SUPPLEMENTARY INFORMATION

Cancer associated fibroblast subtypes modulate the tumor-immune microenvironment and are associated with skin cancer malignancy

Agnes Forsthuber^{1,*}, Bertram Aschenbrenner^{1,*}, Ana Korosec^{1,*}, Tina Jacob², Karl Annusver², Natalia Krajic¹, Daria Kholodniuk¹, Sophie Frech¹, Shaohua Zhu¹, Kim Purkhauser¹, Katharina Lipp¹, Franziska Werner³, Vy Nguyen³, Johannes Griss³, Wolfgang Bauer³, Ana Soler Cardona³, Benedikt Weber¹, Wolfgang Weninger³, Bernhard Gesslbauer⁴, Clement Staud⁴, Jakob Nedomansky⁴, Christine Radtke⁴, Stephan N. Wagner³, Peter Petzelbauer¹, Maria Kasper^{2,#} and Beate M. Lichtenberger^{1,#}

Affiliations:

- ¹Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Austria
- ²Department of Cell and Molecular Biology, Karolinska Institutet, Sweden
- ³Department of Dermatology, Medical University of Vienna, Austria
- ⁴Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Austria
- * These authors contributed equally
- # These authors jointly supervised this work

Corresponding authors:

<u>beate.lichtenberger@meduniwien.ac.at</u> maria.kasper@ki.se

SUPPLEMENTAL TABLES AND FIGURES:

- **Table S1.** Published skin cancer scRNA-seq datasets including fibroblasts/CAFs
- **Table S2.** Details of donor samples
- Figure S1. Gating scheme and quality control of sequencing data. Related to Figure 1
- **Figure S2.** Estimation of malignant cells and additional second-level clustering information. Related to Figure 2
- **Figure S3.** Estimation of malignant cells by Pearson correlation and sum of squares (SoS) of CNVs according to Tirosh et al., 2016. Related to Figure 2.
- Figure S4. Characterization of the fibroblasts and vSMC cluster. Related to Figure 3.
- **Figure S5.** Endothelial and vCAF markers in the *RGS5*⁺ cluster. Related to Figure 4.
- **Figure S6.** RNAScope staining for mCAFs and iCAFs. Related to Figure 5.
- Figure S7. Spatial analysis of CAF subtypes in situ. Related to Figure 4, 5 and 6.
- **Figure S8.** Matrix-associated, MMP and immunomodulatory gene panels characterize mCAFs and iCAFs. Related to Figures 5 and 6.
- **Figure S9.** Receptor-Ligand analysis of mCAFs. Related to Figure 5.
- **Figure S10.** Expression of ECM genes is not upregulated in NHDFs upon treatment with tumor CM. Related to Figure 6.
- **Figure S11.** Protein expression in supernatants of fibroblasts upon stimulation with cancer cell-derived CM. Related to Figure 6.
- Figure S12. Fibroblast-mediated late activation of CD4 and CD8 T cells. Related to Figure 7.
- **Figure S13.** Reanalysis of published datasets reveals CAF subsets with gene signatures similar to mCAFs, iCAFs and RGS5⁺ cells in human oral and cutaneous SCC as well as invasive BCC.

SUPPLEMENTAL TABLES:

Table S1. Published skin cancer scRNA-seq datasets comprising fibroblasts

		4				1 1141 1
	cancer	tumor	healthy			additional
Manuscript	type	specimen	specimen	total cells	CAFs	information
Tirosh et al., Science 2016 ¹	melanoma	19		4,645	61	
Jerby-Arnon et al., Cell 2018 ²	melanoma	33		7,186	106	
			10 (same			>80% of CAFs
Ji et al., Cell 2020 ³	SCC	10	patients)	48,000	882	from 1 donor
Guerrero-Juarez et al.,						CAFs only from 2
Science Advances 2022 ⁴	BCC	4		36,392	5,775	donors
Yerly et al., Nature						
Communications 2022 ⁵	BCC	5		28,819	809	
Ganier et al., PNAS 2023 ⁶	BCC	8	14	134,839	11,732	
Schütz et al., Nature						
Communications 2023 7	SCC	8+3(AK*)	3	115,053	16,648	

^{*}Actinic Keratosis

Table S2. Details of donor samples

<u>Donors</u>	Sample type	Body Part	<u>Sex</u>	Age at sampling (yrs)	<u>Histology</u>		
BCC I	BCC	capillitium	male	47	Nodular basal cell carcinoma		
BCC II	BCC	nose	male	80	Nodular basal cell carcinoma		
BCC III	BCC	shoulder	male	77	Nodular basal cell carcinoma		
Mel I	Melanoma	heel	male	78	Acral lentiginous melanoma, T4b, thickness 12 mm		
Mel II	Melanoma	toe	male	86	Acral lentiginous melanoma, T4b, thickness 8 mm		
Mel III	Melanoma	toe	female	87	Acral lentiginous melanoma, T4b, thickness 5 mm		
SCC I	SCC	capillitium	male	56	Reoccurrence of poorly differentiated SCC in scar, thickness 3 mm		
SCC II	SCC	lower leg	male	78	Well differentiated SCC, thickness 2 mm		
SCC III	SCC	capillitium	male	93	Poorly differentiated SCC, thickness 4 mm		
SCC IV	SCC	lower leg	male	92	SCC arisen from Bowens disease thickness 8 mm		
Healthy I	Healthy skin	upper arm	female	63			
Healthy II	Healthy skin	abdomen	female	43			
Healthy III	Healthy skin	abdomen	female	59			
Healthy IV	Healthy skin	upper arm	female	44			
Healthy V	Healthy skin	abdomen	male	48			

A Sort in 384 well plates Epidermal sheet protocol for enrichment of keratinocytes in healthy skin samples.

Gated on scatter - singlets - live cells - CD235ab neg. (erythrocytes)

B Sort in 384 well plates

Protocol for enrichment of fibroblasts, keratinocytes and immune cells in healthy skin and tumor samples. Gated on scatter - singlets - live cells - CD235ab neg. (erythrocytes)

A Immune cells (CD45+CD31-) C Fibroblasts (FAP+CD90-, CD90+FAP-, FAP+CD90+)
B Keratinocytes (CDH1/ITGA6+CD90-) D Double Negatives (FAP-CD90-)

Figure S1. Gating scheme and quality control of sequencing data. Related to Figure 1.

- (A) Gating strategy for keratinocytes from healthy skin epidermal sheets (Healthy III V).
- (B) Gating strategy for fibroblasts, immune cells, double negatives and keratinocytes of BCC, SCC, melanoma and healthy skin dermis. Immunohistochemistry for FAP and CD90 in healthy skin dermis and tumor samples.
- (C) Quality control of scRNA-seq data: Number of genes (left) and RPKM values (right) per sample after quality filtering (n=15).
- (D) Number of cells per donor sample after quality filtering.

Figure S2. Estimation of malignant cells and additional second-level clustering information. Related to Figure 2.

- (A) *PTCH1* and *PTCH2* expression levels (RPKM) in healthy and malignant keratinocytes shown per cluster and per donor (n=15 donors). Threshold for overexpressing cells was adjusted to exclude healthy keratinocytes (*red dashed line: 100 RPKM*).
- (B) *GLI1*, *GLI2* and *MYCN* expression levels in healthy and malignant keratinocytes shown per cluster and per donor (n=15 donors).
- (C) UMAPs showing the distribution of donor samples (n=15 donors) per cluster, bar plot showing the total cell number and distribution of sample category per cluster.

A Estimation of copy number variations (CNVs) Healthy and malignant keratinocytes

 Cells highlighted with PTCH1, PTCH2 upregulation, but no CNVs

B Estimation of copy number variations (CNVs) Melanocytes and melanoma cells

Melanocytes from clusters hMC and tMC highlighted

Figure S3. Estimation of malignant cells by Pearson correlation and sum of squares (SoS) of CNVs according to Tirosh et al., 2016¹. Related to Figure 2.

- (A) Malignancy estimation for healthy and malignant keratinocytes. Cells, which overexpress *PTCH1* and *PTCH2*, but do not show CNVs are highlighted in green.
- (B) Malignancy estimation for melanocytes and melanoma cells. Cells from the healthy melanocyte cluster (hMC) and the tumor melanocyte cluster (tMC) are highlighted in green. Upper right quadrant shows CNV+ cells, upper left quadrant shows intermediate cells, lower left quadrant shows CNV- cells and lower right quadrant shows unclassifiable cells.

Figure S4. Characterization of the fibroblasts and vSMC cluster. Related to Figure 3.

- (A) UMAP showing the distribution of donors (n=15), sample type, sample category and sex on fibroblasts and vSMC second-level clustering.
- (B) Bar plots showing the distribution of fibroblasts and vSMC clusters among donor samples (top) or number of fibroblasts and vSMC per donor samples (bottom).
- (C) Commonly accepted papillary and reticular markers in the healthy fibroblast clusters pFib and rFib.
- (D) Expression of previously described CAF markers on second-level clustering of fibroblasts and vSMCs.

Figure S5. Endothelial and vCAF markers in the RGS5⁺ cluster. Related to Figure 4.

- (A) Previously described vCAF marker genes in a murine model for breast cancer are expressed in the *RGS5*⁺ cluster.
- (B) Absence of expression of endothelial cell marker genes in the RGS5⁺ cluster.
- (C) *COL1A1* (green), *RGS5* (red) and *PDGFRA* (blue) RNAScope fluorescence stainings in BCC II (n=10 biologically independent tumor samples). Scale bar represents 20 μ m.

Figure S6. RNAScope staining for mCAFs and iCAFs. Related to Figure 5.

(A) Representative images (n=52 independent tumor samples) of RNAScope fluorescence stainings from BCC and SCC samples: *COL1A1* (green), *COL11A1* (red), DAPI (grey). Dashed line showing the tumor-stroma border. (B) Representative images of RNAScope fluorescence stainings from BCC, SCC and Melanoma: COL1A1 (green), *COL11A1* (blue), *MMP1* (red) and DAPI (grey).

Figure S7. Spatial analysis of CAF subtypes in situ. Related to Figures 4, 5 and 6.

- (A) Representative images (n=52 independent tumor samples) of RNAScope fluorescence stainings for iCAFs, mCAFs and RGS5⁺cells: *MMP1*, *COL11A1* and *RGS5* shown as single stainings (*red*) or in combination with *COL1A1* (*green*), *MMP1* (*blue*), *COL11A1* (*red*) or *RGS5* (*green*) in composite images.
- (B) Spatial plots highlighting the spatial distribution of total CAFs (*COL1A1*) and cytokine expressing CAFs (co-expression of *COL1A1* and *CXCL2*, *CXCL8* or *IL24*), representative for 52 independent tumor samples.
- (C) CXCL2, CXCL8 or IL24 expression in fibroblasts of BCC, SCC or melanoma samples that contribute to the iCAF cluster (cells from n=8 donors).

A ECM genes in mCAFs

B MMPs and immunomodulatory genes in iCAFs

C Immunomodulatory genes in CAFs and tumor cells of melanoma

D Immunomodulatory genes in CAFs and tumor cells of HNSCCs (Puram et al. 2017) REF16

Figure S8. Matrix-associated, MMP and immunomodulatory gene panels characterize mCAFs and iCAFs. Related to Figures 5 and 6.

- (A) Collagens, Laminins, Lysyl oxidases and other ECM proteins as well as (B) matrix metalloproteinases, chemokines, cytokines and immunomodulatory molecules represented in heatmaps and corresponding Violin plots showing module scores (n=15 donors).
- (C,D) Expression of cytokines, chemokines and immunoregulatory molecules in fibroblasts or tumor cells of melanoma (C; n=5 donors) or HNSCC (D; dataset of Puram et al., 2017¹⁶) represented in heatmaps and corresponding Violin plots showing module scores. UMAP in (C) shows identified CAF subsets in melanoma. Statistical analysis by Wilcoxon test, reference group mCAFs (A), iCAFs (B) or tumor cells (C,D), p-value ** < 0.01, * < 0.05.

В

Figure S9. Receptor-Ligand analysis of mCAFs. Related to Figure 5.

- (A) Expression of ECM genes in mCAFs compared to healthy and neoplastic keratinocytes and melanocytes (top heatmap) and interrogation for corresponding receptors in healthy and neoplastic keratinocytes and melanocytes as well as immune cells (n=15 donors).
- (B) Circular plots of selected receptor-ligand pairs from CellChat analysis, showing mCAF/iCAF as source cells for ligand expression (n=15 donors).

VM15, VM26: metastatic melanoma cell line VM19, VM25: primary melanoma cell line pMel CAFs: fibroblasts isolated from a primary melanoma

Figure S10. Expression of ECM genes is not upregulated in NHDFs upon treatment with cancer cell-derived CM. Related to Figure 6.

- (A) Experimental setup for assessing transcriptional changes in NHDFs after stimulation with cancer-cell derived CM.
- (B) *In vitro* ECM expression of NHDFs after exposure to conditioned medium from NHDFs, VM15, VM26, VM19 and VM25 for 72 hours in comparison to CAFs isolated from a primary melanoma (pMel CAFs) and to the cancer cell lines VM15, VM26, VM19 and VM25. Data was derived from four independent experiments and is presented as bar graphs showing mean values +/- SD. Statistical analysis by One-way-ANOVA and Tukey's post hoc test; Significant comparisons to NHDFs are shown; Source data and exact p values are provided in the Source Data file. p<0.05, **p<0.01, ***p<0.001.

B Supernatants of cancer CM stimulated fibroblasts

n.d. - not detected/below lowest concentration of standard

Figure S11. Protein expression in supernatants of fibroblasts upon stimulation with cancer cell-derived CM. Related to Figure 6.

- (A) Experimental setup for generation of supernatants of NHDFs stimulated with cancer cell-derived CM.
- (B) Protein levels (pg/mL) of several cytokines and chemokines assessed by LegendPlex. Protein levels were derived from three independent experiments (apart from pMel CAFs, n=1). Statistical analysis by One-way-ANOVA and Tukey's post hoc test; Significant comparisons to NHDFs are shown; Source data and exact p values are provided in the Source Data file. *p<0.05, **p<0.01, ***p<0.001.

CD4 and CD8 T cell late activation after co-culture with CM pretreated NHDFs or primary Melanoma (pMel) CAFs

C

Figure S12. Fibroblast-mediated late activation of CD4 and CD8 T cells. Related to Figure 7.

- (A) Gating strategy for detection of early and late activation in CD4 and CD8 T cells including FMO controls for CD69, CD62L and CD45RO.
- (B) Percentage of CD4⁺CD69⁺ and CD8⁺CD69⁺ T cells in co-culture with control NHDFs, n=6 biologically independent samples.
- (C) Late activation (CD45RO+CD62L-) of CD4 or CD8 T cells after 96h of co-culture with CM pre-treated NHDFs or cancer cells. T cells from n=3 biologically independent samples in co-culture with VM15, VM26, VM19, VM25, n=6 biologically independent samples (T cells only, NHDFs) and n=4 biologically independent samples (pMel CAFs). Data are presented as mean values +/- SD. Statistical analysis in comparison to NHDFs or to T cells only by unpaired Student's t test; Source data and exact p values are provided in the Source Data file. *p<0.05, **p<0.01, ***p<0.001.
- (D) Percentage of CD4⁺CD45RO⁺CD62L⁻ and CD8⁺CD45RO⁺CD62L⁻ in co-culture with control NHDFs, n=6 biologically independent samples.

Figure S13. Reanalysis of published datasets reveals CAF subsets with gene signatures similar to mCAFs, iCAFs and RGS5⁺ cells in human oral and cutaneous SCC as well as invasive BCC.

- (A) UMAPs, heatmaps of top DEG from mCAFs, iCAFs and RGS5⁺ cells and module scores of chemokines, immunomodulators, collagens and other ECM molecules of CAFs in human oral SCC (Puram et al.,2017) ¹⁶.
- (B,C) UMAPs and heatmaps of top DEG from mCAFs, iCAFs, RGS5⁺ cells and healthy fibroblasts from human cutaneous SCC (Ji et al., 2022)³ (B) or BCC (Yerly et al., 2022)⁵ (C).

REFERENCES

- 1. Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., Treacy, D., Trombetta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., et al. (2016). Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science *352*, 189–196. https://doi.org/10.1126/science.aad0501.
- 2. Jerby-Arnon, L., Shah, P., Cuoco, M.S., Rodman, C., Su, M.-J., Melms, J.C., Leeson, R., Kanodia, A., Mei, S., Lin, J.-R., et al. (2018). A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell *175*, 984-997.e24. https://doi.org/10.1016/j.cell.2018.09.006.
- 3. Ji, A.L., Rubin, A.J., Thrane, K., Jiang, S., Reynolds, D.L., Meyers, R.M., Guo, M.G., George, B.M., Mollbrink, A., Bergenstråhle, J., et al. (2020). Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma. Cell *182*, 497-514.e22. https://doi.org/10.1016/j.cell.2020.05.039.
- 4. Guerrero-Juarez, C.F., Lee, G.H., Liu, Y., Wang, S., Karikomi, M., Sha, Y., Chow, R.Y., Nguyen, T.T.L., Iglesias, V.S., Aasi, S., et al. (2022). Single-cell analysis of human basal cell carcinoma reveals novel regulators of tumor growth and the tumor microenvironment. Sci. Adv. 8, eabm7981. https://doi.org/10.1126/sciadv.abm7981.
- 5. Yerly, L., Pich-Bavastro, C., Di Domizio, J., Wyss, T., Tissot-Renaud, S., Cangkrama, M., Gilliet, M., Werner, S., and Kuonen, F. (2022). Integrated multi-omics reveals cellular and molecular interactions governing the invasive niche of basal cell carcinoma. Nat Commun *13*, 4897. https://doi.org/10.1038/s41467-022-32670-w.
- 6. Ganier, C., Mazin, P., Herrera-Oropeza, G., Du-Harpur, X., Blakeley, M., Gabriel, J., Predeus, A.V., Cakir, B., Prete, M., Harun, N., et al. (2024). Multiscale spatial mapping of cell populations across anatomical sites in healthy human skin and basal cell carcinoma. Proc. Natl. Acad. Sci. U.S.A. *121*, e2313326120. https://doi.org/10.1073/pnas.2313326120.
- 7. Schütz, S., Solé-Boldo, L., Lucena-Porcel, C., Hoffmann, J., Brobeil, A., Lonsdorf, A.S., Rodríguez-Paredes, M., and Lyko, F. (2023). Functionally distinct cancer-associated fibroblast subpopulations establish a tumor promoting environment in squamous cell carcinoma. Nat Commun *14*, 5413. https://doi.org/10.1038/s41467-023-41141-9.
- 8. Korosec, A., Frech, S., Gesslbauer, B., Vierhapper, M., Radtke, C., Petzelbauer, P., and Lichtenberger, B.M. (2019). Lineage Identity and Location within the Dermis Determine the Function of Papillary and Reticular Fibroblasts in Human Skin. Journal of Investigative Dermatology 139, 342–351. https://doi.org/10.1016/j.jid.2018.07.033.
- 9. Philippeos, C., Telerman, S.B., Oulès, B., Pisco, A.O., Shaw, T.J., Elgueta, R., Lombardi, G., Driskell, R.R., Soldin, M., Lynch, M.D., et al. (2018). Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations. Journal of Investigative Dermatology *138*, 811–825. https://doi.org/10.1016/j.jid.2018.01.016.
- 10. Tabib, T., Morse, C., Wang, T., Chen, W., and Lafyatis, R. (2018). SFRP2/DPP4 and FMO1/LSP1 Define Major Fibroblast Populations in Human Skin. Journal of Investigative Dermatology *138*, 802–810. https://doi.org/10.1016/j.jid.2017.09.045.

- 11. Janson, D.G., Saintigny, G., van Adrichem, A., Mahé, C., and El Ghalbzouri, A. (2012). Different Gene Expression Patterns in Human Papillary and Reticular Fibroblasts. Journal of Investigative Dermatology *132*, 2565–2572. https://doi.org/10.1038/jid.2012.192.
- 12. Nurmik, M., Ullmann, P., Rodriguez, F., Haan, S., and Letellier, E. (2020). In search of definitions: Cancer-associated fibroblasts and their markers. Int. J. Cancer *146*, 895–905. https://doi.org/10.1002/ijc.32193.
- 13. Han, M., Liu, Z., Liu, L., Huang, X., Wang, H., Pu, W., Wang, E., Liu, X., Li, Y., He, L., et al. (2023). Dual genetic tracing reveals a unique fibroblast subpopulation modulating cardiac fibrosis. Nat Genet *55*, 665–678. https://doi.org/10.1038/s41588-023-01337-7.
- 14. Gascard, P., and Tlsty, T.D. (2016). Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev. *30*, 1002–1019. https://doi.org/10.1101/gad.279737.116.
- 15. Bartoschek, M., Oskolkov, N., Bocci, M., Lövrot, J., Larsson, C., Sommarin, M., Madsen, C.D., Lindgren, D., Pekar, G., Karlsson, G., et al. (2018). Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun *9*, 5150. https://doi.org/10.1038/s41467-018-07582-3.
- Puram, S.V., Tirosh, I., Parikh, A.S., Patel, A.P., Yizhak, K., Gillespie, S., Rodman, C., Luo, C.L., Mroz, E.A., Emerick, K.S., et al. (2017). Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell 171, 1611-1624.e24. https://doi.org/10.1016/j.cell.2017.10.044.