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Supplementary Notes

Supplementary Note 1: Additional Information regarding GANs

GANSs represent generative models designed to approximate real data distributions, enabling
them to generate novel image samples. GAN models are commonly employed for tasks such as
image-to-image translation (cross-modality synthesis), image synthesis, and data augmentation.
Comprising two distinct networks, a generator and a discriminator, GANs function by pitting
these networks against each other during training.Conditional GANs (cGANSs), on the other
hand, are a modified version where the generator creates images depending on specific
conditions or inputs, which can be useful in vessel segmentation.

Supplementary Note 2: Additional Information regarding Vision
Transformers

Instead of being processed by pixel values, images are segmented into setsized, non-
overlapping sections, such as 16x16 pixels for medical image segmentation using ViTs. These
sections are linearly transformed into singular vectors, a procedure called tokenization.
Subsequently, to preserve the spatial context, positional embeddings are integrated with the
tokenised patches. These enhanced embeddings navigate through various layers of the
standard transformer encoder. To form a segmentation mask, a decoding method, which might
be an upsampling layer or an alternative transformer, is applied to produce labels for each pixel
in the image.

The Swin Transformer is a modified version of the Vision Transformer (ViT), designed to further
adapt the transformer structure for image-related tasks and boost its efficiency. *"Swin" gets its
name from " Shifted Window," reflecting a key feature of its design. In July 2023, Wu and his
team developed the Inductive Blased Multi-Head Attention Vessel Net (IBIMHAV-Net) [1]. The
architecture is formed by extending the Swin Transformer to 3D and merging it with a potent mix
of convolution and self-attention techniques. In their approach, they used voxel-based
embedding instead of patch-based, to pinpoint exact liver vessel voxels, while also utilizing
multi-scale convolution tools to capture detailed spatial information.

Supplementary Note 3: Additional Information regarding Metrics

Pair-Counting-Based Measures

The pair-counting-based measures are calculated based on the correspondence between object
pairs in the segmentation and the ground truth. One such metric is the Adjusted Rand Index
(ARI), which adjusts the Rand Index (RI) for the chance grouping of elements. The ARl is
calculated as follows:



ARI = (RI - Expected_RI) / (Max_RI - Expected_RI),
Where Rl is the Rand Index, calculated as:
RI=(a+d)/(a+b+c+d),

In this formula, 'a' is the number of pairs of objects that are in the same group in both the
predicted segmentation and the ground truth (corresponding to true positives, TPs), and 'd' is
the number of pairs of objects that are in different groups in both (corresponding to true
negatives, TNs). 'b' and 'c' correspond to false positives (FPs) and false negatives (FNs),
respectively.

Information-Theoretic-Based Measures

As the name implies, information-theoretic-based measures use information theory concepts to
estimate the quality and performance of the segmentation. For instance, one such measure
called Mutual Information (MI) is calculated based on the shared information between the
segmented result and the ground truth.

For two discrete random variables X (segmentation result) and Y (ground truth), the Ml is
defined as:

MICX,Y) =3 _{x € X} 3 _{y € Y} p(x,y) log(p(x.y) / (p(X)P(¥))),
Where:

* p(x,y) is the joint probability distribution function of X and Y.
* p(x) is the marginal probability distribution function of X.

* p(y) is the marginal probability distribution function of Y.

X might represent the predicted segmentation, where a specific value x taken by X could be
either 'object' (e.g., a vessel) or 'background.' Y represents the ground truth (actual
segmentation), where a specific value y taken by Y could similarly be either 'object' or
'background.’

In that context:

* p(x="object', y="object') corresponds to the probability of a TP.

* p(x="background', y="background') corresponds to the probability of a TN.
* p(x="object', y="background') corresponds to the probability of a FP.

* p(x="background', y="object') corresponds to the probability of a FN.



Supplementary Tables

Supplementary Table 1: Details of preprocessing and training (3D_fullres) including the total
number of training and evaluation data for each experiment and training time.

Exp. Pre- Training data Evaluation data Median Batch Patch Training
processing image size in  size size time
voxels
Normalisation: Kidney 1 12115,
: 1172.
1 o (130&9;22279) Kidney 3 22488j [112,112, | 35.27
, (1706x1510,501) : 192] hours
Kidney 2
(1041,1511,2217)
Kidney 1
Normalisation: | (1303,912,2279) [1211.0, [128, 128
2 zZscore & Kldney 2 1 5045, 1é8] ’ 17.78
Kidney 3 (1041,1511,2217) 1390.0] hours
(1706x1510,501)
Normalisation: Kidney 2 [1510.5, [128, 128
3 zscore (1041,1511,2217) Kidney 1 1373.5, 1é8] ’ 17.78
& Kidney 3 (1303,912,2279) 1359.0] hours
(1706x1510,501)
Normalisation:
. Half of Kidney 1 Theﬁgﬁ!hf”Of [1303.0,912.0, [1303,912, | 17.01
zscore (1303,912,1139) Y 1139.0] 1139] hours

(1303,912,1140)




Supplementary Figures

Supplementary Figure 1: Proposed automated method configuration for nnU-Net based
biomedical image segmentation —from original nnU-Net paper [2].
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Supplementary Figure 2: Training progress for experiment 1.

loss

time [s]

50

0.010

0.008

0.006

learning rate

0.004

0.002

0.000

—— loss_tr
—— loss_val

- pseudo dice
pseudo dice (mov. avg.)

200 400 600 800 1000
epoch
—— epoch duration
200 400 600 800 1000
epoch
—— learning rate
200 400 600 800 1000

epoch

-0.900+

-0.875

0.975

-0.950

-0.925

pseudo dice

-0.850

-0.825

-0.800



Supplementary Figure 3: Training progress for experiment 2.
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Supplementary Figure 4: Training progress for experiment 3.
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Supplementary Figure 5: Showing the skeleton that is produced during the cl-Dice
computation in Experiment 3, the inset shows the ball like structures that can occur and disrupt

the metric output.




Supplementary Figure 6: Showing some examples where false positives align with actual
anatomical structures in the corresponding 2D ortho slice.
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