Supporting Information

A Molecular Video-derived Foundation Model for Scientific

Drug Discovery

Xiang et al., *Nature Communications* 2024.

Table of Contents

Supplemental Materials and Methods	2
A. Supplementary Experiment Setup	2
A.1 Dataset details	2
A.2 Hyperparameters of pre-training	5
A.3 Hyperparameters of finetuning	6
B. Supplementary Methods	7
B.1 Molecular fingerprint details	7
B.2 Model details of pre-training	9
C. Supplementary Results	9
C.1 Results on pre-training	9
C.2 Results of different representations on 8 basic attributes	9
C.3 Computational requirements of VideoMol	11
Supplementary Figures	12
Supplementary Tables	17
Supplementary References	49

Supplemental Materials and Methods

A. Supplementary Experiment Setup

A.1 Dataset details

Pretraining Dataset

PCQM4Mv2 is a quantum chemistry dataset under the PubChemQC project¹, which include 3,378,606 molecules and their corresponding 3D structures calculated by DFT (Density Functional Theory). Since we generate 60 video frames per molecule, we sample 2 million molecules from them for molecular video generation for efficiency. Ultimately, we obtain a total of 120 million video frames for pre-training.

Drug-Target Binding Activity Prediction

Dataset. Following ImageMol², we use 10 kinase targets in compound-kinase binding activity prediction and use 10 G protein coupled receptors (GPCRs) targets in ligand-GPCR binding activity prediction. 10 common biochemical kinases datasets are selected from KinomeScan database (https://lincs.hms.harvard.edu/kinomescan/). 10 GPCR datasets are selected from ChEMBL database (https://www.ebi.ac.uk/chembl/), which are the top 10 most used targets. Kinases and GPCRs are a binary classification task and a regression task, respectively. The statistical details for these datasets are provided in **Supplementary Table 31**.

Molecular Property Prediction

Dataset. Molecular property prediction is a crucial step in drug discovery, which can greatly increase the speed of virtual screening. MoleculeNet³ is a public and popular benchmark, which include a variety of drug discovery task. Here, we choose 6 classification datasets (BBBP, Tox21, HIV, BACE, SIDER and ToxCast) and 6 regression datasets (FreeSolv, ESOL, Lipophilicity, QM7, QM8 and QM9) from MoleculeNet to evaluate VideoMol. These datasets include various properties of drugs, such as pharmacology, physical chemistry, quantum chemistry and biophysics. Especially, due to the large size of HIV, QM8 and QM9 data, we only sample 5 frames at equal intervals to improve training efficiency. Note that the video format in the property prediction tasks is BGR while the other tasks are RGB, which is due to the fact that OpenCV⁴ uses BGR format by default. Empirically, the RGB and BGR formats have only a small impact on the performance of VideoMol. The statistical details for these datasets are provided in **Supplementary Table 32**.

Anti-SARS-CoV-2 activity prediction

Dataset. Following REDIAL-2020⁵ and ImageMol, we use 11 anti-SARS-CoV-2 activity datasets, which are originally available from the National Center for the Advancement of Translational Science (NCATS) COVID-19 Portal. All of these datasets are a binary classification task and are evaluated using ROC- AUC metric. The statistical details for these datasets are provided in **Supplementary Table 33**.

Virtual screening on BACE1, COX-1, COX-2, EP4 targets

Dataset from ChEMBL database. We first collect beta-secretase 1 (BACE1) with 6,860 molecules, cyclooxygenase 1 (COX-1) with 3,423 molecules, COX-2 with 4,988 molecules, prostaglandin E receptor 4 (EP4) with 350 molecules from ChEMBL database⁶ for training and evaluating VideoMol. Due to the problem of non-uniform formatting of small molecules collected from the ChEMBL database, we clean the collect molecules according to the following guidelines: (1) we only retain those molecules with IC_{50} values; (2) to obtain positive and negative samples, we use different thresholds to convert IC₅₀ to class labels. For molecules with an IC₅₀ value below the threshold, we set the label to 1 (active), otherwise we set the label to 0 (inactive). Regarding the selection of the threshold, we follow two criteria: (1) Keep the imbalance rate of positive and negative samples at around 0.6, which is obtained by dividing the number of negative samples by the number of positive samples; (2) The maximum threshold for IC₅₀ is 100. The statistical details for these targets are provided in **Supplementary Table 10**.

External validation dataset from MedChemExpress website. We obtain known active drugs from the MedChemExpress (MCE) website (https://www.medchemexpress.com/) for further virtual screening. The

MedChemExpress provides a wide range of high-quality research chemicals and biochemicals, including novel life science reagents, reference compounds and natural compounds for laboratory and scientific purposes⁷⁻⁹. In details, we collect drugs known to be active against BACE1 (16 drugs), COX-1 (22 drugs), COX-2 (35 drugs), EP4 (8 drugs) targets and with IC₅₀ values below the threshold as external validation set. The details for these active drugs are provided in **Supplementary Table 11**, **Supplementary Table 12**, **Supplementary Table 13** and **Supplementary Table 14**.

External validation dataset from DrugBank database. We virtually screened potential anti-BACE1 inhibitors from 2,500 FDA-approved drugs from the DrugBank database¹⁰. These drugs are available online from the DrugBank website (https://go.drugbank.com/). The data details can be found in **Supplementary Table 19**.

A.2 Hyperparameters of pre-training

We describe the pre-training hyperparameters of VideoMol in **Supplementary Table 30**. We use a temperature of 0.1 for video-aware pretraining and set a learning rate of 0.01, a batch size of 256, a momentum of 0.9, and a weight decay of 1e-4 for pre-training. To evaluate the effectiveness of the pre-training task, we split 10% of the data for validation. Finally, we declare the training platform. We pre-trained VideoMol over 400k steps on a server with an Intel 6248R 48C@3.0GHz CPU and 4 NVIDIA TESLA A100 (40G) GPUs, which

took about 7 days. See **Supplementary Section C.3** for details of computational requirements in pre-training.

A.3 Hyperparameters of finetuning

General framework for finetuning. We spliced a multi-layer perceptron (MLP) after the video encoder for fine-tuning downstream tasks, and its general architecture can be abstracted as shown in **Supplementary Table 34**. In detail, we use the pre-trained video encoder as the backbone to extract the features of molecular videos and input them into an MLP (dropout1→linear1→ activator→dropout2→linear2) for prediction.

Hyperparameter search space. We use grid search to find the best combination of hyperparameters with different random seeds on downstream tasks. In compound-kinase interaction and anti-SARS-CoV-2 viral activity prediction tasks, we tune parameters independently for each seed and report the mean and variance, which means the hyperparameters of different seeds may be different. The specific search spaces are shown in **Supplementary Table 35**. In addition to the data augmentation used by VideoMol, we also try data augmentation from ImageMol in evaluation on 10 kinases. We run all fine-tuning experiments on a single Tesla A100 GPU or a single GTX 4090Ti. See **Supplementary Section C.3** for details of computational requirements in fine-tuning.

B. Supplementary Methods

B.1 Molecular fingerprint details

Considering the insufficient semantics of a single molecular fingerprint, we selected a total of 21 fingerprints of 6 different types for comprehensive information. We summarize all used fingerprints in **Supplementary Table 29**:

- Circular-based fingerprints: Circular-based fingerprints include ECFPx (Extended Connectivity Fingerprints) and FCFPx (Functional-Class Fingerprints), where x represents the bond length or diameter centered on the atom. Here, we set x to 0,2,4,6 and 2,4,6 for ECFP and FCFP, respectively. The ECFP is constructed based on the number of atomic connections, the number of non-hydrogen chemical bonds, the atomic number, the positive and negative of atomic charges, the absolute value of atomic charges, and the number of connected hydrogen atoms. The FCFP is constructed based on the information of pharmacophore, such as hydrogen bond acceptors, hydrogen bond donors, negatively ionizable, positively ionizable, aromatic atoms and halogens.
- Path-based fingerprints: Path-based fingerprints include RDK*x* (*x* is 5, 6 or 7), HashTT (Topological Torsion) and HashAP (Atom Pair). HashTT and HashAP are similar, which includes information in three dimensions: atomic number, electron number, and adjacent atom number.
- Substructure-based fingerprints: Substructure-based fingerprints include
 MACCS (Molecular ACCess System) and Avalon. MACCS fingerprints

adopts the substructure encoded by SMARTS and obtains the molecular fingerprint with a length of 167 according to the type of substructure. Avalon fingerprints include features such as atomic symbol path, atom count, augmented symbol path, augmented atom.

- Longer version-based fingerprints: Longer version-based fingerprints enrich the fingerprint information of ECFP4, ECFP6, FCFP4, FCFP6 and LAvalon to 16384 dimensions.
- Pharmacophore-based fingerprints: We use TPATF (Topological Pharmacophore Atomic Triplets Fingerprints) as pharmacophore-based fingerprints, which were obtained using Mayachemtools¹¹. TPATF describes the ligand sites necessary for molecular recognition of macromolecules or ligands by using pharmacophore atom types such as hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), cationizable (PI), Anionizable (NI), Hydrophobic (H) and Aromatic (Ar).
- Physicochemistry-based fingerprints: We use RDKDes (RDKit Descriptors) as physicochemistry-based fingerprints, which contains experimental properties or theoretical descriptors, such as molar refractivity, logP, number of heavy atoms, number of bonds, molecular weight, topological polar surface area.

B.2 Model details of pre-training

The **Supplementary Table 30** shows the model details in pre-training phase. We use a 12-layer vision transformer as the video encoder of VideoMol. For the Axis classifier, rotation classifier, angle classifier and chemical classifier, we used the same neural network architecture, which consists of a fully connected layer with a Softplus activator and a task-dependent fully connected layer.

C. Supplementary Results

C.1 Results on pre-training

The **Supplementary Figure 3** and **Supplementary Figure 4** describe the loss curve and the corresponding accuracy curve of VideoMol in the pretraining phase, respectively. We can clearly see that the loss of each pretraining task in VideoMol is gradually decreasing, which shows that each task can work well together (**Supplementary Figure 3**). At the same time, each pre-training task achieves good accuracy on the validation set, indicating the effectiveness of VideoMol (**Supplementary Figure 4**).

C.2 Results of different representations on 8 basic attributes

To fairly compare the effects of different representations, we evaluated the representation without using any self-supervised tasks. It is well known that

the development of drug discovery depends on accurately capturing chemical and biological representations of molecules. Here, we used several commonly used representative methods (such as GCN, GIN, EGNN, and the image representation used by ImageMoI) to inspect the model's ability to understand the 8 basic attributes of molecules, including molecular weight, MolLogP, MolMR, BalabanJ, NumHAcceptors, NumHDonors, NumValenceElectrons and TPSA.

We collected the first 10,000 molecules from the pre-training dataset and used exactly the same experimental setup (batch size of 8, learning rate of 0.005, training epoch of 30, and only training task-relevant predictor) for fair comparison. In detail, we split the training set, validation set, and test set using a ratio of 8:1:1 and reported the results on the test set based on the best validation set score. As shown in **Supplementary Table 1**, we found that VideoMol using only one frame outperformed that of the 2D graph-based methods, the 3D-based graph method and the 2D image-based method, revealing the advantage of the proposed 3D representation. Specifically, compared with the second-place ImageMol without pre-training, the performance of video-1frame improved by 9.9%. When we utilized all video frames (video-60frame), the performance is further significantly improved from 12.47 to 7.51 with a 39.8% improvement rate.

In summary, the proposed 3D representation (whether based on a single frame image or a 60-frame video) has advantages compared to existing

molecular representation approaches. We will further improve our VideoMol framework by increasing the number of 3D frames and integrating other types of 3D representation (such as AlphaFold3¹²) in the near future.

C.3 Computational requirements of VideoMol

Here, we detail the computational requirements of the pre-training, fine-tuning, and screening stages in **Supplementary Table 36**. In the pre-training phase, as shown in **Supplementary Table 36**(a), VideoMol uses 256 frames in each batch for training, which requires 37G of GPU memory and takes about 9 hours to complete 1 epoch on 2 million molecular videos with 60 frames. Next, we use 10,000 molecules and study the impact of different batch sizes (#frame/batch) on memory and training speed in **Supplementary Table 36**(b). We find that fine-tuning does not occupy a large amount of memory, and only requires at least 2.3G of GPU memory to complete. Finally, we evaluate the computational requirements when performing virtual screening on 1 million molecules in **Supplementary Table 36**(c). We find that even using all frames during virtual screening, it only took about 9 hours. In addition, for everexpanding data sizes, screening can be accelerated by reducing the number of frames. Therefore, VideoMol can complete large-scale virtual screening in a faster time.

Supplementary Figures

Supplementary Figure 1: t-SNE visualization of 1,000 molecular videos. Different colors represent frames in different cluster videos. Different colors represent different molecules video. DB index (=0.182) is a metric to evaluate the clustering quality, and the larger the value, the better the clustering performance.

Supplementary Figure 2: t-SNE visualization of the representations of VideoMol. The total number of samples is 15,000 (including 30 clusters with 500 samples per cluster). Different colors represent different clusters. Davies Bouldin (DB) index (=3.66) represents the intra-cluster distance divided by the inter-cluster distance, where the smaller the value, the better the clustering performance.

Supplementary Figure 3: VideoMol loss details during the pre-training phase. The x-axis and y-axis represent the training step and loss value, respectively. Subfigures (a)-(d) represent \mathcal{L}_V , \mathcal{L}_{axis} , $\mathcal{L}_{rotation}$, \mathcal{L}_{angle} , respectively. The mean of the losses for subfigures (e) and (f) represent \mathcal{L}_C .

Supplementary Figure 4: The performance of VideoMol on validation set during the pre-training phase. The x-axis and y-axis represent the training step divided by 7,000 and accuracy, respectively. Subfigures (a)-(c) represent the performance of VideoMol on axis prediction, rotation prediction and angle prediction, respectively. The mean of the accuracy for subfigures (d) and (e)

represent performance of chemical-aware pre-training task. We evaluate the performance of VideoMol on the validation set approximately 7000 steps.

Supplementary Tables

Supplementary Table 1: The RMSE results of different molecular

representations on 8 basic attributes (molecular weight, MolLogP, MolMR,

BalabanJ, NumHAcceptors, NumHDonors, NumValenceElectrons, TPSA).

(.xlsx)

	modality	model	use conformer?	prop
		GCN	×	62.304
graph-based	2D graph	GIN	×	62.980
		EGNN	×	17.418
	3D graph	EGNN	\checkmark	16.684
	image from imagemol	ResNet18	×	12.469
image-based	video-1frame	ResNet18	\checkmark	11.237
	video-5frame	ResNet18	\checkmark	8.088
	video-60frame	ViT	\checkmark	7.511

Supplementary Table 2: Summary of state-of-the-art methods. (.xlsx)

Represent	Madal		Backbon	
ation Category	IVIODEI	Input	е	Pre-training database
sequence	{RNN, TRFM}_{LR, MLP, RF}	SMILES	RNN or Transfor mer	ChEMBL24 (0.861M)
	CHEM- BERT	SMILES	BERT	PubChem (10M)
	InfoGraph	Graph	GIN	-
	GPT-GNN	OA T-GNN Graph HGT billion		OAG (179 million nodes & 2 billion edges) and Amazon (113 million nodes)
	ContextPred	Graph	5-layer GIN	ZINC15 (2M)
	GraphLoG	Graph	5-layer GIN	ZINC15 (2M)
2D graph	G- Contextual	Graph	Grover	ZINC15 & Chembl (11 million)
	G-Motif	Graph	Grover	ZINC15 & Chembl (11 million)
	AD-GCL	Graph	5-layer GIN	ZINC15 (2M)
	JOAO	Graph	5-layer GIN	ZINC15 (2M)
	SimGRACE	Graph	5-layer GIN	ZINC15 (2M)
	GraphCL	Graph	5-layer	ZINC15 (2M)

image	ImageMol	Image	ResNet1 8	PubChem (10M)
	Uni-Mol	Geometry+ Protein Pockets	Transfor mer	ZINC/ChemBL+PDB (209 M)
3D graph	GraphMVP	Geometry+ Graph	5-layer GIN+Sc hNet	GEOM (50K)
	3D InfoMax	Geometry+ Graph	PNA+N et3D	QM9(50k)+GEOM- Drugs(140k)+Qmugs(620k)
	GraphCL	Graph	5-layer GIN	ZINC15 (2M)
	Mole-BERT	Graph	5-layer GIN	ZINC15 (2M)
	MolCLR	Graph	GCN+GI N	PubChem (10M)
	AttrMask	Graph	5-layer GIN	ZINC15 (2M)
	MGSSL	Graph	5-layer GIN	ZINC15 (250K)
	GraphMAE	Graph	5-layer GIN	ZINC15 (2M)
			GIN	

Supplementary Table 3: The ROC-AUC performance of different methods on 10 main types of biochemical kinases from KinomeScan datasets with balanced scaffold split. All compared results are obtained from ImageMol.

(.x	lsx)	
۰.			

	втк	CDK4-cyclinD3	EGFR	FGFR1	FGFR2	-	
MoCLRGIN	0.556±0.118	0.778±0.171	0.583±0.067	0.695±0.249	0.667±0.132	_	
MoCLRGCN	0.602±0.129	0.944±0.039	0.750±0.051	0.619±0.378	0.667±0.052		
RNN_LR	0.611±0.000	0.667±0.000	0.536±0.000	0.771±0.000	0.741±0.000		
TRFM_LR	0.694±0.000	0.750±0.000	0.821±0.000	0.743±0.000	0.704±0.000		
RNN_MLP	0.556±0.023	0.833±0.000	0.536±0.029	0.848±0.059	0.716±0.046		
TRFM_MLP	0.537±0.013	0.639±0.039	0.667±0.061	0.643±0.031	0.741±0.000		
RNN_RF	0.546±0.013	0.917±0.000	0.548±0.017	0.476±0.027	0.685±0.055		
TRFM_RF	0.639±0.039	0.639±0.039	0.607±0.000	0.476±0.013	0.556±0.030		
CHEM-BERT	0.648±0.013	0.583±0.297	0.845±0.094	0.429±0.117	0.765±0.106		
ImageMol	0.843±0.026	0.917±0.068	0.857±0.000	0.857±0.023	0.852±0.052		
VideoMol	0.861±0.023	0.972±0.039	0.905±0.017	0.848±0.027	0.988±0.017		
Continue							
	FGFR3 FGFR4 FLT3 KPCD3 MET						
MoCLRGIN	0.760±0.039	0.773±0.121	0.722±0.091	0.571±0.107	0.611±0.236	0.67	
MoCLRGCN	0.792±0.106	0.537±0.013	0.722±0.208	0.505±0.067	0.574±0.052	0.67	
RNN_LR	0.646±0.015	0.528±0.000	0.778±0.000	0.457±0.000	0.796±0.026	0.65	

						-
VideoMol	0.896±0.039	0.852±0.080	0.981±0.026	0.867±0.036	0.963±0.026	0.9133
ImageMol	0.854±0.064	0.833±0.045	0.722±0.120	0.762±0.088	0.963±0.026	0.8460
CHEM-BERT	0.438±0.077	0.528±0.060	0.574±0.189	0.557±0.091	0.944±0.000	0.6311
TRFM_RF	0.646±0.078	0.602±0.013	0.546±0.035	0.262±0.058	0.593±0.026	0.5566
RNN_RF	0.312±0.000	0.389 ± 0.000	0.519±0.026	0.343±0.000	0.500 ± 0.000	0.5235
TRFM_MLP	0.802±0.015	0.676±0.035	0.667±0.136	0.219±0.027	0.556 ± 0.000	0.6147
RNN_MLP	0.469±0.026	0.269±0.035	0.630±0.105	0.410±0.036	0.667±0.045	0.5934
TRFM_LR	0.812±0.000	0.639 ± 0.000	0.611±0.000	0.438±0.027	0.778±0.000	0.6990

Supplementary Table 4: The RMSE and MAE performance of different

methods on 10 GPCR with balanced scaffold split. The lower the value, the better the performance. All compared results are obtained from ImageMol.

(.xlsx)

	1. 5HT1A		2. 5H	HT2A	3. AA1R		
	RMSE	MAE	RMSE	MAE	RMSE	MAE	
MoCLRGIN	0.850±0.021	0.670±0.012	0.853±0.019	0.642±0.014	0.786±0.015	0.588±0.009	
MoCLRGCN	0.949±0.027	0.764±0.014	0.875±0.008	0.681±0.024	0.856±0.026	0.662±0.026	
RNN_LR	1.574±0.091	0.937±0.019	1.602±0.245	1.103±0.151	1.073±0.087	0.762±0.057	
TRFM_LR	1.636±0.004	1.109±0.001	1.389±0.000	0.999±0.001	1.060±0.003	0.810±0.001	
RNN_MLP	0.957±0.013	0.768±0.010	1.167±0.010	0.890±0.003	0.848±0.004	0.662±0.008	
TRFM_MLP	0.939±0.034	0.730±0.025	1.013±0.026	0.728±0.021	0.878±0.051	0.657±0.031	
RNN_RF	0.788±0.004	0.617±0.004	1.001±0.001	0.747±0.001	0.717±0.003	0.554±0.002	
TRFM_RF	0.855±0.001	0.672±0.001	1.011±0.002	0.777±0.002	0.740±0.001	0.568±0.001	
CHEM-BERT	0.876±0.018	0.706±0.012	0.909±0.057	0.682±0.056	0.734±0.038	0.544±0.027	
ImageMol	0.776±0.012	0.620±0.014	0.780±0.017	0.578±0.022	0.711±0.012	0.554±0.009	
VideoMol	0.708±0.017	0.547±0.015	0.775±0.017	0.578±0.009	0.655±0.007	0.496±0.006	
	4. AA	A2AR	5. A	A3R	6. CNR2		
	RMSE	MAE	RMSE	MAE	RMSE	MAE	
MoCLRGIN	0.748±0.012	0.588±0.008	0.840±0.014	0.692±0.010	0.926±0.047	0.758±0.036	
MoCLRGCN	0.819±0.011	0.651±0.008	0.855±0.010	0.700±0.011	0.978±0.023	0.803±0.021	
RNN_LR	1.801±0.600	1.193±0.335	2.295±0.463	1.190±0.155	5.505±0.093	1.611±0.032	
TRFM_LR	1.130±0.000	0.906±0.000	1.155±0.001	0.919±0.001	1.700±0.001	1.213±0.000	
RNN_MLP	0.967±0.002	0.773±0.005	0.883±0.010	0.707±0.012	1.091±0.015	0.881±0.013	
TRFM_MLP	0.948±0.013	0.744±0.005	0.945±0.010	0.749±0.014	1.144±0.055	0.903±0.038	
RNN_RF	0.887±0.002	0.692±0.001	0.796±0.009	0.624±0.007	0.965±0.002	0.766±0.001	
TRFM_RF	0.926±0.003	0.735±0.004	0.856±0.001	0.701±0.002	0.965±0.002	0.800±0.002	
CHEM-BERT	0.862±0.071	0.674±0.058	0.861±0.058	0.684±0.047	0.925±0.051	0.727±0.041	
ImageMol	0.734±0.015	0.573±0.009	0.793±0.008	0.634±0.001	0.905±0.004	0.717±0.015	
VideoMol	0.712±0.011	0.543±0.005	0.786±0.006	0.617±0.004	0.864±0.005	0.679±0.010	
	7. D	RD2	8. D	RD3	9. H	RH3	
	RMSE	MAE	RMSE	MAE	RMSE	MAE	
MoCLRGIN	0.814±0.009	0.591±0.007	0.858±0.017	0.673±0.022	0.734±0.006	0.581±0.004	
MoCLRGCN	0.855±0.022	0.634±0.017	0.914±0.024	0.725±0.025	0.740±0.016	0.576±0.006	

RNN_LR	1.142±0.077	0.839±0.038	1.316±0.011	0.942±0.005	1.616±0.236	0.943±0.070
TRFM_LR	1.000±0.000	0.719±0.000	1.219±0.000	0.914±0.000	1.169±0.002	0.911±0.002
RNN_MLP	0.895±0.006	0.694±0.005	1.021±0.007	0.819±0.007	0.871±0.015	0.702±0.011
TRFM_MLP	0.919±0.016	0.686±0.016	1.012±0.041	0.790±0.023	0.863±0.011	0.676±0.009
RNN_RF	0.837±0.001	0.612±0.001	0.861±0.001	0.685±0.001	0.771±0.002	0.613±0.002
TRFM_RF	0.864±0.001	0.636±0.002	0.904±0.001	0.717±0.001	0.770±0.002	0.602±0.001
CHEM-BERT	0.816±0.011	0.587±0.013	0.803±0.029	0.631±0.026	0.770±0.033	0.594±0.022
ImageMol	0.772±0.014	0.573±0.009	0.735±0.018	0.576±0.014	0.710±0.006	0.561±0.006
VideoMol	0.742±0.003	0.556±0.005	0.715±0.014	0.554±0.012	0.668±0.008	0.506±0.002
	10. O	PRM				
RMSE MAE						
			-			
MoCLRGIN	0.856±0.008	0.664±0.016				
MoCLRGIN MoCLRGCN	0.856±0.008 0.853±0.009	0.664±0.016 0.653±0.020	-			
MoCLRGIN MoCLRGCN RNN_LR	0.856±0.008 0.853±0.009 2.649±1.024	0.664±0.016 0.653±0.020 1.744±0.614				
MoCLRGIN MoCLRGCN RNN_LR TRFM_LR	0.856±0.008 0.853±0.009 2.649±1.024 1.694±0.001	0.664±0.016 0.653±0.020 1.744±0.614 1.282±0.000				
MoCLRGIN MoCLRGCN RNN_LR TRFM_LR RNN_MLP	0.856±0.008 0.853±0.009 2.649±1.024 1.694±0.001 1.022±0.014	0.664±0.016 0.653±0.020 1.744±0.614 1.282±0.000 0.781±0.008				
MoCLRGIN MoCLRGCN RNN_LR TRFM_LR RNN_MLP TRFM_MLP	0.856±0.008 0.853±0.009 2.649±1.024 1.694±0.001 1.022±0.014 1.084±0.009	0.664±0.016 0.653±0.020 1.744±0.614 1.282±0.000 0.781±0.008 0.849±0.007	-			
MoCLRGIN MoCLRGCN RNN_LR TRFM_LR RNN_MLP TRFM_MLP RNN_RF	0.856±0.008 0.853±0.009 2.649±1.024 1.694±0.001 1.022±0.014 1.084±0.009 0.876±0.010	0.664±0.016 0.653±0.020 1.744±0.614 1.282±0.000 0.781±0.008 0.849±0.007 0.671±0.009	- -			
MoCLRGIN MoCLRGCN RNN_LR TRFM_LR RNN_MLP TRFM_MLP RNN_RF TRFM_RF	0.856±0.008 0.853±0.009 2.649±1.024 1.694±0.001 1.022±0.014 1.084±0.009 0.876±0.010 0.852±0.002	$\begin{array}{c} 0.664 \pm 0.016 \\ 0.653 \pm 0.020 \\ 1.744 \pm 0.614 \\ 1.282 \pm 0.000 \\ 0.781 \pm 0.008 \\ 0.849 \pm 0.007 \\ 0.671 \pm 0.009 \\ 0.660 \pm 0.003 \end{array}$				
MoCLRGIN MoCLRGCN RNN_LR TRFM_LR RNN_MLP TRFM_MLP RNN_RF TRFM_RF CHEM-BERT	0.856±0.008 0.853±0.009 2.649±1.024 1.694±0.001 1.022±0.014 1.084±0.009 0.876±0.010 0.852±0.002 0.893±0.024	$\begin{array}{c} 0.664 \pm 0.016 \\ 0.653 \pm 0.020 \\ 1.744 \pm 0.614 \\ 1.282 \pm 0.000 \\ 0.781 \pm 0.008 \\ 0.849 \pm 0.007 \\ 0.671 \pm 0.009 \\ 0.660 \pm 0.003 \\ 0.672 \pm 0.019 \end{array}$				
MoCLRGIN MoCLRGCN RNN_LR TRFM_LR RNN_MLP TRFM_MLP RNN_RF TRFM_RF CHEM-BERT ImageMol	0.856±0.008 0.853±0.009 2.649±1.024 1.694±0.001 1.022±0.014 1.084±0.009 0.876±0.010 0.852±0.002 0.893±0.024 0.849±0.018	$\begin{array}{c} 0.664 \pm 0.016 \\ 0.653 \pm 0.020 \\ 1.744 \pm 0.614 \\ 1.282 \pm 0.000 \\ 0.781 \pm 0.008 \\ 0.849 \pm 0.007 \\ 0.671 \pm 0.009 \\ 0.660 \pm 0.003 \\ 0.672 \pm 0.019 \\ 0.645 \pm 0.015 \end{array}$	- -			

Supplementary Table 5: The ROC-AUC performance (%) of different

methods on 6 molecular property prediction benchmarks with scaffold split. All

experiments are run 10 times using random seeds from 0 to 9. GraphMVP-C,

Mole-BERT, Uni-Mol and ImageMol are reproduced from their source code

	and other	results	from	Mole-BERT.	(.xlsx`
--	-----------	---------	------	------------	---------

	Tox21	ToxCast	Sider	HIV	BBBP	BACE
#Molecules	7831	8576	1427	41127	2039	1513
#Task	12	617	27	1	1	1
 InfoGraph	73.3 (0.6)	61.8 (0.4)	58.7 (0.6)	74.2 (0.9)	68.7 (0.6)	74.3 (2.6)
GPT-GNN	74.9 (0.3)	62.5 (0.4)	58.1 (0.3)	65.2 (2.1)	64.5 (1.4)	77.9 (3.2)
ContextPred	73.6 (0.3)	62.6 (0.6)	59.7 (1.8)	75.6 (1.0)	70.6 (1.5)	78.8 (1.2)
GraphLoG	75.0 (0.6)	63.4 (0.6)	59.6 (1.9)	76.1 (0.8)	68.7 (1.6)	78.6 (1.0)
G-Contextual	75.0 (0.6)	62.8 (0.7)	58.7 (1.0)	76.3 (1.5)	69.9 (2.1)	79.3 (1.1)
G-Motif	73.6 (0.7)	62.3 (0.6)	61.0 (1.5)	73.8 (1.2)	66.9 (3.1)	73.0 (3.3)
AD-GCL	74.9 (0.4)	63.4 (0.7)	61.5 (0.9)	76.7 (1.2)	70.7 (0.3)	76.6 (1.5)
JOAO	74.8 (0.6)	62.8 (0.7)	60.4 (1.5)	76.9 (0.7)	66.4 (1.0)	73.2 (1.6)
SimGRACE	74.4 (0.3)	62.6 (0.7)	60.2 (0.9)	75.0 (0.6)	71.2 (1.1)	74.9 (2.0)

GraphCL	75.1 (0.7)	63.0 (0.4)	59.8 (1.3)	75.1 (0.7)	67.8 (2.4)	74.6 (2.1)
GraphMAE	75.2 (0.9)	63.6 (0.3)	60.5 (1.2)	76.8 (0.6)	71.2 (1.0)	78.2 (1.5)
3D InfoMax	74.5 (0.7)	63.5 (0.8)	56.8 (2.1)	76.1 (1.3)	69.1 (1.2)	78.6 (1.9)
MGSSL	75.2 (0.6)	63.3 (0.5)	61.6 (1.0)	75.8 (0.4)	68.8 (0.6)	78.8 (0.9)
AttrMask	75.1 (0.9)	63.3 (0.6)	60.5 (0.9)	75.3 (1.5)	65.2 (1.4)	77.8 (1.8)
MolCLR	75.5 (0.5)	63.9 (0.5)	60.3 (1.3)	74.4 (1.3)	66.8 (3.4)	75.3 (2.9)
GraphMVP-C	74.6(0.4)	63.4 (0.6)	60.6 (1.3)	77.1 (2.1)	69.9 (1.4)	79.6 (1.7)
ImageMol	75.5 (1.0)	65.6 (0.9)	64.9 (1.3)	76.8 (1.3)	70.5 (1.3)	78.1 (3.5)
Uni-Mol (1 conf)	78.3 (0.4)	68.7 (0.5)	63.7 (1.3)	79.2 (1.0)	69.6 (2.0)	81.0 (3.9)
Uni-Mol (10 conf)	78.8 (0.7)	69.0 (0.5)	63.6 (1.4)	79.2 (0.9)	69.9 (2.7)	81.7 (3.4)
Mole-BERT	77.0 (0.3)	64.4 (0.2)	63.2 (0.7)	77.7 (0.7)	65.7 (2.3)	80.2 (0.9)
VideoMol	78.8 (0.4)	<u>66.7 (0.5)</u>	66.3 (0.9)	79.4 (0.5)	<u>70.7 (1.5)</u>	82.4 (0.9)
Rank	1	2	1	1	3	1

Supplementary Table 6: The RMSE or MAE performance of different

methods on 6 molecular property prediction benchmarks with scaffold split. All experiments are run 10 times using random seeds from 0 to 9. We report RMSE for FreeSolv, ESOL and Lipo datasets and MAE for QM7 and QM8, QM9 datasets, respectively. We reproduced all comparison methods using the same settings. We use GIN backbone for MolCLR because it achieves the best results. (.xlsx)

RMSE	FreeSolv	ESOL	Lipo	QM7	QM8	QM9
GraphM\/P	2.559±0.15	1.322±0.06	0.773±0.01	120.344±6.23	0.02049±0.0003	0.00891±0.0001
Graphilvivi	8	2	6	7	2	0
EdgoDrod	2.843±0.09	1.367±0.04	0.778±0.01	104.387±3.29	0.02058±0.0006	0.00929±0.0000
Eugerieu	1	1	3	2	1	9
GraphMVP-	2.766±0.19	1.333±0.05	0.768±0.01	121.022±5.69	0.02022±0.0004	0.00896±0.0001
С	9	5	3	9	7	<u>1</u>
	3.112±0.63	1.462±0.06	0.799±0.01	144.426±6.59	0.03598±0.0008	0.01488±0.0002
MUICLR	8	8	8	1	5	0
ImagaMal	2.113±0.23	0.964±0.06	0.702±0.06	116.384±8.44	0.02419±0.0003	0.02061±0.0001
imageinioi	5	7	0	5	3	9
	2.988±0.15	1.115±0.01	<u>0.727±0.00</u>	101.922±2.33	0.02073±0.0003	0.00910±0.0001
WUIE-DER I	5	7	<u>6</u>	1	3	0
VideoMol	1.725±0.05	0.866±0.01	0.743±0.00	76 426+1 561	0.01890±0.0002	0.00896±0.0000
VIGEOIVIOI	3	7	9	70.430±1.301	0	<u>3</u>

Supplementary Table 7: The ROC-AUC performance of different methods

on 11 SARS-CoV-2 datasets with balanced scaffold split. All compared results

	3CL	ACE2	hCYT OX	MERS- PPE_c s	MER S- PPE	CoV1- PPE_c s	CoV1 -PPE	CPE	Cytot ox	Alpha LISA	TruHit	M ea n
REDIA L- 2020	0.713	0.753	0.710	0.703	0.696	0.661	0.665	0.651	0.688	0.79	0.734	0. 70 6
lmage Mol	0.762 ±0.00 7	0.720 ±0.00 1	0.727 ±0.00 9	0.771± 0.009	0.773 ±0.01 1	0.775± 0.005	0.703 ±0.00 8	0.669 ±0.01 1	0.728 ±0.00 1	0.793 ±0.00 7	0.806 ±0.00 6	0. 74 8
Video Mol	0.709 ±0.00 6	0.759 ±0.02 5	0.765 ±0.00 3	0.828± 0.027	0.814 ±0.00 4	0.836± 0.029	0.737 ±0.00 7	0.747 ±0.01 3	0.761 ±0.00 2	0.841 ±0.00 4	0.862 ±0.00 2	0. 78 7

are obtained from ImageMol. (.xlsx)

Supplementary Table 8: The uncertainty intervals with 95% confidence

intervals of ImageMol and VideoMol on 10 ligand-GPCR binding activity

prediction datasets. $UI(\cdot)$ represents the uncertainty intervals and

"Improvement" represents the relative performance improvement of VideoMol

Detect		UI(RMSE)		UI(MAE)			
Dataset	ImageMol	VideoMol	Improvement	ImageMol	VideoMol	Improvement	
5HT1A	0.782±0.057	0.719±0.059	8.06%	0.629±0.048	0.550±0.046	12.56%	
5HT2A	0.816±0.109	0.810±0.102	0.74%	0.587±0.059	0.583±0.059	0.68%	
AA1R	0.718±0.062	0.662±0.068	7.80%	0.559±0.045	0.499±0.046	10.73%	
AA2AR	0.739±0.055	0.714±0.056	3.38%	0.575±0.045	0.544±0.045	5.39%	
AA3R	0.796±0.056	0.795±0.065	0.13%	0.632±0.051	0.622±0.053	1.58%	
CNR2	0.916±0.073	0.878±0.072	4.15%	0.722±0.060	0.686±0.064	4.99%	
DRD2	0.779±0.060	0.749±0.053	3.85%	0.574±0.041	0.559±0.040	2.61%	
DRD3	0.738±0.053	0.704±0.054	4.61%	0.580±0.044	0.548±0.042	5.52%	
HRH3	0.747±0.067	0.669±0.061	10.44%	0.582±0.050	0.507±0.047	12.89%	
OPRM	0.898±0.089	0.797±0.075	11.25%	0.667±0.065	0.584±0.062	12.44%	

compared to ImageMol. (.xlsx)

Supplementary Table 9: The uncertainty intervals with 95% confidence intervals of ImageMoI and VideoMoI on 11 SARS-CoV-2 viral activity prediction datasets. $UI(\cdot)$ represents the uncertainty intervals and

"Improvement" represents the relative performance improvement of VideoMol

Detect	UI(AUC)							
Dalasel	ImageMol	VideoMol	Improvement					
3CL	0.685±0.117	0.710±0.110	3.65%					
ACE2	0.658±0.133	0.763±0.112	15.96%					
hCYTOX	0.736±0.087	0.760±0.087	3.26%					
MERS-PPE_cs	0.727±0.119	0.817±0.103	12.38%					
MERS-PPE	0.720±0.082	0.799±0.0743	10.97%					
CoV1-PPE_cs	0.688±0.115	0.832±0.098	20.93%					
CoV1-PPE	0.701±0.063	0.736±0.060	4.99%					
CPE	0.646±0.084	0.736±0.077	13.93%					
Cytotox	0.729±0.051	0.760±0.054	4.25%					
AlphaLISA	0.762±0.062	0.836±0.049	9.71%					
TruHit	0.772±0.059	0.855±0.046	10.75%					

compared to ImageMol. (.xlsx)

Supplementary Table 10: Basic statistical information of 4 common targets (beta-secretase 1 [BACE1], cyclooxygenase 1 [COX-1], COX-2, prostaglandin E receptor 4 [EP4]) collected from ChEMBL database. #Train, #Val and #Test represent the numbers of train set, valid set, and test set, respectively. IC50 thresh (nM) represents the dividing value between positive and negative samples, where those below the threshold are positive samples, and those above the threshold are negative samples. #Pos and #Neg represent the number of positive samples and the number of negative samples, respectively. Imbalanced ratio reflects the degree of class imbalance, which is calculated by dividing the number of negative samples by the number of positive samples. #Tasks represents the number of binary prediction task.

	BACE1	COX-1	COX-2	EP4
#Train	5488	2737	3990	280

#Val	686	343	499	35			
#Test	686	343	499	35			
IC50 thresh (nM)	80	100	100	30			
#Pos/#Neg	2563/4297	142/3281	1006/3982	133/217			
Imbalanced ratio	0.597 0.043 0.253 0						
#Tasks	1						
Metric		ROC-	AUC				

Supplementary Table 11: The anti-BACE1 drugs with an IC50 threshold of

80 from MedChemExpress website. The cas is the unique identifier for a drug.

$(.\Lambda O \Lambda)$	(.xl	lsx)	
------------------------	---	-----	------	--

in d	name	cas	IC5 0(n	canonical smiles
1 1	BACE-1 inhibitor 2	25639 70- 92-1	1.5	C[C@H]1C[C@H]2CC(F)(F)C(N)=N[C@@]2(c2c c(NC(=O)c3cnc(OCF)cn3)ccc2F)CO1
2	BACE-1 inhibitor 1	12628 58- 14-9	56	NC1=N[C@@](c2cc(NC(=O)c3ccc(Br)cn3)ccc2F) (C(F)F)COC1
3	BACE1-IN- 13	13976 83- 26-9	2.9	COc1cnc(C(=O)Nc2ccc(F)c([C@]3(C)Cn4nc(C#N)cc4C(N)=N3)c2)cn1
4	BACE1-IN-1	13103 47- 50-2	32	C[C@]1(c2cc(NC(=O)c3ccc(C#N)cn3)ccc2F)N=C (N)OCC1(F)F
5	BACE1-IN-6	20799 45- 75-6	1.5	C[C@]1(c2cc(/C=C(\F)c3ccc(C#N)cn3)ccc2F)N= C(N)S[C@@]2(C(=O)N3CCOCC3)C[C@H]21
6	BACE1-IN-4	23611 57- 92-6	3.8	C[C@]1(c2cc(NC(=O)c3cnc(OCF)cn3)ccc2F)N=C (N)SCC12CCS(=O)(=O)CC2
7	BACE1-IN-2	13524 16- 78-4	22	C[C@]1(c2cc(NC(=O)c3ccc(C#N)cn3)ccc2F)N=C (N)CO[C@H]1C(F)(F)F
8	BACE1/2-	26710	10	C[C@@H]1C[C@H]1COC(C)(C)[C@@H]1C[C@

	IN-1	36- 34-1		H]1[C@]12CN(c3ncccn3)C[C@H]1CSC(N)=N2
9	Umibecestat	13875 60- 01-1	11	C[C@@]1(c2nc(NC(=O)c3ncc(C(F)(F)F)cc3Cl)cc c2F)CO[C@@](C)(C(F)(F)F)C(N)=N1
1 0	LY2886721	12620 36- 50-9	20. 3	NC1=N[C@@]2(c3cc(NC(=O)c4ccc(F)cn4)ccc3F) COC[C@H]2CS1
1	beta- Secretase Inhibitor IV	79703 5-11- 1	15. 6	C[C@@H](NC(=O)c1cc(C(=O)N[C@@H](Cc2ccc cc2)[C@H](O)CNC2CC2)cc(N(C)S(C)(=O)=O)c1) c1ccccc1
1 2	AMG-8718	12158 68- 94-2	0.7	CC1(C#Cc2cnc3c(c2)[C@]2(COC(N)=N2)c2cc(- c4cccnc4F)ccc2O3)COC1
1 3	PF- 06751979	18183 39- 66-0	7.3	C[C@H]1C[C@H]2CSC(N)=N[C@@]2(c2nc(NC(=O)c3ccc(OC(F)F)cn3)cs2)CO1
1 4	JNJ- 67569762	23803 13- 26-6	2.7	CCS(=O)(=O)[C@]1(C)CC[C@@](CF)(c2cc(NC(=O)c3cc4c(cn3)OC(F)(F)O4)ccc2F)N=C1N
1 5	NB-360	12628 57- 73-7	5	Cc1cc(C#N)cnc1C(=O)Nc1ccc(F)c([C@]2(C)CO[C@@](C)(C(F)(F)F)C(N)=N2)c1
1 6	AM-6494	18742 32- 80-0	0.4	C#CCOc1cnc(C(=O)Nc2cc(F)c(F)c([C@@]3(C)N =C(N)S[C@@]4(COC)C[C@H]43)c2)cn1

Supplementary Table 12: The anti-COX-1 drugs with an IC50 threshold of

100 from MedChemExpress website. The cas is the unique identifier for a

drug. (.xlsx)

in de x	name	cas	IC50 (nM)	canonical smiles
1	Indomethacin	53-86- 1	18	COc1ccc2c(c1)c(CC(=O)O)c(C)n2C(=O)c1cc c(Cl)cc1
2	Indomethacin sodium	7681- 54-1	18	COc1ccc2c(c1)c(CC(=O)[O-])c(C)n2C(=O)c1ccc(Cl)cc1.[Na+]
3	Indomethacin sodium hydrate	74252 -25-8	18	$COc1ccc2c(c1)c(CC(=0)OC/C=C(\C)CC/C=C(\C)CC/C=C(\C)CCC=C(C)C)c(C)n2C(=0)c1ccc(Cl)cc1$
4	Diclofenac	15307 -86-5	4	O=C(O)Cc1ccccc1Nc1c(Cl)cccc1Cl
5	Diclofenac potassium	15307 -81-0	4	O=C([O-])Cc1ccccc1Nc1c(Cl)cccc1Cl.[K+]
6	Diclofenac diethylamine	78213 -16-8	4	CCNCC.O=C(O)Cc1ccccc1Nc1c(Cl)cccc1Cl
7	Diclofenac Sodium	15307 -79-6	4	O=C([O-])Cc1ccccc1Nc1c(Cl)cccc1Cl.[Na+]
8	Mofezolac	78967	1.44	COc1ccc(-c2noc(CC(=O)O)c2-

		-07-4		c2ccc(OC)cc2)cc1
9	Tenidap	12021	30	NC(=O)N1C(=O)/C(=C(O)c2cccs2)c2cc(CI)c
		0-48-2		cc21
10	Tenidap-d3	14274	30	NC(=O)N1C(=O)C(C(=O)c2cccs2)c2cc(CI)cc
		1-60-4		c21
11	SC-560	18881	9	COc1ccc(-n2nc(C(F)(F)F)cc2-
		7-13-2		c2ccc(CI)cc2)cc1
12	Lornoxicam	70374	5	CN1C(C(=O)Nc2ccccn2)=C(O)c2sc(Cl)cc2S1
		-39-9		(=O)=O
13	S-(+)-	22161	1.9	C[C@H](C(=O)O)c1cccc(C(=O)c2ccccc2)c1
	Ketoprofen	-81-5		
14	FR122047	13071	28	COc1ccc(-c2nc(C(=O)N3CCN(C)CC3)sc2-
		7-51-0		c2ccc(OC)cc2)cc1.Cl
15	Ketorolac	74103	20	NC(CO)(CO)CO.O=C(c1ccccc1)c1ccc2n1CC
	tromethamine	-07-4		C2C(=O)O
	salt			
16	Eltenac	72895	30	O=C(O)Cc1cscc1Nc1c(Cl)cccc1Cl
		-88-6		
17	Bromfenac	91714	5.56	Nc1c(CC(=O)O)cccc1C(=O)c1ccc(Br)cc1
		-94-2		
18	Bromfenac	91714	5.56	Nc1c(CC(=O)[O-
	sodium	-93-1])cccc1C(=O)c1ccc(Br)cc1.[Na+]
19	Ketoprofen	22071	2	CC(C(=O)O)c1cccc(C(=O)c2ccccc2)c1
		-15-4		
20	Ketoprofen	57469	2	CC(C(=O)O)c1cccc(C(=O)c2ccccc2)c1.NCC
	(RP-19583)	-78-0		CC[C@H](N)C(=O)O
	lysinate			
21	Ketorolac	74103	20	O=C(c1ccccc1)c1ccc2n1CCC2C(=O)O
		-06-3		
22	Ketorolac	16710	20	O=C(c1ccccc1)c1ccc2n1CCC2C(=O)O.[CaH
	hemicalcium	5-81-9		2]

Supplementary Table 13: The anti-COX-2 drugs with an IC50 threshold of

100 from MedChemExpress website. The cas is the unique identifier for a

drug. (.xlsx)

in	name	cas	IC5	canonical smiles
de			0(n	
х			M)	
1	COX-2-IN-28	24135	54	CSc1nc2cccc2n1-
		65-18-		c1csc(NCC(C)=NN=c2scc(-
		9		c3ccc(C)cc3)n2-c2ccccc2)n1
2	COX-2-IN-26	24135	67	CSc1nc2cccc2n1-
		65-19-		c1csc(NCC(C)=NN=C2SCC(=O)N2c2ccc
		0		cc2)n1
3	COX-2-IN-20	25294	17.	COC(=O)c1nc(CCI)n(-c2ccc(F)cc2)n1
		51-43-	9	
		0		
4	COX-2-IN-21	25196	39	COc1cc(C2CC(c3cccc(-

		31-11- 7		n4cnnn4)c3)=NN2C(C)=O)cc(OC)c1OC
5	COX-2/15-LOX-IN-1	24135 65-15-	75	CSc1nc2cccc2n1- c1csc(NCC(C)=NNC(=S)Nc2ccccc2)n1
6	COX-2-IN-17	6 24113 90-10- 6	20	COC(=O)[C@@H](N)Cc1cn(- c2nc(Cl)nc(N3CCCCC3)n2)c2ccccc12
7	COX-2/5-LOX-IN-2	24103 84-59- 5	10	NS(=O)(=O)c1ccc(-n2nc(C(=O)O)cc2- c2cc3ccccc3s2)cc1
8	Diclofenac	15307 -86-5	1.3	O=C(O)Cc1ccccc1Nc1c(Cl)cccc1Cl
9	Diclofenac potassium	15307 -81-0	1.3	O=C([O-])Cc1ccccc1Nc1c(Cl)cccc1Cl.[K+]
10	Diclofenac diethylamine	78213 -16-8	1.3	CCNCC.O=C(O)Cc1ccccc1Nc1c(Cl)cccc 1Cl
11	Diclofenac Sodium	15307 -79-6	1.3	O=C([O-])Cc1ccccc1Nc1c(Cl)cccc1Cl.[Na+]
12	Rofecoxib	16201 1-90-7	26	CS(=O)(=O)c1ccc(C2=C(c3ccccc3)C(=O)OC2)cc1
13	Valdecoxib	18169 5-72-7	5	Cc1onc(-c2ccccc2)c1- c1ccc(S(N)(=O)=O)cc1
14	Indomethacin (Indometacin) sodium	7681- 54-1	26	COc1ccc2c(c1)c(CC(=O)[O-])c(C)n2C(=O)c1ccc(CI)cc1.[Na+]
15	Indomethacin	53-86- 1	26	COc1ccc2c(c1)c(CC(=O)O)c(C)n2C(=O) c1ccc(Cl)cc1
16	Anti-inflammatory agent 8	11039 20-19- 9	0.0 9	Cc1c(C(=O)NNC(=S)Nc2cccc2)sc2nc3c cccc3n12
17	Indomethacin (Indometacin) sodium hydrateis	74252 -25-8	26	COc1ccc2c(c1)c(CC(=O)OC/C=C(\C)CC/ C=C(\C)CCC=C(C)C)c(C)n2C(=O)c1ccc(Cl)cc1
18	SC-58125	16205 4-19-5	40	CS(=O)(=O)c1ccc(-n2nc(C(F)(F)F)cc2- c2ccc(F)cc2)cc1
19	S-2474	15808 9-95-3	11	CCN1CC/C(=C\c2cc(C(C)(C)C)c(O)c(C(C)(C)C)c2)S1(=O)=O
20	FR-188582	18969 9-82-9	17	CS(=O)(=O)c1ccc(-c2cc(CI)nn2- c2ccccc2)cc1
21	DuP-697	88149 -94-4	10	CS(=O)(=O)c1ccc(-c2cc(Br)sc2- c2ccc(F)cc2)cc1
22	Celecoxib	16959 0-42-5	40	Cc1ccc(-c2cc(C(F)(F)F)nn2- c2ccc(S(N)(=O)=O)cc2)cc1
23	Indomethacin farnesil	85801 -02-1	26	COc1ccc2c(c1)c(CC(=O)OCC=C(C)CCC =C(C)CCC=C(C)C)c(C)n2C(=O)c1ccc(Cl)cc1
24	Lornoxicam	70374 -39-9	8	CN1C(C(=O)Nc2cccn2)=C(O)c2sc(Cl)c c2S1(=O)=O
25	Tilmacoxib	18020 0-68-4	85	Cc1nc(C2CCCC2)c(- c2ccc(S(N)(=O)=O)c(F)c2)o1
26	S-(+)-Ketoprofen	22161 -81-5	27	C[C@H](C(=O)O)c1cccc(C(=O)c2ccccc2)c1

27	SC57666	15895 9-32-1	26	CS(=O)(=O)c1ccc(C2=C(c3ccc(F)cc3)C CC2)cc1
28	Eltenac	72895 -88-6	30	O=C(O)Cc1cscc1Nc1c(Cl)cccc1Cl
29	Bromfenac	91714 -94-2	7.4 5	Nc1c(CC(=O)O)cccc1C(=O)c1ccc(Br)cc1
30	Bromfenac sodium	91714 -93-1	7.4 5	Nc1c(CC(=O)[O-])cccc1C(=O)c1ccc(Br)cc1.[Na+]
31	Desmethyl Celecoxib	17056 9-87-6	32	NS(=O)(=O)c1ccc(-n2nc(C(F)(F)F)cc2- c2ccccc2)cc1
32	Imrecoxib	39568 3-14-4	18	CCCN1CC(c2ccc(S(C)(=O)=O)cc2)=C(c 2ccc(C)cc2)C1=O
33	Fenofibric acid	42017 -89-0	48	CC(C)(Oc1ccc(C(=O)c2ccc(Cl)cc2)cc1)C (=O)O
34	Thioflosulide	15820 5-05-1	2.3	CS(=O)(=O)Nc1cc2c(cc1Sc1ccc(F)cc1F) C(=O)CC2
35	Ketoprofen	22071 -15-4	26	CC(C(=O)O)c1cccc(C(=O)c2ccccc2)c1

Supplementary Table 14: The anti-EP4 drugs with an IC50 threshold of 30

from MedChemExpress website. The cas is the unique identifier for a drug.

(.xlsx)

in de	name	cas	IC50 (nM)	canonical smiles
Х				
1	EP4 receptor	228725	6.1	C/C=C/c1nnn(Cc2ccc(C(F)(F)F)cc2)c1C(=O)N
	antagonist 1	9-07-6		[C@@H](C)c1ccc(C(=O)O)cc1
2	EP4 receptor	196531	7.8	CC(C)NC(=O)c1ccc2c(c1)[C@]1(CCO2)C[C
	antagonist 2	6-82-8		@H]1C(=O)Nc1cc(C#N)ccc1CCCC(=O)O
3	BAY-1316957	161326	15.3	CCn1c2ccc(C)cc2c2cc(-
		4-40-6		c3nc4c(C)c(C(=O)O)ccc4n3CCOC)ccc21
4	TP-16	233297	2.1	C[C@H](NC(=O)c1c(Cc2ccc(F)cc2)sc2c1CC
		2-26-4		OC2)c1ccc(C(=O)O)cc1
5	Palupiprant	136948	13.5	C[C@H](NC(=O)c1c(C(F)F)nn(C)c1Oc1cccc(
		9-71-3		C(F)(F)F)c1)c1ccc(C(=O)O)cc1
6	CJ-42794	847728	10	C[C@H](NC(=O)c1cc(Cl)ccc1Oc1ccc(F)cc1)c
		-01-2		1ccc(C(=O)O)cc1
7	MK-2894	100603	2.5	Cc1sc(C)c(C(=O)NC2(c3ccc(C(=O)O)cc3)CC
		6-87-8		2)c1Cc1ccc(C(F)(F)F)cc1
8	MK-2894	100603	2.5	Cc1sc(C)c(C(=O)NC2(c3ccc(C(=O)O)cc3)CC
	sodium salt	6-88-9		2)c1Cc1ccc(C(F)(F)F)cc1.[NaH]

Supplementary Table 15: The virtual screening on external BACE1 valiation

set using ImageMol and VideoMol. imagemol_probs and videomol_probs

represent the predicted probabilities of anti-BACE1 given by ImageMol and

index	Drug Name	imagemol_probs	videomol_probs
1	BACE-1 inhibitor 2	0.8419358	0.9690067
2	BACE-1 inhibitor 1	0.7290269	0.9868666
3	BACE1-IN-13	0.93444705	0.9687921
4	BACE1-IN-1	0.7387245	0.9473744
5	BACE1-IN-6	0.9090035	0.9966139
6	BACE1-IN-4	0.581801	0.9993352
7	BACE1-IN-2	0.5748341	0.99737775
8	BACE1/2-IN-1	0.41264746	0.9997812
9	Umibecestat	0.7080996	0.9896259
10	LY2886721	0.80451745	0.92877966
11	beta-Secretase Inhibitor IV	0.036601424	0.16687886
12	AMG-8718	0.9256922	0.99652356
13	PF-06751979	0.31388915	0.57966435
14	JNJ-67569762	0.8896324	0.9999232
15	NB-360	0.87558085	0.9982304
16	AM-6494	0.9452854	0.99410605

VideoMol, respectively. (.xlsx)

Supplementary Table 16: The virtual screening on external COX-1 valiation set using ImageMoI and VideoMoI. imagemol_probs and videomol_probs represent the predicted probabilities of anti-COX-1 given by ImageMoI and

VideoMol, respectively. (.xlsx)

index	Drug Name	imagemol_probs	videomol_probs
1	Indomethacin	0.01401831	5.10E-06
2	Indomethacin sodium	0.013258358	7.33E-06
3	Indomethacin sodium hydrate	0.016143031	0.000184664
4	Diclofenac	0.01718534	0.9793444
5	Diclofenac potassium	0.03288859	0.001633527
6	Diclofenac diethylamine	0.04155041	0.862361
7	Diclofenac Sodium	0.02927339	0.001424704
8	Mofezolac	0.33693957	0.2581888
9	Tenidap	0.13598277	0.008560411
10	Tenidap-d3	0.109688826	0.00995435
11	SC-560	0.4061602	0.9985505
12	Lornoxicam	0.06643499	0.000148638
13	S-(+)-Ketoprofen	0.16169016	0.9383299
14	FR122047	0.030881904	0.59208053

15	Ketorolac tromethamine salt	0.015761768	0.18289186
16	Eltenac	0.016934287	0.021998327
17	Bromfenac	0.039675813	0.9789971
18	Bromfenac sodium	0.057841644	0.48522508
19	Ketoprofen	0.16769184	0.15350829
20	Ketoprofen (RP-19583) lysinate	0.091650955	0.07088906
21	Ketorolac	0.12183086	0.9987212
22	Ketorolac hemicalcium	0.11995495	0.9982821

Supplementary Table 17: The virtual screening on external COX-2 valiation set using ImageMol and VideoMol. imagemol_probs and videomol_probs represent the predicted probabilities of anti-COX-2 given by ImageMol and

inde	Drug Name	imagemol_prob	videomol_prob
х		S	S
1	COX-2-IN-28	0.71353495	0.99945635
2	COX-2-IN-26	0.2967862	0.52510965
3	COX-2-IN-20	0.000742534	0.000186789
4	COX-2-IN-21	0.008292489	1.03E-06
5	COX-2/15-LOX-IN-1	0.66978335	0.5747041
6	COX-2-IN-17	0.20885414	0.9999974
7	COX-2/5-LOX-IN-2	0.24981825	0.81430477
8	Diclofenac	0.13238531	0.057505697
9	Diclofenac potassium	0.20137852	0.53897834
10	Diclofenac diethylamine	0.016165184	0.48384362
11	Diclofenac Sodium	0.14288409	0.508286
12	Rofecoxib	0.005311308	0.45926
13	Valdecoxib	0.2744622	0.000237122
14	Indomethacin (Indometacin) sodium	0.09831848	1.81E-05
15	Indomethacin	0.1264606	2.15E-07
16	Anti-inflammatory agent 8	0.016152615	1.40E-05
17	Indomethacin (Indometacin) sodium	0.31498575	0.00723425
	hydrateis		
18	SC-58125	0.10150733	0.000491314
19	S-2474	0.001583099	8.77E-07
20	FR-188582	0.22198991	0.008781442
21	DuP-697	0.20812099	0.0001205
22	Celecoxib	0.14900573	0.000566671
23	Indomethacin farnesil	0.29184505	0.00585067
24	Lornoxicam	0.08456622	8.87E-07
25	Tilmacoxib	0.49571124	0.4181791
26	S-(+)-Ketoprofen	0.002051125	2.42E-06

VideoMol, respectively. (.xlsx)

27	SC57666	0.087090984	0.99999297
28	Eltenac	0.016617168	0.010179955
29	Bromfenac	0.037134465	0.99999905
30	Bromfenac sodium	0.030660748	0.14692196
31	Desmethyl Celecoxib	0.2064141	0.88198847
32	Imrecoxib	0.14230609	0.9998147
33	Fenofibric acid	0.00863223	0.000214783
34	Thioflosulide	0.2516166	0.9999695
35	Ketoprofen	0.001724457	1.78E-06

Supplementary Table 18: The virtual screening on external EP4 valiation set using ImageMol and VideoMol. imagemol_probs and videomol_probs represent the predicted probabilities of anti-EP4 given by ImageMol and

VideoMol, respectively. (.xlsx)

index	Drug Name	imagemol_probs	videomol_probs	
1	EP4 receptor antagonist 1	0.09598055	0.9960939	
2	EP4 receptor antagonist 2	0.14752103	0.000257138	
3	BAY-1316957	0.14312284	0.9475602	
4	TP-16	0.44609693	0.78389543	
5	Palupiprant	0.06736643	0.007245741	
6	CJ-42794	0.09034469	0.85260254	
7	MK-2894	0.35040438	0.5237833	
8	MK-2894 sodium salt	0.39034134	0.99885285	

Supplementary Table 19: The 2,500 FDA-approved drugs from DrugBank

database. We only show partial information of the first 10 items. For full

index	DrugBank ID	Name
1	DB15444	Elexacaftor
2	DB08949	Inositol nicotinate
3	DB14568	Ivosidenib
4	DB11700	Setmelanotide
5	DB13879	Glecaprevir
6	DB13867	Fluticasone
7	DB11363	Alectinib

information, please see the xlsx file. (.xlsx)

8	DB11574	Elbasvir
9	DB11653	Bremelanotide
10	DB15982	Berotralstat

Supplementary Table 20: Virtual screening on 2,500 FDA-approved drugs.

The probs represents the probability that the drug is a BACE1 inhibitor, which are predicted by ImageMol. Grid Score calculated by Dock6.10¹³ represents the binding force between ligand and receptor. The lower the value, the stronger the binding force. The evidence represents research related to the treatment of Alzheimer's disease. We only show the first 20 items. For full information, please see the xlsx file. (.xlsx)

DrugBank ID	Name	probs	Grid Score	Rela ted?	evidence description	evidence link
DB00582	Voriconaz ole	0.893 7607	- 31.71 9074	No		
DB13345	Dihydroer gocristine	0.811 23424	- 44.29 8321	Yes	The FDA-approved natural product dihydroergocristine reduces the production of the Alzheimer's disease amyloid-β peptides	https://pub med.ncbi.n Im.nih.gov/ 26567970/
DB13878	Pibrentasv ir	0.808 61706	- 70.16 0301	Yes	A recent study reported that treatment of HCV infection with direct- acting antivirals (e.g., glecaprevir/pibrentas vir, elbasvir/grazoprevir, and ledipasvir/sofosbuvir) significantly reduces mortality risk in patients with Alzheimer's disease (AD) and related dementia	https://ww w.ncbi.nlm. nih.gov/pm c/articles/P MC895998 4/
DB06708	Lumefantri ne	0.769	- 44.58	No		

			0559			
DB11273	Dihydroer gocornine	0.763 37	- 42.26 1795	Yes	Dihydroergocornine (as the component of Ergoloid mesylates) has been used to treat dementia and age- related cognitive impairment (such as in Alzheimer disease), as well as to aid in recovery after stroke.	https://drug s.ncats.io/ drug/IK4C 1OC8NE
DB11274	Dihydro- alpha- ergocrypti ne	0.760 58465	- 44.59 3708	No		
DB08815	Lurasidon e	0.721 37386	- 41.34 9476	No		
DB00320	Dihydroer gotamine	0.714 69796	- 41.73 4951	No		
DB11828	Neratinib	0.710 19876	- 49.60 9707	Yes	Our data support further evaluation of AR12 and neratinib in neuronal cells as repurposed treatments for AD.	https://ww w.ncbi.nlm. nih.gov/pm c/articles/P MC831246 4/
DB05812	Abirateron e	0.694 22716	- 30.75 35	No		
DB11700	Setmelano tide	0.686 9522	- 61.03 2345	No		
DB11104	Sulfur hexafluori de	0.686 63824	- 11.74 7492	No		
DB11633	lsavucona zole	0.678 25085	- 38.03 2864	No		
DB09099	Somatosta tin	0.669 24506	nan	-		
DB15982	Berotralst at	0.656 5085	- 46.14 3105	No		
DB00106	Abarelix	0.653 92923	- 101.9 51157	No		
DB00007	Leuprolide	0.653 73343	- 90.47 7882	Yes	The LUCINDA trial: Leuprolide + cholinesterase inhibition to reduce neurologic decline in	https://alz- journals.on linelibrary. wiley.com/ doi/abs/10.

					Alzheimer's	1002/alz.0 38780
DB11275	Epicriptine	0.647 91554	- 43.82 4257	No		
DB06791	Lanreotide	0.639 42754	- 62.84 6352	No		
DB00921	Buprenorp hine	0.638 1763	- 35.94 207	No		

Supplementary Table 21: Virtual screening on 2,500 FDA-approved drugs.

The probs represents the probability that the drug is a BACE1 inhibitor, which are predicted by VideoMol. Grid Score calculated by Dock6.10 represents the binding force between ligand and receptor. The lower the value, the stronger the binding force. The evidence represents research related to the treatment of Alzheimer's disease. We only show the first 20 items. For full information,

DrugBank ID	Name	probs	Grid Score	Related?	evidence description	evidence link
DB15444	Elexac aftor	0.9930 2226	- 46.73 3532	No		
DB08949	Inositol nicotina te	0.9899 024	- 55.27 6123	Yes	As a result, inositol nicotinate was predicted to act on at least one anti- AD drug target yet act against AD through various mechanisms	https://pe squisa.bv salud.org /portal/re source/pt /wpr- 780222
DB14568	lvoside nib	0.9597 691	- 42.92 4538	No		
DB11700	Setmel anotide	0.9592 6934	- 61.03 2345	No		
DB13879	Glecapr evir	0.9591 8256	- 45.78	Yes	glecaprevir/pibrent asvir,	https://w ww.ncbi.

please see the xlsx file. (.xlsx)

			6842		elbasvir/grazoprevi	nlm.nih.g
					r, and	ov/pmc/a
					ledipasvir/sofosbuv	rticles/P
					ir) significantly	MC89599
					reduces mortality	84/
					risk in patients with	
					Alzheimer's	
					disease (AD) and	
					related dementia	
DB13867	Fluticas	0.9476	-	Yes	The lower	https://w
	one	4495	35.31		incidence of	ww.ncbi.
			1394		Alzheimer's	nlm.nih.g
					dementia in the	ov/pmc/a
					intranasal	rticles/P
					fluticasone	MC61103
					propionate	92/
					(Flonase) group	
					compared to the	
					Lipitor group was	
					significant	
DB11363	Alectini	0.9432	-	Yes	downregulation of	https://w
	b	152	37.98		macroautophagy	ww.scien
			465		(autophagy) plays	cedirect.c
					an essential role in	om/scien
					AD pathogenesis.	ce/article/
					Therefore,	pii/S0163
					targeting	7258220
					autophagy has	00651
					drawn considerable	
					attention as a	
					therapeutic	
					approach for the	
0044574		0.0047		Mara	treatment of AD	
DB11574	Elbasvi	0.9217	-	Yes	See Table S22	
	r	3696	65.37			
DD11652	Dramal	0.0000	7815	Nia		
DB11653	Bremei	0.9208	-	INO		
	anolide	2703	03.47			
DP15092	Porotrol	0.0197	/4/4	No		
DD15302	stat	1/15	16 11	NO		
	5101	4415	3105			
DB06636	Isavuco	0 9137	-	No		
DB00000	nazoniu	141	68 28	NO		
	m		4996			
DB06663	Pasireo	0.9129	-	No		
	tide	874	63.45			
			9614			
DB00115	Cyanoc	0.9082	-	Yes	See Table S22	
	obalami	298	75.67			
	n		0044			
DB11828	Neratini	0.9022	-	Yes	Neratinib as a	https://w
	b	543	49.60		Potential	ww.emjre
			9707		Therapeutic for	views.co

					Mutant RAS and Osimertinib-	m/flagshi p-
					Resistant Tumours	journal/ar ticle/nerat
						inib-as-a-
						potential-
						ic-for-
						mutant-
						ras-and-
						osimertini h-
						resistant-
						tumours-
		0.0004			0 7 1 000	j190322/
DB11842	Angiote	0.8821	-	Yes	See Table S22	
		3290	1951			
DB12457	Rimege	0.8742	-	No		
	pant	169	306			
DB00644	Gonad	0.8652	-	Yes	See Table S22	
	orelin	2996	93.95			
		0.0004	8443		0 7 1 000	
DB15494	Edotreo	0.8631	- 79.50	Yes	See Table S22	
	gallium	429	8076			
	Ga-68		0010			
DB00520	Caspof	0.8616	-	Yes	In this study, we	https://pu
	ungin	219	56.14		discovered that an	bmed.nc
			3566		antifungal drug,	bi.nlm.nih
					Laspotungin (LAS)	.gov/337 22677/
					addregation	220111
					inhibitor that	
					displays	
					significantly	
					reduced toxicity	
					AD.	
DB09065	Cobicis	0.8536	-	No		
	tat	151	67.50			
			1389			

Supplementary Table 22: Screening results of Top 6 approved drugs with the best grid score from DrugBank. DrugID corresponds to the drug id in DrugBank. Grid score represents binding ability between ligand and BACE1-4IVS receptor calculated by Dock6.10 and the smaller value denotes the better score. The evidence represents research related to the treatment of

No.	Drugl	Name	Grid	evidence description	evidence
	D		Score	5	link
1	DB00 644	Gona doreli n	- 93.958 443	Drugs used in intervention or treatment: Drug: GnRH, gonadorelin acetate	https://clini caltrials.go v/ct2/show/ NCT04390 646
2	DB11 842	Angiot ensin II	- 84.811 951	Recently, emerging preclinical and clinical evidence has associated the brain renin angiotensin system (RAS) to AD pathology. Accumulating evidence has additionally identified antihypertensive medications targeting the RAS, particularly angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs), to delay AD onset and progression.	https://pub med.ncbi.n lm.nih.gov/ 32700176/
3	DB15 494	Edotr eotide galliu m Ga- 68	- 78.598 076	Imaging tools of β-amyloid (Aβ) plaques are necessary for clinical and neuropsychological characteristics in AD. Gallium-68 is a promising radionuclide for in vivo imaging of β- amyloid plaques because it is easily produced by a generator.	https://ope nmedscien ce.com/gal lium-68- radiotracer s-for- alzheimers -plaque- imaging/
4	DB00 115	Cyan ocoba Iamin	- 75.670 044	Here we demonstrate that BACE (β - secretase), as well as PS1, is regulated by methylation and that the reduction of folate and vitamin B12 in culture medium can cause a reduction of SAM levels with consequent increase in presenilin1 and BACE levels and with increase in A β production.	https://scie ncedirect.c om/scienc e/article/ab s/pii/S1044 743104002 209
5	DB06 636	lsavu conaz onium	- 68.284 996	-	-
6	DB11 574	Elbas vir	- 65.377 815	Several studies have reported that patients with chronic hepatitis C virus (HCV) infection tend to exhibit cognitive impairment and may increase the risk for dementia. A recent study reported that treatment of HCV infection with direct-acting antivirals (e.g., glecaprevir/pibrentasvir,	https://ww w.ncbi.nlm. nih.gov/pm c/articles/P MC895998 4/

Alzheimer's disease. (.xlsx)

	elbasvir/grazoprevir, and ledipasvir/sofosbuvir) significantly reduces mortality risk in patients with Alzheimer's disease (AD) and related dementia.	

Supplementary Table 23: Evidence of key structures belonging to BACE-1

inhibitors. (.xlsx)

N o	key structure	evidence title	evidence description	evidence link
1	Fluorine	Development and Structural Modification of BACE1 Inhibitors	In addition, the introduction of a fluorine atom in the side chain on the phenyl could improve BACE1 inhibitory activities.	https://www.m dpi.com/1420 -3049/22/1/4
2	1,2,4- Oxadiazole	Design and synthesis of potent β- secretase (BACE1) inhibitors with P1' carboxylic acid bioisosteres	On the other hand, inhibitors 16–21, which contained one or two tetrazole rings, or acidic heterocycles (5-oxo- 1,2,4-oxadiazole, 5-oxo- 1,2,4-thiadiazole, and 2- thioxo-1,3,4-oxadiazole)18, 19 at P_1^' position, respectively, showed significantly higher BACE1 inhibitory activities than their lead compound 1.	https://www.s ciencedirect.c om/science/ar ticle/pii/S0960 894X0600163 6
3	Chromene	BACE-1 inhibitory activities of new substituted phenyl- piperazine coupled to various heterocycles:Ch romene, coumarin and quinoline	There is some latitude with regard to functional group identity (coumarin, chromene and quinoline) that allows further refinement of inhibitory potency relative to b-secretase (BACE-1).	https://www.s ciencedirect.c om/science/ar ticle/pii/S0960 894X0501633 1?via%3Dihu b
4	Pyridine	Aminoimidazole s as Potent and Selective Human β- Secretase (BACE1) Inhibitors	The addition of either a pyridine or a pyrimidine group on the scaffold of 3 in a manner such that the group extends and occupies the S3 region of the BACE1 binding pocket, not previously accessed with 3, has	https://pubs.a cs.org/doi/full/ 10.1021/jm90 06752

			significantly contributed to the ligand's potency.	
5	Cyclopentan e	Stereoselective Synthesis of Constrained Oxacyclic Hydroxyethylen e Isosteres of Aspartic Protease Inhibitors: Aldol and Mukaiyama Aldol Methodologies for Branched Tetrahydrofuran 2-Carboxylic Acids	The carbocyclic analogue of 21c in which the tetrahydrofuran ring is replaced by a cyclopentane and a cyclopentanone are low nanomolar inhibitors of BACE1. The substantial loss of activity when a cyclopentane is replaced by an oxacyclic analogue might be the result of repulsive interactions of the ring oxygen atom with amide carbonyls in the active site, thus deviating from optimal conformations for binding.	https://pubs.a cs.org/doi/full/ 10.1021/jo05 0749y
6	Tetrazole	Design and synthesis of potent β- secretase (BACE1) inhibitors with P1' carboxylic acid bioisosteres	Among them, tetrazole ring- containing compounds, KMI- 570 (IC50 = 4.8 nM) and KMI-684 (IC50 = 1.2 nM), exhibited significantly potent BACE1 inhibitory activities.	https://www.s ciencedirect.c om/science/ar ticle/pii/S0960 894X0600163 6

Supplementary Table 24: Effect of pre-training strategy on 6 regression datasets (GPCRs) with balanced scaffold split. w/o pretrain means no pretrained VideoMol. video-aware, direction-aware, and chemical-aware represent pre-training VideoMol using only video-aware strategy, directionaware strategy, and chemical-aware strategy, respectively. & represents the combination of multiple pre-training tasks. All means and standard deviations

are reported through three independent runs with random seeds of 0, 1, 2.
are reported through three independent runs with random seeds of 0, 1, 2.

	5HT1A		AA	1R	AA2AR	
strategy	RMSE	MAE	RMSE	MAE	RMSE	MAE
w/o pretrain	0.993±0.001	0.804±0.002	0.919±0.006	0.755±0.008	1.073±0.01	0.882±0.013
video-aware	0.772±0.011	0.604±0.009	0.709±0.007	0.783±0.010	0.847±0.002	0.651±0.002

direction-aware	0.871±0.002	0.691±0.004	0.821±0.01	0.652±0.013	0.875±0.008	0.701±0.012
chemical-aware	0.736±0.012	0.566±0.014	<u>0.662±0.018</u>	0.494±0.015	<u>0.716±0.001</u>	0.562±0.002
chemical_direction	0.718±0.002	0.559±0.004	0.706±0.005	0.516±0.008	0.724±0.008	0.568 ± 0.003
chemical_video	<u>0.716±0.010</u>	<u>0.553±0.010</u>	0.670±0.007	0.511±0.005	0.719±0.013	<u>0.553±0.014</u>
direction_video	0.774±0.014	0.603±0.015	0.730±0.004	0.553±0.002	0.865±0.011	0.672±0.005
VideoMol	0.708±0.017	0.547±0.015	0.655±0.007	<u>0.496±0.006</u>	0.712±0.011	0.543±0.005
	CNR2		DR	2D2	HR	KH3
strategy	RMSE	MAE	RMSE	MAE	RMSE	MAE
w/o pretrain	1.216±0.012	1.009±0.008	0.980±0.001	0.782±0.001	0.819±0.001	0.631±0.002
video-aware	0.978±0.025	0.782±0.010	0.818±0.009	0.602±0.009	0.732±0.008	0.556±0.009
direction-aware	1.024±0.01	0.842±0.008	0.903±0.010	0.700±0.009	0.759±0.005	0.575±0.007
chemical-aware	0.890±0.004	0.698±0.002	0.759±0.003	0.565±0.003	<u>0.669±0.010</u>	<u>0.512±0.010</u>
chemical_direction	0.899±0.008	0.701±0.005	0.773±0.017	0.579±0.007	0.683±0.001	0.514±0.001
chemical_video	<u>0.874±0.012</u>	<u>0.686±0.013</u>	<u>0.745±0.012</u>	0.555±0.013	0.686±0.003	0.526±0.004
direction_video	0.997±0.025	0.789±0.021	0.832±0.005	0.615±0.007	0.734±0.006	0.559±0.002
VideoMol	0.864±0.005	0.679±0.010	0.742±0.003	<u>0.556±0.005</u>	0.668±0.008	0.506±0.002

Supplementary Table 25: The performance of molecular fingerprint on 10

GPCR datasets with balanced scaffold split. EnsembleFP-MLP indicates the

performance of integrating traditional molecular fingerprints in CAP and

training an MLP. VideoMolFeat-MLP represents the performance of using

VideoMol to extract molecular	features and	train an	MLP.	(.xlsx)
-------------------------------	--------------	----------	------	---------

	1. 5HT1A		2. 5HT2A		3. AA1R					
	RMSE	MAE	RMSE	MAE	RMSE	MAE				
EnsembleFP-MLP	1.030±0.000	0.837±0.001	1.207±0.005	0.975±0.006	0.915±0.005	0.734±0.005				
VideoMolFeat-MLP	0.818±0.031	0.653±0.033	0.910±0.014	0.695±0.017	0.838±0.007	0.647±0.005				
			continue ——							
	4. AA	A2AR	5. A	A3R	6. C	NR2				
	RMSE	MAE	RMSE	MAE	RMSE	MAE				
EnsembleFP-MLP	1.076±0.003	0.871±0.002	0.991±0.001	0.791±0.002	1.228±0.004	1.027±0.002				
VideoMolFeat-MLP	0.850±0.005	0.691±0.004	0.862±0.014	0.695±0.012	1.003±0.070	0.789±0.066				
	continue									
	7. D	RD2	8. DRD3		9. HRH3					
	RMSE	MAE	RMSE	MAE	RMSE	MAE				
EnsembleFP-MLP	0.979±0.000	0.785±0.001	1.096±0.004	0.933±0.002	0.888±0.003	0.681±0.002				
VideoMolFeat-MLP	0.885±0.003	0.660±0.002	0.837±0.012	0.663±0.011	0.741±0.001	0.578±0.002				
	continue									
	10. OPRM									
	RMSE	MAE								
EnsembleFP-MLP	1.023±0.006	0.815±0.002	1							
VideoMolFeat-MLP	0.875±0.004	0.672±0.003								

Supplementary Table 26: Effect of frame number on VideoMol on 6 regression datasets (GPCRs) with balanced scaffold split. #frame indicates the number of frames. All means and standard deviations are reported

	5HT1A		AA	1R	AA2AR		
#frame	RMSE	MAE	RMSE	MAE	RMSE	MAE	
5	0.873±0.023	0.693±0.012	0.847±0.013	0.656±0.025	0.824±0.009	0.659±0.012	
10	0.800±0.025	0.624±0.017	0.773±0.010	0.584±0.006	0.766±0.002	0.609 ± 0.005	
20	0.765±0.026	0.591±0.010	0.728±0.003	0.546±0.005	0.744±0.005	0.586 ± 0.005	
30	0.742±0.014	0.573±0.011	0.704±0.004	0.527±0.001	0.736±0.019	0.570±0.013	
60	0.708±0.017	0.547±0.015	0.655±0.007	0.496±0.006	0.712±0.011	0.543±0.005	
	CN	IR2	DRD2		HRH3		
#frame	RMSE	MAE	RMSE	MAE	RMSE	MAE	
5	0.991±0.032	0.811±0.027	0.875±0.016	0.660±0.012	0.733±0.017	0.567±0.009	
10	0.950±0.032	0.762±0.039	0.822±0.014	0.620±0.003	0.696±0.013	0.540±0.014	
20	0.910±0.016	0.721±0.011	0.792±0.001	0.600±0.004	0.679±0.019	0.521±0.014	
30	0.890±0.013	0.700±0.009	0.769±0.005	0.580±0.003	0.686±0.019	0.531±0.015	

through three independent runs with random seeds of 0, 1, 2.

Supplementary Table 27: The performance of different video generation

	1. 5HT1A		2.5	HT2A	3. AA1R					
	RMSE	MAE	RMSE	MAE	RMSE	MAE				
Openbabel	0.733±0.009	0.562±0.006	0.796±0.004	0.597±0.003	0.666±0.014	0.510±0.011				
DeepChem	0.718±0.006	0.557±0.009	0.790±0.016	0.595±0.019	0.677±0.014	0.504±0.010				
RDKit	0.708±0.017	0.547±0.015	0.775±0.017	0.578±0.009	0.655±0.007	0.496±0.006				
		•	—— continue —			•				
	4. AA	A2AR	5. A	A3R	6. CNR2					
	RMSE	MAE	RMSE	MAE	RMSE	MAE				
Openbabel	0.705±0.004	0.548±0.008	0.779±0.015	0.618±0.009	0.903±0.018	0.714±0.012				
DeepChem	0.703±0.005	0.558±0.004	0.798±0.019	0.620±0.015	0.896±0.013	0.708±0.012				
RDKit	0.712±0.011	0.543±0.005	0.786±0.006	0.617±0.004	0.864±0.005	0.679±0.010				
	continue									
	7. D	RD2	8. DRD3		9. HRH3					
	RMSE	MAE	RMSE	MAE	RMSE	MAE				
Openbabel	0.763±0.018	0.562±0.009	0.745±0.005	0.580±0.003	0.679±0.004	0.524±0.004				
DeepChem	0.745±0.005	0.551±0.002	0.728±0.014	0.556±0.008	0.666±0.005	0.505±0.002				
RDKit	0.742±0.003	0.556±0.005	0.715±0.014	0.554±0.012	0.668±0.008	0.506±0.002				

source on 10 GPCR datasets with balanced scaffold split. (.xlsx)

—— continue ——								
	10. OPRM		Mean					
	RMSE	MAE	RMSE	MAE				
Openbabel	0.776±0.008	0.590±0.001	0.755±0.068	0.581±0.057				
DeepChem	0.825±0.008	0.607±0.009	0.755±0.072	0.576±0.060				
RDKit	0.795±0.015	0.579±0.011	0.742±0.064	0.565±0.053				

Supplementary Table 28: The ability of VideoMol to distinguish different

conformers. The percentile interval refers to sorting all RMSD values from

small to large and selecting the value corresponding to the percentile interval.

(.xlsx)

percentile interval in	5HT1A	5HT2A	AA1R	AA2A R	AA3R	CNR2	DRD2	DRD3	HRH3	OPRM
RMSD										
0-10	0.692	0.749	0.799	0.803	0.823	0.769	0.729	0.701	0.740	0.730
10-20	0.724	0.726	0.786	0.784	0.771	0.747	0.733	0.740	0.721	0.740
20-30	0.741	0.747	0.755	0.764	0.772	0.736	0.750	0.779	0.690	0.708
30-40	0.726	0.733	0.749	0.747	0.752	0.735	0.748	0.795	0.703	0.716
40-50	0.735	0.745	0.759	0.772	0.758	0.723	0.760	0.775	0.709	0.712
50-60	0.703	0.744	0.765	0.761	0.760	0.710	0.743	0.785	0.706	0.725
60-70	0.708	0.733	0.742	0.756	0.745	0.696	0.748	0.777	0.698	0.727
70-80	0.663	0.748	0.753	0.743	0.766	0.712	0.715	0.775	0.700	0.716
80-90	0.631	0.702	0.745	0.753	0.752	0.709	0.707	0.723	0.669	0.680
90-100	0.518	0.625	0.654	0.702	0.733	0.680	0.615	0.631	0.585	0.658
0-100 (all data)	0.684	0.725	0.751	0.758	0.763	0.722	0.725	0.748	0.692	0.711

Supplementary Table 29: Details of the molecular fingerprints used in

No.	Type of fingerprint	Name	Dimension
1		ECFP0	1024
2		ECFP2	1024
3		ECFP4	1024
4	Circular-based	ECFP6	1024
5		FCFP2	1024
6		FCFP4	1024
7		FCFP6	1024
8	Path based	RDK5	1024
9	Faul-based	RDK6	1024

chemical-aware pretraining task.

10		RDK7	1024
11		HashAP	1024
12		HashTT	1024
13	Substructure based	MACCS	167
14	Substructure-based	Avalon	1024
15		LECFP4	16384
16		LECFP6	16384
17	Longer version-based	LFCFP4	16384
18		LFCFP6	16384
19		LAvalon	16384
20	Pharmacophore-based	TPATF	2692
21	Physicochemistry-based	RDKDes	208

Supplementary Table 30: The parameter details in the pre-training phase.

Model details					
Backbone of VideoMol	12-layer Vision Transformer with 16 patches				
Axis Classifier	2 layers of fully connected neural network, where the				
Rotation Classifier	first layer has a Softplus activation function and the				
Angle Classifier	number of output neurons in the last layer is task-				
Chemical Classifier	dependent				
	Training parameters				
Temperature	0.1				
Learning Rate	0.01				
Batch Size	256				
Momentum	0.9				
Weight Decay	1.00E-04				
Learning Rate Decay	Linear				
Video Size	60×3×224×224				
Training Step	>400k				
Validation split	random split with 90% training set and 10% validation set				
Training Platform					
CPU	Intel 6248R 48C@3.0GHz				
GPU	4 * NVIDIA TESLA A100 (40G)				

Supplementary Table 31: Basic statistical information of 10 kinases and 10 GPCRs. #Molecules represents the number of molecules. #Tasks represents the number of binary prediction task. Target represents the type of target, such as kinases and GPCRs.

Dataset	#Molecules	#Tasks	Target	Metric	Туре			
ВТК	106							
CDK4- cyclinD3	80							
EGFR	105							
FGFR1	108							
FGFR2	109	1	Kinases	ROC-AUC	Classification			
FGFR3	107							
FGFR4	107							
FLT3	110							
KPCD3	109							
MET	105							
AA1R	3408							
5HT1A	3568							
5HT2A	3079							
AA2AR	3866	1	GPCRs	RMSE and MAE	Regression			
AA3R	3306							
CNR2	3079							
DRD2	5771							

DRD3	3945
HRH3	3206
OPRM	2977

Supplementary Table 32: Basic statistical information of MoleculeNet

benchmark datasets. #Molecules represents the number of molecules.

Dataset	#Molecules	#Tasks	Property	Metric	Туре
BBBP	2039	1	Pharmacology		
Tox21	7831	12	Pharmacology		
SIDER	1427	27	Pharmacology	ROC-	Classification
HIV	41127	1	Dianhyaisa	AUC	Classification
BACE	1513	1	Biophysics		
ToxCast	8575	617	Pharmacology		
FreeSolv	642	1			
ESOL	1128	1	Physical chemistry	RMSE	
Lipo	4200	1			Degreesien
QM7	6830	1			Regression
QM8	21786	12	Quantum chemistry	MAE	
QM9	133885	8			

#Tasks represent the number of binary prediction task.

Supplementary Table 33: Basic statistical information of 11 SARS-CoV-2

datasets with classification task. #Train, #Val and #Test represent the

numbers of train set, valid set, and test set, respectively. #Effects indicates how the drug influences SARS-CoV-2. #Tasks represents the number of binary prediction task.

Dataset	#Train	#Val	#Test	#Effects	#Tasks	Metric
3CL	404	87	87	Viral replication		
hCYTOX	530	114	114	Human cell toxicity		
MERS-PPE	674	145	145 145	In vitro infectivity		
MERS-PPE_cs	250	54	54		ry 1 ROC- AUC	
CoV1-PPE	1226	263	263			ROC- AUC
CoV1-PPE_cs	216	47	47			
CPE	691	148	149	Live virus infectivity		
Cytotox	1569	336	337			
ACE2	228	49	49	Viral entry		
AlphaLISA	1089	233	234			
TruHit	1175	251	252			

Supplementary Table 34: The general framework of VideoMol for fine-tuning.

Identity layer represents identity mapping.

name	description	
base model	pretrained video encoder	
dropout1	Dropout with a dropout ratio of 0 to 1	
linear1	Linear layer or Identity layer	
activator	Activator	
dropout2	Dropout with a dropout ratio of 0 to 1	
linear2	Linear layer	

Hyperparamet er	Molecular property prediction	Binding activity prediction	
dropout1	0	0	
linear1	Linear layer	[Identify layer, Linear layer]	
activator	[Gelu, Softplus, None]	None	
dropout2	[0.3, 0.5, 0.8]	[0, 0.2]	
linear2	[Identify layer, Linear layer]	[Identify layer, Linear layer]	
Learning rate	[8e-5, 3e-4, 5e-4, 8e-4, 3e-3, 5e- 3, 0.03, 0.05]	[1e-4, 5e-4, 8e-4, 1e-3, 3e-3, 5e-3, 8e-3, 1e-2, 3e-2, 5e-2, 0.1]	
Batch size	[8, 16]	[8, 16, 32, 64, 128]	
Epochs	[2, 5, 10, 30]	10~60	
Warmup ratio	0	0	
Seed	[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]	[0, 1, 2]	

Supplementary Table 35: The hyperparameters in fine-tuning of VideoMol.

Supplementary Table 36: The computational requirements in the pre-training,

fine-tuning, and screening stages. #frame/batch represents the number of

frames in a batch. #samples represents the total number of molecules.

#frame/video indicates how many frames of a video to select for inference.

(.x	lsx)
· \ '			/

(a) The computational requirements in the pre-training stage.					
#samp	#frame/b	GPU	Training time	Server	
les	atch	memory			
2	256	~37G	~9	CPU: Intel 6248R 48C@3.0GHz;	
million			hours/epoch	GPU: A100 (40G)	
	(b) The computational requirements in the fine-tuning stage.				
#samp	#frame/b	GPU	Training time	Server	
les	atch	memory			
10,00	8	2.3G	~26	CPU: 13th Gen Intel® Core™ i7-	
0			minutes/epoc	13700K	
			h	GPU: 4090 Ti	
	16	2.6G	~15		
			minutes/epoc		
			h		
	32	3.2G	~12		
			minutes/epoc		
			h		
	64	4.3G	~12		
			minutes/epoc		

			h		
	128	6.5G	~12		
			minutes/epoc		
			h		
	256	10.7G	~12		
			minutes/epoc		
			h		
	(c) The computational requirements in the screening stage.				
#samp	#frame/vi	#videos/b	inference	GPU memory	Server
les	deo	atch	time		
1 million	1	480	~9 minutes	17.7 G	CPU: 13th Gen
million	5	96	~48 minutes		13700K
	10	48	~90 minutes		GPU: 4090 Ti
	20	24	~3 hours		
	30	16	~4.5 hours		
	60	8	~9 hours		

Supplementary References

- 1. Nakata, M. & Shimazaki, T. PubChemQC project: a large-scale firstprinciples electronic structure database for data-driven chemistry. *J. Chem. Informat. Model.* **57**, 1300-1308 (2017).
- 2. Zeng, X. et al. Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework. *Nat. Mach. Intell.* **4**, 1004-1016 (2022).
- 3. Wu, Z. et al. MoleculeNet: a benchmark for molecular machine learning. *Chem. Sci.* **9**, 513-530 (2018).
- 4. Bradski, G. The opencv library. *Dr. Dobb's Journal: Software Tools for the Professional Programmer* **25**, 120-123 (2000).
- 5. Bocci, G. et al. A machine learning platform to estimate anti-SARS-CoV-2 activities. *Nat. Mach. Intell.*, 1-9 (2021).
- Gaulton, A. et al. The ChEMBL database in 2017. *Nucleic Acids Res.* 45, D945-D954 (2017).
- 7. González, A. et al. Ubiquitination regulates ER-phagy and remodelling of endoplasmic reticulum. *Nature*, 1-8 (2023).
- 8. Guo, J. et al. A tripartite rheostat controls self-regulated host plant resistance to insects. *Nature*, 1-9 (2023).
- 9. Fidelle, M. et al. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. *Science* **380**, eabo2296 (2023).
- 10. Wishart, D.S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. *Nucleic Acids Res.* **46**, D1074-D1082 (2018).
- 11. Sud, M. MayaChemTools: an open source package for computational drug discovery. *J. Chem. Informat. Model.* **56**, 2292-2297 (2016).
- 12. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. *Nature*, 1-3 (2024).
- 13. Balius, T.E., Tan, Y.S. & Chakrabarti, M. DOCK 6: Incorporating hierarchical traversal through precomputed ligand conformations to enable large-scale docking. *J. Comput. Chem.* **45**, 47-63 (2024).