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Supplemental Materials and Methods

A. Supplementary Experiment Setup

A.1 Dataset details

Pretraining Dataset

PCQM4Mv2 is a quantum chemistry dataset under the PubChemQC project’,
which include 3,378,606 molecules and their corresponding 3D structures
calculated by DFT (Density Functional Theory). Since we generate 60 video
frames per molecule, we sample 2 million molecules from them for molecular
video generation for efficiency. Ultimately, we obtain a total of 120 million

video frames for pre-training.

Drug-Target Binding Activity Prediction

Dataset. Following ImageMol?, we use 10 kinase targets in compound-kinase
binding activity prediction and use 10 G protein coupled receptors (GPCRs)
targets in ligand-GPCR binding activity prediction. 10 common biochemical
kinases datasets are selected from KinomeScan database
(https://lincs.hms.harvard.edu/kinomescan/). 10 GPCR datasets are selected
from ChEMBL database (https://www.ebi.ac.uk/chembl/), which are the top 10
most used targets. Kinases and GPCRs are a binary classification task and a
regression task, respectively. The statistical details for these datasets are

provided in Supplementary Table 31.



Molecular Property Prediction

Dataset. Molecular property prediction is a crucial step in drug discovery,
which can greatly increase the speed of virtual screening. MoleculeNet? is a
public and popular benchmark, which include a variety of drug discovery task.
Here, we choose 6 classification datasets (BBBP, Tox21, HIV, BACE, SIDER
and ToxCast) and 6 regression datasets (FreeSolv, ESOL, Lipophilicity, QM7,
QM8 and QM9) from MoleculeNet to evaluate VideoMol. These datasets
include various properties of drugs, such as pharmacology, physical chemistry,
quantum chemistry and biophysics. Especially, due to the large size of HIV,
QM8 and QM9 data, we only sample 5 frames at equal intervals to improve
training efficiency. Note that the video format in the property prediction tasks
is BGR while the other tasks are RGB, which is due to the fact that OpenCV*
uses BGR format by default. Empirically, the RGB and BGR formats have
only a small impact on the performance of VideoMol. The statistical details for

these datasets are provided in Supplementary Table 32.

Anti-SARS-CoV-2 activity prediction

Dataset. Following REDIAL-2020° and ImageMol, we use 11 anti-SARS-CoV-
2 activity datasets, which are originally available from the National Center for
the Advancement of Translational Science (NCATS) COVID-19 Portal. All of

these datasets are a binary classification task and are evaluated using ROC-



AUC metric. The statistical details for these datasets are provided in

Supplementary Table 33.

Virtual screening on BACE1, COX-1, COX-2, EP4 targets
Dataset from ChEMBL database. We first collect beta-secretase 1 (BACE1)
with 6,860 molecules, cyclooxygenase 1 (COX-1) with 3,423 molecules, COX-
2 with 4,988 molecules, prostaglandin E receptor 4 (EP4) with 350 molecules
from ChEMBL database® for training and evaluating VideoMol. Due to the
problem of non-uniform formatting of small molecules collected from the
ChEMBL database, we clean the collect molecules according to the following
guidelines: (1) we only retain those molecules with ICsq values; (2) to obtain
positive and negative samples, we use different thresholds to convert ICso to
class labels. For molecules with an ICso value below the threshold, we set the
label to 1 (active), otherwise we set the label to 0 (inactive). Regarding the
selection of the threshold, we follow two criteria: (1) Keep the imbalance rate
of positive and negative samples at around 0.6, which is obtained by dividing
the number of negative samples by the number of positive samples; (2) The
maximum threshold for ICso is 100. The statistical details for these targets are
provided in Supplementary Table 10.

External validation dataset from MedChemExpress website. We
obtain known active drugs from the MedChemExpress (MCE) website

(https://www.medchemexpress.com/) for further virtual screening. The



MedChemExpress provides a wide range of high-quality research chemicals
and biochemicals, including novel life science reagents, reference compounds
and natural compounds for laboratory and scientific purposes’™®. In details, we
collect drugs known to be active against BACE1 (16 drugs), COX-1 (22 drugs),
COX-2 (35 drugs), EP4 (8 drugs) targets and with ICsp values below the
threshold as external validation set. The details for these active drugs are
provided in Supplementary Table 11, Supplementary Table 12,
Supplementary Table 13 and Supplementary Table 14.

External validation dataset from DrugBank database. We virtually
screened potential anti-BACE1 inhibitors from 2,500 FDA-approved drugs
from the DrugBank database'®. These drugs are available online from the
DrugBank website (https://go.drugbank.com/). The data details can be found

in Supplementary Table 19.

A.2 Hyperparameters of pre-training

We describe the pre-training hyperparameters of VideoMol in Supplementary
Table 30. We use a temperature of 0.1 for video-aware pretraining and set a
learning rate of 0.01, a batch size of 256, a momentum of 0.9, and a weight
decay of 1e-4 for pre-training. To evaluate the effectiveness of the pre-training
task, we split 10% of the data for validation. Finally, we declare the training
platform. We pre-trained VideoMol over 400k steps on a server with an Intel

6248R 48C@3.0GHz CPU and 4 NVIDIA TESLA A100 (40G) GPUs, which



took about 7 days. See Supplementary Section C.3 for details of

computational requirements in pre-training.

A.3 Hyperparameters of finetuning

General framework for finetuning. We spliced a multi-layer perceptron
(MLP) after the video encoder for fine-tuning downstream tasks, and its
general architecture can be abstracted as shown in Supplementary Table 34.
In detail, we use the pre-trained video encoder as the backbone to extract the
features of molecular videos and input them into an MLP (dropout1—linear1—
activator—dropout2—linear2) for prediction.

Hyperparameter search space. We use grid search to find the best
combination of hyperparameters with different random seeds on downstream
tasks. In compound-kinase interaction and anti-SARS-CoV-2 viral activity
prediction tasks, we tune parameters independently for each seed and report
the mean and variance, which means the hyperparameters of different seeds
may be different. The specific search spaces are shown in Supplementary
Table 35. In addition to the data augmentation used by VideoMol, we also try
data augmentation from ImageMol in evaluation on 10 kinases. We run all
fine-tuning experiments on a single Tesla A100 GPU or a single GTX 4090Ti.
See Supplementary Section C.3 for details of computational requirements in

fine-tuning.



B. Supplementary Methods

B.1 Molecular fingerprint details

Considering the insufficient semantics of a single molecular fingerprint, we

selected a total of 21 fingerprints of 6 different types for comprehensive

information. We summarize all used fingerprints in Supplementary Table 29:

® Circular-based fingerprints: Circular-based fingerprints include ECFPx
(Extended Connectivity Fingerprints) and FCFPx (Functional-Class
Fingerprints), where x represents the bond length or diameter centered
on the atom. Here, we set x to 0,2,4,6 and 2,4,6 for ECFP and FCFP,
respectively. The ECFP is constructed based on the number of atomic
connections, the number of non-hydrogen chemical bonds, the atomic
number, the positive and negative of atomic charges, the absolute value
of atomic charges, and the number of connected hydrogen atoms. The
FCFP is constructed based on the information of pharmacophore, such as
hydrogen bond acceptors, hydrogen bond donors, negatively ionizable,
positively ionizable, aromatic atoms and halogens.

® Path-based fingerprints: Path-based fingerprints include RDKx (x is 5, 6
or 7), HashTT (Topological Torsion) and HashAP (Atom Pair). HashTT
and HashAP are similar, which includes information in three dimensions:
atomic number, electron number, and adjacent atom number.

® Substructure-based fingerprints: Substructure-based fingerprints include

MACCS (Molecular ACCess System) and Avalon. MACCS fingerprints
7



adopts the substructure encoded by SMARTS and obtains the molecular
fingerprint with a length of 167 according to the type of substructure.
Avalon fingerprints include features such as atomic symbol path, atom
count, augmented symbol path, augmented atom.

Longer version-based fingerprints: Longer version-based fingerprints
enrich the fingerprint information of ECFP4, ECFP6, FCFP4, FCFP6 and
LAvalon to 16384 dimensions.

Pharmacophore-based fingerprints: We use TPATF (Topological
Pharmacophore Atomic Triplets Fingerprints) as pharmacophore-based
fingerprints, which were obtained using Mayachemtools''. TPATF
describes the ligand sites necessary for molecular recognition of
macromolecules or ligands by using pharmacophore atom types such as
hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), cationizable
(PI), Anionizable (NI), Hydrophobic (H) and Aromatic (Ar).
Physicochemistry-based fingerprints: We use RDKDes (RDKit Descriptors)
as physicochemistry-based fingerprints, which contains experimental
properties or theoretical descriptors, such as molar refractivity, logP,
number of heavy atoms, number of bonds, molecular weight, topological

polar surface area.



B.2 Model details of pre-training

The Supplementary Table 30 shows the model details in pre-training phase.
We use a 12-layer vision transformer as the video encoder of VideoMol. For
the Axis classifier, rotation classifier, angle classifier and chemical classifier,
we used the same neural network architecture, which consists of a fully
connected layer with a Softplus activator and a task-dependent fully

connected layer.

C. Supplementary Results

C.1 Results on pre-training

The Supplementary Figure 3 and Supplementary Figure 4 describe the
loss curve and the corresponding accuracy curve of VideoMol in the pre-
training phase, respectively. We can clearly see that the loss of each pre-
training task in VideoMol is gradually decreasing, which shows that each task
can work well together (Supplementary Figure 3). At the same time, each
pre-training task achieves good accuracy on the validation set, indicating the

effectiveness of VideoMol (Supplementary Figure 4).

C.2 Results of different representations on 8 basic attributes

To fairly compare the effects of different representations, we evaluated the

representation without using any self-supervised tasks. It is well known that



the development of drug discovery depends on accurately capturing chemical
and biological representations of molecules. Here, we used several commonly
used representative methods (such as GCN, GIN, EGNN, and the image
representation used by ImageMol) to inspect the model's ability to understand
the 8 basic attributes of molecules, including molecular weight, MolLogP,
MoIMR, Balaband, NumHAcceptors, NumHDonors, NumValenceElectrons
and TPSA.

We collected the first 10,000 molecules from the pre-training dataset and
used exactly the same experimental setup (batch size of 8, learning rate of
0.005, training epoch of 30, and only training task-relevant predictor) for fair
comparison. In detail, we split the training set, validation set, and test set
using a ratio of 8:1:1 and reported the results on the test set based on the
best validation set score. As shown in Supplementary Table 1, we found that
VideoMol using only one frame outperformed that of the 2D graph-based
methods, the 3D-based graph method and the 2D image-based method,
revealing the advantage of the proposed 3D representation. Specifically,
compared with the second-place ImageMol without pre-training, the
performance of video-1frame improved by 9.9%. When we utilized all video
frames (video-60frame), the performance is further significantly improved from
12.47 to 7.51 with a 39.8% improvement rate.

In summary, the proposed 3D representation (whether based on a single
frame image or a 60-frame video) has advantages compared to existing

10



molecular representation approaches. We will further improve our VideoMol
framework by increasing the number of 3D frames and integrating other types

of 3D representation (such as AlphaFold3'?) in the near future.

C.3 Computational requirements of VideoMol

Here, we detail the computational requirements of the pre-training, fine-tuning,
and screening stages in Supplementary Table 36. In the pre-training phase,
as shown in Supplementary Table 36(a), VideoMol uses 256 frames in each
batch for training, which requires 37G of GPU memory and takes about 9
hours to complete 1 epoch on 2 million molecular videos with 60 frames. Next,
we use 10,000 molecules and study the impact of different batch sizes
(#frame/batch) on memory and training speed in Supplementary Table 36(b).
We find that fine-tuning does not occupy a large amount of memory, and only
requires at least 2.3G of GPU memory to complete. Finally, we evaluate the
computational requirements when performing virtual screening on 1 million
molecules in Supplementary Table 36(c). We find that even using all frames
during virtual screening, it only took about 9 hours. In addition, for ever-
expanding data sizes, screening can be accelerated by reducing the number
of frames. Therefore, VideoMol can complete large-scale virtual screening in

a faster time.
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Supplementary Figures
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Supplementary Figure 1: t-SNE visualization of 1,000 molecular videos.
Different colors represent frames in different cluster videos. Different colors
represent different molecules video. DB index (=0.182) is a metric to evaluate
the clustering quality, and the larger the value, the better the clustering

performance.
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Supplementary Figure 2: t-SNE visualization of the representations of
VideoMol. The total number of samples is 15,000 (including 30 clusters with
500 samples per cluster). Different colors represent different clusters. Davies
Bouldin (DB) index (=3.66) represents the intra-cluster distance divided by the
inter-cluster distance, where the smaller the value, the better the clustering

performance.
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Supplementary Figure 3: VideoMol loss details during the pre-training phase.
The x-axis and y-axis represent the training step and loss value, respectively.
Subfigures (a)-(d) represent Ly, Lyis, Lrotation: Langte F€Spectively. The

mean of the losses for subfigures (e) and (f) represent L.
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Supplementary Figure 4: The performance of VideoMol on validation set

during the pre-training phase. The x-axis and y-axis represent the training

step divided by 7,000 and accuracy, respectively. Subfigures (a)-(c) represent

the performance of VideoMol on axis prediction, rotation prediction and angle

prediction, respectively. The mean of the accuracy for subfigures (d) and (e)
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represent performance of chemical-aware pre-training task. We evaluate the

performance of VideoMol on the validation set approximately 7000 steps.
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Supplementary Tables

Supplementary Table 1: The RMSE results of different molecular

representations on 8 basic attributes (molecular weight, MolLogP, MoIMR,

BalabanJd, NumHAcceptors, NumHDonors, NumValenceElectrons, TPSA).

(-xlsx)
modality model use conformer? prop
GCN x 62.304
2D graph GIN x 62.980
graph-based EGNN x 17.418
3D graph EGNN v 16.684
image from imagemol ResNet18 X 12.469
_ based video-1frame ResNet18 v 11.237
Image-base video-5frame ResNet18 v 8.088
video-60frame ViT v 7.511

Supplementary Table 2: Summary of state-of-the-art methods. (.xIsx)

Represent Backbon
ation Model Input o Pre-training database
Category
{RNN, RNN or
TRFM} {LR, SMILES  Transfor ChEMBL24 (0.861M)
sequence MLP, RF} mer
CHEM-
BERT SMILES BERT PubChem (10M)
InfoGraph Graph GIN -
OAG (179 million nodes & 2
GPT-GNN Graph HGT billion edges) and Amazon (113
million nodes)
ContextPred  Graph Y ZINC15 (2M)
GraphloG ~ Graph ) ZINC15 (2M)
2D graph Contc(;e;(tual Graph Grover  ZINC15 & Chembl (11 million)
G-Motif Graph Grover  ZINC15 & Chembl (11 million)
AD-GCL Graph  EYer ZINC15 (2M)
JOAO Graph LY ZINC15 (2M)
SMGRACE ~ Graph gy ZINC15 (2M)
GraphCL Graph 5-layer ZINC15 (2M)
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GIN

GraphMAE  Graph 5'c'§‘|3,(ler ZINC15 (2M)
MGSSL Graph  EYer ZINC15 (250K)
AttrMask Graph 5'c'5"’}3,(ler ZINC15 (2M)
MoICLR Graph ~ CON*C PubChem (10M)
Mole-BERT  Graph 5'c'5"’}3,(ler ZINC15 (2M)
GraphCL Graph  EYer ZINC15 (2M)
Geometry+ PNA+N QM9(50k)+GEOM-
3D InfoMax Graph et3D Drugs(140k)+Qmugs(620k)
Geometry+ S-layer
GraphMVP GIN+Sc GEOM (50K)
3D graph Graph hNet
Geometry+ Transfor
Uni-Mol Protein ZINC/ChemBL+PDB (209 M)
mer
Pockets
image ImageMol Image Resé\leﬂ PubChem (10M)

Supplementary Table 3: The ROC-AUC performance of different methods

on 10 main types of biochemical kinases from KinomeScan datasets with

balanced scaffold split. All compared results are obtained from ImageMol.

(-xlsx)
BTK CDK4-cyclinD3 EGFR FGFR1 FGFR2
MoCLRGIN 0.556+0.118 0.778+0.171 0.583+0.067 0.695+0.249 0.667+0.132
MoCLRGCN 0.602+0.129 0.944+0.039 0.750+0.051 0.619+0.378 0.667+0.052
RNN_LR 0.611+0.000 0.667+0.000 0.536+0.000 0.771+0.000 0.741+0.000
TRFM_LR 0.694+0.000 0.750+0.000 0.821+0.000 0.743+0.000 0.704+0.000
RNN_MLP 0.556+0.023 0.833+0.000 0.536+0.029 0.848+0.059 0.716+0.046
TRFM_MLP 0.537+0.013 0.639+0.039 0.667+0.061 0.643+0.031 0.741+0.000
RNN_RF 0.546+0.013 0.917+0.000 0.548+0.017 0.476+0.027 0.685+0.055
TRFM_RF 0.639+0.039 0.639+0.039 0.607+0.000 0.476+0.013 0.556+0.030
CHEM-BERT 0.648+0.013 0.583+0.297 0.845+0.094 0.429+0.117 0.765+0.106
ImageMol 0.843+0.026 0.917+0.068 0.857+0.000 0.857+0.023 0.852+0.052
VideoMol 0.861+0.023 0.972+0.039 0.905+0.017 0.848+0.027 0.988+0.017
------ Continue ------
FGFR3 FGFR4 FLT3 KPCD3 MET Average
MoCLRGIN 0.760+0.039 0.773+0.121 0.722+0.091 0.571+0.107 0.611+0.236 0.6716
MoCLRGCN 0.792+0.106 0.537+0.013 0.722+0.208 0.505+0.067 0.574+0.052 0.6712
RNN_LR 0.646+0.015 0.528+0.000 0.778+0.000 0.457+0.000 0.796+0.026 0.6531
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TRFM_LR
RNN_MLP
TRFM_MLP
RNN_RF
TRFM_RF
CHEM-BERT
ImageMol
VideoMol

0.812+0.000
0.469+0.026
0.802+0.015
0.312+0.000
0.646+0.078
0.438+0.077
0.854+0.064
0.89610.039

0.639+0.000
0.269+0.035
0.676+0.035
0.389+0.000
0.602+0.013
0.528+0.060
0.833+0.045
0.852+0.080

0.611+0.000
0.630+0.105
0.667+0.136
0.519+0.026
0.546+0.035
0.574+0.189
0.722+0.120
0.98110.026

0.438+0.027
0.410+0.036
0.219+0.027
0.343+0.000
0.262+0.058
0.557+0.091
0.762+0.088
0.86710.036

0.778+0.000
0.667+0.045
0.556+0.000
0.500+0.000
0.593+0.026
0.944+0.000
0.96310.026
0.96310.026

0.6990
0.5934
0.6147
0.5235
0.5566
0.6311
0.8460
0.9133

Supplementary Table 4: The RMSE and MAE performance of different

methods on 10 GPCR with balanced scaffold split. The lower the value, the

better the performance. All compared results are obtained from ImageMol.

(-xlsx)
1. SHT1A 2. 5HT2A 3. AATR
RMSE MAE RMSE MAE RMSE MAE
MOCLRGIN  0.850:0.021  0.670:0.012  0.853:0.019  0.642:0.014  0.786+0.015  0.5880.009
MoCLRGCN ~ 0.949£0.027  0.764:0.014  0.875:0.008  0.6810.024  0.856:0.026  0.662:0.026
RNN_LR 1574+0.091  0.937:0.019  1.602:0.245  1.103:0.151  1.073%0.087  0.762+0.057
TRFM_LR  1.636:0.004  1.109+0.001  1.389:0.000  0.999:0.001  1.060+0.003  0.8100.001
RNN_MLP ~ 0.957:0.013  0.768:0.010  1.167+0.010  0.890+0.003  0.848:0.004  0.662+0.008
TRFM_MLP  0.939:0.034  0.730£0.025  1.013:0.026  0.728:0.021  0.87840.051  0.657+0.031
RNN_RF  0.788:0.004  0.617:0.004  1.001:0.001  0.747%0.001  0.717+0.003  0.554:0.002
TRFM_RF  0.855:0.001  0.672:0.001  1.011%0.002  0.777+0.002  0.740:0.001  0.568+0.001
CHEM-BERT  0.876+0.018  0.706:0.012  0.909+0.057  0.682+t0.056  0.734%0.038  0.544+0.027
ImageMol ~ 0.776:0.012  0.620£0.014  0.780:0.017  0.578£0.022  0.711x0.012  0.554+0.009
VideoMol ~ 0.708£0.017  0.547£0.015  0.775:0.017  0.578:0.009  0.655:0.007  0.496:0.006
4. AA2AR 5. AA3R 6. CNR2
RMSE MAE RMSE MAE RMSE MAE
MOCLRGIN  0.748:0.012  0.588+0.008  0.840:0.014  0.692:0.010  0.926+0.047  0.7580.036
MoCLRGCN ~ 0.819:0.011  0.651:0.008  0.855:0.010  0.700+0.011  0.978:0.023  0.803+0.021
RNN_LR 1.801:0.600  1.193:0.335  2.295+0.463  1.190+0.155  5.505:0.093  1.611+0.032
TRFM_LR ~ 1.130£0.000  0.906+0.000  1.155:0.001  0.9190.001  1.700:0.001  1.213%0.000
RNN_MLP  0.967:0.002  0.773:t0.005  0.883:0.010  0.707+0.012  1.091:0.015  0.881%0.013
TRFM_MLP  0.948:0.013  0.744%0.005  0.945:0.010  0.749:0.014  1.144+0.055  0.903:0.038
RNN_RF  0.887+0.002  0.692:0.001  0.796+0.009  0.624+0.007  0.965:0.002  0.766+0.001
TRFM_RF  0.926:0.003  0.735:0.004  0.856£0.001  0.701¢0.002  0.965:0.002  0.800£0.002
CHEM-BERT  0.862+0.071  0.674x0.058  0.861+0.058  0.684:0.047  0.925:0.051  0.727+0.041
ImageMol ~ 0.734:0.015  0.573%0.009  0.793:0.008  0.634:0.001  0.905+0.004  0.7170.015
VideoMol  0.712£0.011  0.543:0.005  0.786£0.006  0.617:0.004  0.864:0.005  0.679:0.010
7. DRD2 8. DRD3 9. HRH3
RMSE MAE RMSE MAE RMSE MAE
MOCLRGIN  0.814:0.009  0.591:0.007  0.858+0.017  0.673:0.022  0.734+0.006  0.5810.004
MOoCLRGCN ~ 0.855:0.022  0.634:0.017  0.914%0.024  0.725:0.025  0.740:0.016  0.576x0.006
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RNN_LR 1.142+0.077 0.839+0.038 1.316+0.011 0.942+0.005 1.616+0.236 0.943+0.070
TRFM_LR 1.000£0.000 0.719+0.000 1.219+0.000 0.914+0.000 1.169+0.002 0.911+0.002
RNN_MLP 0.895+0.006 0.694+0.005 1.021£0.007 0.819+0.007 0.871+0.015 0.702+0.011

TRFM_MLP 0.919+0.016 0.686+0.016 1.012+0.041 0.790+0.023 0.863+0.011 0.676+0.009

RNN_RF 0.837+0.001 0.612+0.001 0.861+0.001 0.685+0.001 0.771+0.002 0.613+0.002

TRFM_RF 0.864+0.001 0.636+0.002 0.904+0.001 0.717+0.001 0.770+0.002 0.602+0.001
CHEM-BERT  0.816%0.011 0.587+0.013 0.803+0.029 0.631+0.026 0.770+0.033 0.594+0.022
ImageMol 0.772+0.014 0.573+0.009 0.735+0.018 0.576+0.014 0.710+0.006 0.561+0.006
VideoMol 0.74210.003 0.556+0.005 0.715+0.014 0.55410.012 0.668+0.008 0.506%0.002
10. OPRM
MAE
MoCLRGIN 0.856+0.008 0.664+0.016
MoCLRGCN 0.853+0.009 0.653+0.020

RNN_LR 2.649+1.024 1.744+0.614
TRFM_LR 1.694+0.001 1.282+0.000
RNN_MLP 1.022+0.014 0.781+0.008
TRFM_MLP 1.084+0.009 0.849+0.007

RNN_RF 0.876+0.010 0.671+0.009
TRFM_RF 0.852+0.002 0.660+0.003

CHEM-BERT  0.893+0.024 0.672+0.019

ImageMol 0.849+0.018 0.645+0.015

VideoMol 0.795+0.015 0.57910.011

Supplementary Table 5: The ROC-AUC performance (%) of different

methods on 6 molecular property prediction benchmarks with scaffold split. All

experiments are run 10 times using random seeds from 0 to 9. GraphMVP-C,

Mole-BERT, Uni-Mol and ImageMol are reproduced from their source code

and other results from Mole-BERT. (.xIsx)

Tox21 ToxCast Sider HIV BBBP BACE

#Molecules 7831 8576 1427 41127 2039 1513

#Task 12 617 27 1 1 1

InfoGraph 73.3(0.6) 61.8 (0.4) 58.7 (0.6) 74.2 (0.9) 68.7 (0.6) 74.3 (2.6)
GPT-GNN 74.9 (0.3) 62.5 (0.4) 58.1 (0.3) 65.2 (2.1) 64.5 (1.4) 77.9 (3.2)
ContextPred 73.6 (0.3) 62.6 (0.6) 59.7 (1.8) 75.6 (1.0) 70.6 (1.5) 78.8 (1.2)
GraphLoG 75.0 (0.6) 63.4 (0.6) 59.6 (1.9) 76.1 (0.8) 68.7 (1.6) 78.6 (1.0)
G-Contextual 75.0 (0.6) 62.8 (0.7) 58.7 (1.0) 76.3 (1.5) 69.9 (2.1) 79.3 (1.1)
G-Motif 73.6 (0.7) 62.3 (0.6) 61.0 (1.5) 73.8 (1.2) 66.9 (3.1) 73.0 (3.3)
AD-GCL 74.9 (0.4) 63.4 (0.7) 61.5 (0.9) 76.7 (1.2) 70.7 (0.3) 76.6 (1.5)
JOAO 74.8 (0.6) 62.8 (0.7) 60.4 (1.5) 76.9 (0.7) 66.4 (1.0) 73.2 (1.6)
SImGRACE 74.4 (0.3) 62.6 (0.7) 60.2 (0.9) 75.0 (0.6) 71.2 (1.1) 74.9 (2.0)
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GraphCL 75.1(0.7) 63.0 (0.4) 59.8 (1.3) 75.1(0.7) 67.8 (2.4) 74.6 (2.1)
GraphMAE 75.2 (0.9) 63.6 (0.3) 60.5 (1.2) 76.8 (0.6) 71.2 (1.0) 78.2 (1.5)
3D InfoMax 74.5(0.7) 63.5 (0.8) 56.8 (2.1) 76.1 (1.3) 69.1 (1.2) 78.6 (1.9)

MGSSL 75.2 (0.6) 63.3 (0.5) 61.6 (1.0) 75.8 (0.4) 68.8 (0.6) 78.8 (0.9)
AttrMask 75.1 (0.9) 63.3 (0.6) 60.5 (0.9) 75.3 (1.5) 65.2 (1.4) 77.8 (1.8)
MoICLR 75.5 (0.5) 63.9 (0.5) 60.3 (1.3) 74.4 (1.3) 66.8 (3.4) 75.3 (2.9)
GraphMVP-C 74.6(0.4) 63.4 (0.6) 60.6 (1.3) 77.1 (2.1) 69.9 (1.4) 79.6 (1.7)
ImageMol 75.5 (1.0) 65.6 (0.9) 64.9 (1.3) 76.8 (1.3) 70.5 (1.3) 78.1 (3.5)

Uni-Mol (1 conf) 78.3 (0.4) 68.7 (0.5) 63.7 (1.3) 79.2 (1.0) 69.6 (2.0) 81.0 (3.9)

Uni-Mol (10 conf) 78.8 (0.7) 69.0 (0.5) 63.6 (1.4) 79.2 (0.9) 69.9 (2.7) 81.7 (3.4)
Mole-BERT 77.0 (0.3) 64.4 (0.2) 63.2 (0.7) 77.7(0.7) 65.7 (2.3) 80.2 (0.9)
VideoMol 78.8 (0.4) 66.7 (0.5) 66.3 (0.9) 79.4 (0.5) 70.7 (1.5) 82.4 (0.9)

Rank 1 2 1 1 3 1

Supplementary Table 6: The RMSE or MAE performance of different

methods on 6 molecular property prediction benchmarks with scaffold split. All

experiments are run 10 times using random seeds from 0 to 9. We report

RMSE for FreeSolv, ESOL and Lipo datasets and MAE for QM7 and QMS,

QM9 datasets, respectively. We reproduced all comparison methods using

the same settings. We use GIN backbone for MoICLR because it achieves the

best results. (.xIsx)

RMSE FreeSolv ESOL Lipo Qm7 QM8 QM9

2.559+0.15 1.322+0.06 0.773£0.01 120.344+6.23  0.02049+0.0003  0.00891+0.0001

GraphMVP 8 P 5 7 9 0
2.843+0.09 1.367+0.04 0.778+0.01 104.387+£3.29  0.02058+0.0006  0.00929+0.0000

EdgePred 1 1 3 P 1 9
GraphMVP- 2.766+0.19 1.333+0.05 0.768+0.01 121.022+5.69  0.02022+0.0004  0.00896+0.0001

C 9 5 3 9 7 1
3.112+0.63 1.462+0.06 0.799+0.01 144.426+6.59  0.03598+0.0008  0.01488+0.0002

MoICLR 8 8 8 y 5 0
2.113£0.23 0.964+0.06 0.702+0.06 116.384+8.44  0.02419+0.0003  0.02061+0.0001

ImageMol 5 7 0 5 3 9
2.988+0.15 1.115£0.01 0.727+0.00 101.922+2.33  0.02073+0.0003  0.00910+0.0001

Mole-BERT 5 7 6 y 3 0
VideoMol 1.725310.05 0.866710.01 0.7439i0.00 76.436+1.561 0.01890010.0002 0.008963t0.0000
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Supplementary Table 7: The ROC-AUC performance of different methods

on 11 SARS-CoV-2 datasets with balanced scaffold split. All compared results

are obtained from ImageMol. (.xIsx)

MERS- | MER | Covi- M
scL | Aace2 | POYT I ppe ¢ | s- | PPE ¢ | COV1 | cpg | C¥lot | Alpha | o | eq

OX -PPE ox
5 PPE S n
REDIA 0.
L- | 0713 | 0.753 | 0.710 | 0.703 | 0.696 | 0661 | 0.665 | 0.651 | 0.688 0.734 | 70
2020 6
0.762 | 0.720 | 0.727 0773 0703 | 0.669 | 0.728 | 0.793 | 0.806 | 0.
'”,:Aa(f’le £0.00 | #0.00 | £0.00 0670701; £0.01 0670705; £0.00 | #0.01 | £0.00 | +0.00 | +0.00 | 74
7 1 9 : 1 : 8 1 1 6 | 8
: 0709 | 0.759 | 0.765 0.814 0.737 | 0.747 | 0.761 | 0.841 | 0.862 | 0.
V,{/?(ZO £0.00 | #0.02 | £0.00 068022871 £0.00 06803269* £0.00 | £0.01 | #0.00 | %0.00 | #0.00 | 78
6 5 3 : 4 : 7 3 2 2 | 7

Supplementary Table 8: The uncertainty intervals with 95% confidence

intervals of ImageMol and VideoMol on 10 ligand-GPCR binding activity

prediction datasets. Ul(-) represents the uncertainty intervals and

“Improvement” represents the relative performance improvement of VideoMol

compared to ImageMol. (.xlIsx)

UI(RMSE) UI(MAE)
Dataset
ImageMol VideoMol Improvement ImageMol VideoMol Improvement
5HT1A 0.782+0.057 0.719+0.059 8.06% 0.629+0.048 0.550+0.046 12.56%
5HT2A 0.816+0.109 0.810+0.102 0.74% 0.587+0.059 0.583+0.059 0.68%
AA1R 0.718+0.062 0.662+0.068 7.80% 0.559+0.045 0.499+0.046 10.73%
AA2AR | 0.739+0.055 0.714+0.056 3.38% 0.575+0.045 0.544+0.045 5.39%
AA3R 0.796+0.056 0.795+0.065 0.13% 0.632+0.051 0.622+0.053 1.58%
CNR2 0.916+0.073 0.878+0.072 4.15% 0.722+0.060 0.686+0.064 4.99%
DRD2 0.779+0.060 0.749+0.053 3.85% 0.574+0.041 0.559+0.040 2.61%
DRD3 0.738+0.053 0.704+0.054 4.61% 0.580+0.044 0.548+0.042 5.52%
HRH3 0.747+0.067 0.669+0.061 10.44% 0.582+0.050 0.507+0.047 12.89%
OPRM 0.898+0.089 0.797+0.075 11.25% 0.667+0.065 0.584+0.062 12.44%

Supplementary Table 9: The uncertainty intervals with 95% confidence

intervals of ImageMol and VideoMol on 11 SARS-CoV-2 viral activity

prediction datasets. Ul(-) represents the uncertainty intervals and
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“Improvement” represents the relative performance improvement of VideoMol

compared to ImageMol. (.xlIsx)

Dataset UI(AUC)
ImageMol VideoMol Improvement

3CL 0.685+0.117 0.710+0.110 3.65%
ACE2 0.658+0.133 0.763+0.112 15.96%
hCYTOX 0.736+0.087 0.760+0.087 3.26%
MERS-PPE_cs 0.727+0.119 0.817+0.103 12.38%
MERS-PPE 0.720+0.082 0.799+0.0743 10.97%
CoV1-PPE_cs 0.688+0.115 0.832+0.098 20.93%
CoV1-PPE 0.701+0.063 0.736+0.060 4.99%
CPE 0.646+0.084 0.736+0.077 13.93%
Cytotox 0.729+0.051 0.760+0.054 4.25%
AlphalLISA 0.762+0.062 0.836+0.049 9.71%
TruHit 0.772+0.059 0.855+0.046 10.75%

Supplementary Table 10: Basic statistical information of 4 common targets

(beta-secretase 1 [BACE1], cyclooxygenase 1 [COX-1], COX-2, prostaglandin

E receptor 4 [EP4]) collected from ChEMBL database. #Train, #Val and #Test

represent the numbers of train set, valid set, and test set, respectively. IC50

thresh (nM) represents the dividing value between positive and negative

samples, where those below the threshold are positive samples, and those

above the threshold are negative samples. #Pos and #Neg represent the

number of positive samples and the number of negative samples, respectively.

Imbalanced ratio reflects the degree of class imbalance, which is calculated

by dividing the number of negative samples by the number of positive

samples. #Tasks represents the number of binary prediction task.

BACE1

COX-1

COX-2

EP4

#Train

5488

2737

3990

280
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#Val 686 343 499 35
#Test 686 343 499 35
IC50 thresh 80 100 100 30
(nM)
#Pos/#Neg 2563/4297 142/3281 1006/3982 133/217
Imbalanced 0.597 0.043 0.253 0.613
ratio
#Tasks 1
Metric ROC-AUC

Supplementary Table 11: The anti-BACE1 drugs with an IC50 threshold of

80 from MedChemExpress website. The cas is the unique identifier for a drug.

(-xlsx)

in name cas IC5 canonical smiles

d O(n

ex M)

1 BACE-1 25639 | 1.5 | C[C@H]1CI[C@H]2CC(F)(F)C(N)=N[C@@]2(c2c

inhibitor 2 70- ¢(NC(=0)c3cnc(OCF)cn3)ccc2F)CO1

92-1

2 BACE-1 12628 | 56 | NC1=N[C@@](c2cc(NC(=0O)c3ccc(Br)cn3)ccc2F)

inhibitor 1 58- (C(F)F)COC1

14-9

3 | BACE1-IN- | 13976 | 2.9 | COc1cnc(C(=O)Nc2ccec(F)c([C@]3(C)Cn4nc(C#N

13 83- )cc4C(N)=N3)c2)cn1

26-9

4 | BACE1-IN-1 | 13103 | 32 | C[C@]1(c2cc(NC(=0)c3ccc(C#N)cn3)ccc2F)N=C
47- (N)OCCA1(F)F
50-2

5 | BACE1-IN-6 | 20799 | 1.5 | C[C@]1(c2cc(/C=C(\F)c3ccc(C#N)cn3)ccc2F)N=
45- C(N)S[C@@]2(C(=O)N3CCOCC3)C[C@H]21
75-6

6 | BACE1-IN-4 | 23611 | 3.8 | C[C@]1(c2cc(NC(=0)c3cnc(OCF)cn3)ccc2F)N=C
57- (N)SCC12CCS(=0)(=0)CC2
92-6

7 | BACE1-IN-2 | 13524 | 22 | C[C@]1(c2cc(NC(=0)c3ccc(C#N)en3)ccc2F)N=C
16- (N)CO[C@H]1C(F)(F)F
78-4

8 BACE1/2- | 26710 | 10 | C[C@@H]1C[C@H]1COC(C)(C)[C@@H]1CI[C@
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IN-1 36- H]1[C@]12CN(c3nccen3)C[C@H]1CSC(N)=N2
34-1
9 | Umibecestat | 13875 | 11 | C[C@@]1(c2nc(NC(=0O)c3ncc(C(F)(F)F)cc3Cl)cc
60- c2F)CO[C@@](C)(C(F)(F)F)C(N)=N1
01-1
1 | LY2886721 | 12620 | 20. | NC1=N[C@@]2(c3cc(NC(=0)c4ccc(F)cn4)ccc3F)
0 36- 3 COC[C@H]2CsH1
50-9
1 beta- 79703 | 15. | C[C@@H](NC(=0O)c1cc(C(=O)N[C@@H](Cc2ccc
1 Secretase | 5-11- 6 | cc2)[C@H](O)CNC2CC2)cc(N(C)S(C)(=0)=0)c1)
Inhibitor IV clccceci
1| AMG-8718 | 12158 | 0.7 | CC1(C#Cc2cnc3c(c2)[C@]2(COC(N)=N2)c2cc(-
2 68- c4ccenc4F)ecc203)COCH
94-2
1 PF- 18183 | 7.3 | C[C@H]1C[C@H]2CSC(N)=N[C@@]2(c2nc(NC(
3 06751979 39- =0)c3ccc(OC(F)F)cn3)cs2)CO1
66-0
1 JNJ- 23803 | 2.7 | CCS(=0)(=0)[C@]1(C)CCI[C@@](CF)(c2cc(NC(
4 67569762 13- =0)c3cc4c(cn3)OC(F)(F)O4)ccc2F)N=C1N
26-6
1 NB-360 12628 | 5 Cc1cc(C#N)enc1C(=0O)Nc1cec(F)e([C@]2(C)CO[
5 57- C@@](C)(C(F)(F)F)C(N)=N2)c1
73-7
1 AM-6494 18742 | 0.4 | C#CCOc1cnc(C(=0)Nc2cc(F)c(F)c([C@@]3(C)N
6 32- =C(N)S[C@@]4(COC)C[C@H]43)c2)cn1
80-0

Supplementary Table 12: The anti-COX-1 drugs with an IC50 threshold of

100 from MedChemExpress website. The cas is the unique identifier for a

drug. (.xIsx)
in name cas |IC50 canonical smiles
de (nM)
X
1 Indomethacin | 53-86- | 18 | COc1ccc2c(c1)c(CC(=0)0)c(C)n2C(=0)c1cc
1 c(Cl)cet
2 Indomethacin | 7681- | 18 COc1ccc2c(c1)c(CC(=0)[O-
sodium 54-1 ])c(C)n2C(=0)c1cce(Cl)ce1.[Na+]
3 Indomethacin | 74252 | 18 | COc1ccc2c(c1)c(CC(=0)OC/C=C(\C)CC/C=
sodium hydrate | -25-8 C(\C)CCC=C(C)C)c(C)n2C(=0)c1ccc(Cl)ce
4 Diclofenac 15307 | 4 0O=C(0O)Cc1ccccc1Nc1c(Clyceec1Cl
-86-5
5 Diclofenac 15307 | 4 O=C([O-])Cc1cccccINc1c(Cl)cececc1ClL[K+]
potassium -81-0
6 Diclofenac 78213 | 4 CCNCC.0=C(0O)Cc1ccccc1Nc1c(Cl)cececi1Cl
diethylamine -16-8
7 Diclofenac 15307 | 4 O=C([O-])Cc1cccccINc1c(Cl)cececc1Cl.[Na+]
Sodium -79-6
8 Mofezolac 78967 | 1.44 COc1cce(-c2noc(CC(=0)0)c2-
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-07-4 c2ccc(OC)ec2)ce
9 Tenidap 12021 | 30 | NC(=O)N1C(=0)/C(=C(\O)c2cccs2)c2cc(Cl)e
0-48-2 cc21
10 Tenidap-d3 14274 | 30 | NC(=O)N1C(=0)C(C(=0)c2cccs2)c2cc(Cl)cc
1-60-4 c21
11 SC-560 18881 9 COc1cce(-n2nc(C(F)(F)F)cc2-
7-13-2 c2ccc(Cl)ec2)cct
12 Lornoxicam 70374 | 5 | CN1C(C(=0O)Nc2cceen2)=C(0O)c2sc(Cl)cc2S1
-39-9 (=0)=0
13 S-(+)- 22161 | 1.9 | C[C@H](C(=0)O)c1ccec(C(=0)c2cceec2)c
Ketoprofen -81-5
14 FR122047 13071 | 28 COc1cce(-c2nc(C(=0O)N3CCN(C)CC3)sc2-
7-51-0 c2ccc(0OC)cc2)cc1.Cl
15 Ketorolac 74103 | 20 | NC(CO)(CO)CO.0=C(c1ccceet)cicece2n1CC
tromethamine | -07-4 C2C(=0)0O
salt
16 Eltenac 72895 | 30 0=C(0)Cc1cscc1Nc1c(Cl)ccec1Cl
-88-6
17 Bromfenac 91714 | 5.56 Nc1¢c(CC(=0)0O)cccc1C(=0)c1cee(Br)cc
-94-2
18 Bromfenac 91714 | 5.56 Nc1¢c(CC(=0)[O-
sodium -93-1 ])ccecc1C(=0)c1cec(Br)cc1.[Na+]
19 Ketoprofen 22071 2 CC(C(=0)0)c1ccec(C(=0)c2cceec2)ct
-15-4
20 Ketoprofen 57469 | 2 CC(C(=0)0)c1cecec(C(=0)c2ccecc2)c1.NCC
(RP-19583) -78-0 CC[C@H](N)C(=0)O
lysinate
21 Ketorolac 74103 | 20 0O=C(c1cccect)c1cec2n1CCC2C(=0)0
-06-3
22 Ketorolac 16710 | 20 | O=C(c1ccceel)c1ecec2n1CCC2C(=0)0.[CaH
hemicalcium 5-81-9 2]

Supplementary Table 13: The anti-COX-2 drugs with an IC50 threshold of

100 from MedChemExpress website. The cas is the unique identifier for a

drug. (.xIsx)
in name cas IC5 canonical smiles
de O(n
X M)
1 COX-2-IN-28 24135 | 54 CSc1nc2cccce2ni-
65-18- c1csc(NCC(C)=NN=c2scc(-
9 c3ccc(C)ee3)n2-c2ccecec2)n
2 COX-2-IN-26 24135 | 67 CSc1nc2cccce2ni-
65-19- c1csc(NCC(C)=NN=C2SCC(=0O)N2c2ccc
0 cc2)n1
3 COX-2-IN-20 25294 | 17. COC(=0)c1nc(CCl)n(-c2ccc(F)cc2)n1
51-43-| 9
0
4 COX-2-IN-21 25196 | 39 COc1cc(C2CC(c3ceec(-
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31-11- n4cnnn4)c3)=NN2C(C)=0)cc(OC)c10C
7
5 | COX-2/15-LOX-IN-1 | 24135 | 75 CSc1nc2cccce2ni-
65-15- c1csc(NCC(C)=NNC(=S)Nc2cccee2)n
6
6 COX-2-IN-17 24113 | 20 COC(=0O)[C@@H](N)Cc1cn(-
90-10- c2nc(Cl)nc(N3CCCCC3)n2)c2ccecc12
6
7 | COX-2/5-LOX-IN-2 | 24103 | 10 NS(=0)(=0)c1ccc(-n2nc(C(=0)0)cc2-
84-59- c2cc3ccecc3s2)cet
5
8 Diclofenac 15307 | 1.3 0O=C(0)Cc1cccccINc1c(Cl)ecec1Cl
-86-5
9 Diclofenac 15307 | 1.3 O=C([O-
potassium -81-0 ])Cc1ccecccINc1c(Cl)cecc1ClL[K+]
10 Diclofenac 78213 | 1.3 | CCNCC.0=C(0O)Cc1ccccc1Nc1c(Cl)ccee
diethylamine -16-8 1Cl
11 | Diclofenac Sodium | 15307 | 1.3 O=C([O-
-79-6 ])Cc1ccecc1Nc1c(Cl)cccc1Cl[Na+]
12 Rofecoxib 16201 | 26 | CS(=0)(=0)c1ccc(C2=C(c3cccec3)C(=0
1-90-7 )OC2)cc1
13 Valdecoxib 18169 | 5 Cc1onc(-c2ccccc2)c-
5-72-7 c1ccc(S(N)(=0)=0)cc1
14 Indomethacin 7681- | 26 COc1ccc2c(c1)c(CC(=0)[O-
(Indometacin) 54-1 1c(C)n2C(=0)c1cec(Cl)ce.[Na+]
sodium
15 Indomethacin 53-86- | 26 | COc1ccc2c(c1)c(CC(=0)0)c(C)n2C(=0)
1 clcce(Clyect
16 | Anti-inflammatory 11039 | 0.0 | Cc1c(C(=O)NNC(=S)Nc2cccec2)sc2nec3c
agent 8 20-19-| 9 ccee3ni2
9
17 Indomethacin 74252 | 26 | COc1cec2e(c1)c(CC(=0)OC/C=C(\C)CC/
(Indometacin) -25-8 C=C(\C)CCC=C(C)C)c(C)n2C(=0)c1ccc(
sodium hydrateis Cl)cct
18 SC-58125 16205 | 40 CS(=0)(=0)c1cce(-n2nc(C(F)(F)F)cc2-
4-19-5 c2ccc(F)cc2)ce
19 S-2474 15808 | 11 | CCN1CC/C(=C\c2cc(C(C)(C)C)c(O)c(C(
9-95-3 C)(C)C)c2)S1(=0)=0
20 FR-188582 18969 | 17 CS(=0)(=0)c1cce(-c2cc(Cl)nn2-
9-82-9 c2cccec2)cct
21 DuP-697 88149 | 10 CS(=0)(=0)c1cce(-c2cc(Br)sc2-
-94-4 c2ccc(F)cc2)ce
22 Celecoxib 16959 | 40 Cc1ccce(-c2cc(C(F)(F)F)nn2-
0-42-5 c2ccc(S(N)(=0)=0)cc2)cc1
23 Indomethacin 85801 | 26 | COc1ccc2e(c1)c(CC(=0)OCC=C(C)CCC
farnesil -02-1 =C(C)CCC=C(C)C)c(C)n2C(=0)c1ccc(Cl
)ec
24 Lornoxicam 70374 | 8 CN1C(C(=O)Nc2cceen2)=C(0)c2sc(Cl)c
-39-9 c2581(=0)=0
25 Tilmacoxib 18020 | 85 Cc1nc(C2CCCCC2)c(-
0-68-4 c2ccc(S(N)(=0)=0)c(F)c2)o1
26 S-(+)-Ketoprofen 22161 | 27 | C[C@H](C(=0)O)c1ccec(C(=0)c2ccecc2
-81-5 )c1
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27 SC57666 15895 | 26 | CS(=0)(=0)c1ccc(C2=C(c3ccc(F)cc3)C
9-32-1 CC2)cc1

28 Eltenac 72895 | 30 0=C(0)Cc1cscc1Nc1c(Cl)ccec1Cl
-88-6

29 Bromfenac 91714 | 7.4 | Nc1c(CC(=0)O)cccc1C(=0)c1cec(Br)cct
-94-2 5

30 | Bromfenac sodium | 91714 | 7.4 Nc1c(CC(=0)[O-
-93-1 5 J)cccc1C(=0)c1cec(Br)cc1.[Na+t]

31 | Desmethyl Celecoxib | 17056 | 32 NS(=0)(=0)c1ccc(-n2nc(C(F)(F)F)cc2-
9-87-6 c2cccec2)cct

32 Imrecoxib 39568 | 18 | CCCN1CC(c2ccc(S(C)(=0)=0)cc2)=C(c
3-14-4 2ccc(C)ec2)C1=0

33 Fenofibric acid 42017 | 48 | CC(C)(Oc1cce(C(=0)c2ccc(Cl)ec2)cc1)C
-89-0 (=0)O

34 Thioflosulide 15820 | 2.3 | CS(=0)(=O)Nc1cc2c(cc1Scicec(F)cc1F)
5-05-1 C(=0)Ccc2

35 Ketoprofen 22071 | 26 CC(C(=0)0)c1ceec(C(=0)c2ceecec2)c
-15-4

Supplementary Table 14: The anti-EP4 drugs with an IC50 threshold of 30

from MedChemExpress website. The cas is the unique identifier for a drug.

(-xlsx)
in name cas IC50 canonical smiles
de (nM)
X
1 | EP4 receptor | 228725 | 6.1 | C/C=C/c1nnn(Cc2ccc(C(F)(F)F)cc2)c1C(=0O)N
antagonist1 | 9-07-6 [C@@H](C)c1cec(C(=0)0)cc
2 | EP4 receptor | 196531 | 7.8 CC(C)NC(=0O)c1ccec2e(c1)[C@]1(CCO2)C[C
antagonist2 | 6-82-8 @H]1C(=0O)Nc1cc(C#N)cecc1CCCC(=0)0
3 | BAY-1316957 | 161326 | 15.3 CCn1c2ccc(C)cc2c2cc(-
4-40-6 c3nc4c(C)c(C(=0)0)cccan3CCOC)ccc21
4 TP-16 233297 | 2.1 C[C@H](NC(=0)c1c(Cc2ccc(F)cc2)sc2c1CC
2-26-4 0C2)c1cce(C(=0)0)cc1
5 Palupiprant | 136948 | 13.5 | C[C@H](NC(=0O)c1c(C(F)F)nn(C)c10c1ccec(
9-71-3 C(F)(F)F)c1)c1cee(C(=0)0)ce1
6 CJ-42794 847728 | 10 | C[C@H](NC(=0O)c1cc(Cl)ccc10c1cec(F)ect)e
-01-2 1ccc(C(=0)0)cc
7 MK-2894 100603 | 2.5 | Cc1sc(C)c(C(=0O)NC2(c3ccc(C(=0)0O)cc3)CC
6-87-8 2)c1Cc1ccc(C(F)(F)F)cc
8 MK-2894 100603 | 2.5 | Cc1sc(C)c(C(=0O)NC2(c3ccc(C(=0)0O)cc3)CC
sodium salt | 6-88-9 2)c1Cc1ccc(C(F)(F)F)cc1.[NaH]

Supplementary Table 15: The virtual screening on external BACE1 valiation

set using ImageMol and VideoMol. imagemol_probs and videomol_probs
28




represent the predicted probabilities of anti-BACE1 given by ImageMol and

VideoMol, respectively. (.xIsx)

index Drug Name imagemol_probs videomol_probs

1 BACE-1 inhibitor 2 0.8419358 0.9690067
2 BACE-1 inhibitor 1 0.7290269 0.9868666
3 BACE1-IN-13 0.93444705 0.9687921

4 BACE1-IN-1 0.7387245 0.9473744
5 BACE1-IN-6 0.9090035 0.9966139
6 BACE1-IN-4 0.581801 0.9993352

7 BACE1-IN-2 0.5748341 0.99737775
8 BACE1/2-IN-1 0.41264746 0.9997812

9 Umibecestat 0.7080996 0.9896259
10 LY2886721 0.80451745 0.92877966
11 beta-Secretase Inhibitor IV 0.036601424 0.16687886
12 AMG-8718 0.9256922 0.99652356
13 PF-06751979 0.31388915 0.57966435
14 JNJ-67569762 0.8896324 0.9999232
15 NB-360 0.87558085 0.9982304
16 AM-6494 0.9452854 0.99410605

Supplementary Table 16: The virtual screening on external COX-1 valiation

set using ImageMol and VideoMol. imagemol_probs and videomol_probs

represent the predicted probabilities of anti-COX-1 given by ImageMol and

VideoMol, respectively. (.xIsx)

index Drug Name imagemol_probs videomol_probs

1 Indomethacin 0.01401831 5.10E-06

2 Indomethacin sodium 0.013258358 7.33E-06

3 Indomethacin sodium hydrate 0.016143031 0.000184664
4 Diclofenac 0.01718534 0.9793444
5 Diclofenac potassium 0.03288859 0.001633527
6 Diclofenac diethylamine 0.04155041 0.862361

7 Diclofenac Sodium 0.02927339 0.001424704
8 Mofezolac 0.33693957 0.2581888
9 Tenidap 0.13598277 0.008560411
10 Tenidap-d3 0.109688826 0.00995435
11 SC-560 0.4061602 0.9985505
12 Lornoxicam 0.06643499 0.000148638
13 S-(+)-Ketoprofen 0.16169016 0.9383299
14 FR122047 0.030881904 0.59208053
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15 Ketorolac tromethamine salt 0.015761768 0.18289186
16 Eltenac 0.016934287 0.021998327
17 Bromfenac 0.039675813 0.9789971
18 Bromfenac sodium 0.057841644 0.48522508
19 Ketoprofen 0.16769184 0.15350829
20 Ketoprofen (RP-19583) lysinate 0.091650955 0.07088906
21 Ketorolac 0.12183086 0.9987212
22 Ketorolac hemicalcium 0.11995495 0.9982821

Supplementary Table 17: The virtual screening on external COX-2 valiation

set using ImageMol and VideoMol. imagemol_probs and videomol_probs

represent the predicted probabilities of anti-COX-2 given by ImageMol and

VideoMol, respectively. (.xIsx)

inde Drug Name imagemol_prob | videomol_prob
X s s
1 COX-2-IN-28 0.71353495 0.99945635
2 COX-2-IN-26 0.2967862 0.52510965
3 COX-2-IN-20 0.000742534 0.000186789
4 COX-2-IN-21 0.008292489 1.03E-06
5 COX-2/15-LOX-IN-1 0.66978335 0.5747041
6 COX-2-IN-17 0.20885414 0.9999974
7 COX-2/5-LOX-IN-2 0.24981825 0.81430477
8 Diclofenac 0.13238531 0.057505697
9 Diclofenac potassium 0.20137852 0.53897834
10 Diclofenac diethylamine 0.016165184 0.48384362
11 Diclofenac Sodium 0.14288409 0.508286
12 Rofecoxib 0.005311308 0.45926
13 Valdecoxib 0.2744622 0.000237122
14 Indomethacin (Indometacin) sodium 0.09831848 1.81E-05
15 Indomethacin 0.1264606 2.15E-07
16 Anti-infammatory agent 8 0.016152615 1.40E-05
17 Indomethacin (Indometacin) sodium 0.31498575 0.00723425

hydrateis

18 SC-58125 0.10150733 0.000491314
19 S-2474 0.001583099 8.77E-07
20 FR-188582 0.22198991 0.008781442
21 DuP-697 0.20812099 0.0001205
22 Celecoxib 0.14900573 0.000566671
23 Indomethacin farnesil 0.29184505 0.00585067
24 Lornoxicam 0.08456622 8.87E-07
25 Tilmacoxib 0.49571124 0.4181791
26 S-(+)-Ketoprofen 0.002051125 2.42E-06
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27 SC57666 0.087090984 0.99999297
28 Eltenac 0.016617168 0.010179955
29 Bromfenac 0.037134465 0.99999905
30 Bromfenac sodium 0.030660748 0.14692196
31 Desmethyl Celecoxib 0.2064141 0.88198847
32 Imrecoxib 0.14230609 0.9998147
33 Fenofibric acid 0.00863223 0.000214783
34 Thioflosulide 0.2516166 0.9999695
35 Ketoprofen 0.001724457 1.78E-06

Supplementary Table 18: The virtual screening on external EP4 valiation set

using ImageMol and VideoMol. imagemol_probs and videomol_probs

represent the predicted probabilities of anti-EP4 given by ImageMol and

VideoMol, respectively. (.xIsx)

index Drug Name imagemol_probs videomol_probs
1 EP4 receptor antagonist 1 0.09598055 0.9960939
2 EP4 receptor antagonist 2 0.14752103 0.000257138
3 BAY-1316957 0.14312284 0.9475602
4 TP-16 0.44609693 0.78389543
5 Palupiprant 0.06736643 0.007245741
6 CJ-42794 0.09034469 0.85260254
7 MK-2894 0.35040438 0.5237833
8 MK-2894 sodium salt 0.39034134 0.99885285

Supplementary Table 19: The 2,500 FDA-approved drugs from DrugBank

database. We only show partial information of the first 10 items. For full

information, please see the xIsx file. (.xIsx)

index DrugBank ID Name
1 DB15444 Elexacaftor
2 DB08949 Inositol nicotinate
3 DB14568 Ivosidenib
4 DB11700 Setmelanotide
5 DB13879 Glecaprevir
6 DB13867 Fluticasone
7 DB11363 Alectinib
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8 DB11574 Elbasvir
DB11653 Bremelanotide
10 DB15982 Berotralstat

Supplementary Table 20: Virtual screening on 2,500 FDA-approved drugs.

The probs represents the probability that the drug is a BACE1 inhibitor, which

are predicted by ImageMol. Grid Score calculated by Dock6.10'2 represents

the binding force between ligand and receptor. The lower the value, the

stronger the binding force. The evidence represents research related to the

treatment of Alzheimer's disease. We only show the first 20 items. For full

information, please see the xIsx file. (.xIsx)

DrugBank Name probs | Grid | Rela | evidence description | evidence
ID Score | ted? link
DB00582 | Voriconaz | 0.893 - No
ole 7607 | 31.71
9074
DB13345 | Dihydroer | 0.811 - Yes | The FDA-approved | https://pub
gocristine | 23424 | 44.29 natural product med.ncbi.n
8321 dihydroergocristine | Im.nih.gov/
reduces the 26567970/
production of the
Alzheimer's disease
amyloid-f3 peptides
DB13878 | Pibrentasv | 0.808 - Yes A recent study https://ww
ir 61706 | 70.16 reported that w.ncbi.nim.
0301 treatment of HCV nih.gov/pm
infection with direct- | c/articles/P
acting antivirals MC895998
(e.9., 4/
glecaprevir/pibrentas
vir,
elbasvir/grazopreuvir,
and
ledipasvir/sofosbuvir
) significantly
reduces mortality
risk in patients with
Alzheimer's disease
(AD) and related
dementia
DB06708 | Lumefantri | 0.769 - No
ne 63395 | 44.58
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0559

DB11273 | Dihydroer | 0.763 - Yes | Dihydroergocornine | https://drug
gocornine 37 42.26 (as the component | s.ncats.io/
1795 of Ergoloid drug/IK4C
mesylates) has been | 10C8NE
used to treat
dementia and age-
related cognitive
impairment (such as
in Alzheimer
disease), as well as
to aid in recovery
after stroke.
DB11274 | Dihydro- | 0.760 - No
alpha- 58465 | 44.59
ergocrypti 3708
ne
DB08815 | Lurasidon | 0.721 - No
e 37386 | 41.34
9476
DB00320 | Dihydroer | 0.714 - No
gotamine | 69796 | 41.73
4951
DB11828 | Neratinib | 0.710 - Yes Our data support https://ww
19876 | 49.60 further evaluation of | w.ncbi.nim.
9707 AR12 and neratinib | nih.gov/pm
in neuronal cells as | c/articles/P
repurposed MC831246
treatments for AD. 4/
DB05812 | Abirateron | 0.694 - No
e 22716 | 30.75
35
DB11700 | Setmelano | 0.686 - No
tide 9522 | 61.03
2345
DB11104 Sulfur 0.686 - No
hexafluori | 63824 | 11.74
de 7492
DB11633 | Isavucona | 0.678 - No
zole 25085 | 38.03
2864
DB09099 | Somatosta | 0.669 | nan -
tin 24506
DB15982 | Berotralst | 0.656 - No
at 5085 | 46.14
3105
DB00106 | Abarelix | 0.653 - No
92923 | 101.9
51157
DB00007 | Leuprolide | 0.653 - Yes | The LUCINDA trial: | https://alz-
73343 | 90.47 Leuprolide + journals.on
7882 cholinesterase linelibrary.
inhibition to reduce | wiley.com/
neurologic decline in | doi/abs/10.
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Alzheimer's 1002/alz.0
38780
DB11275 | Epicriptine | 0.647 - No
91554 | 43.82
4257
DB06791 | Lanreotide | 0.639 - No
42754 | 62.84
6352
DB00921 | Buprenorp | 0.638 - No
hine 1763 | 35.94
207

Supplementary Table 21: Virtual screening on 2,500 FDA-approved drugs.

The probs represents the probability that the drug is a BACE1 inhibitor, which

are predicted by VideoMol. Grid Score calculated by Dock6.10 represents the

binding force between ligand and receptor. The lower the value, the stronger

the binding force. The evidence represents research related to the treatment

of Alzheimer's disease. We only show the first 20 items. For full information,

please see the xIsx file. (.xIsx)

DrugBank | Name probs Grid | Related? evidence evidence
ID Score description link
DB15444 | Elexac | 0.9930 - No
aftor 2226 | 46.73
3532
DB08949 | Inositol | 0.9899 - Yes As a result, inositol | https://pe
nicotina 024 55.27 nicotinate was squisa.bv
te 6123 predicted to act on | salud.org
at least one anti- | /portal/re
AD drug target yet | source/pt
act against AD Iwpr-
through various 780222
mechanisms
DB14568 | Ivoside | 0.9597 - No
nib 691 42.92
4538
DB11700 | Setmel | 0.9592 - No
anotide | 6934 61.03
2345
DB13879 | Glecapr | 0.9591 - Yes glecaprevir/pibrent | https://w
evir 8256 45,78 asvir, ww.ncbi.
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6842 elbasvir/grazoprevi | nim.nih.g
r, and ov/pmc/a
ledipasvir/sofosbuv | rticles/P
ir) significantly MC89599
reduces mortality 84/
risk in patients with
Alzheimer's
disease (AD) and
related dementia
DB13867 | Fluticas | 0.9476 - Yes The lower https://w
one 4495 35.31 incidence of ww.ncbi.
1394 Alzheimer’s nim.nih.g
dementia in the ov/pmc/a
intranasal rticles/P
fluticasone MC61103
propionate 92/
(Flonase) group
compared to the
Lipitor group was
significant
DB11363 | Alectini | 0.9432 - Yes downregulation of | https://w
b 152 37.98 macroautophagy | ww.scien
465 (autophagy) plays | cedirect.c
an essential role in | om/scien
AD pathogenesis. | ce/article/
Therefore, pii/S0163
targeting 7258220
autophagy has 00651
drawn considerable
attention as a
therapeutic
approach for the
treatment of AD
DB11574 | Elbasvi | 0.9217 - Yes See Table S22
r 3696 | 65.37
7815
DB11653 | Bremel | 0.9208 - No
anotide | 2703 63.47
7474
DB15982 | Berotral | 0.9187 - No
stat 4415 | 46.14
3105
DB06636 | Isavuco | 0.9137 - No
nazoniu 141 68.28
m 4996
DB06663 | Pasireo | 0.9129 - No
tide 874 63.45
9614
DB00115 | Cyanoc | 0.9082 - Yes See Table S22
obalami 298 75.67
n 0044
DB11828 | Neratini | 0.9022 - Yes Neratinib as a https://w
b 543 49.60 Potential ww.emijre
9707 Therapeutic for Views.co
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Mutant RAS and m/flagshi
Osimertinib- p-
Resistant Tumours | journal/ar
ticle/nerat
inib-as-a-
potential-
therapeut
ic-for-
mutant-
ras-and-
osimertini
b-
resistant-
tumours-
j190322/
DB11842 | Angiote | 0.8821 - Yes See Table S22
nsin |l 3295 | 84.81
1951
DB12457 | Rimege | 0.8742 - No
pant 169 41.61
306
DB00644 | Gonad | 0.8652 - Yes See Table S22
orelin 2996 93.95
8443
DB15494 | Edotreo | 0.8631 - Yes See Table S22
tide 429 78.59
gallium 8076
Ga-68
DB00520 | Caspof | 0.8616 - Yes In this study, we https://pu
ungin 219 56.14 discovered that an | bmed.nc
3566 antifungal drug, bi.nIm.nih
Caspofungin (CAS) | .gov/337
is a potent AB 22677/
aggregation
inhibitor that
displays
significantly
reduced toxicity
associated with
AD.
DB09065 | Cobicis | 0.8536 - No
tat 151 67.50
1389

Supplementary Table 22: Screening results of Top 6 approved drugs with

the best grid score from DrugBank. DruglD corresponds to the drug id in

DrugBank. Grid score represents binding ability between ligand and BACE1-

41VS receptor calculated by Dock6.10 and the smaller value denotes the
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better score. The evidence represents research related to the treatment of

Alzheimer's disease. (.xIsx)

No. | Drugl | Name Grid evidence description evidence
D Score link
1 DB00 | Gona - Drugs used in intervention or https://clini
644 | doreli | 93.958 | treatment: Drug: GnRH, gonadorelin | caltrials.go
n 443 acetate v/ct2/show/
NCT04390
646
2 DB11 | Angiot - Recently, emerging preclinical and | https://pub
842 ensin | 84.811 | clinical evidence has associated the | med.ncbi.n
I 951 brain renin angiotensin system Im.nih.gov/
(RAS) to AD pathology. 32700176/
Accumulating evidence has
additionally identified
antihypertensive medications
targeting the RAS, particularly
angiotensin receptor blockers
(ARBs) and angiotensin-converting
enzyme inhibitors (ACEls), to delay
AD onset and progression.
3 DB15 | Edotr - Imaging tools of B-amyloid (AB) https://ope
494 | eotide | 78.598 plaques are necessary for clinical nmedscien
galliu 076 and neuropsychological ce.com/gal
m Ga- characteristics in AD. lium-68-
68 Gallium-68 is a promising radiotracer
radionuclide for in vivo imaging of 3- | s-for-
amyloid plaques because it is easily | alzheimers
produced by a generator. -plaque-
imaging/
4 DB00 | Cyan - Here we demonstrate that BACE (B- | https://scie
115 | ocoba | 75.670 secretase), as well as PS1, is ncedirect.c
lamin 044 regulated by methylation and that om/scienc
the reduction of folate and vitamin | e/article/ab
B12 in culture medium can cause a | s/pii/S1044
reduction of SAM levels with 743104002
consequent increase in presenilin1 209
and BACE levels and with increase
in ABproduction.
5 DB06 | Isavu - - -
636 | conaz | 68.284
onium 996
6 DB11 | Elbas - Several studies have reported that https://ww
574 vir 65.377 patients with chronic hepatitis C w.ncbi.nim.
815 virus (HCV) infection tend to exhibit | nih.gov/pm
cognitive impairment and may c/articles/P
increase the risk for dementia. MC895998
A recent study reported that 4/

treatment of HCV infection with
direct-acting antivirals (e.g.,
glecaprevir/pibrentasvir,
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elbasvir/grazoprevir, and

ledipasvir/sofosbuvir) significantly
reduces mortality risk in patients with

Alzheimer’s disease (AD) and
related dementia.

Supplementary Table 23: Evidence of key structures belonging to BACE-1

inhibitors. (.xlsx)

N | key structure
o

evidence title

evidence description

evidence link

1 Fluorine

Development | In addition, the introduction of | https://www.m
and Structural a fluorine atom in the side dpi.com/1420
Modification of chain on the phenyl could -3049/22/1/4
BACE1 improve BACE1 inhibitory
Inhibitors activities.
2 1,2,4- Design and On the other hand, inhibitors | https://www.s
Oxadiazole synthesis of 16—-21, which contained one | ciencedirect.c
potent (- or two tetrazole rings, or om/science/ar
secretase acidic heterocycles (5-oxo- | ticle/pii/S0960
(BACE1) 1,2,4-oxadiazole, 5-oxo- 894X0600163
inhibitors with 1,2,4-thiadiazole, and 2- 6

P1’ carboxylic
acid
bioisosteres

thioxo-1,3,4-oxadiazole)18,
19 at P_17" position,
respectively, showed
significantly higher BACE1
inhibitory activities than their
lead compound 1.

s as Potent and
Selective
Human -
Secretase
(BACE1)
Inhibitors

pyridine or a pyrimidine group
on the scaffold of 3in a
manner such that the group
extends and occupies the S3
region of the BACE1 binding
pocket, not previously
accessed with 3, has

3 Chromene BACE-1 There is some latitude with | https://www.s
inhibitory regard to functional group ciencedirect.c
activities of new | identity (coumarin, chromene | om/science/ar
substituted and quinoline) that allows ticle/pii/S0960
phenyl- further refinement of 894X0501633
piperazine inhibitory potency relative to | 1?via%3Dihu
coupled to b-secretase (BACE-1). b
various
heterocycles:Ch
romene,
coumarin and
quinoline
4 Pyridine Aminoimidazole The addition of either a https://pubs.a

cs.org/doi/full/
10.1021/jm90
06752
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significantly contributed to the
ligand’s potency.

5 | Cyclopentan
e

Stereoselective
Synthesis of
Constrained

Oxacyclic

Hydroxyethylen

e Isosteres of
Aspartic
Protease

Inhibitors: Aldol

and Mukaiyama

The carbocyclic analogue of
21c in which the
tetrahydrofuran ring is
replaced by a cyclopentane
and a cyclopentanone are low
nanomolar inhibitors of
BACE1. The substantial loss of
activity when a cyclopentane is
replaced by an oxacyclic
analogue might be the result of
repulsive interactions of the

https://pubs.a

cs.org/doi/full/

10.1021/jo05
0749y

Aldol . ring oxygen atom with amide
Methodologies carbonyls in the active site,
for Branched thus deviating from optimal
Tetrahydrofuran | conformations for binding.
2-Carboxylic
Acids
6 Tetrazole Design and Among them, tetrazole ring- | https://www.s
synthesis of containing compounds, KMI- | ciencedirect.c
potent (- 570 (IC50 = 4.8 nM) and om/science/ar
secretase KMI-684 (IC50 = 1.2 nM), ticle/pii/S0960
(BACE1) exhibited significantly potent | 894X0600163
inhibitors with BACE1 inhibitory activities. 6

P1' carboxylic
acid
bioisosteres

Supplementary Table 24: Effect of pre-training strategy on 6 regression

datasets (GPCRs) with balanced scaffold split. w/o pretrain means no pre-

trained VideoMol. video-aware, direction-aware, and chemical-aware

represent pre-training VideoMol using only video-aware strategy, direction-

aware strategy, and chemical-aware strategy, respectively. & represents the

combination of multiple pre-training tasks. All means and standard deviations

are reported through three independent runs with random seeds of 0, 1, 2.

S5HT1A AA1R AA2AR
strategy RMSE MAE RMSE MAE RMSE MAE
w/o pretrain 0.993+0.001  0.804+0.002  0.919+0.006  0.755+0.008 1.073+0.01 0.882+0.013
video-aware 0.772+0.011  0.604+0.009  0.709+0.007  0.783+0.010  0.847+0.002  0.651+0.002
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direction-aware 0.871+0.002  0.691+0.004 0.821+0.01 0.652+0.013  0.875+0.008 0.701+0.012
chemical-aware 0.736x0.012  0.566+0.014  0.662+0.018  0.494+0.015 0.716+0.001  0.562+0.002
chemical_direction ~ 0.718+0.002  0.559+0.004 0.706+0.005 0.516+£0.008 0.724+0.008  0.568+0.003
chemical_video 0.716+0.010  0.553+0.010  0.670+0.007  0.511+0.005 0.7194#0.013  0.553+0.014
direction_video 0.774+0.014  0.603+0.015 0.730+0.004  0.553+0.002  0.865+0.011  0.672+0.005
VideoMol 0.708+0.017  0.547+0.015 0.655%0.007 0.496+0.006  0.71210.011  0.543+0.005
CNR2 DRD2 HRH3

strategy RMSE MAE RMSE MAE RMSE MAE
w/o pretrain 1.216+£0.012  1.009+0.008  0.980+0.001  0.782+0.001  0.819+0.001  0.631+0.002
video-aware 0.978+0.025 0.782+0.010  0.818+0.009  0.602+0.009  0.732+0.008  0.556+0.009
direction-aware 1.024£0.01 0.842+0.008  0.903+#0.010  0.700+0.009  0.759+0.005 0.575+0.007
chemical-aware 0.890+0.004  0.698+0.002  0.759+0.003  0.565+0.003  0.669+0.010  0.512+0.010
chemical_direction ~ 0.899+0.008  0.701+0.005 0.773+0.017  0.579+0.007  0.683+0.001  0.514+0.001
chemical_video 0.874+0.012 0.686+0.013  0.745+0.012  0.555+0.013 0.686+0.003  0.526+0.004
direction_video 0.997+0.025 0.789+0.021  0.832+0.005 0.615+0.007  0.734+0.006  0.559+0.002
VideoMol 0.86410.005 0.679+0.010  0.742%0.003 0.556+0.005 0.66810.008 0.506+0.002

Supplementary Table 25: The performance of molecular fingerprint on 10

GPCR datasets with balanced scaffold split. EnsembleFP-MLP indicates the

performance of integrating traditional molecular fingerprints in CAP and

training an MLP. VideoMolFeat-MLP represents the performance of using

VideoMol to extract molecular features and train an MLP. (.xIsx)

1. 5HT1A 2. 5HT2A 3. AA1R
RMSE MAE RMSE MAE RMSE MAE
EnsembleFP-MLP 1.030+0.000 | 0.837+0.001 | 1.207+0.005 | 0.975+0.006 | 0.915+0.005 | 0.734+0.005
VideoMolFeat-MLP | 0.818%0.031 | 0.653%0.033 | 0.910+0.014 | 0.695+0.017 | 0.838+0.007 | 0.647+0.005
—— continue —
4. AA2AR 5. AA3R 6. CNR2
RMSE MAE RMSE MAE RMSE MAE
EnsembleFP-MLP 1.076+0.003 | 0.871+0.002 | 0.991+0.001 | 0.791+0.002 | 1.228+0.004 | 1.027+0.002
VideoMolFeat-MLP | 0.850%0.005 | 0.691%0.004 | 0.862+0.014 | 0.695+0.012 | 1.003+0.070 | 0.789+0.066
—— continue —
7. DRD2 8. DRD3 9. HRH3
RMSE MAE RMSE MAE RMSE MAE
EnsembleFP-MLP 0.979+0.000 | 0.785+0.001 | 1.096+0.004 | 0.933+0.002 | 0.888+0.003 | 0.681+0.002
VideoMolFeat-MLP | 0.885%+0.003 | 0.660%0.002 | 0.837+0.012 | 0.663+0.011 | 0.741+0.001 | 0.578%+0.002
—— continue —
10. OPRM
RMSE MAE
EnsembleFP-MLP 1.023+0.006 | 0.815+0.002
VideoMolFeat-MLP | 0.875%0.004 | 0.672%0.003
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Supplementary Table 26: Effect of frame number on VideoMol on 6

regression datasets (GPCRs) with balanced scaffold split. #frame indicates

the number of frames. All means and standard deviations are reported

through three independent runs with random seeds of 0, 1, 2.

S5HT1A AA1R AA2AR
#frame RMSE MAE RMSE MAE RMSE MAE
5 0.873+0.023  0.693+0.012  0.847+0.013  0.656+0.025 0.824+0.009  0.659+0.012
10 0.800+0.025 0.624+0.017  0.773+0.010  0.584+0.006  0.766+0.002  0.609+0.005
20 0.765+0.026  0.591+0.010  0.728+0.003  0.546+0.005 0.744+0.005 0.586+0.005
30 0.742+0.014  0.573+0.011  0.704+0.004  0.527+0.001  0.736%£0.019  0.570+0.013
60 0.708%0.017  0.547+0.015  0.655%0.007  0.496+0.006 0.71210.011  0.543+0.005
CNR2 DRD2 HRH3
#frame RMSE MAE RMSE MAE RMSE MAE
5 0.991+0.032  0.811+0.027  0.875+0.016  0.660+0.012  0.733£0.017  0.567+0.009
10 0.950+0.032  0.762+0.039  0.822+0.014  0.620+0.003  0.696%0.013  0.540+0.014
20 0.910+0.016  0.721+x0.011  0.792+0.001  0.600+0.004  0.679+0.019  0.521+0.014
30 0.890+0.013  0.700+0.009  0.769+0.005  0.580+0.003  0.686%+0.019  0.531+0.015
60 0.86410.005 0.679+0.010  0.742%0.003  0.556+0.005 0.66810.008 0.506%0.002

Supplementary Table 27: The performance of different video generation

source on 10 GPCR datasets with balanced scaffold split. (.xIsx)

1. 5HT1A 2. 5HT2A 3. AA1R
RMSE MAE RMSE MAE RMSE MAE
Openbabel | 0.733+0.009 0.562+0.006 0.796+0.004 0.597+0.003 0.666+0.014 0.510+0.011
DeepChem | 0.718+0.006 0.557+0.009 0.790+0.016 0.595+0.019 0.677+0.014 0.504+0.010
RDKit 0.708+0.017 0.547+0.015 0.775+0.017 0.578+0.009 0.655+0.007 0.496+0.006
—— continue —
4. AA2AR 5. AA3R 6. CNR2
RMSE MAE RMSE MAE RMSE MAE
Openbabel | 0.705+0.004 0.548+0.008 0.779+0.015 0.618+0.009 0.903+0.018 0.714+0.012
DeepChem | 0.703+0.005 0.558+0.004 0.798+0.019 0.620+0.015 0.896+0.013 0.708+0.012
RDKit 0.712+0.011 0.543+0.005 0.786+0.006 0.617+0.004 0.864+0.005 0.679+0.010
—— continue —
7.DRD2 8. DRD3 9. HRH3
RMSE MAE RMSE MAE RMSE MAE
Openbabel | 0.763+0.018 0.562+0.009 0.745+0.005 0.580+0.003 0.679+0.004 0.524+0.004
DeepChem | 0.745+0.005 0.551£0.002 0.728+0.014 0.556+0.008 0.666+0.005 0.505+0.002
RDKit 0.742+0.003 0.556+0.005 0.715+0.014 0.554+0.012 0.668+0.008 0.506+0.002
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—— continue —

10. OPRM Mean
RMSE MAE RMSE MAE
Openbabel | 0.776+0.008 0.590+0.001 0.755+0.068 0.581+0.057
DeepChem | 0.825+0.008 0.607+0.009 0.755+0.072 0.576+0.060
RDKit 0.795+0.015 0.579+0.011 0.742+0.064 0.565+0.053

Supplementary Table 28: The ability of VideoMol to distinguish different

conformers. The percentile interval refers to sorting all RMSD values from

small to large and selecting the value corresponding to the percentile interval.

(-xlsx)
percentile 5HT1A | 5HT2A | AA1R AA2A AA3R CNR2 DRD2 DRD3 HRH3 OPRM
interval in R
RMSD
0-10 0.692 0.749 0.799 0.803 0.823 0.769 0.729 0.701 0.740 0.730
10-20 0.724 0.726 0.786 0.784 0.771 0.747 0.733 0.740 0.721 0.740
20-30 0.741 0.747 0.755 0.764 0.772 0.736 0.750 0.779 0.690 0.708
30-40 0.726 0.733 0.749 0.747 0.752 0.735 0.748 0.795 0.703 0.716
40-50 0.735 0.745 0.759 0.772 0.758 0.723 0.760 0.775 0.709 0.712
50-60 0.703 0.744 0.765 0.761 0.760 0.710 0.743 0.785 0.706 0.725
60-70 0.708 0.733 0.742 0.756 0.745 0.696 0.748 0.777 0.698 0.727
70-80 0.663 0.748 0.753 0.743 0.766 0.712 0.715 0.775 0.700 0.716
80-90 0.631 0.702 0.745 0.753 0.752 0.709 0.707 0.723 0.669 0.680
90-100 0.518 0.625 0.654 0.702 0.733 0.680 0.615 0.631 0.585 0.658
0-100 (all 0.684 0.725 0.751 0.758 0.763 0.722 0.725 0.748 0.692 0.711
data)
Supplementary Table 29: Details of the molecular fingerprints used in
chemical-aware pretraining task.
No. Type of fingerprint Name Dimension
1 ECFPO 1024
2 ECFP2 1024
3 ECFP4 1024
4 Circular-based ECFP6 1024
3 FCFP2 1024
6 FCFP4 1024
7 FCFP6 1024
8 RDK5 1024
9 Path-based RDK6 1024
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10 RDK7 1024
11 HashAP 1024
12 HashTT 1024
1 2 Substructure-based I\'ﬂf/‘;;s 1106274
15 LECFP4 16384
16 LECFP6 16384
17 Longer version-based LFCFP4 16384
18 LFCFP6 16384
19 LAvalon 16384
20 Pharmacophore-based TPATF 2692
21 Physicochemistry-based RDKDes 208

Supplementary Table 30: The parameter details in the pre-training phase.

Model details

Backbone of
VideoMol

12-layer Vision Transformer with 16 patches

Axis Classifier

Rotation Classifier

Angle Classifier

Chemical Classifier

2 layers of fully connected neural network, where the
first layer has a Softplus activation function and the
number of output neurons in the last layer is task-
dependent

Training parameters

Temperature 0.1
Learning Rate 0.01
Batch Size 256
Momentum 0.9
Weight Decay 1.00E-04
Learning Rate Decay Linear
Video Size 60%3%224x224
Training Step >400k
Validation split random split with 90% traisnein set and 10% validation

Training Platform

CPU

Intel 6248R 48C@3.0GHz

GPU

4 * NVIDIA TESLA A100 (40G)
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Supplementary Table 31: Basic statistical information of 10 kinases and 10

GPCRs. #Molecules represents the number of molecules. #Tasks represents

the number of binary prediction task. Target represents the type of target,

such as kinases and GPCRs.

Dataset #Molecules | #Tasks | Target Metric Type
BTK 106

cgcl?li};g-S 80

EGFR 105

FGFR1 108

FGFR2 109 1 Kinases | ROC-AUC | Classification
FGFR3 107

FGFR4 107

FLT3 110

KPCD3 109

MET 105

AA1TR 3408

5HT1A 3568

5HT2A 3079

AA2AR 3866 1 GPCRs RMSEEa nd Regression
AA3R 3306

CNR2 3079

DRD2 5771
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DRD3 3945
HRH3 3206
OPRM 2977

Supplementary Table 32: Basic statistical information of MoleculeNet

benchmark datasets. #Molecules represents the number of molecules.

#Tasks represent the number of binary prediction task.

Dataset | #Molecules | #Tasks Property Metric Type
BBBP 2039 1 Pharmacology
Tox21 7831 12 Pharmacology
SIDER 1427 27 Pharmacology
ROC- e
AUC Classification
HIV 41127 1
Biophysics
BACE 1513 1
ToxCast 8575 617 Pharmacology
FreeSolv 642 1
ESOL 1128 1 Physical RMSE
chemistry
Lipo 4200 1
Regression
QM7 6830 1
QM8 21786 12 Cuantum MAE
chemistry
QM9 133885 8

Supplementary Table 33: Basic statistical information of 11 SARS-CoV-2

datasets with classification task. #Train, #Val and #Test represent the
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numbers of train set, valid set, and test set, respectively. #Effects indicates
how the drug influences SARS-CoV-2. #Tasks represents the number of

binary prediction task.

Dataset #Train | #Val | #Test | #Effects #Tasks Metric
3CL 404 | 87 | 87 Viral
replication
Human
hCYTOX 530 114 114 cell
toxicity
MERS-PPE 674 145 145
MERS-PPE cs 250 54 54 .
- In vitro
CoV1-PPE 1226 | 263 | 263 | Mectivity 1 ROC-
AUC
CoV1-PPE_cs 216 47 47
CPE 691 148 149 ) )
Live virus
Cytotox 1569 | 336 | 337 | nrectvity
ACE2 228 49 49
AlphaLISA 1089 233 234 Viral entry
TruHit 1175 251 252

Supplementary Table 34: The general framework of VideoMol for fine-tuning.

|dentity layer represents identity mapping.

name description
base model pretrained video encoder
dropout1 Dropout with a dropout ratio of 0 to 1
linear1 Linear layer or Identity layer
activator Activator
dropout2 Dropout with a dropout ratio of 0 to 1
linear2 Linear layer
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Supplementary Table 35: The hyperparameters in fine-tuning of VideoMol.

Hyper;é?ramet Molecular property prediction Binding activity prediction
dropout1 0 0
linear1 Linear layer [Identify layer, Linear layer]
activator [Gelu, Softplus, None] None
dropout2 [0.3, 0.5, 0.8] [0,0.2]
linear2 [Identify layer, Linear layer] [Identify layer, Linear layer]

Learning rate

[8e-5, 3e-4, 5e-4, 8e-4, 3e-3, S5e-

[1e-4, 5e-4, 8e-4, 1e-3, 3e-3,
5e-3, 8e-3, 1e-2, 3e-2, 5e-2,

3, 0.03, 0.05] 0.1]
Batch size [8, 16] [8, 16, 32, 64, 128]
Epochs [2, 5, 10, 30] 10~60
Warmup ratio 0 0
Seed [0,1,2,3,4,5,6,7,8, 9] [0, 1, 2]

Supplementary Table 36: The computational requirements in the pre-training,

fine-tuning, and screening stages. #frame/batch represents the number of

frames in a batch. #samples represents the total number of molecules.

#frame/video indicates how many frames of a video to select for inference.

(-xIsx)
(a) The computational requirements in the pre-training stage.
#samp | #frame/b GPU Training time Server
les atch memory
2 256 ~37G ~9 CPU: Intel 6248R 48C@3.0GHz;
million hours/epoch GPU: A100 (40G)
(b) The computational requirements in the fine-tuning stage.
#samp | #frame/b GPU Training time Server
les atch memory
10,00 8 2.3G ~26 CPU: 13th Gen Intel® Core™ i7-
0 minutes/epoc 13700K
h GPU: 4090 Ti
16 2.6G ~15
minutes/epoc
h
32 3.2G ~12
minutes/epoc
h
64 4.3G ~12
minutes/epoc
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h

128 6.5G ~12
minutes/epoc
h
256 10.7G ~12
minutes/epoc
h
(c) The computational requirements in the screening stage.
#samp | #frame/vi | #videos/b inference GPU memory Server
les deo atch time
1 1 480 ~9 minutes 17.7G CPU: 13th Gen
million ~ . Intel® Core™ i7-
5 96 48 minutes 13700K
10 48 ~90 minutes GPU: 4090 Ti
20 24 ~3 hours
30 16 ~4.5 hours
60 8 ~9 hours
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