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REVIEWER COMMENTS

Reviewer #2 (Remarks to the Author):

Summary: 

The authors propose a molecular video-based foundation model, VideoMol, targeted at 

representation learning for 3D conformers downstream tasks. To learn useful representations of 

conformers, VideoMol is trained with three self-supervised learning strategies: Direction-Aware 

Pretraining Video-Aware Pretraining and Chemical-Aware pretraining, Then subsequently fine-tuned 

on different prediction tasks. An advantage the proposed method over similar deep learning 

approaches, is the provided interpretability through denoting key chemical substructures related to 

3D conformational changes that according to the manuscript overlap with previous domain 

knowledge. The experiments show promising results of VideoMol in diverse drug discovery datasets 

for predicting molecular targets and properties. 

The manuscript is well written and self contained. The authors made the effort to include diverse set 

of baselines including foundation models learnt on sequence, structure and image which gives a nice 

comparison across the current landscape of available methods. All experiments and results are 

described in detail and highlight multiple advantages of video-based features compared to current 

SOTA. It is encouraging that the inhibitors suggested by VideoMol overlap, to some extent, to results 

from other published domain studies. 

Questions: 

1. As the authors mentioned themselves, using videos increases complexity of conformer prediction 

models, which is an already challenging setup because of the 3D structure learning. Are the 60 

frames the minimal or optimal number of frames to be used? Has this been explored? 

2. Could the authors elaborate on how helpful will the features learned by VideoMol without fine 

tuning for a new dataset? Would it be beneficial for practiioners to use VideoMol as pretrained 

models to extract features and then use those for downstream tasks (without fine tuning)? 

3. Why is there no standard error/deviation for any of the results? Have the experiments been 

repeated multiple times? Having some indication about the uncertainty intervals around the results 

would be appreciated. 

4. It will help if the authors include some intuition on why videos make more sense and contribute to 

learning better features. It is not so easy to understands for readers that are less experienced with 

conformers. Some running/motivating example could help the presentation. 

5. How sensitive is the framework to the source for video generation, in this case RDKit. I assume it is 

quite dependent on this platform, and thus, VideoMol probably does not allow for mixing videos 

from different sources. Does this pose any kind of limitation in real-world applications? 



Reviewer #2 (Remarks on code availability):

The provided code is clean and well organised. The authors also included a docker image for setting 

up the environment. The code for training the model as well as reproducing the results is included. I 

believe only the code for VideoMol is provided, and not for the baseline methods. Not necessary, 

but if it is easy to include the related methods, the community might appreciate a full testbed. 

Reviewer #3 (Remarks to the Author):

Noteworthy results: 

The manuscript presents a video-based pretrained model that can be used to make downstream 

task predictions across multiple tasks with finetuning. The results are an improvement upon authors’ 

previous work, ImageMol. The improvement is tied to use of video, which can be considered as an 

augmentation to static images, as well as the use of more comprehensive fingerprints that provide 

chemical, pharmacological and physicochemistry information. The authors show, through extensive 

testing, that the new model outperforms the previous and is at least as good or as better as some 

SOTA models for different tasks. 

Impact to field: 

The work is valuable to the field in multiple areas: it is a demonstration of technology transfer from 

video representation learning. It shows new self supervision tasks that are meaningful for molecule 

structure videos. It identifies a large set of benchmark cases. However I see major drawbacks or 

open questions that would limit its use beyond limited academic interest: 

- Unlike stated, the model does not capture a dynamic conformation of the molecule. The videos are 

not generated to represent any physical dynamics, or conformer change, or changes to torsion 

angles etc. They are movies with standardized rotations around given axis. As such, they are only 

augmentations to enrich the model input about the 3d structure of the molecule. Authors should 

consider another wording than dynamics to prevent misleading the reader. 

- if the manuscript's main aim was to inject more information about the 3d nature of the molecules, 

they could have considered an equivariant graph neural network or transformer. An equivariant 

neural network would remove the need to perform augmentation for different rotations. 

- This is where it gets interesting: if the success of the model was truly due to better representation 

of 3d structure, we would expect the model to be sensitive to different conformers, especially on 

tasks that provide a binding affinity proxy. While, in multiple places in the manuscript the opposite is 

claimed, that model is robust to molecule conformer choice. Perhaps authors can devise an 

experiment to understand why video information does not lead to sensitivity to conformer. 

-Which makes me think the success of the model is not due to better 3d representation but one of 

the several other changes: 1-working with video frames and the new self-supervision tasks have 



expanded the effective size of the data and complexity the network processes each molecule 

(perhaps this is why the number of frames seem to change the prediction accuracy) 2-the large 

number of domain information that is crafted into the fingerprint may be impactful in several tasks 

in this work. Further understanding from where exactly the accuracy improvement comes from, can 

be considered for future work. In the teamtime, the claims of impact of 3D could be dialed down. 

-Feedback to the methodology: the splits used in this work would not stop data leaking from train to 

validation sets and scaffold balancing might not be enough. Indeed we see a hint of the issue in the 

COX examples where training data from ChEMBL in 8:1:1 split gave high ROC-AU >0.9, but when the 

model was tested against MedChemExpress data, only less than 40% of inhibitors are successfully 

identified. This difference may be due to data leak in the high ROC-AUC train-test data, inflating the 

apparent generalizability. In general if authors would like to claim generalizabilty, more attention to 

the split stragety, overlap between data points is needed according to certain similarity metric will 

be needed. 

-Some of the tasks in the work are for high-throughout applications (e.g. virtual screening). In such 

cases the trade-off between accuracy and compute becomes important. The proposed method 

should clearly state the compute needs for pretraining and various downstream tasks. Because it 

works with video, compared to much smaller atomic position files, memory needs should be 

highlighted too. 

-minor typos in text, highlighting one that is on figure in case it escapes proofreading: angel -> angle 

Fig 1b 

Reviewer #3 (Remarks on code availability):

Lightly reviewed code. Checked the pretraining tools and the base encoder model definition. Looks 

rather standard, didnt see any weird libraries or so. Didn't run but I didnt see a reason why it 

wouldnt. Also there are links to pretraining data and to pretrained model to reproduce inference 

results in the paper. 
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Point-by-Point Response Letter 

Manuscript #: NCOMMS-23-62188 

 

We are grateful to the reviewers for their insightful and constructive feedback on our manuscript. 

In response to the feedback, we provide the detailed responses to address each reviewer’s 

concerns point by point as follows. 

 

Responses to the Reviewer #1 
 
Overall Summary – “The authors made the effort to include diverse set of baselines, a nice 
comparison across the current landscape of available methods. All experiments and results are 
described in detail and highlight multiple advantages of video-based features. The manuscript 
is well written” – 
 
Reviewer 
Comment 

The authors propose a molecular video-based foundation model, VideoMol, 
targeted at representation learning for 3D conformers downstream tasks. To 
learn useful representations of conformers, VideoMol is trained with three 
self-supervised learning strategies: Direction-Aware Pretraining Video-
Aware Pretraining and Chemical-Aware pretraining, Then subsequently fine-
tuned on different prediction tasks. An advantage the proposed method over 
similar deep learning approaches, is the provided interpretability through 
denoting key chemical substructures related to 3D conformational changes 
that according to the manuscript overlap with previous domain knowledge. 
The experiments show promising results of VideoMol in diverse drug 
discovery datasets for predicting molecular targets and properties.  
 
The manuscript is well written and self contained. The authors made the 
effort to include diverse set of baselines including foundation models learnt 
on sequence, structure and image which gives a nice comparison across the 
current landscape of available methods. All experiments and results are 
described in detail and highlight multiple advantages of video-based 
features compared to current SOTA. It is encouraging that the inhibitors 
suggested by VideoMol overlap, to some extent, to results from other 
published domain studies. 

Author 
Response 

We thank the Reviewer for comprehensive summary and his/her positive 
support on the manuscript. We have made extensive revision to address the 
reviewer’s critiques as below. 
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Ref 1.1 – “Are the 60 frames the minimal or optimal number of frames to be used? Has 
this been explored?” – 

Reviewer 
Comment 

As the authors mentioned themselves, using videos increases complexity of 
conformer prediction models, which is an already challenging setup because 
of the 3D structure learning. Are the 60 frames the minimal or optimal number 
of frames to be used? Has this been explored? 

Author 
Response 

We thank the Reviewer for this great point about the optimized number of 
frames. We used the 60 frames after balancing both the optimized model 
performance and the computational cost. We explored the impact of frame 
number on the model performance in Supplementary Table 26, including 5 
frames, 10 frames, 20 frames, 30 frames and 60 frames. We found that the 
increased number of frames improve the performance of the models. After 
balancing computing time and the optimized model performance by the 
increased number of frames, we selected 60 frames. We have added these 
new results and more detailed explanations in the revised manuscript. 
 
Supplementary Table 26: Effect of frame number on VideoMol on 6 
regression datasets with balanced scaffold split. #frame indicates the number 
of frames. All means and standard deviations are reported through three 
independent runs. 

 5HT1A AA1R AA2AR 
#frame RMSE MAE RMSE MAE RMSE MAE 

5 0.873±0.023 0.693±0.012 0.847±0.013 0.656±0.025 0.824±0.009 0.659±0.012 

10 0.800±0.025 0.624±0.017 0.773±0.010 0.584±0.006 0.766±0.002 0.609±0.005 
20 0.765±0.026 0.591±0.010 0.728±0.003 0.546±0.005 0.744±0.005 0.586±0.005 
30 0.742±0.014 0.573±0.011 0.704±0.004 0.527±0.001 0.736±0.019 0.570±0.013 
60 0.708±0.017 0.547±0.015 0.655±0.007 0.496±0.006 0.712±0.011 0.543±0.005 

 CNR2 DRD2 HRH3 
#frame RMSE MAE RMSE MAE RMSE MAE 

5 0.991±0.032 0.811±0.027 0.875±0.016 0.660±0.012 0.733±0.017 0.567±0.009 

10 0.950±0.032 0.762±0.039 0.822±0.014 0.620±0.003 0.696±0.013 0.540±0.014 
20 0.910±0.016 0.721±0.011 0.792±0.001 0.600±0.004 0.679±0.019 0.521±0.014 
30 0.890±0.013 0.700±0.009 0.769±0.005 0.580±0.003 0.686±0.019 0.531±0.015 
60 0.864±0.005 0.679±0.010 0.742±0.004 0.556±0.005 0.668±0.008 0.506±0.002  

Excerpt from 
Revised 
Manuscript 

The impact of the video frame number. To explore the impact of different 
frame numbers on VideoMol, we sampled 5, 10, 20, 30, and 60 molecular 
frames from 5HT1A, AA1R, AA2AR, CNR2, DRD2, and HRH3 datasets at 
equal time intervals. We found that the performance of VideoMol is positively 
correlated with the number of frames with an average performance 
improvement of 6.5% (5→10 frames), 3.9% (10→20 frames), 2.0% (20→30 
frames), 3.9% (30→60 frames) on RMSE metric and 7.6% (5→10 frames), 
4.7% (10→20 frames), 2.4% (20→30 frames), 4.4% (30→60 frames) on MAE 
metric, which shows that the increase of frame number enriches the 3D 
information extracted by VideoMol and its performance may be expected to 
be further increased by expanding the frame number (Supplementary Table 
26). 
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Ref 1.2 – “Effectiveness of features learned by VideoMol without fine-tuning on new 
datasets” – 

Reviewer 
Comment 

Could the authors elaborate on how helpful will the features learned by 
VideoMol without fine tuning for a new dataset? Would it be beneficial for 
practitioners to use VideoMol as pretrained models to extract features and 
then use those for downstream tasks (without fine tuning)? 

Author 
Response 

We thank the reviewer for this great point. We conducted new experiments 
and reported new results on downstream tasks using features extracted by 
pretrained VideoMol (called VideoMolFeat) in Supplementary Table 25. We 
also evaluated features extracted by ensemble fingerprints for comparison 
(called EnsembleFP). To be fair, we did not fine-tune VideoMol and directly 
input VideoMolFeat and EnsembleFP into a structurally identical multi-layer 
perceptron (MLP). New experimental results showed that VideoMolFeat 
achieved the best performance with 17.2% average RMSE improvement and 
19.4% average MAE improvement compared with EnsembleFP on 10 
kinases datasets. These new findings (without fine tuning) show that the 
features extracted by VideoMol are superior alternative compared with 
traditional molecular fingerprinting. 
 

 
 

 
Ref 1.3 – “Standard error/deviation of experimental results repeated multiple times” – 

Reviewer 
Comment 

Why is there no standard error/deviation for any of the results? Have the 
experiments been repeated multiple times? Having some indication about the 
uncertainty intervals around the results would be appreciated. 

Author 
Response 

We repeated all molecular property prediction experiments for 10 times with 
random seeds 0 to 9 and the remaining experiments were repeated with 3 
random seeds 0 to 2. All these new standard deviations have been provided 
in the Supplementary Tables 3-7. We found that overall standard 
error/deviation and 95% CI are very small, indicating robustness of VideoMol 
models. 
 

RMSE MAE RMSE MAE RMSE MAE
EnsembleFP-MLP 1.030±0.000 0.837±0.001 1.207±0.005 0.975±0.006 0.915±0.005 0.734±0.005
VideoMolFeat-MLP 0.818±0.031 0.653±0.033 0.910±0.014 0.695±0.017 0.838±0.007 0.647±0.005

RMSE MAE RMSE MAE RMSE MAE
EnsembleFP-MLP 1.076±0.003 0.871±0.002 0.991±0.001 0.791±0.002 1.228±0.004 1.027±0.002
VideoMolFeat-MLP 0.850±0.005 0.691±0.004 0.862±0.014 0.695±0.012 1.003±0.070 0.789±0.066

RMSE MAE RMSE MAE RMSE MAE
EnsembleFP-MLP 0.979±0.000 0.785±0.001 1.096±0.004 0.933±0.002 0.888±0.003 0.681±0.002
VideoMolFeat-MLP 0.885±0.003 0.660±0.002 0.837±0.012 0.663±0.011 0.741±0.001 0.578±0.002

RMSE MAE
EnsembleFP-MLP 1.023±0.006 0.815±0.002
VideoMolFeat-MLP 0.875±0.004 0.672±0.003

10. OPRM

Table S25: The performance of molecular fingerprint on 10 kinases datasets with balanced scaffold split. EnsembleFP-MLP indicates the
performance of integrating traditional molecular fingerprints in CAP and training an MLP.VideoMolFeat-MLP represents the performance of using

VideoMol to extract molecular features and train an MLP.

—— continue ——
7. DRD2 8. DRD3 9. HRH3

—— continue ——

1. 5HT1A 2. 5HT2A 3. AA1R

—— continue ——
4. AA2AR 5. AA3R 6. CNR2
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BTK CDK4-cyclinD3 EGFR FGFR1 FGFR2
MoCLRGIN 0.556±0.118 0.778±0.171 0.583±0.067 0.695±0.249 0.667±0.132
MoCLRGCN 0.602±0.129 0.944±0.039 0.750±0.051 0.619±0.378 0.667±0.052
RNN_LR 0.611±0.000 0.667±0.000 0.536±0.000 0.771±0.000 0.741±0.000
TRFM_LR 0.694±0.000 0.750±0.000 0.821±0.000 0.743±0.000 0.704±0.000
RNN_MLP 0.556±0.023 0.833±0.000 0.536±0.029 0.848±0.059 0.716±0.046
TRFM_MLP 0.537±0.013 0.639±0.039 0.667±0.061 0.643±0.031 0.741±0.000

RNN_RF 0.546±0.013 0.917±0.000 0.548±0.017 0.476±0.027 0.685±0.055
TRFM_RF 0.639±0.039 0.639±0.039 0.607±0.000 0.476±0.013 0.556±0.030

CHEM-BERT 0.648±0.013 0.583±0.297 0.845±0.094 0.429±0.117 0.765±0.106
ImageMol 0.843±0.026 0.917±0.068 0.857±0.000 0.857±0.023 0.852±0.052
VideoMol 0.861±0.023 0.972±0.039 0.905±0.017 0.848±0.027 0.988±0.017

FGFR3 FGFR4 FLT3 KPCD3 MET Average
MoCLRGIN 0.760±0.039 0.773±0.121 0.722±0.091 0.571±0.107 0.611±0.236 0.6716
MoCLRGCN 0.792±0.106 0.537±0.013 0.722±0.208 0.505±0.067 0.574±0.052 0.6712
RNN_LR 0.646±0.015 0.528±0.000 0.778±0.000 0.457±0.000 0.796±0.026 0.6531
TRFM_LR 0.812±0.000 0.639±0.000 0.611±0.000 0.438±0.027 0.778±0.000 0.6990
RNN_MLP 0.469±0.026 0.269±0.035 0.630±0.105 0.410±0.036 0.667±0.045 0.5934
TRFM_MLP 0.802±0.015 0.676±0.035 0.667±0.136 0.219±0.027 0.556±0.000 0.6147

RNN_RF 0.312±0.000 0.389±0.000 0.519±0.026 0.343±0.000 0.500±0.000 0.5235
TRFM_RF 0.646±0.078 0.602±0.013 0.546±0.035 0.262±0.058 0.593±0.026 0.5566

CHEM-BERT 0.438±0.077 0.528±0.060 0.574±0.189 0.557±0.091 0.944±0.000 0.6311
ImageMol 0.854±0.064 0.833±0.045 0.722±0.120 0.762±0.088 0.963±0.026 0.8460
VideoMol 0.896±0.039 0.852±0.080 0.981±0.026 0.867±0.036 0.963±0.026 0.9133

------ Continue ------

Table S3: The ROC-AUC performance of different methods on 10 main types of biochemical kinases from KinomeScan datasets
with balanced scaffold split. All compared results are obtained from ImageMol.

RMSE MAE RMSE MAE RMSE MAE
MoCLRGIN 0.850±0.021 0.670±0.012 0.853±0.019 0.642±0.014 0.786±0.015 0.588±0.009
MoCLRGCN 0.949±0.027 0.764±0.014 0.875±0.008 0.681±0.024 0.856±0.026 0.662±0.026
RNN_LR 1.574±0.091 0.937±0.019 1.602±0.245 1.103±0.151 1.073±0.087 0.762±0.057

TRFM_LR 1.636±0.004 1.109±0.001 1.389±0.000 0.999±0.001 1.060±0.003 0.810±0.001
RNN_MLP 0.957±0.013 0.768±0.010 1.167±0.010 0.890±0.003 0.848±0.004 0.662±0.008

TRFM_MLP 0.939±0.034 0.730±0.025 1.013±0.026 0.728±0.021 0.878±0.051 0.657±0.031
RNN_RF 0.788±0.004 0.617±0.004 1.001±0.001 0.747±0.001 0.717±0.003 0.554±0.002
TRFM_RF 0.855±0.001 0.672±0.001 1.011±0.002 0.777±0.002 0.740±0.001 0.568±0.001

CHEM-BERT 0.876±0.018 0.706±0.012 0.909±0.057 0.682±0.056 0.734±0.038 0.544±0.027
ImageMol 0.776±0.012 0.620±0.014 0.780±0.017 0.578±0.022 0.711±0.012 0.554±0.009
VideoMol 0.708±0.017 0.547±0.015 0.775±0.017 0.577±0.009 0.655±0.007 0.496±0.006

RMSE MAE RMSE MAE RMSE MAE
MoCLRGIN 0.748±0.012 0.588±0.008 0.840±0.014 0.692±0.010 0.926±0.047 0.758±0.036
MoCLRGCN 0.819±0.011 0.651±0.008 0.855±0.010 0.700±0.011 0.978±0.023 0.803±0.021
RNN_LR 1.801±0.600 1.193±0.335 2.295±0.463 1.190±0.155 5.505±0.093 1.611±0.032

TRFM_LR 1.130±0.000 0.906±0.000 1.155±0.001 0.919±0.001 1.700±0.001 1.213±0.000
RNN_MLP 0.967±0.002 0.773±0.005 0.883±0.010 0.707±0.012 1.091±0.015 0.881±0.013

TRFM_MLP 0.948±0.013 0.744±0.005 0.945±0.010 0.749±0.014 1.144±0.055 0.903±0.038
RNN_RF 0.887±0.002 0.692±0.001 0.796±0.009 0.624±0.007 0.965±0.002 0.766±0.001
TRFM_RF 0.926±0.003 0.735±0.004 0.856±0.001 0.701±0.002 0.965±0.002 0.800±0.002

CHEM-BERT 0.862±0.071 0.674±0.058 0.861±0.058 0.684±0.047 0.925±0.051 0.727±0.041
ImageMol 0.734±0.015 0.573±0.009 0.793±0.008 0.634±0.001 0.905±0.004 0.717±0.015
VideoMol 0.712±0.011 0.543±0.005 0.786±0.006 0.617±0.004 0.864±0.005 0.679±0.010

RMSE MAE RMSE MAE RMSE MAE
MoCLRGIN 0.814±0.009 0.591±0.007 0.858±0.017 0.673±0.022 0.734±0.006 0.581±0.004
MoCLRGCN 0.855±0.022 0.634±0.017 0.914±0.024 0.725±0.025 0.740±0.016 0.576±0.006
RNN_LR 1.142±0.077 0.839±0.038 1.316±0.011 0.942±0.005 1.616±0.236 0.943±0.070

TRFM_LR 1.000±0.000 0.719±0.000 1.219±0.000 0.914±0.000 1.169±0.002 0.911±0.002
RNN_MLP 0.895±0.006 0.694±0.005 1.021±0.007 0.819±0.007 0.871±0.015 0.702±0.011

TRFM_MLP 0.919±0.016 0.686±0.016 1.012±0.041 0.790±0.023 0.863±0.011 0.676±0.009
RNN_RF 0.837±0.001 0.612±0.001 0.861±0.001 0.685±0.001 0.771±0.002 0.613±0.002
TRFM_RF 0.864±0.001 0.636±0.002 0.904±0.001 0.717±0.001 0.770±0.002 0.602±0.001

CHEM-BERT 0.816±0.011 0.587±0.013 0.803±0.029 0.631±0.026 0.770±0.033 0.594±0.022
ImageMol 0.772±0.014 0.573±0.009 0.735±0.018 0.576±0.014 0.710±0.006 0.561±0.006
VideoMol 0.742±0.004 0.556±0.005 0.715±0.014 0.554±0.012 0.668±0.008 0.506±0.002

RMSE MAE
MoCLRGIN 0.856±0.008 0.664±0.016
MoCLRGCN 0.853±0.009 0.653±0.020
RNN_LR 2.649±1.024 1.744±0.614

TRFM_LR 1.694±0.001 1.282±0.000
RNN_MLP 1.022±0.014 0.781±0.008

TRFM_MLP 1.084±0.009 0.849±0.007
RNN_RF 0.876±0.010 0.671±0.009
TRFM_RF 0.852±0.002 0.660±0.003

CHEM-BERT 0.893±0.024 0.672±0.019
ImageMol 0.849±0.018 0.645±0.015
VideoMol 0.795±0.015 0.579±0.011

7. DRD2 8. DRD3 9. HRH3

10. OPRM

Table S4: The RMSE and MAE performance of different methods on 10 GPCR with balanced scaffold split. The lower the value, the better the
performance. All compared results are obtained from ImageMol.

1. 5HT1A 2. 5HT2A 3. AA1R

4. AA2AR 5. AA3R 6. CNR2
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Furthermore, we calculated the uncertainty intervals with 95% 
confidence intervals (CI) of ImageMol and VideoMol on 10 compound-kinase 
interaction datasets and 11 SARS-CoV-2 viral activity prediction datasets. In 
details, we used the popular bias-corrected and accelerated (BCa) bootstrap 
intervals [1][2] to calculate 95% uncertainty intervals, which corrects for both 

Tox21 ToxCast Sider HIV BBBP BACE
#Molecules 7831 8576 1427 41127 2039 1513

#Task 12 617 27 1 1 1

InfoGraph 73.3 (0.6) 61.8 (0.4) 58.7 (0.6) 74.2 (0.9) 68.7 (0.6) 74.3 (2.6)

GPT-GNN 74.9 (0.3) 62.5 (0.4) 58.1 (0.3) 65.2 (2.1) 64.5 (1.4) 77.9 (3.2)

ContextPred 73.6 (0.3) 62.6 (0.6) 59.7 (1.8) 75.6 (1.0) 70.6 (1.5) 78.8 (1.2)

GraphLoG 75.0 (0.6) 63.4 (0.6) 59.6 (1.9) 76.1 (0.8) 68.7 (1.6) 78.6 (1.0)

G-Contextual 75.0 (0.6) 62.8 (0.7) 58.7 (1.0) 76.3 (1.5) 69.9 (2.1) 79.3 (1.1)

G-Motif 73.6 (0.7) 62.3 (0.6) 61.0 (1.5) 73.8 (1.2) 66.9 (3.1) 73.0 (3.3)

AD-GCL 74.9 (0.4) 63.4 (0.7) 61.5 (0.9) 76.7 (1.2) 70.7 (0.3) 76.6 (1.5)

JOAO 74.8 (0.6) 62.8 (0.7) 60.4 (1.5) 76.9 (0.7) 66.4 (1.0) 73.2 (1.6)

SimGRACE 74.4 (0.3) 62.6 (0.7) 60.2 (0.9) 75.0 (0.6) 71.2 (1.1) 74.9 (2.0)

GraphCL 75.1 (0.7) 63.0 (0.4) 59.8 (1.3) 75.1 (0.7) 67.8 (2.4) 74.6 (2.1)

GraphMAE 75.2 (0.9) 63.6 (0.3) 60.5 (1.2) 76.8 (0.6) 71.2 (1.0) 78.2 (1.5)

3D InfoMax 74.5 (0.7) 63.5 (0.8) 56.8 (2.1) 76.1 (1.3) 69.1 (1.2) 78.6 (1.9)

MGSSL 75.2 (0.6) 63.3 (0.5) 61.6 (1.0) 75.8 (0.4) 68.8 (0.6) 78.8 (0.9)

AttrMask 75.1 (0.9) 63.3 (0.6) 60.5 (0.9) 75.3 (1.5) 65.2 (1.4) 77.8 (1.8)

MolCLR 75.5 (0.5) 63.9 (0.5) 60.3 (1.3) 74.4 (1.3) 66.8 (3.4) 75.3 (2.9)

GraphMVP-C 74.6( 0.4) 63.4 (0.6) 60.6 (1.3) 77.1 (2.1) 69.9 (1.4) 79.6 (1.7)

ImageMol 75.5 (1.0) 65.6 (0.9) 64.9 (1.3) 76.8 (1.3) 70.5 (1.3) 78.1 (3.5)

Uni-Mol (1 conf) 78.3 (0.4) 68.7 (0.5) 63.7 (1.3) 79.2 (1.0) 69.6 (2.0) 81.0 (3.9)

Uni-Mol (10 conf) 78.8 (0.7) 69.0 (0.5) 63.6 (1.4) 79.2 (0.9) 69.9 (2.7) 81.7 (3.4)

Mole-BERT 77.0 (0.3) 64.4 (0.2) 63.2 (0.7) 77.7 (0.7) 65.7 (2.3) 80.2 (0.9)

VideoMol 78.8 (0.5) 66.7 (0.5) 66.3 (0.9) 79.4 (0.5) 70.7 (2.2) 82.4 (0.9)
Rank 1 2 1 1 3 1

Table S5: The ROC-AUC performance (%) of different methods on 6 molecular property prediction benchmarks with scaffold
split. All experiments are run 10 times using random seeds from 0 to 9. GraphMVP-C, Mole-BERT, Uni-Mol and ImageMol are

reproduced from their source code and other results from Mole-BERT.

RMSE FreeSolv ESOL Lipo QM7 QM8 QM9
GraphMVP 2.559±0.158 1.322±0.062 0.773±0.016 120.344±6.237 0.02049±0.00032 0.00891±0.00010
EdgePred 2.843±0.091 1.367±0.041 0.778±0.013 104.387±3.292 0.02058±0.00061 0.00929±0.00009

GraphMVP-C 2.766±0.199 1.333±0.055 0.768±0.013 121.022±5.699 0.02022±0.00047 0.00896±0.00011
MolCLR 3.112±0.638 1.462±0.068 0.799±0.018 144.426±6.591 0.03598±0.00085 0.01488±0.00020

ImageMol 2.113±0.235 0.964±0.067 0.702±0.060 116.384±8.445 0.02419±0.00033 0.02061±0.00019
Mole-BERT 2.988±0.155 1.115±0.017 0.727±0.006 101.922±2.331 0.02073±0.00033 0.00910±0.00010
VideoMol 1.728±0.053 0.866±0.017 0.743±0.009 76.736±1.561 0.01890±0.00020 0.00896±0.00003

Table S6: The RMSE or MAE performance of different methods on 6 molecular property prediction benchmarks with scaffold split. All experiments are run 10 times
using random seeds from 0 to 9.  We report RMSE for FreeSolv, ESOL and Lipo datasets and MAE for QM7 and QM8, QM9 datasets, respectively. We reproduced

all comparison methods using the same settings. We use GIN backbone for MolCLR because it achieves the best results..

3CL ACE2 hCYTOX MERS-PPE_cs MERS-PPE CoV1-PPE_cs
REDIAL-2020 0.713 0.753 0.710 0.703 0.696 0.661

ImageMol 0.762±0.007 0.720±0.001 0.727±0.009 0.771±0.009 0.773±0.011 0.775±0.005
VideoMol 0.709±0.006 0.759±0.025 0.765±0.003 0.828±0.027 0.814±0.004 0.836±0.029

CoV1-PPE CPE Cytotox AlphaLISA TruHit Mean
REDIAL-2020 0.665 0.651 0.688 0.79 0.734 0.706

ImageMol 0.703±0.008 0.669±0.011 0.728±0.001 0.793±0.007 0.806±0.006 0.748
VideoMol 0.737±0.007 0.747±0.013 0.761±0.002 0.841±0.004 0.862±0.002 0.787

===== continue =====

Table S7: The ROC-AUC performance of different methods on 11 SARS-CoV-2 datasets with balanced scaffold split. All
compared results are obtained from ImageMol.
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bias and skewness of the bootstrap parameter estimates by incorporating a 
bias-correction factor and an acceleration factor. The results of the 
uncertainty interval are reported in the Extended Table 1 (the Revised 
Supplemental Table 8) and Extended Table 2 (the Revised Supplemental 
Table 9) below, which shows the effectiveness of VideoMol with an average 
improvement ranging from 5.44% to 10.07%.  

In summary, these new experiments highlight the robustness of our 
VideoMol models. We have added these new experiments and more detailed 
explanations in the revised manuscript.  
 
Extended Table 1 (the Revised Supplemental Table 8). The uncertainty 
intervals with 95% confidence intervals of ImageMol and VideoMol on 10 
compound-kinase interaction datasets. UI(·) represents the uncertainty 
intervals and “Improvement” represents the relative performance 
improvement of VideoMol compared to ImageMol. 
 

Dataset 
UI(RMSE) UI(MAE) 

ImageMol VideoMol Improvem
ent 

ImageMol VideoMol Improvem
ent 

5HT1A 0.782±0.057 0.719±0.059 8.06% 0.629±0.048 0.550±0.046 12.56% 
5HT2A 0.816±0.109 0.810±0.102 0.74% 0.587±0.059 0.583±0.059 0.68% 
AA1R 0.718±0.062 0.662±0.068 7.80% 0.559±0.045 0.499±0.046 10.73% 

AA2AR 0.739±0.055 0.714±0.056 3.38% 0.575±0.045 0.544±0.045 5.39% 
AA3R 0.796±0.056 0.795±0.065 0.13% 0.632±0.051 0.622±0.053 1.58% 
CNR2 0.916±0.073 0.878±0.072 4.15% 0.722±0.060 0.686±0.064 4.99% 
DRD2 0.779±0.060 0.749±0.053 3.85% 0.574±0.041 0.559±0.040 2.61% 
DRD3 0.738±0.053 0.704±0.054 4.61% 0.580±0.044 0.548±0.042 5.52% 
HRH3 0.747±0.067 0.669±0.061 10.44% 0.582±0.050 0.507±0.047 12.89% 
OPRM 0.898±0.089 0.797±0.075 11.25% 0.667±0.065 0.584±0.062 12.44% 

 
Extended Table 2 (the Revised Supplemental Table 9). The uncertainty 
intervals with 95% confidence intervals of ImageMol and VideoMol on 11 
SARS-CoV-2 viral activity prediction datasets. UI(·) represents the 
uncertainty intervals and “Improvement” represents the relative performance 
improvement of VideoMol compared to ImageMol. 

Dataset 
UI(AUC) 

ImageMol VideoMol Improvement 
3CL 0.685±0.117 0.710±0.110 3.65% 

ACE2 0.658±0.133 0.763±0.112 15.96% 
hCYTOX 0.736±0.087 0.760±0.087 3.26% 

MERS-PPE_cs 0.727±0.119 0.817±0.103 12.38% 
MERS-PPE 0.720±0.082 0.799±0.074 10.97% 

CoV1-PPE_cs 0.688±0.115 0.832±0.098 20.93% 
CoV1-PPE 0.701±0.063 0.736±0.060 4.99% 

CPE 0.646±0.084 0.736±0.077 13.93% 
Cytotox 0.729±0.051 0.760±0.054 4.25% 
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AlphaLISA 0.762±0.062 0.836±0.049 9.71% 
TruHit 0.772±0.059 0.855±0.046 10.75% 

 
References 
[1] Efron B. Better bootstrap confidence intervals[J]. Journal of the American 
statistical Association, 1987, 82(397): 171-185. 
[2] Efron B, Tibshirani R J. An introduction to the bootstrap[M]. Chapman and 
Hall/CRC, 1994. 

Excerpt from 
Revised 
Manuscript 

For 10 compound-kinase interaction datasets, VideoMol achieves better AUC 
performance than other methods across BTK (AUC=0.861±0.023), CDK4-
cyclinD3 (AUC=0.972±0.039), EGFR (AUC=0.905±0.017), FGFR1 (AUC= 
0.848±0.027), FGFR2 (AUC=0.988±0.017), FGFR3 (AUC=0.896±0.039), 
FGFR4 (AUC=0.852±0.080), FLT3 (AUC=0.981±0.026), KPCD3 
(AUC=0.867±0.036) and MET (AUC=0.963±0.026) with an average 
performance improvement of 5.9% ranging from 1.8% to 20.3% (Fig. 2a and 
Supplementary Table 3). In particular, VideoMol outperforms the state-of-the-
art methods of ImageMol and MolCLR with average improvements of 6.7% 
and 20.6%.  
 
In classification task, using the area under the receiver operating 
characteristic (ROC) curve (AUC), VideoMol achieves elevated performance 
across BBBP (AUC=70.7%±1.5), Tox21 (AUC=78.8%±0.4), HIV 
(AUC=79.4%±0.5), BACE (AUC=82.4%±0.9), SIDER (AUC=66.3%±0.9), 
ToxCast (AUC=66.7%±0.5), outperforming other methods (Fig. 2c and 
Supplementary Table 5). In regression task, VideoMol achieves low error 
values across FreeSolv (RMSE=1.728±0.053), ESOL (RMSE=0.866±0.017), 
Lipo (RMSE=0.743±0.009), QM7 (MAE=76.736±1.561), QM8 
(MAE=0.01890±0.0020) and QM9 (MAE=0.00896±0.00003), outperforming 
other methods (Fig. 2d and Supplementary Table 6). 
 
We found that VideoMol achieved elevated ROC-AUC performance 
(3CL=0.709±0.006, ACE2=0.759±0.020, hCYTOX=0.765±0.003, MERS-
PPE_cs=0.828±0.027, MERS-PPE=0.814±0.004, CPE=0.747±0.013, CoV1-
PPE_cs=0.836±0.029, CoV1-PPE=0.737±0.007, Cytotox=0.761±0.002, 
AlphaLISA=0.841±0.004, TruHit=0.862±0.002) with an average 3.9% 
improvement ranging from 3.3% to 7.8% compared with ImageMol and an 
average 8.1% improvement ranging from 0.6% to 17.5% compared with 
REDIAL-2020 (Fig. 2e and Supplementary Table 7). 
 
Furthermore, we calculated the uncertainty intervals with 95% confidence 
intervals (CI) of ImageMol and VideoMol using 10 compound-kinase 
interaction datasets and 11 SARS-CoV-2 viral activity prediction datasets. In 
details, we used the popular bias-corrected and accelerated (BCa) bootstrap 
intervals41,42 to calculate the uncertainty intervals with 95% confidence 
intervals (CI), which corrects for both bias and skewness of the bootstrap 
parameter estimated by incorporating a bias-correction factor and an 
acceleration factor. The results of the uncertainty interval show the 
effectiveness of VideoMol with an average improvement ranging from 5.44% 
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to 10.07% (Supplementary Tables 8-9). 
 
References 
[41] Efron, B. Better bootstrap confidence intervals. Journal of the American 
statistical Association 82, 171-185 (1987). 
[42] Efron, B. & Tibshirani, R.J. An introduction to the bootstrap. (Chapman 
and Hall/CRC, 1994). 

 
 

Ref 1.4 – “Intuition on why videos make more sense and contribute to learning better 
features” – 

Reviewer 
Comment 

It will help if the authors include some intuition on why videos make more 
sense and contribute to learning better features. It is not so easy to 
understands for readers that are less experienced with conformers. Some 
running/motivating examples could help the presentation. 

Author 
Response 

We thank the reviewer for this great point and we have added more intuition 
and examples on why videos make more sense and contribute to learning 
better features in the revised Results and Discussion. 

Excerpt from 
Revised 
Manuscript 

Results: 
 
Framework of VideoMol 
 
Molecules exist in nature and are constantly conformational dynamics, 
making video the most direct representation method. The molecular 3D 
information can be directly observed from the video without the help of 
manual feature extraction, such as the distance between pairs of atoms and 
the angle formed between multiple atoms and so on. In addition, we evaluated 
the advantages of different representations in feature extraction capabilities 
and found that our proposed video representation has obvious advantages 
over existing representations with a 66% improvement rate on 8 basic 
attributes (Supplementary Methods and Supplementary Table 1). Therefore, 
these significant differences motivate us to develop VideoMol for accurately 
predicting the targets and properties of molecules in the form of videos 
derived from molecules. 

 
 
C.2 Results of different representations on 8 basic attributes 
 
To fairly compare the effects of different representations, we evaluated the 

modality model use conformer? prop
GCN × 62.304 

GIN × 62.980 

EGNN × 17.418 

3D graph EGNN √ 16.684 

image from imagemol ResNet18 × 12.469 

video-1frame ResNet18 √ 11.237

video-5frame ResNet18 √ 8.088

video-60frame ViT √ 7.511

Table S1: The RMSE results of different molecular representations on 8 basic attributes (molecular weight, MolLogP, MolMR,

BalabanJ, NumHAcceptors, NumHDonors, NumValenceElectrons).

graph-based
2D graph

image-based
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representation without using any self-supervised tasks. It is well known that 
the development of drug discovery depends on accurately capturing chemical 
and biological representations of molecules. Here, we used several 
commonly used representative methods (such as GCN, GIN, EGNN, and the 
representation used by ImageMol) to inspect the model's ability to understand 
the 8 basic attributes of molecules, including molecular weight, MolLogP, 
MolMR, BalabanJ, NumHAcceptors, NumHDonors, NumValenceElectrons 
and TPSA.  

We randomly collected 10,000 molecules from the pre-training dataset 
and used exactly the same experimental setup for fair comparison. In detail, 
we split the training set, validation set, and test set using a ratio of 8:1:1 and 
reported the results on the test set based on the best validation set score. As 
shown in Supplementary Table 1, we found that VideoMol using only one 
frame outperformed that of the 2D graph-based methods, the 3D-based graph 
method and the 2D image-based method, revealing the advantage of 3D 
representation. Specifically, compared with the second-place ImageMol 
without pre-training, the performance of video-1frame improved by 11%. 
When we utilized all video frames (video-60frame), the performance is further 
significantly improved from 12.47 to 7.55 with a 66% improvement rate. 

In summary, the proposed 3D representation (whether based on a single 
frame image or a 60-frame video) has advantages compared to existing 
molecular representation approaches. We will further improve our VideoMol 
framework by inceasing the number of 3D frames and integrating other types 
of 3D representation (such as AlphaFold311) in the near future. 

 
[11] Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of 
biomolecular interactions with AlphaFold 3[J]. Nature, 2024: 1-3. 

 
 

Ref 1.5 – “Sensitivity of VideoMol for video generation source” – 

Reviewer 
Comment 

How sensitive is the framework to the source for video generation, in this 
case RDKit. I assume it is quite dependent on this platform, and thus, 
VideoMol probably does not allow for mixing videos from different sources. 
Does this pose any kind of limitation in real-world applications? 

Author 
Response 

We thank the reviewer for this critique. To evaluate the sensitivity of VideoMol 
to video generation sources, we utilized two additional methods to generate 
molecular videos as below: 
1. OpenBabel[1]: It is a chemical toolbox designed to code many languages 

of chemical data, which generates 3D conformer by four steps: (1) Use 
the OBBuilder to create a 3D structure using rules and fragment 
templates; (2) Use 250 steps of a steepest descent geometry 
optimization with the MMFF94 forcefield; (3) Use 200 iterations of a 
Weighted Rotor conformational search (optimizing each conformer with 
25 steps of a steepest descent); (4) Use 250 steps of a conjugate 
gradient geometry optimization. 

2. DeepChem[2]: It aims to provide a high quality open-source toolchain that 
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democratizes the use of deep-learning in drug discovery, materials 
science, quantum chemistry, and biology. It uses three steps to generate 
molecular conformer: (1) Generate a pool of conformers using UFF force 
field; (2) Minimize conformers; (3) Prune conformers using an RMSD 
threshold. 
 

        As shown in the revised Extended Table 1 (the Revised Supplemental 
Table 27), we found that the video generation source has no significant 
impact on VideoMol with an average performance of 0.755±0.068 
(Openbabel), 0.755±0.072 (DeepChem), 0.742±0.064 (RDKit) in RMSE 
metric and 0.581±0.057 (Openbabel), 0.576±0.060 (DeepChem), 
0.565±0.053 (RDKit) performance in MAE metric. Therefore, VideoMol has 
low sensitivity to video generation sources. 
 
Extended Table 1 (the Revised Supplemental Table 27). The performance 
of different video generation source on 10 kinases datasets with balanced 
scaffold split. 

  1. 5HT1A 2. 5HT2A 3. AA1R 

  RMSE MAE RMSE MAE RMSE MAE 

Openbabel 0.733±0.009 0.562±0.006 0.796±0.004 0.597±0.003 0.666±0.014 0.510±0.011 

DeepChem 0.718±0.006 0.557±0.009 0.790±0.016 0.595±0.019 0.677±0.014 0.504±0.010 

RDKit 0.708±0.017 0.547±0.015 0.775±0.017 0.577±0.009 0.655±0.007 0.496±0.006 

—— continue —— 

  4. AA2AR 5. AA3R 6. CNR2 

  RMSE MAE RMSE MAE RMSE MAE 

Openbabel 0.705±0.004 0.548±0.008 0.779±0.015 0.618±0.009 0.903±0.018 0.714±0.012 

DeepChem 0.703±0.005 0.558±0.004 0.798±0.019 0.620±0.015 0.896±0.013 0.708±0.012 

RDKit 0.712±0.011 0.543±0.005 0.786±0.006 0.617±0.004 0.864±0.005 0.679±0.010 

—— continue —— 

  7. DRD2 8. DRD3 9. HRH3 

  RMSE MAE RMSE MAE RMSE MAE 

Openbabel 0.763±0.018 0.562±0.009 0.745±0.005 0.580±0.003 0.679±0.004 0.524±0.004 

DeepChem 0.745±0.005 0.551±0.002 0.728±0.014 0.556±0.008 0.666±0.005 0.505±0.002 

RDKit 0.742±0.004 0.556±0.005 0.715±0.014 0.554±0.012 0.668±0.008 0.506±0.002 

—— continue —— 

  10. OPRM Mean 

  

  RMSE MAE RMSE MAE 

Openbabel 0.776±0.008 0.590±0.001 0.755±0.068 0.581±0.057 

DeepChem 0.825±0.008 0.607±0.009 0.755±0.072 0.576±0.060 

RDKit 0.795±0.015 0.579±0.011 0.742±0.064 0.565±0.053 

 
References 
[1] O'Boyle N M, Banck M, James C A, et al. Open Babel: An open chemical 
toolbox[J]. Journal of Cheminformatics, 2011, 3: 1-14. URL: 
https://github.com/openbabel/openbabel  
[2] Altae-Tran H, Ramsundar B, Pappu A S, et al. Low data drug discovery 

https://github.com/openbabel/openbabel
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with one-shot learning[J]. ACS Central Science, 2017, 3(4): 283-293. URL: 
https://github.com/deepchem/deepchem 

Excerpt from 
Revised 
Manuscript 

Ablation study: 
 
Sensitivity of VideoMol for video generation source. To verify the sensitivity 
of VideoMol to video generation sources, we used two additional platforms to 
generate molecular videos, which are OpenBabel58 and DeepChem59. We 
found that the video generation source of different platforms has no significant 
impact on VideoMol with an average performance of 0.755±0.068 
(Openbabel), 0.755±0.072 (DeepChem), 0.750±0.065 (RDKit) in RMSE 
metric and 0.581±0.057 (Openbabel), 0.576±0.060 (DeepChem), 
0.572±0.056 (RDKit) in MAE metric (Supplementary Table 27). Therefore, 
VideoMol has low sensitivity to video generation sources from different 
platforms. 
 
References 
[58] O'Boyle, N.M. et al. Open Babel: An open chemical toolbox.  3, 1-14 
(2011). 
[59] Altae-Tran, H., Ramsundar, B., Pappu, A.S. & Pande, V. Low data drug 
discovery with one-shot learning. ACS central science 3, 283-293 (2017). 

 
 
Comments on code availability – “The provided code is clean and well organized” – 

Reviewer 
Comment 

The provided code is clean and well organized. The authors also included a 
docker image for setting up the environment. The code for training the model 
as well as reproducing the results is included. I believe only the code for 
VideoMol is provided, and not for the baseline methods. Not necessary, but if 
it is easy to include the related methods, the community might appreciate a 
full testbed. 

Author 
Response 

We thank the reviewer for checking our codes. We have provided codes for 
the baseline methods and related methods/models as well in this link 
(https://1drv.ms/f/s!Atau0ecyBQNTgTd736-8RPWEXSVt?e=DkOyw2). 
 
Of course, you can also access it via our github repository 
(https://github.com/ChengF-Lab/VideoMol), as shown below: 

 
 

https://github.com/deepchem/deepchem
https://1drv.ms/f/s!Atau0ecyBQNTgTd736-8RPWEXSVt?e=DkOyw2
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Responses to the Reviewer #3 
 

Overall Summary – “The work is valuable to the field in multiple areas” – 

Reviewer 
Comment 

The manuscript presents a video-based pretrained model that can be used 
to make downstream task predictions across multiple tasks with finetuning. 
The results are an improvement upon authors’ previous work, ImageMol. 
The improvement is tied to use of video, which can be considered as an 
augmentation to static images, as well as the use of more comprehensive 
fingerprints that provide chemical, pharmacological and physicochemistry 
information. The authors show, through extensive testing, that the new 
model outperforms the previous and is at least as good or as better as some 
SOTA models for different tasks.  
 
Impact to field: The work is valuable to the field in multiple areas: it is a 
demonstration of technology transfer from video representation learning. It 
shows new self supervision tasks that are meaningful for molecule structure 
videos. 

Author 
Response 

We thank the Reviewer for great summary and his/her support on the 
important value of our proposed VideoMol in multiple drug discovery tasks. 

 
 

Ref 2.1 – “More explanations about dynamics” – 

Reviewer 
Comment 

Unlike stated, the model does not capture a dynamic conformation of the 
molecule. The videos are not generated to represent any physical dynamics, 
or conformer change, or changes to torsion angles etc. They are movies with 
standardized rotations around given axis. As such, they are only 
augmentations to enrich the model input about the 3D structure of the 
molecule. Authors should consider another wording than dynamics to prevent 
misleading the reader. 

Author 
Response 

We thank the reviewer for these critiques. We agreed with the reviewer that 
the current ViodeMol framework cannot capture the physical dynamics or 
conformational changes of ligand-receptor dynamics. Integrating physical 
dynamics or conformational changes from 3D ligand-receptor structures or 
models (i.e., alphaFold3 [1]) may improve performance of ViodeMol in the 
future. We have changed our original claims and added more explanations in 
the revised manuscript. 
 
Reference 
[1] Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of 
biomolecular interactions with AlphaFold 3[J]. Nature, 2024: 1-3. 

Excerpt from 
Revised 
Manuscript 

Results: 
 
Framework of VideoMol 
 
Molecules exist in nature and are constantly conformational dynamics, 
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making video the most direct representation method. The molecular 3D 
information can be directly observed from the video without the help of manual 
feature extraction, such as the distance between pairs of atoms and the angle 
formed between multiple atoms and so on. In addition, we evaluated the 
advantages of different representations in feature extraction capabilities and 
found that our proposed video representation has obvious advantages over 
existing representations with a 66% improvement rate on 8 basic attributes 
(Supplementary Section C.2 and Supplementary Table 1). Therefore, these 
significant differences motivate us to develop VideoMol for accurately 
predicting the targets and properties of molecules in the form of videos 
derived from molecules. 
  
C.2 Results of different representations on 8 basic attributes 
 
To fairly compare the effects of different representations, we evaluated the 
representation without using any self-supervised tasks. It is well known that 
the development of drug discovery depends on accurately capturing chemical 
and biological representations of molecules. Here, we used several 
commonly used representative methods (such as GCN, GIN, EGNN, and the 
representation used by ImageMol) to inspect the model's ability to understand 
the 8 basic attributes of molecules, including molecular weight, MolLogP, 
MolMR, BalabanJ, NumHAcceptors, NumHDonors, NumValenceElectrons 
and TPSA.  
We randomly collected 10,000 molecules from the pre-training dataset and 
used exactly the same experimental setup for fair comparison. In detail, we 
split the training set, validation set, and test set using a ratio of 8:1:1 and 
reported the results on the test set based on the best validation set score. As 
shown in Supplementary Table 1, we found that VideoMol using only one 
frame outperformed that of the 2D graph-based methods, the 3D-based graph 
method and the 2D image-based method, revealing the advantage of 3D 
representation. Specifically, compared with the second-place ImageMol 
without pre-training, the performance of video-1frame improved by 11%. 
When we utilized all video frames (video-60frame), the performance is further 
significantly improved from 12.47 to 7.55 with a 66% improvement rate. 
In summary, the proposed 3D representation (whether based on a single 
frame image or a 60-frame video) has advantages compared to existing 
molecular representation approaches. We will further improve our VideoMol 
framework by inceasing the number of 3D frames and integrating other types 
of 3D representation (such as AlphaFold311) in the near future. 
 
[11] Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of 
biomolecular interactions with AlphaFold 3[J]. Nature, 2024: 1-3. 
 
Discussion 
Using a simple extension to VideoMol, we can allow the model to learn the 
correlations and variances between different conformations in the same 
molecule from videos of dynamic changes, thereby further playing an 
important role in molecular dynamics scenarios.  
            We believe that it is promising to represent molecules and perform 
inferences through videos as molecular imaging techniques continue to 
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advance. In summary, the introduction of VideoMol on the one hand enriches 
the form of molecular representation in the field of computational drug 
discovery, and on the other hand inspires people to learn and understand the 
molecules from different perspectives. 

 
 

Ref 2.2 – “Equivariant graph neural networks or transformers can be used to eliminate 
the need to perform augmentation for different rotations” – 

Reviewer 
Comment 

If the manuscript's main aim was to inject more information about the 3d 
nature of the molecules, they could have considered an equivariant graph 
neural network or transformer. An equivariant neural network would remove 
the need to perform augmentation for different rotations. 

Author 
Response 

We thank the reviewer for this valuable point. We agreed with reviewer 
that equivariant graph neural networks or transformers can indeed inject more 
information about the 3D nature of molecules by learning on well-
characterized rotation-independent features. However, video and graph are 
complementary and they each have unique advantages in data presentation 
and analysis. There are several essential differences between VideoMol and 
equivariant graph neural network in obtaining the 3D of molecules as reflected 
below: 

(1) Modality representation. Obviously, video and graph are completely 
different in representation. There are several advantages for choosing video 
for molecular representation. First, video is a more intuitive representation 
method and information related to 3D nature can be directly observed from 
the videos, which allows the model to learn the information of bioactive 
molecules directly from the video without the help of any manual feature 
extraction. Secondly, VideoMol attempts the feasibility of learning 
representations from molecular videos and can be extended to learn a video 
related to potential ligand-receptor information by integrating with alphaFold3 
or other available tools in the future. 

 
(2) Feature extraction. VideoMol extracts dense pixel-level features, 

while the graph-based model extracts relaxed node-level features. VideoMol 
allows the model to perceive 3D information in molecules by learning local 
textures in videos, such as the distance between pairs of atoms and the angle 
formed between three atoms and so on (as shown in the below Extended 
Figure 1). In contrast, 3D graph-based methods require the intervention of 
explicit knowledge to guide the model to learn this information. 

 
These significant differences motivate us to develop a deep learning 

method based on video representations and we can also see significant 
advantages of VideoMol as we demonstrated in multiple drug discovery tasks.  
We have added these new explanations in the revised manuscript (Section 
Motivation for using video representations). 
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Extended Figure 1. Visualization of a certain frame in a video. 

 
 

 
 

Ref 2.3 – “Design experiment to understand why video information does not lead to 
sensitivity to conformer” – 

Reviewer 
Comment 

This is where it gets interesting: if the success of the model was truly due to 
better representation of 3d structure, we would expect the model to be 
sensitive to different conformers, especially on tasks that provide a binding 
affinity proxy. While, in multiple places in the manuscript the opposite is 
claimed, that model is robust to molecule conformer choice. Perhaps authors 
can devise an experiment to understand why video information does not lead 
to sensitivity to conformer. 

Author 
Response 

We agreed with the reviewer that the experimental section of “Robustness 
of VideoMol” is confused because we evaluated the performance of different 
models on different conformers, which does not reflect the robustness of a single 
model to different conformations.  

 
Therefore, we designed new experiments and evaluated the sensitivity of 

the same VideoMol model to different conformations. Specifically, we directly 
used pre-trained VideoMol to extract features of molecules with different 
conformers from 10 kinases datasets of binding affinity profiles and compared 
the similarities between different videos with different conformers. Since the 
similarity between conformers is related to their RMSD (Root-Mean-Square 
Deviation) distance, we also calculated the similarity of features in different 
RMSD intervals. 

 
As shown in the Extended Table 1 (the Revised Supplemental Table 28) 

below, we found that VideoMol was discriminative for videos from different 
conformers. Further, when the RMSD between two conformations is larger, the 
feature similarity extracted by VideoMol shows a decreasing trend. Especially in 
the 90-100 percentile range, the feature similarity extracted by VideoMol is 
always the lowest. Therefore, VideoMol is sensitive to different conformers. We 
have added these new results and more detailed explanations in the revised 
manuscript. 
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Extended Table 1 (the Revised Supplemental Table 28). The ability of VideoMol 
to distinguish different conformers. The percentile interval refers to sorting all 
RMSD values from small to large and selecting the value corresponding to the 
percentile interval. 
Percentile interval in RMSD 5HT1A 5HT2A AA1R AA2AR AA3R 

0-10 0.692  0.749  0.799  0.803  0.823  
10-20 0.724  0.726  0.786  0.784  0.771  
20-30 0.741  0.747  0.755  0.764  0.772  
30-40 0.726  0.733  0.749  0.747  0.752  
40-50 0.735  0.745  0.759  0.772  0.758  
50-60 0.703  0.744  0.765  0.761  0.760  
60-70 0.708  0.733  0.742  0.756  0.745  
70-80 0.663  0.748  0.753  0.743  0.766  
80-90 0.631  0.702  0.745  0.753  0.752  
90-100 0.518  0.625  0.654  0.702  0.733  

0-100 (all data) 0.684  0.725  0.751  0.758  0.763  
====== continue ====== 

Percentile interval in RMSD CNR2 DRD2 DRD3 HRH3 OPRM 
0-10 0.769  0.729  0.701  0.740  0.730  
10-20 0.747  0.733  0.740  0.721  0.740  
20-30 0.736  0.750  0.779  0.690  0.708  
30-40 0.735  0.748  0.795  0.703  0.716  
40-50 0.723  0.760  0.775  0.709  0.712  
50-60 0.710  0.743  0.785  0.706  0.725  
60-70 0.696  0.748  0.777  0.698  0.727  
70-80 0.712  0.715  0.775  0.700  0.716  
80-90 0.709  0.707  0.723  0.669  0.680  
90-100 0.680  0.615  0.631  0.585  0.658  

0-100 (all data) 0.722  0.725  0.748  0.692  0.711   

Excerpt from 
Revised 
Manuscript 

Results: 
 
VideoMol captures conformational differences of molecules. We used pre-
trained VideoMol to extract features of molecules with different conformers 
from 10 compound-kinase interaction datasets and compared the cosine 
similarities between different videos with different conformers. Since the 
similarity between conformers is related to their RMSD (Root-Mean-Square 
Deviation) distance, we also calculated the similarity of features in different 
RMSD intervals. We found that VideoMol is discriminative for videos from 
different conformers (Supplementary Table 28). Further, when the RMSD 
between two conformations is larger, the feature similarity extracted by 
VideoMol shows a decreasing trend. Especially in the 90-100 percentile 
range, the feature similarity extracted by VideoMol is always the lowest. 
Therefore, VideoMol can effectively capture conformational differences of 
molecules. 
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Ref 2.4 – “Add more discussion about understanding from where exactly the accuracy 
improvement comes from” – 

Reviewer 
Comment 

Which makes me think the success of the model is not due to better 3d 
representation but one of the several other changes: 1-working with video frames 
and the new self-supervision tasks have expanded the effective size of the data 
and complexity the network processes each molecule (perhaps this is why the 
number of frames seem to change the prediction accuracy) 2-the large number of 
domain information that is crafted into the fingerprint may be impactful in several 
tasks in this work. Further understanding from where exactly the accuracy 
improvement comes from, can be considered for future work. In the teamtime, the 
claims of impact of 3D could be dialed down. 

Author 
Response 

We thank the Reviewer for these excellent points. We agree that the success 
achieved by VideoMol may be related to the introduction of self-supervised tasks 
and fingerprints. In Supplementary Table 24, we perform ablation experiments 
on different self-supervised pre-training tasks, and we find that each pre-training 
task can promote the improvement of VideoMol performance.  
 
Supplementary Table 24: Effect of pre-training strategy on 6 regression datasets 
with balanced scaffold split. w/o pretrain means no pre-trained VideoMol. video-
aware, direction-aware, and chemical-aware represent pre-training VideoMol 
using only video-aware strategy, direction-aware strategy, and chemical-aware 
strategy, respectively. & represents the combination of multiple pre-training tasks. 
All means and standard deviations are reported through three independent runs. 
 

 5HT1A AA1R AA2AR 

strategy RMSE MAE RMSE MAE RMSE MAE 

w/o pretrain 0.993±0.001 0.804±0.002 0.919±0.006 0.755±0.008 1.073±0.01 0.882±0.013 

video-aware 0.772±0.011 0.604±0.009 0.709±0.007 0.783±0.010 0.847±0.002 0.651±0.002 

direction-aware 0.871±0.002 0.691±0.004 0.821±0.01 0.652±0.013 0.875±0.008 0.701±0.012 

chemical-aware 0.736±0.012 0.566±0.014 0.662±0.018 0.494±0.015 0.716±0.001 0.562±0.002 

chemical_direction 0.718±0.002 0.559±0.004 0.706±0.005 0.516±0.008 0.724±0.008 0.568±0.003 

chemical_video 0.716±0.010 0.553±0.010 0.670±0.007 0.511±0.005 0.719±0.013 0.553±0.014 

direction_video 0.774±0.014 0.603±0.015 0.730±0.004 0.553±0.002 0.865±0.011 0.672±0.005 

VideoMol 0.708±0.017 0.547±0.015 0.655±0.007 0.496±0.006 0.712±0.011 0.543±0.005 
 CNR2 DRD2 HRH3 

strategy RMSE MAE RMSE MAE RMSE MAE 

w/o pretrain 1.216±0.012 1.009±0.008 0.980±0.001 0.782±0.001 0.819±0.001 0.631±0.002 

video-aware 0.978±0.025 0.782±0.010 0.818±0.009 0.602±0.009 0.732±0.008 0.556±0.009 

direction-aware 1.024±0.01 0.842±0.008 0.903±0.010 0.700±0.009 0.759±0.005 0.575±0.007 

chemical-aware 0.890±0.004 0.698±0.002 0.759±0.003 0.565±0.003 0.669±0.010 0.512±0.010 

chemical_direction 0.899±0.008 0.701±0.005 0.773±0.017 0.579±0.007 0.683±0.001 0.514±0.001 

chemical_video 0.874±0.012 0.686±0.013 0.745±0.012 0.555±0.013 0.686±0.003 0.526±0.004 

direction_video 0.997±0.025 0.789±0.021 0.832±0.005 0.615±0.007 0.734±0.006 0.559±0.002 

VideoMol 0.864±0.005 0.679±0.010 0.742±0.004 0.556±0.005 0.668±0.008 0.506±0.002 

 
 

     Furthermore, to address the reviewer’s concerns about the advantages of 
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3D representation, we evaluated the representation advantages of 3D-based 
molecular videos without using any self-supervised tasks and fingerprint 
information. It is well known that the development of drug discovery depends on 
the understanding of basic information about molecules. Here, we use several of 
the most representative methods (such as GCN, GIN, EGNN, and the 
representation used by ImageMol) to inspect the model's ability to understand the 
8 basic attributes of molecules, including molecular weight, MolLogP, MolMR, 
BalabanJ, NumHAcceptors, NumHDonors, NumValenceElectrons and TPSA.  

 
 We randomly collected 10,000 molecules from the pre-training dataset and use 

exactly the same experimental setup for a fair comparison. In detail, we split the 
training set, validation set, and test set using a ratio of 8:1:1 and report the results 
on the test set based on the best validation set score. As shown in Extended 
Table 1 (the Revised Supplemental Table 1) below, we found that VideoMol based 
on only one frame outperformed traditional 2D graph-based methods, the 3D-
based graph method and the 2D image-based method, revealing the advantage 
of 3D representation. Specifically, compared with the second-place ImageMol 
without pre-training, the performance of video-1frame improved by 11%. When we 
utilized all video frames (video-60frame), the performance was further significantly 
improved from 12.469 to 7.55 with a 66% improvement rate. 

 
   Overall, the proposed 3D representation (whether based on a single frame 

image or a 60-frame video) has obvious advantages over existing representations. 
In addition, integrating physical dynamics or conformational changes from 3D 
ligand-receptor structures or models (i.e., alphaFold3 [1]) may improve 
performance of ViodeMol further. We have added these new results and more 
detailed explanations in the revised manuscript. 
 
Extended Table 1 (the Revised Supplemental Table 1). The ability of VideoMol 
to distinguish different conformers. The percentile interval refers to sorting all 
RMSD values from small to large and selecting the value corresponding to the 
percentile interval. 
 

 
 
Reference 
[1] Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of 
biomolecular interactions with AlphaFold 3[J]. Nature, 2024: 1-3. 

 
  

modality model use conformer? prop
GCN × 62.304 

GIN × 62.980 

EGNN × 17.418 

3D graph EGNN √ 16.684 

image from imagemol ResNet18 × 12.469 

video-1frame ResNet18 √ 11.237

video-5frame ResNet18 √ 8.088

video-60frame ViT √ 7.511

image-based

graph-based
2D graph
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Ref 2.5 – “This difference may be due to data leak in the high ROC-AUC train-test data, 
inflating the apparent generalizability” – 

Reviewer 
Comment 

Feedback to the methodology: the splits used in this work would not stop data 
leaking from train to validation sets and scaffold balancing might not be 
enough. Indeed, we see a hint of the issue in the COX examples where 
training data from ChEMBL in 8:1:1 split gave high ROC-AUC>0.9, but when 
the model was tested against MedChemExpress data, only less than 40% of 
inhibitors are successfully identified. This difference may be due to data leak 
in the high ROC-AUC train-test data, inflating the apparent generalizability. In 
general, if authors would like to claim generalizabilty, more attention to the 
split strategy, overlap between data points is needed according to certain 
similarity metric will be needed. 

Author 
Response 

We carefully examined COX-1 and COX-2 datasets from ChEMBL. We 
confirmed that the training, validation, and test sets did not contain any 
overlapping molecules, without ant data leaking issue. In the actual virtual 
screening or new drug development process (termed external validation set), 
the performance value will not be very high due to several common factors, 
such as low similarity or activity cliff between the training data and the drugs 
in the external validation sets to be virtually screened. We confirmed that there 
was no data leak issues and we have added more explanations in the revised 
manuscript. 

 
 

 
Ref 2.6 – “Describe the computational requirements for pre-training and various 

downstream tasks” – 

Reviewer 
Comment 

Some of the tasks in the work are for high-throughout applications (e.g. virtual 
screening). In such cases the trade-off between accuracy and compute 
becomes important. The proposed method should clearly state the compute 
needs for pretraining and various downstream tasks. Because it works with 
video, compared to much smaller atomic position files, memory needs should 
be highlighted too. 

Author 
Response 

We have evaluated the computational requirements of the proposed 
VideoMol in pre-training, fine-tuning, and virtual screening stages. We found 
that VideoMol overall is highly cost-effective and time-effective in multiple 
tasks as discussed as below. We have added more detailed explanations 
about the computational requirements of the proposed VideoMol in pre-
training, fine-tuning, and virtual screening stages in the revised manuscript. 

Excerpt from 
Revised 
Manuscript 

C.3 Computational requirements of VideoMol 
 
Here, we detail the computational requirements for the pre-training, fine-
tuning, and virtual screening stages in Supplementary Table 36. In the pre-
training phase (Supplementary Table 36a), VideoMol uses 256 frames in 
each batch for training and it requires 37G of GPU memory and takes about 
9 hours to complete 1 epoch on 2 million molecular videos with 60 frames. 
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Next, we used 10,000 molecules to test the impact of different batch sizes 
(#frame/batch) on memory and training speed in Supplementary Table 36b. 
We find that fine-tuning does not occupy a large amount of memory and it 
only requires at least 2.3G of GPU memory. Finally, we evaluate the 
computational requirements when performing virtual screening on 1 million 
molecules in Supplementary Table 36c. We find that it only takes 9 hours 
when using all frames during virtual screening for 1 million molecules. 
 
Supplementary Table 36: The computational requirements in the pre-
training, fine-tuning, and screening stages. #frame/batch represents the 
number of frames in a batch. #samples represent the total number of 
molecules. #frame/video indicate how many frames of a video to select for 
inference. 
 

 
 

 
 
 

Ref 2.7 – “Correct Minor typos” – 
 
Reviewer 
Comment 

minor typos in text, highlighting one that is on figure in case it escapes 
proofreading: angel -> angle Fig 1b 

Author 
Response 

We have fixed this typo and further polish English of the entire manuscript.  

 
 
 
 

#samples #frame/batch GPU memory Training time
2 million 256 ~37G ~9 hours/epoch

#samples #frame/batch GPU memory Training time
8 2.3G ~26 minutes/epoch
16 2.6G ~15 minutes/epoch
32 3.2G ~12 minutes/epoch
64 4.3G ~12 minutes/epoch
128 6.5G ~12 minutes/epoch
256 10.7G ~12 minutes/epoch

#samples #frame/video #videos/batch inference time GPU memory Server
1 480 ~9 minutes
5 96 ~48 minutes
10 48 ~90 minutes
20 24 ~3 hours
30 16 ~4.5 hours
60 8 ~9 hours

Server

(a) The computational requirements in the pre-training stage.
Server

CPU: Intel 6248R 48C@3.0GHz; GPU: A100 (40G)
(b) The computational requirements in the fine-tuning stage.

10,000
CPU: 13th Gen Intel® Core™ i7-13700K

GPU: 4090 Ti

(c) The computational requirements in the screening stage.

1 million 17.7 G
CPU: 13th Gen Intel®

Core™ i7-13700K
GPU: 4090 Ti



REVIEWERS' COMMENTS 

Reviewer #2 (Remarks to the Author):

I have carefully reviewed the detailed rebuttal and the revised manuscript. I am pleased to see that 

the authors have addressed all of the concerns I raised in my initial review. The additional 

experiments and clarifications provided have significantly strengthened the support for the claims. I 

am satisfied with the revisions and believe that the manuscript is now ready for publishing. 

Reviewer #2 (Remarks on code availability):

The code is well organised, and the authors made the effort to provide guidelines for setting up an 

environment and running VideoMol. 

Reviewer #4 (Remarks to the Author):

I have assessed the comments from the authors to Reviewers 3 concerns, and I believe the authors 

has responded well to the comments 
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