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Supplementary Methods 

Quality control 

Quality	control	on	genotype	data	was	performed	separately	for	each	data	source.	Quality	
control	and	inclusion/exclusion	criteria	closely	followed	that	used	in	our	previous	brain	
arteriolosclerosis	genome-wide	association	study	(GWAS)1.	After	imputation,	we	first	
identified	and	subsequently	removed	duplicate	samples	using	the	KING	software	“--
duplicate”	option2.	We	then	removed	participants	without	autopsy	data	available	by	
merging	genotype	sample	identification	data	with	neuropathology	data	sets	and	retaining	
only	samples	present	in	both	data	sets.	We	then	iteratively	removed	genetic	variants	and	
participants	until	no	variants	were	missing	in	more	than	5%	of	participants	and	no	
participants	were	missing	more	than	5%	of	variants	(however,	average	genotype	coverage	
was	99.7%,	and	no	variants	or	participants	were	actually	removed	during	this	process).	We	
then	excluded	participants	with	unusually	high	or	low	(±	3	standard	deviations	from	
mean)	genetic	heterogeneity,	as	measured	by	the	PLINK	1.9	“--het”	flag	(https://www.cog-
genomics.org/plink/1.9/).	Finally,	we	merged	participants	with	the	1000	Genomes	Phase	3	
(1000	Genomes)	cohorts3	and	performed	principal	components	analysis	(PCA)	on	a	subset	
of	independent	variants	(measured	by	pairwise	𝑟! < 0.2).	We	excluded	participants	with	
substantial	non-European	ancestry,	as	determined	by	distance	from	the	1000	Genomes	
EUR	superpopulation	centroid	using	the	first	two	principal	components	(PCs).	

NACC Exclusion Criteria 

National	Alzheimer’s	Coordinating	Center	(NACC)	participants	were	excluded	if	they	had	
any	of	the	conditions	in	the	NACC	Neuropathology	Data	Set	shown	in	Supplementary	
Table	6.	Variable	names	and	descriptions	are	taken	from	
https://files.alz.washington.edu/documentation/rdd-np.pdf.	Variable	descriptions	may	be	
lightly	edited.	Participants	were	not	excluding	for	missing	data	in	any	fields.	

Harmonization of NPE 

We	harmonized	11	neuropathology	endophenotypes	(NPE)	across	the	three	data	sources	
used:	NACC,	Religious	Orders	Study	(ROS)	and	the	Memory	and	Aging	Project	(MAP;	
together,	ROSMAP),	and	Adult	Changes	in	Thought	(ACT).	Arteriolosclerosis,	Braak	
neurofibrillary	tangle	(NFT)	stage,	cerebral	amylois	angiopathy	(CAA),	atherosclerosis,	
Consortium	to	Establish	a	Registry	for	Alzheimer’s	Disease	(CERAD)	score	for	neuritic	
plaques,	microinfarcts,	and	gross	infarcts	had	variables	in	each	cohort	with	directly	
comparable	coding	definitions	and	were	straightforwardly	harmonized	with	minimal	
recoding.	Arteriolosclerosis,	CAA,	atherosclerosis,	and	CERAD	score	variables	each	had	four	
stages	with	the	following	labels:	0	(“none”),	1	(“mild”),	2	(“moderate”),	and	3	(“severe”).	
Microinfarcts	and	gross	infarcts	were	labeled	either	0	(“absent”)	or	1	(“present”).	Braak	
NFT	Stage	followed	the	staging	criteria	previously	described	in	the	literature	and	had	seven	
levels,	ranging	from	0	(absent	NFT)	to	six	(diffuse	NFT	throughout	cortex	and	large	loss	of	
neurons)4.	



	 	 	
	

	 	 	
	

Limbic-predominant	age-related	transactive	response	DNA-binding	protein	43	(TDP-43)	
encephalopathy	(LATE)	neuropathologic	change	(LATE-NC)	was	recorded	differently	in	
several	of	the	data	sets	and	was	harmonized	to	a	four-level	outcome	variable	following	the	
simplified	staging	of	TDP-43	pathology	outlined	in	Figure	3B	of	the	2019	LATE	working	
group	report5.	The	following	levels	were	used	in	the	analyzed	LATE-NC	variable:	0,	
indicating	lack	of	recorded	TDP-43	proteinopathy;	1,	indicating	TDP-43	deposits	in	the	
amygdala	only;	2,	indicating	deposits	in	the	hippocampus	or	entorhinal	cortex;	and	3,	
indicating	deposits	in	the	neocortex.	In	ROSMAP,	TDP-43	pathology	is	recorded	as	a	single	
variable	following	the	same	staging	detailed	above.	In	NACC,	the	presence	of	TDP-43	
pathology	in	each	region	of	the	brain	is	recorded	as	a	separate	binary	indicator	variable.	To	
collapse	TDP-43	pathology	to	a	single	ordinal	variable,	we	assigned	a	value	based	on	the	
presence	of	the	“highest”	region	where	TDP-43	was	present	(e.g.	a	participant	with	TDP-43	
pathology	in	both	the	hippocampus	and	the	neocortex	would	be	assigned	a	value	of	3).	
Participants	were	labeled	as	0	if	they	met	two	conditions:	(1)	they	had	recorded	TDP-43	
data	available	for	at	least	one	of	the	brain	regions	used	for	staging	and	(2)	TDP-43	
pathology	was	noted	as	absent	in	all	the	regions	for	which	they	had	data	available.	

Diffuse	amyloid	plaque	pathology	was	recorded	as	a	four-stage	Thal	phase	of	amyloid	
deposition	in	NACC,	ACT,	and	ADNI	with	the	following	levels:	0	(“none”),	1	(“mild”),	2	
(“moderate”),	and	3	(“severe”).	In	ROSMAP,	diffuse	plaques	were	examined	and	quantified	
in	five	regions	(midfrontal	cortex,	entorhinal	cortex,	inferior	parietal	cortex,	and	
hippocampus),	then	scaled	by	each	region’s	standard	deviation	and	averaged.	To	discretize	
this	continuous	variable	in	ROSMAP	participants	to	a	four-level	variable,	as	recorded	in	the	
other	data	sets,	we	assigned	participants	a	value	of	0	(“none”)	if	their	averaged	score	was	
equal	to	0	(18.8%),	1	(“mild”)	if	their	score	was	higher	than	0	but	≤	0.5	(29.7%),	2	
(“moderate”)	if	their	score	was	between	0.5	and	one	(23.5%),	and	3	(“severe”)	if	their	score	
was	above	1	(26.8%).	These	labels	roughly	corresponded	to	score	quartiles	in	ROSMAP	
(Table	1	in	main	text).	

Hippocampal	sclerosis	is	recorded	as	a	binary	indicator	of	the	presence	or	absence	of	
pathology	in	the	NACC	Neuropathology	data	set	form	version	1-9,	ROSMAP,	and	ACT.	In	
versions	10	and	11	of	the	NACC	Neuropathology	form,	hippocampal	sclerosis	pathology	is	
recorded	as	being	absent,	unilateral,	or	bilateral.	To	harmonize,	we	dichotomized	
hippocampal	sclerosis	pathology	as	being	present	if	either	unilateral	or	bilateral	pathology	
was	indicated.	

The	Lewy	body	pathology	variable	we	analyzed	had	four	levels:	0,	indicating	absent	Lewy	
body	pathology	in	all	regions	examined	or	limited	to	the	olfactory	bulb;	1,	indicating	Lewy	
body	pathology	limited	to	the	brainstem,	including	the	substantia	nigra;	2,	indicating	Lewy	
body	pathology	involving	the	limbic	system	or	amygdala;	and	3,	indicating	Lewy	body	
involvement	in	the	neocortex.	In	NACC	and	ROSMAP,	Lewy	body	pathology	was	graded	in	
ordinal	variables	with	levels	corresponding	to	the	levels	in	the	final	harmonized	outcome	
variable	analyzed.	In	ACT,	separate	binary	indicator	variables	were	used	to	indicate	
presence	of	Lewy	body	pathology	in	each	brain	region	checked.	To	harmonize,	we	created	a	
new	variable	that	coded	Lewy	body	pathology	stage	according	to	the	“highest”	stage	
present	in	an	individual	(e.g.	if	pathology	was	present	in	both	the	amygdala	and	the	
neocortex,	we	assigned	a	value	of	3).	



	 	 	
	

	 	 	
	

Sensitivity analyses for APOC2 locus association with CAA 

We	performed	several	sensitivity	analyses	to	further	investigate	the	novel	CAA-associated	
locus	on	Chromosome	19	near	APOC2	identified	when	adjusting	for	APOE	𝜖	diplotype	with	
individual	cohorts	(NACC	n	=	5,927,	ROSMAP	n	=	1,172,	ACT	n	=	677)	and	meta-analysis	(n	
=	7,776)	using	METAL.	First,	for	each	of	the	NACC,	ROSMAP,	and	ACT	data	sources,	we	re-
analyzed	the	association	between	CAA	and	lead	variant	rs7247551	from	the	meta-analysis	
while	stratifying	by	APOE	𝜖	diplotype	and	visually	compared	effect	sizes	across	groups.	Due	
to	low	sample	sizes	preventing	model	convergence,	APOE	𝜖4	carriers	(diplotypes	𝜖3/𝜖4,
𝜖4/𝜖4, 𝜖3/𝜖4)	were	merged	in	analyses	for	ROSMAP	and	ACT.	Then,	for	each	data	source,	
we	performed	an	association	analysis	between	CAA	and	rs7247551	that	included	
interaction	effects	between	rs7247551	and	APOE	𝜖	diplotype.	We	then	performed	ANOVA	
between	these	models	and	nested	models	which	did	not	include	interaction	effects	and	
performed	Chi-Square	tests	to	test	whether	any	interaction	terms	were	significant.	We	
used	P	<0.05	for	the	significance	threshold.	

Software  

The	following	software	was	used	in	the	current	study.	Links	to	websites	containing	
downloads	for	software	are	provided.	

bcftools	1.10.2	https://samtools.github.io/bcftools/		
KING	2.2.7	https://www.kingrelatedness.com/Download.shtml		
MAGMA	1.10	https://cncr.nl/research/magma/		
METAL	2011-03-25	https://csg.sph.umich.edu/abecasis/Metal/download/		
Minimac	4	https://github.com/statgen/Minimac4		
PLINK	1.9	and	2.0	https://www.cog-genomics.org/plink/		
Python	3.8.16	and	3.10.8	https://www.python.org/downloads/		
R	4.2.1	and	4.2.2	https://cran.r-project.org/		
R	package	coloc	5.2.2	https://github.com/chr1swallace/coloc		
R	package	data.table	1.14.10	https://cran.r-project.org/		
R	package	GENESIS	2.26.0	https://bioconductor.org/packages/3.18/bioc/		
R	package	ggplot2	3.4.2	https://cran.r-project.org/		
R	package	GRAB	0.1.1	https://wenjianbi.github.io/grab.github.io/		
R	package	GWASTools	1.42.1	https://bioconductor.org/packages/3.18/bioc/		
R	package	LDlinkR	1.2.3	https://bioconductor.org/packages/3.18/bioc/		
R	package	ordinal	2023.12-04	https://cran.r-project.org/		
R	package	pheatmap	1.012	https://cran.r-project.org/		
R	package	POLMM	0.2.3	https://github.com/WenjianBI/POLMM		
R	package	SAIGE	1.1.3	https://saigegit.github.io/SAIGE-doc/		
R	package	SNPRelate	1.30.1	https://bioconductor.org/packages/3.18/bioc/		
R	package	stringi	1.8.3	https://cran.r-project.org/		
R	package	polycor	0.8-1	https://cran.r-project.org/package=polycor	
R	package	psych	2.3.3	https://cran.r-project.org/package=psych	
samtools	1.10	https://github.com/samtools/samtools		
TOPMed	Imputation	Server	1.7.3	https://imputation.biodatacatalyst.nhlbi.nih.gov/#!		



	 	 	
	

	 	 	
	

Supplementary Results 

Polychoric Correlations of Neuropathology Endophenotypes 

We	identified	three	positively	correlated	clusters	of	endophenotypes:	a	“vascular”	cluster	
consisting	of	gross	infarcts,	microinfarcts,	arteriolosclerosis,	and	atherosclerosis;	an	
“Alzheimer’s	disease”	cluster	consisting	of	Braak	NFT	stage,	neuritic	plaques,	amyloid-beta	
plaques,	and	CAA;	and	a	“LATE”	cluster	consisting	of	LATE-NC	and	hippocampal	sclerosis	
(Extended	data	Figure	1).	These	results	demonstrate	that,	as	expected,	many	NPEs	are	
not	independent,	though	our	GWAS	results	also	suggest	the	genetic	underpinnings	are	not	
identical.	

Suggestive Loci Identified in NPE GWAS 

Here,	we	report	suggestive	hits	from	the	NPE	GWAS	meta-analysis	that	met	at	least	one	of	
two	criteria	(Figure	2):	(1)	a	suggestive	threshold	of	𝑃 < 5 × 10"#,	or	(2)	were	previously	
reported	by	other	studies	(e.g.,	Bellenguez	et	al.6)	as	a	disease-associated	locus	and	met	a	
threshold	of	𝑃 < 1 × 10"$.		See	Supplementary	Table	7	for	gene	list	reported	by	other	
studies,	beyond	Bellenguez	et	al.	

For	previously	reported	loci	meeting	the	threshold	of	𝑃 < 1 × 10"$,	we	observed	twelve	
potential	associations	(Figure	2	in	main	text	purple;	Supplementary	Table	8).	Nine	of	the	
twelve	were	reported	in	Bellenguez	et	al.,	including:	(1)	CASS4	and	amyloid-β	plaques	
(single-nucleotide	polymorphism	(SNP)	located	at	chr20:56451506;	odds	ratio	(OR)	=	0.82;	
𝑃 = 1.8 × 10"%;	Figure	2a);	(2)	EED	(from	the	broader	PICALM	locus)	and	CERAD	
(rs3851179;	OR = 0.84;	𝑃 = 1.1 × 10"%;	Figure	2c);	(3)	RIN3	and	CERAD	(rs8015844;	
OR = 0.85;	𝑃 = 5.3 × 10"%;	Figure	2c);	(4)	PTK2B	and	CAA	(rs4733054;	OR = 1.15;	𝑃 =
9.9 × 10"%;	Figure	2f);	(5)	TMEM106B	and	gross	infarcts	(rs12534231;	OR = 0.75,	𝑃 =
2.4 × 10"%;	Figure	2g);	(6)	GRN	and	LATE-NC	(rs5848;	OR = 1.32;	𝑃 = 1.3 × 10"%;	Figure	
2i);	(7)	APOE	and	Lewy	bodies	(rs429358;	OR = 1.23;	𝑃 = 1.1 × 10"%	;	Figure	2j);	(8)	
FOXF1	and	hippocampal	sclerosis	(rs1728394;	OR = 0.74	𝑃 = 6.4 × 10"%;	Figure	2k);	and	
(9)	MAPT	and	hippocampal	sclerosis	(rs7210219;	OR = 0.71;	𝑃 = 4.9 × 10"%	;	Figure	2k).	

The	other	three	loci,	where	we	observed	a	single	suggestive	association	each,	were	
reported	in	previous	phenotype	association	studies,	including:	(1)	LINC-PINT	and	CERAD	
score	(rs62471587;	OR = 1.19;	𝑃 = 4.0 × 10"%	;	Supplementary	Table	8;	Figure	2c);	(2)	
HLA-C	and	atherosclerosis	(position	chr6:31265340;	OR = 0.53;	𝑃 = 6.9 × 10"%	;	Figure	
2e);	and	(3)	ABCC9	and	hippocampal	sclerosis	(rs4148674;	OR = 1.30;	𝑃 = 5.8 × 10"%;	
Figure	2k).	HLA-C	(and	HLA-B)	was	previously	associated	with	atherosclerosis	in	the	
carotid	arteries	of	patients	with	psoriasis7—a	different	cohort	and	tissue,	but	the	same	
underlying	pathology.	Similarly,	LINC-PINT	was	previously	associated	with	CAA	in	non-
APOE	ϵ4	carriers	by	Reddy	et	al.8	while	ABCC9	was	previously	associated	with	hippocampal	
sclerosis	in	several	studies9-11.	

For	genes	meeting	the	suggestive	threshold	of	𝑃 < 5 × 10"#	(Figure	2	in	gold),	we	
observed	27	suggestive	associations,	where	three	were	from	previously	reported	loci:	(1)	
BIN1	and	CERAD	score	(rs6733839;	OR = 1.19;	𝑃 = 3.2 × 10"#;	Supplementary	Table	8;	



	 	 	
	

	 	 	
	

Figure	2c);	(2)	PICALM	and	CAA	(rs57929351;	OR = 1.23;	𝑃 = 1.7 × 10"#;	Figure	2f);	and	
(3)	CTNNA3	and	hippocampal	sclerosis	(rs10997204;	OR = 1.53;	𝑃 = 4.7 × 10"%	;	Figure	
2k).	PICALM12	and	BIN113	have	long	been	associated	with	clinical	AD	diagnosis,	while	the	
CTNNA3	locus	was	only	recently	associated	with	Lewy	body	dementia14.	Of	the	other	24	
(novel)	suggestive	loci	reaching	𝑃 < 5 × 10"#,	twelve	were	associated	with	hippocampal	
sclerosis	(Figure	2k),	whereas	the	next	highest	number	of	suggestive	associations	was	
gross	infarcts,	with	four.	One	intronic	locus	of	SPATA48	(formerly	C7orf72)	was	close	to	
genome-wide	significance	with	circle	of	Willis	atherosclerosis	(rs62447817;	OR = 1.35;	
𝑃 = 5.5 × 10"&;	Figure	2e),	but	future	studies	will	need	to	assess	these	suggestive	
associations	more	carefully.	Notably,	there	were	zero	genome-wide	significant	associations	
with	gross	infarcts,	microinfarcts,	or	Lewy	body	pathologies.	Of	the	four	suggestive	loci	for	
gross	infarct	pathology,	one	was	from	a	known	gene	in	TMEM106B	(rs12534231;	OR	=	
0.75;	𝑃 = 2.4 × 10"%).	Microinfarct	pathology	had	a	single	suggestive	association	in	
HSD17B12	(SNP	located	at	chr11:43817807;	OR = 1.74;	𝑃 = 4.0 × 10"#;	Figure	2h).	There	
were	two	suggestive	associations	for	Lewy	bodies	in	HMOX1	(rs75125910;	OR = 14.52,	
𝑃 = 3.5 × 10"#;	Figure	2j)	and	APOE	(rs429358;	OR = 1.23	𝑃 = 1.1 × 10"%).	

rs7247551 shows consistent association with CAA across APOE e diplotypes 

Forest	plots	for	study-	and	APOE	e	diplotype-stratified	analysis	for	association	between	
rs7247551	and	CAA	are	shown	in	Extended	data	Figure	3.	Visual	inspection	of	forest	plots	
did	not	reveal	substantial	variation	in	effect	size	across	diplotypes	within	data	sources.	
Point	estimates	of	OR	for	all	diplotypes	studied	in	NACC	and	ROSMAP	were	<1,	consistent	
with	meta-analysis,	and	only	95%	CI	for	e4/e4	in	NACC	and	e2/e3	in	ROSMAP	crossed	1.	In	
ACT,	e3/e3	and	e4	carriers	had	point	estimates	of	OR	<1,	but	the	OR	of	the	smallest	group,	
e2/e3,	was	~1.4,	although	it	still	overlapped	with	the	estimates	of	e3/e3	and	e4	carriers.	No	
interaction	terms	between	rs7247551	and	diplotype	were	significant	in	the	models	testing	
interaction	effects	in	any	of	the	data	sources	(NACC	Chi-Square	P	=	0.84;	ROSMAP	Chi-
Square	P	=	0.13;	ACT	Chi-Square	P	=	0.91).	These	results	indicate	that	rs7247551	shows	a	
consistent	pattern	of	association	with	CAA	in	each	of	the	data	sources	used	in	our	study.	
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