco, San Francisco, CA, USA. ¹⁸Washington University School of Medicine, Saint Louis, MO, USA. ¹⁹University of Michigan, Ann Arbor, MI, USA. ²⁰Mayo Clinic, Rochester, MN, USA. ²¹Banner Alzheimer's Institute, Phoenix, AZ, USA. ²²University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA. ²³Icahn School of Medicine at Mount Sinai, New York, NY, USA. ²⁴Indiana University, Indianapolis, IN, USA. ²⁵Columbia University, New York, NY, USA. ²⁶Yale University School of Medicine, New Haven, CT, USA. ²⁷University of Kansas Medical Center, Kansas City, KS, USA. ²⁸University of Pennsylvania, Philadelphia, PA, USA. ²⁹University of Kentucky, Lexington, KY, USA. ³⁰Northwestern University, Chicago, IL, USA. ³¹New York University Grossman School of Medicine, New York, NY, USA.

Alzheimer's Disease Genetics Consortium Investigators

James D. Bowen¹, Paul K. Crane², Gail P. Jarvik², C. Dirk Keene², Eric B. Larson², Wayne C. McCormick², Susan M. McCurry², Shubhabrata Mukherjee², Neil W. Kowall³, Ann C. McKee³, Robert A.] /.90/OL(³, Lawrence S. Honig⁴, Jean Paul Vonsattel⁴, Jennifer Williamson⁴, Scott Small⁴, James R. Burke⁵, Christine M. Hulette⁵, Kathleen A. Welsh-Bohmer⁵, Marla Gearing⁶, James J. Lah⁶, Allan I. Levey⁶, Thomas S. Wingo⁶, Liana G. Apostolova⁷, Martin R. Farlow⁷, Bernardino Ghetti⁷, Andrew J. Saykin⁷, Salvatore Spina⁷, Marilyn S. Albert⁸, Constantine G. Lyketsos⁸, Juan C. Troncoso⁸, Matthew P. Frosch⁹, Robert C. Green¹⁰, John H. Growdon¹¹, Bradley T. Hyman¹¹, Rudolph E. Tanzi¹¹, Huntington Potter¹², Dennis W. Dickson¹³, Nilufer Ertekin-Taner¹³, Neill R. Graff-Radford¹³, Joseph E. Parisi¹⁴, Ronald C. Petersen¹⁴, Ranjan

Duara¹⁵, Joseph D. Buxbaum¹⁶, Alison M. Goate¹⁶, Mary Sano¹⁶, Arjun V. Masurkar¹⁷, Thomas Wisniewski¹⁷, Eileen H. Bigio¹⁸, Marsel Mesulam¹⁸, Sandra Weintraub¹⁸, Robert Vassar¹⁸, Jeffrey A. Kaye¹⁹, Joseph F. Quinn¹⁹, Randall L. Woltjer¹⁹, Lisa L. Barnes²⁰, David A. Bennett²⁰, Julie A. Schneider²⁰, Lei Yu²⁰, Victor Henderson²¹, Kenneth B. Fallon²², Lindy E. Harrell²², Daniel C. Marson²², Erik D. Roberson²², Charles DeCarli²³, Lee-Way Jin²³, John M. Olichnev²³, Ronald Kim²⁴, Frank M. LaFerla²⁴, Edwin Monuki²⁴, Elizabeth Head²⁴, David Sultzer²⁴, Daniel H. Geschwind²⁵, Harry V. Vinters²⁵, Marie-Francoise Chesselet²⁵, Douglas R. Galasko²⁶, James B. Brewer²⁶, Adam Boxer²⁷, Anna Karydas²⁷, Joel H. Kramer²⁷, Bruce L. Miller²⁷, Howard J. Rosen²⁷, William W. Seeley²⁷, Jeffrey M. Burns²⁸, Russell H. Swerdlow²⁸, Erin Abner²⁹, David W. Fardo²⁹, Linda J. Van Eldik²⁹, Roger L. Albin³⁰, Andrew P. Lieberman³⁰, Henry L. Paulson³⁰, Steven E. Arnold³¹, John Q. Trojanowski³¹, Vivianna M. Van Deerlin³¹, Ronald L. Hamilton³², M. Ilyas Kamboh³², Oscar L. Lopez³³, James T. Becker³⁴, Chuanhai Cao³⁵, Ashok Raj³⁵, Amanda G. Smith³⁵, Helena C. Chui³⁶, Carol A. Miller³⁶, John M. Ringman³⁶, Lon S. Schneider³⁶, Thomas D. Bird², Joshua A. Sonnen², Chang-En Yu², Thomas Grabowski², Elaine Peskind³⁷, Murray Raskind³⁷, Ge Li³⁸, Debby W. Tsuang³⁸, Sanjay Asthana³⁹, Craig S. Atwood³⁹, Cynthia M. Carlsson³⁹, Mark A. Sager³⁹, Nathaniel A. Chin³⁹, Suzanne Craft⁴⁰, Nigel J. Cairns⁴¹, John C. Morris⁴¹, Carlos Cruchaga⁴², Stephen Strittmatter⁴³, Eric M. Reiman⁴⁴, Thomas G. Beach⁴⁵, Matthew J. Huentelman⁴⁶, John Hardy⁴⁷, Amanda J. Myers⁴⁸, John S.K. Kauwe⁴⁹, Hakon Hakonarson⁵⁰, Deborah Blacker⁵¹, Thomas J. Montine²¹, Clinton T. Baldwin³, Lindsay A. Farrer³, Gyungah Jun³, Kathryn L. Lunetta³, William S. Bush⁵², Jonathan L. Haines⁵², Alan J. Lerner⁵², Xiongwei Zhou⁵², Sandra Barral⁴, Christiane Reitz⁴, Badri N. Vardarajan⁴, Richard Mayeux⁴, Gary W. Beecham⁴⁸, Regina M. Carney⁴⁸, Michael L. Cuccaro⁴⁸, John R. Gilbert⁴⁸, Kara L. Hamilton-Nelson⁴⁸, Brian W. Kunkle⁴⁸, Eden R. Martin⁴⁸, Margaret A. Pericak-Vance⁴⁸, Jeffery M. Vance⁴⁸, Laura B. Cantwell³¹, Amanda P. Kuzma³¹, John Malamon³¹, Adam C. Naj³¹, Liming Qu³¹, Gerard D. Schellenberg³¹, Otto Valladares³¹, Li-San Wang³¹, Yi Zhao³¹, James B. Leverenz⁵³, Philip L. De Jager⁵⁴, Denis A. Evans²⁰, Mindy J. Katz⁵⁵, Richard B. Lipton⁵⁵, Bradley F. Boeve¹⁴, Mariet Allen¹³, Minerva M. Carrasquillo¹³, Steven G. Younkin¹³, Walter A. Kukull², Kelley M. Faber⁷, Tatiana M. Foroud⁷, Valory Pavlik⁵⁶, Paul Massman⁵⁶, Eveleen Darby⁵⁶, Monica Rodriguear⁵⁶, Aisha Khaleeq⁵⁶, Donald R. Royall⁵⁷, Alan Stevens⁵⁸, Marcia Ory⁵⁸, John C. DeToledo⁵⁹, Henrick Wilms⁵⁹, Kim Johnson⁵⁹, Victoria Perez⁵⁹, Michelle Hernandez⁵⁹, Kirk C. Wilhelmsen⁶⁰, Jeffrey Tilson⁶⁰, Scott Chasse⁶⁰, Robert C. Barber⁶¹, Thomas J. Fairchild⁶¹, Sid E. O'Bryant⁶¹, Janice Knebl⁶¹, James R. Hall⁶¹, Leigh Johnson⁶¹, Douglas Mains⁶¹, Lisa Alvarez⁶¹, Adriana Gamboa⁶¹, David Paydarfar⁶², John Bertelson⁶², Martin Woon⁶², Gayle Avres⁶², Alyssa Aguirre⁶², Raymond Palmer⁶³, Marsha Polk⁶³, Perrie M. Adams⁶⁴, Ryan M. Huebinger⁶⁴, Joan S. Reisch⁶⁴, Roger N. Rosenberg⁶⁴, Munro Cullum⁶⁴, Benjamin Williams⁶⁴, Mary Quiceno⁶⁴, Linda Hynan⁶⁴, Janet Smith⁶⁴, Barb Davis⁶⁴, Trung Nguyen⁶⁴, Ekaterina Rogaeva⁶⁵, Peter St George-Hyslop⁶⁵

Alzheimer's Disease Genetics Consortium Investigator Affiliations

¹Swedish Medical Center, Seattle, Washington, USA. ²University of Washington, Seattle, Washington, USA. ³Boston University, Boston, Massachusetts, USA. ⁴Columbia University, New York, New York, USA. ⁵Duke University, Durham, North Carolina, USA. ⁶Emory University, Atlanta, Georgia, USA. ⁷Indiana University, Indianapolis, Indiana, USA. ⁸Johns

Hopkins University, Baltimore, Maryland, USA. 9Massachusetts General Hospital, Boston, Massachusetts, USA. ¹⁰Massachusetts General Hospital/Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. ¹¹Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA. ¹²Massachusetts General Hospital/University of Colorado School of Medicine, Boston, Massachusetts, USA. ¹³Mayo Clinic, Jacksonville, Florida, USA. ¹⁴Mayo Clinic, Rochester, Minnesota, USA. ¹⁵Mount Sinai Medical Center, Miami Beach, Florida, USA. ¹⁶Mount Sinai School of Medicine, New York, New York, USA. ¹⁷New York University, New York, New York, USA. ¹⁸Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA. ¹⁹Oregon Health & Science University, Portland, Oregon, USA. ²⁰Rush University Medical Center, Chicago, Illinois, USA. ²¹Stanford University, Stanford, California, USA. ²²University of Alabama at Birmingham, Birmingham, Alabama, USA. ²³University of California Davis, Sacramento, California, USA. ²⁴University of California Irvine, Irvine, California, USA. ²⁵University of California Los Angeles, Los Angeles, California, USA. ²⁶University of California San Diego, San Diego, California, USA. ²⁷University of California San Francisco, San Francisco, California, USA. ²⁸University of Kansas Medical Center, Kansas City, Kansas, USA. ²⁹University of Kentucky, Lexington, Kentucky, USA. ³⁰University of Michigan, Ann Arbor, Michigan, USA. ³¹University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA. ³²University of Pittsburgh, Pittsburgh, Pennsylvania, USA. ³³University of Pittsburgh Alzheimer's Disease Research Center, Pittsburgh, Pennsylvania, USA. ³⁴University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. ³⁵University of South Florida, Tampa, Florida, USA. ³⁶University of Southern California, Los Angeles, California, USA. ³⁷University of Washington School of Medicine, Seattle, Washington, USA. ³⁸University of Washington/VA Puget Sound Health Care System/GRECC, Seattle, Washington, USA. ³⁹University of Wisconsin, Madison, Wisconsin, USA. ⁴⁰Wake Forest University, Winston-Salem, North Carolina, USA. ⁴¹Washington University, St. Louis, Missouri, USA. ⁴²Washington University School of Medicine, St. Louis, Missouri, USA. ⁴³Yale University, New Haven, Connecticut, USA. ⁴⁴Banner Healther/Translational Genomics Research Institute, Phoenix, Arizona, USA. ⁴⁵Banner Sun Health Research Institute, Phoenix, Arizona, USA. ⁴⁶Translational Genomics Research Institute, Phoenix, Arizona, USA. ⁴⁷University College London, Queens Square, London, UK. ⁴⁸University of Miami, Miami, Florida, USA. ⁴⁹Brigham Young University, Provo, Utah, USA. ⁵⁰Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA. ⁵¹Harvard School of Public Health, Boston, Massachusetts, USA. ⁵²Case Western Reserve University, Cleveland, Ohio, USA. ⁵³Cleveland Clinic, Cleveland, Ohio, USA. ⁵⁴Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. ⁵⁵Albert Einstein College of Medicine, New York, New York, USA. ⁵⁶Baylor College of Medicine, Houston, Texas, USA. ⁵⁷South Texas Veterans Health Administration Geriatric Research Education & Clinical Center (GRECC), UT Health Science Center at San Antonio, San Antonio, Texas, USA. 58Texas A&M University Health Science Center, Lubbock, Texas, USA. ⁵⁹Texas Tech University Health Science Center, Lubbock, Texas, USA. ⁶⁰University of North Carolina, Chapel Hill, North Carolina, USA. ⁶¹University of North Texas Health Science Center, Fort Worth, Texas, USA. ⁶²University of Texas at Austin/Dell Medical School, Austin, Texas, USA. ⁶³University of Texas Health Science Center - San Antonio, Houston, Texas, USA. ⁶⁴University of Texas Southwestern Medical Center, Dallas, Texas, USA. ⁶⁵University of Toronto, Toronto, Ontario, Canada

Alzheimer's Disease Genetics Consortium Full Acknowledgments

The National Institutes of Health, National Institute on Aging (NIH-NIA) supported this work through the following grants: ADGC, U01 AG032984, RC2 AG036528; Samples from the National Cell Repository for Alzheimer's Disease (NCRAD), which receives government support under a cooperative agreement grant (U24 AG21886) awarded by the National Institute on Aging (NIA), were used in this study. We thank contributors who collected samples used in this study, as well as patients and their families, whose help and participation made this work possible; Data for this study were prepared, archived, and distributed by the National Institute on Aging Alzheimer's Disease Data Storage Site (NIAGADS) at the University of Pennsylvania (U24-AG041689); GCAD, U54 AG052427; NACC, U01 AG016976; NIA LOAD (Columbia University), U24 AG026395, U24 AG026390, R01AG041797; Banner Sun Health Research Institute P30 AG019610; Boston University, P30 AG013846, U01 AG10483, R01 CA129769, R01 MH080295, R01 AG017173, R01 AG025259, R01 AG048927, R01AG33193, R01 AG009029; Columbia University. P50 AG008702, R37 AG015473, R01 AG037212, R01 AG028786; Duke University, P30 AG028377, AG05128; Emory University, AG025688; Group Health Research Institute, UO1 AG006781, UO1 HG004610, UO1 HG006375, UO1 HG008657; Indiana University, P30 AG10133, R01 AG009956, RC2 AG036650; Johns Hopkins University, P50 AG005146, R01 AG020688; Massachusetts General Hospital, P50 AG005134; Mayo Clinic, P50 AG016574, R01 AG032990, KL2 RR024151; Mount Sinai School of Medicine, P50 AG005138, P01 AG002219; New York University, P30 AG08051, UL1 RR029893, 5R01AG012101, 5R01AG022374, 5R01AG013616, 1RC2AG036502, 1R01AG035137; North Carolina A&T University, P20 MD000546, R01 AG28786-01A1; Northwestern University, P30 AG013854; Oregon Health & Science University, P30 AG008017, R01 AG026916; Rush University, P30 AG010161, R01 AG019085, R01 AG15819, R01 AG17917, R01 AG030146, R01 AG01101, RC2 AG036650, R01 AG22018; TGen, R01 NS059873; REAADI study is supported by NIA grant AG052410; University of Alabama at Birmingham, P50 AG016582; University of Arizona, R01 AG031581; University of California, Davis, P30 AG010129; University of California, Irvine, P50 AG016573; University of California, Los Angeles, P50 AG016570; University of California, San Diego, P50 AG005131; University of California, San Francisco, P50 AG023501, P01 AG019724; University of Kentucky, P30 AG028383, AG05144; University of Michigan, P50 AG008671; University of Pennsylvania, P30 AG010124; University of Pittsburgh, P50 AG005133, AG030653, AG041718, AG07562, AG02365; University of Southern California, P50 AG005142; University of Texas Southwestern, P30 AG012300; University of Miami, R01 AG027944, AG010491, AG027944, AG021547, AG019757; University of Washington, P50 AG005136, R01 AG042437; University of Wisconsin, P50 AG033514; Vanderbilt University, R01 AG019085; and Washington University, P50 AG005681, P01 AG03991, P01 AG026276. The Kathleen Price Bryan Brain Bank at Duke University Medical Center is funded by NINDS grant # NS39764, NIMH MH60451 and by Glaxo Smith Kline. Support was also from the Alzheimer's Association (LAF, IIRG-08-89720; MP-V, IIRG-05-14147), the US Department of Veterans Affairs Administration, Office of Research and Development, Biomedical Laboratory Research Program, and BrightFocus Foundation (MP-V, A2111048). P.S.G.-H. is supported by Wellcome Trust, Howard Hughes Medical Institute, and the Canadian Institute of Health Research. Genotyping of the TGEN2 cohort was supported by Kronos Science. The TGen

series was also funded by NIA grant AG041232 to AJM and MJH, The Banner Alzheimer's Foundation, The Johnnie B. Byrd Sr. Alzheimer's Institute, the Medical Research Council, and the state of Arizona and also includes samples from the following sites: Newcastle Brain Tissue Resource (funding via the Medical Research Council, local NHS trusts and Newcastle University), MRC London Brain Bank for Neurodegenerative Diseases (funding via the Medical Research Council), South West Dementia Brain Bank (funding via numerous sources including the Higher Education Funding Council for England (HEFCE), Alzheimer's Research Trust (ART), BRACE as well as North Bristol NHS Trust Research and Innovation Department and DeNDRoN), The Netherlands Brain Bank (funding via numerous sources including Stichting MS Research, Brain Net Europe, Hersenstichting Nederland Breinbrekend Werk, International Parkinson Fonds, Internationale Stiching Alzheimer Onderzoek), Institut de Neuropatologia, Servei Anatomia Patologica, Universitat de Barcelona. ADNI data collection and sharing was funded by the National Institutes of Health Grant U01 AG024904 and Department of Defense award number W81XWH-12-2-0012. ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Supplement References

- 1. Shade, L. M. et al. Genome-wide association study of brain arteriolosclerosis. *J. Cereb. Blood Flow Metab.* **42**, 1437-1450 (2022).
- 2. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. *Bioinformatics* **26**, 2867-2873 (2010).
- 3. Abecasis, G. R. et al. An integrated map of genetic variation from 1,092 human genomes. *Nature* **491**, 56-65 (2012).
- 4. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. *Acta Neuropathol.* **82**, 239-259 (1991).
- 5. Nelson, P. T. et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. *Brain* **142**, 1503-1527 (2019).

- 6. Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer's disease and related dementias. *Nat. Genet.* **54**, 412-436 (2022).
- 7. Eder, L. et al. The Association of HLA-class I Genes and the Extent of Atherosclerotic Plaques in Patients with Psoriatic Disease. *J. Rheumatol.* **43**, 1844-1851 (2016).
- 8. Reddy, J. S. et al. Genome-wide analysis identifies a novel LINC-PINT splice variant associated with vascular amyloid pathology in Alzheimer's disease. *Acta Neuropathol. Commun.* **9**, 93 (2021).
- 9. Katsumata, Y. et al. LATE-NC risk alleles (in TMEM106B, GRN, and ABCC9 genes) among persons with African ancestry. *J. Neuropathol. Exp. Neurol.* **82**, 760-768 (2023).
- 10. Dugan, A. J. et al. Analysis of genes (TMEM106B, GRN, ABCC9, KCNMB2, and APOE) implicated in risk for LATE-NC and hippocampal sclerosis provides pathogenetic insights: a retrospective genetic association study. *Acta Neuropathol. Commun.* **9**, 152 (2021).
- 11. Nelson, P. T. et al. ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology. *Acta Neuropathol.* **127**, 825-843 (2014).
- 12. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. *Nat. Genet.* **41**, 1088-1093 (2009).
- 13. Seshadri, S. et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. *JAMA* **303**, 1832-1840 (2010).
- 14. Gibbons, E. et al. Identification of a sex-specific genetic signature in dementia with Lewy bodies: a meta-analysis of genome-wide association studies. *medRxiv*, 2022.2011.2022.22282597 (2022).
- 15. Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. *Bioinformatics* **26**, 2336-2337 (2010).