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Supplementary Notes 
 

Supplementary Note 1: Additional Information regarding GANs 
 
GANs represent generative models designed to approximate real data distributions, enabling 
them to generate novel image samples. GAN models are commonly employed for tasks such as 
image-to-image translation (cross-modality synthesis), image synthesis, and data augmentation. 
Comprising two distinct networks, a generator and a discriminator, GANs function by pitting 
these networks against each other during training.Conditional GANs (cGANs), on the other 
hand, are a modified version where the generator creates images depending on specific 
conditions or inputs, which can be useful in vessel segmentation. 

Supplementary Note 2: Additional Information regarding Vision 
Transformers 

Instead of being processed by pixel values, images are segmented into setsized, non-
overlapping sections, such as 16x16 pixels for medical image segmentation using ViTs. These 
sections are linearly transformed into singular vectors, a procedure called tokenization. 
Subsequently, to preserve the spatial context, positional embeddings are integrated with the 
tokenised patches. These enhanced embeddings navigate through various layers of the 
standard transformer encoder. To form a segmentation mask, a decoding method, which might 
be an upsampling layer or an alternative transformer, is applied to produce labels for each pixel 
in the image.   

The Swin Transformer is a modified version of the Vision Transformer (ViT), designed to further 
adapt the transformer structure for image-related tasks and boost its efficiency. ``Swin" gets its 
name from ``Shifted Window," reflecting a key feature of its design. In July 2023, Wu and his 
team developed the Inductive BIased Multi-Head Attention Vessel Net (IBIMHAV-Net) [1]. The 
architecture is formed by extending the Swin Transformer to 3D and merging it with a potent mix 
of convolution and self-attention techniques. In their approach, they used voxel-based 
embedding instead of patch-based, to pinpoint exact liver vessel voxels, while also utilizing 
multi-scale convolution tools to capture detailed spatial information. 

Supplementary Note 3: Additional Information regarding Metrics 

 
Pair-Counting-Based Measures 
The pair-counting-based measures are calculated based on the correspondence between object 
pairs in the segmentation and the ground truth. One such metric is the Adjusted Rand Index 
(ARI), which adjusts the Rand Index (RI) for the chance grouping of elements. The ARI is 
calculated as follows: 



ARI = (RI - Expected_RI) / (Max_RI - Expected_RI), 

Where RI is the Rand Index, calculated as: 

RI = (a + d) / (a + b + c + d), 

In this formula, 'a' is the number of pairs of objects that are in the same group in both the 
predicted segmentation and the ground truth (corresponding to true positives, TPs), and 'd' is 
the number of pairs of objects that are in different groups in both (corresponding to true 
negatives, TNs). 'b' and 'c' correspond to false positives (FPs) and false negatives (FNs), 
respectively. 

Information-Theoretic-Based Measures 
As the name implies, information-theoretic-based measures use information theory concepts to 
estimate the quality and performance of the segmentation. For instance, one such measure 
called Mutual Information (MI) is calculated based on the shared information between the 
segmented result and the ground truth. 

For two discrete random variables X (segmentation result) and Y (ground truth), the MI is 
defined as: 

MI(X,Y) = ∑_{x ∈ X} ∑_{y ∈ Y} p(x,y) log(p(x,y) / (p(x)p(y))), 

Where: 

• p(x,y) is the joint probability distribution function of X and Y. 

• p(x) is the marginal probability distribution function of X. 

• p(y) is the marginal probability distribution function of Y. 

X might represent the predicted segmentation, where a specific value x taken by X could be 
either 'object' (e.g., a vessel) or 'background.' Y represents the ground truth (actual 
segmentation), where a specific value y taken by Y could similarly be either 'object' or 
'background.' 

In that context: 

• p(x='object', y='object') corresponds to the probability of a TP. 

• p(x='background', y='background') corresponds to the probability of a TN. 

• p(x='object', y='background') corresponds to the probability of a FP. 

• p(x='background', y='object') corresponds to the probability of a FN. 



 
 
Supplementary Tables 

Supplementary Table 1: Details of preprocessing and training (3D_fullres) including the total 
number of training and evaluation data for each experiment and training time.  
 

Exp. Pre-
processing 

Training data Evaluation data Median 
image size in 

voxels 

Batch 
size 

Patch 
size 

Training 
time 

1 
Normalisation: 

zscore 

 

Kidney 1 
(1303,912,2279) 

& 
Kidney 2 

(1041,1511,2217) 

Kidney 3 
(1706x1510,501) 

[1211.5, 
1172.0, 
2248.0] 

 

2 
[112, 112, 

192] 

 

35.27 
hours 

2 
Normalisation: 

zscore 

 

Kidney 1 
(1303,912,2279) 

& 
Kidney 3 

 
(1706x1510,501) 

Kidney 2 
(1041,1511,2217) 

[1211.0, 
1504.5, 
1390.0] 

 

2 
[128, 128, 

128] 
 

17.78 
hours 

3 
Normalisation: 

zscore 

 

Kidney 2 
(1041,1511,2217) 

& Kidney 3 
(1706x1510,501) 

Kidney 1 
(1303,912,2279) 

[1510.5, 
1373.5, 
1359.0] 

 

2 
[128, 128, 

128] 
 

17.78 
hours 

4 
Normalisation: 

zscore 
Half of Kidney 1 
(1303,912,1139) 

The other half of 
kidney 1 

(1303,912,1140) 

[1303.0,912.0, 
1139.0] 2 [1303,912, 

1139] 
17.01 
hours 

 

 

 

 

 

 



 
 

Supplementary Figures 
Supplementary Figure 1: Proposed automated method configuration for nnU-Net based 
biomedical image segmentation –from original nnU-Net paper [2]. 

 



Supplementary Figure 2: Training progress for experiment 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 3: Training progress for experiment 2. 

 



Supplementary Figure 4: Training progress for experiment 3.  

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 



Supplementary Figure 5: Showing the skeleton that is produced during the cl-Dice 

computation in Experiment 3, the inset shows the ball like structures that can occur and disrupt 

the metric output. 

 

 

 

 

 

 

 

 

 



Supplementary Figure 6: Showing some examples where false positives align with actual 
anatomical structures in the corresponding 2D ortho slice.
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