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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): Expert in brain cancers, neuro-oncology, therapy, and single-cell 

genomics; co-reviewed with Reviewer #2 

 

Larsson et al. have developed a novel method to reconstruct the regulatory programs using single-cell 

RNA-sequencing data called single-cell Regulatory-driven Clustering (scRegClust). This method differs 

from previously published tools such as SCENIC+ which uses single-cell multi-omics data, potentially 

increasing general usability. It is also claimed to run three times faster than SCENIC+. The key idea is a 

novel clustering approach that splits the genes into regulators and targets, then clusters the target genes 

but borrows information from the regulatory genes to improve clustering accuracy. 

 

Initially, they demonstrate the accuracy of their method by using the results obtained when the method 

is applied to PBMC data and comparing the results to those obtained using SCENIC+. They also show that 

the regulators identified are enriched in immune cells (Fig 1E). It will be instructive to see a similar 

comparison with the regulators identified by SCENIC+ in the same dataset. 

 

As a proof of concept, the authors use scRegClust to analyze scRNA-seq data from brain tumors and 

developing tissues to identify transcription factors and kinases that regulate distinct cell states. They 

utilize multiple datasets to uncover the regulation of meta-modules, including ones regulated by the 

transcription factors SPI1 and IRF8. 

 

1. Beyond the fact that SCENIC+ uses scMultiome data while scRegClust uses only scRNAseq data, have 

the authors identified other reasons behind the partial disagreements between SCENIC+ and scRegClust? 

Aside from adjusting penalization, is there a way to change cutoff or p values to see if TFs identified by 

SCENIC+ and not scRegClust could be identified? 

2. Overlap with SCENIC is only about 50%, which is not “comparable” as they claim. 

3. It would be useful to also annotate the TFs from SCENIC+ that do not overlap with scRegClust. 

4. Could they leverage available epigenome datasets for brain tumors to explain the underlying reasons 

for the difference between SCENIC+ and scRegClust results? 

5. Which methods were used to perform the enrichment (bottom half of heatmap) in Figures 3B and 4B? 

6. TBX1/Tbet1 is expressed in DCs, NK and NKT, B cells, and T cells, not just NK cells. Why is it strongly 

associated with only NK cells? 

7. What’s the relationship between “modules” and “clusters” in Fig 3? It is not clearly explained. 

8. A well-established predictor of TMZ response is MGM methylation status. Has this been tested and 

cross-correlated with their finding? 

9. Also, PR cells (which are enriched in OPC/NPC-like cells in sc GBM classification in the Neftel study) are 

more sensitive to TMZ treatment. Why is blocking the transition to state 5 which seems to correspond to 

OPC-like cells make them more sensitive to TMZ? Could it be that the original study was performed on a 

cell line, U3065MG, and state5 reflects a more undifferentiated/stem-like cell state in this cell line? 

10. Their observation is incongruent with many previously published works. They should test their 

predictions in primary GBM cells, not a single cell line. Minimally, they should use GBM sc datasets to 

make their predictions. 

11. Did they perform the analysis shown in Figure 4 by first identifying different cell types from each data 



set (cancer, normal neural, immune, endothelium, et) and extracting the same cell types first before 

performing the analysis? Different transcription factors can have different functions depending on the 

cell type. For example, the microglia signature in module 5 may come from microglia. 

12. The correlation between MES glioma cell state and immune signatures is well established in previous 

studies. 

 

 

Comments regarding the R Package: 

The R package for scRegClust is fairly easy to use and has the potential to provide good insights into 

important modulators of cell states/subtypes from scRNAseq data. 

1. The authors should make it clear that the modulator list is only available for human datasets and that 

users will need to convert the row names of their expression matrices to humans prior to initiating the 

analyses. 

2. It would be useful if the authors allow the “manual” addition of other regulators in addition to TFs and 

Kinases. 

3. While testing the package, it performed well when using only the 2000 most variable genes, however, 

it crashed when attempting to test the entire matrix. Similarly, the package won’t run if the number of 

cells is lower than the number of regulators. 

4. It appears that the package performs well with TFs and kinases that are highly expressed in a large 

number of cells. How about important regulators that are expressed by a smaller number of cells or at a 

lower level? 

 

Minor comments 

1. The figures are referenced in the text out of order. For example, Figure 2A and sup Figure S6 

2. Some of the legends do not adequately describe the figures. 

3. Figure 3M module numbers should be labeled. 

4. Figure 4 legend colors are not distinguishable, another color scheme with colors further apart on the 

spectrum would be more advisable. Also, the row names of the top heatmap need to be resized to 

prevent overlap. Where is the legend for color-coded heading (different modules???)? 

 

 

 

 

Reviewer #2 (Remarks to the Author): Expert in brain cancers, neuro-oncology, therapy, and single-cell 

genomics; co-reviewed with Reviewer #1 

 

I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is part of 

the Nature Communications initiative to facilitate training in peer review and to provide appropriate 

recognition for Early Career Researchers who co-review manuscripts. 

 

 

 

 

Reviewer #3 (Remarks to the Author): Expert in bioinformatics, statistics, single-cell regulatory networks 



and omics 

 

The manuscript presents scRegClust, a computational approach and software for clustering genes by 

their co-regulated expression patterns and identifying regulators of these gene clusters in the context of 

brain cancer. The method proposes that gene expression relies linearly on a limited, cluster-specific 

subset of regulators. The authors employed a combination of heuristics to solve this optimization 

problem, incorporating both existing and novel software tools. They validated scRegClust's performance 

and utility using a range of simulated and real datasets, including up to 1M cells. 

 

Nonetheless, I have several reservations. The manuscript offers scant discussion or comparison with 

current methods. Its broader significance is somewhat unclear, as the approach is solely demonstrated 

on brain cancer. The model incorporates multiple hyperparameters, and an inappropriate value choice 

could significantly impair the method's performance. 

 

Major concerns: 

 

1. Gene clustering and regulator prediction are well-established in scRNA-seq research. Although this 

study's innovation lies in simultaneously addressing these issues, users would still be better off choosing 

a separate method for each question if they individually perform better than scRegClust. The absence of 

comparisons with existing techniques for these two areas is notably troubling. While the paper briefly 

mentions various gene regulatory network reconstruction methods, it seldom discusses individual gene 

regulation links. The comparison with SCENIC+ appears barely relevant. To properly position scRegClust, 

the authors should conduct comprehensive comparisons with established methods in gene clustering 

and regulator prediction separately, particularly focusing on statistical performance. 

 

2. Linear predictive model results are influenced by the covariance matrix, which encompasses various 

factors including actual gene regulation, co-regulation, co-variation across cell types, and technical 

variation. In scRNA-seq, true gene regulation is often a minor element. If the model only considers gene 

regulation and neglects other factors, finding true positives can become challenging. A potential 

validation approach is to select an equal number of non-TF, non-kinase genes as regulators. These could 

be random, highly expressed, or highly variable genes. Would their gene clustering performance, 

measured by R2, ARI, and silhouette score, be comparable to that achieved using TF and kinase genes? 

 

3. The study's significance is currently limited, as both applications focus on brain cancer. Can the 

authors demonstrate its utility in a different scenario? 

 

4. ScRegClust involves several user-defined hyperparameters, such as lambda, the minimum size for non-

empty clusters, and the initial value for K. Unreported and inconsistent hyperparameter values might 

lead to unstable performance and irreproducibility, as evidenced in Fig 2AB. Could the authors list all 

hyperparameters and their values for each analysis in this study? Furthermore, can they propose a 

strategy for selecting hyperparameters in typical use cases lacking ground truth, even if it's as simple as 

default values? Does this strategy consistently yield satisfactory results against ground truth in a wide 

range of simulations, varying in data dimensions, module size, regulator count, and coefficient 

distribution? The supplementary material's simulations address some of these points but with limited 



variation in simulation parameters and focused only on lambda. 

 

5. The current simulation methodology lacks detail. Could the authors mathematically describe their 

simulation methodology? Does it include a discrete sampling process and produce scRNA-seq read 

counts? 

 

6. Fig S1B, 1DE: Employing a hypergeometric test could enhance result interpretation. Please report 

sample sizes, odds ratios, and P-values for each test. Also, clarify the definition of the background 

population in the Methods section. 

 

7. How are results integrated in Fig 4A? 

 

8. The software can be installed. The tutorial can be partially run with errors quoted below. The outputs 

from the figures were not entirely error-free, and only a variant of Fig 2A was reproducible, albeit with 

discrepancies from the paper's version. The tutorial also resulted in over 70% of genes falling into the 

'rag bag' cluster. The tutorial should represent a realistic use case and performance, and the authors 

need to clearly communicate anticipated outputs. 

 

Errors encountered: 

> plot_regulator_network(fit) 

Error in base::colSums(x, na.rm = na.rm, dims = dims, ...) : 

'x' must be an array of at least two dimensions 

 

> for (i in 1:5){ 

regulator_importance[,i] <- rowMeans(fit$results[[i]]$output[[1]]$importance, na.rm = TRUE) 

} 

Error in regulator_importance[, i] <- rowMeans(fit$results[[i]]$output[[1]]$importance, : 

number of items to replace is not a multiple of replacement length 

 

Minor concerns: 

 

The use of sigma_{i,j} is confusing, as it seems independent of i. 

 

For regulatory i not selected for cluster j, is it regarded as a target in cluster j? This should be 

communicated and justified clearly in Methods. 

 

Fig 1C: What criteria were used by the authors to select specific regulators for visualization? 

 

Phrases like "Improving accuracy" as in "Regulatory-driven clustering improves accuracy" can be 

misleading. The authors should reword such claims to avoid confusion with improvements over existing 

methods. Additionally, any claims of improvement, even over initial conditions, should be substantiated 

through comprehensive comparisons. 

 

The manuscript alternates between "penalty parameter" and "penalization parameter" – consistency in 



terminology would be beneficial. 

 

The paper made several mention of regulatory network, but scRegClust primarily reconstructs bipartite 

graphs, which lack several key features of typical regulatory networks, like perturbation propagation 

through chain reactions. The authors should clearly justify why scRegClust reconstructs regulatory 

networks, or consider other terms. 



Point-by-point response, reviewers 1 and 2

Larsson et al. have developed a novel method to reconstruct the regulatory pro-
grams using single-cell RNA-sequencing data called single-cell Regulatory-driven
Clustering (scRegClust). This method differs from previously published tools such
as SCENIC+ which uses single-cell multi-omics data, potentially increasing gen-
eral usability. It is also claimed to run three times faster than SCENIC+. The key
idea is a novel clustering approach that splits the genes into regulators and tar-
gets, then clusters the target genes but borrows information from the regulatory
genes to improve clustering accuracy.

Initially, they demonstrate the accuracy of their method by using the results ob-
tained when the method is applied to PBMC data and comparing the results to
those obtained using SCENIC+. They also show that the regulators identified are
enriched in immune cells (Fig 1E). It will be instructive to see a similar comparison
with the regulators identified by SCENIC+ in the same dataset.

As a proof of concept, the authors use scRegClust to analyze scRNA-seq data
from brain tumors and developing tissues to identify transcription factors and ki-
nases that regulate distinct cell states. They utilize multiple datasets to uncover the
regulation of meta-modules, including ones regulated by the transcription factors
SPI1 and IRF8.

1. Beyond the fact that SCENIC+ uses scMultiome data while scRegClust uses
only scRNAseq data, have the authors identified other reasons behind the partial
disagreements between SCENIC+ and scRegClust? Aside from adjusting penal-
ization, is there a way to change cutoff or p values to see if TFs identified by
SCENIC+ and not scRegClust could be identified?

Response. Thank you for the careful assessment of our manuscript. Regarding question 1,
we have now carefully analyzed the sources of discrepancies between the two methods and
systematically analyzed how the thresholds and penalization affect the overlap. We have also
extended our discussion of how scregclust relates to and complements other clustering and
regulator identification methods (discussed in the response to Reviewer 3).

First, we noted that a crucial difference between the two methods lies in the standard prepro-
cessing software used. SCENIC+ is a Python-based software, that relies on Scanpy, whereas
scregclust is R-based and relies on Seurat for preprocessing. As was noted in a recent bioRxiv
preprint [1], the Scanpy and Seurat pipelines have surprisingly limited overlap in the selection
of highly variable features (Jaccard index 0.22) when run on the same data set using default
settings. The reason for this appears to be that the two programs use different default algo-
rithms for variable gene selection. Checking whether this applies to our analysis, we noted
that 8 of the 23 regulators found by Scanpy/SCENIC+ code but not by scregclust were indeed
absent from the input matrix to scregclust, generated using Seurat at an inclusive thresh-
old. Thus, a third of the missing SCENIC+ regulators in the submission version of the paper
was attributed to a difference in R vs Python standard pipelines and not the algorithm per
se. Accordingly, in all extended analysis below and in the revised paper, we made sure that
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all regulators identified by SCENIC+ were part of the input matrix to scregclust, substantially
improving the overlap.

Second, as the reviewer suggests, the overlap with SCENIC+ can be increased even further
by adjusting the penalty parameter. To demonstrate this, we ran scregclust for a wide range
of penalty parameters (from 0.0001 to 0.5) and quantified the overlap with the regulators iden-
tified by SCENIC+ (please see figure below):

It’s clear from this figure that when the penalty parameter is low enough, scregclust identi-
fies all regulators that SCENIC+ does. However, the total number of regulators identified by
scregclust at these low penalizations is higher, as evidenced in the figure below. Once the
penalty parameter gets harder, there is a drop in the number of identified regulators (very
clear at 0.05 in the figure below). Ultimately, the statistical significance of the overlap of the
regulators between the two methods is the crucial aspect, see next question.

To summarize, we do identify all regulators that SCENIC+ does if the penalization is low
enough (and all regulators are included in the input matrix), but at the expense of the reg-
ulatory model being too inclusive at these penalties. In the relevant range (0.1-0.2, as evi-
denced by the diagnostic plots below) we have an overlap with SCENIC+ of 60-40 %. We
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have updated Figure 1 C-E with the latest run, at a penalization = 0.1.

2. Overlap with SCENIC is only about 50%, which is not “comparable” as they
claim.

Response. Thank you for the comment. We have statistically assessed the overlap between 
the two methods using Fisher’s exact test and find that the overlap represents an odds ratio 
of 30 with a p-value of magnitude <10E-16. The text has now been rephrased to reflect 
these observational facts (page 6). We opted for the phrase ’strong association’, which we 
think is a fair reflection of OR=30.3711. As discussed above, the choice of penalty parameter 
can be tuned, allowing the user to choose between sparse and complex solutions.

3. It would be useful to also annotate the TFs from SCENIC+ that do not overlap
with scRegClust.

Response. Thank you for this suggestion. We have extended the annotations to include
regulators only found by SCENIC+ (using the Python-based Scanpy preprocessing). The
results can be found in an updated version of Supplementary Table 1, and we have adjusted
the text in the manuscript accordingly, see page 6. In short, this analysis showed that a
larger fraction of the scregclust-specific regulators were immune-cell enriched/enhanced (81
%) compared to the SCENIC+ -specific regulators (43 %).

4. Could they leverage available epigenome datasets for brain tumors to explain
the underlying reasons for the difference between SCENIC+ and scRegClust re-
sults?

Response. Thank you for suggesting this. We would like to clarify that the SCENIC+ com-
parison at the beginning of the paper was focused on the commonly used PBMC data set
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generated by 10X Genomics, i.e. not a neural cancer but blood cells. As discussed above,
key factors for the difference between results are the data preprocessing, hyperparameter tun-
ing, and presence/absence of ATAC data, which we can expect to apply to several contexts,
including neural cancers. In our extended analysis (Figure 4 and newly added Figure 5), we
have opted to process an extensive collection of data sets from both neural and non-neural
cancers, leveraging the speed of our method to map possible regulators across tumor types;
see below. This serves to illustrate the power of the proposed modeling method.

5. Which methods were used to perform the enrichment (bottom half of heatmap)
in Figures 3B and 4B?

Response. Thank you for pointing this out. We used Jaccard Index to quantify the similarity
between our module gene sets and gene signatures of interest, as has been done in e.g.
Chanoch�Myers et al. 2022, https://doi.org/10.1186/s13073�022�01109�8. This has now
been added, see e.g. Results page 9, Methods page 16 and Figure 3 and 4 legends.

6. TBX1/Tbet1 is expressed in DCs, NK and NKT, B cells, and T cells, not just NK
cells. Why is it strongly associated with only NK cells?

Response. We thank the reviewer for this comment. We respond assuming that the question
refers to TBX21/Tbet1 (as opposed to TBX1, a different TF). We have improved the data
presentation to highlight that TBX21/Tbet1 is also detected in other cell types, by including
more output information from the scregclust analysis (c.f. new Figure 1C). Figure 1C now
clearly shows that TBX21 most strongly regulates a module that enriches for NK signature
genes, but also CD8 T cells (module 7). In addition, it has a weaker (but non-zero) interaction
with a module enriching for T-cell signatures in general (module 1). By studying the SCENIC+
results for this particular regulator (SCENIC-paper, Figure 2C), we can see that the most
robust regulation is indeed towards NK-cells, followed by CD8 T-cells and a weak signal in
CD4 T-cells. Neither of the methods detected TBX21 as a regulator for DCs for this particular
data set. An independent data source, the Human Protein Atlas, notes an enrichment for NK
cells. We propose that running the algorithms on another/a larger data set encompassing
more DC/B-cells might be required to find these additional associations.

7. What’s the relationship between “modules” and “clusters” in Fig 3? It is not
clearly explained.

Response. Thank you for pointing this out. We agree that these concepts might cause some
confusion. Technically because scregclust finds sets of co-regulated gene sets, it can be
viewed as an algorithm that (as part of its output) clusters genes. In the single-cell field,
however, the word cluster is most commonly used to denote a group of cells with similar gene
expression profiles. Therefore, we opted for the term “gene modules” for co-regulated genes
found by scregclust. The term gene module is often used to denote a set of co-regulated
genes and we think it is more intuitive than the many alternatives (regulon, signature, gene
battery, and so forth). We have now carefully revised the text with this distinction in
mind. Figure 3 in the revised paper does not use the term cluster.
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8. A well-established predictor of TMZ response is MGM methylation status. Has
this been tested and cross-correlated with their finding?

Response. Thank you for your comment. We have now performed these tests and analyses.
We agree that substantial literature provides correlative evidence that MGMT methylation can
predict TMZ response, and mechanistic evidence shows that methylation of the MGMT pro-
moter reduces levels of MGMT, a DNA repair enzyme, thereby promoting TMZ sensitivity [2].
One study showed that variation in MGMT promoter methylation explained up to 46% (corre-
lation of 0.68 squared) of the variability in TMZ response in cell lines, although this percentage
could be lower depending on growth conditions [3]. This suggests that additional factors may
also be important for the TMZ Response.

In our paper, we used patient-derived primary GBM cells from our Uppsala biobank HGCC,
called U3065MG.We focused on U3065MG because we have previously combined single-cell
analysis, barcoding, and mathematical modeling of this culture to identify a specific transient
cell state (termed ”state 5” in Larsson et al., Molecular Systems Biology 2021) associated
with relative resistance to TMZ. To showcase scregclust, we sought to identify kinases and
transcription factors that could be targeted to suppress state 5 and increase TMZ sensitivity.
Inspection of methylation data from our HGCC biobank shows that this culture has a methy-
lated MGMT promoter (https://hgcc.se/#data). Additionally, there is no variation in MGMT
expression among U3065MG cells in the scRNA-seq data from Larsson et al [4] - MGMT is
not detected in any cell. We conclude that U3065MG cells are consistently MGMT-methylated
and that any variation in the TMZ response between cell states is unrelated to MGMT methy-
lation status. This clarification has now been added to the manuscript (Results, p 10).

Further exploring this theme in the revised paper, we investigated whether the synergistic
combination identified in U3065MG cells is equally potent in additional primary patient-derived
cell cultures with different MGMT methylation statuses. Accordingly, we selected an addi-
tional five primary cell cultures from the previously mentioned HGCC database, with variable
MGMT methylation, and tested our combination treatment regimen of 72-hour pre-treatment
with dasatinib followed by 96 hours of combined treatment with dasatinib and TMZ. By relating
the mean average bliss score (synergy score) to methylation status, we observed a trend of
increased synergy if the cell culture is methylated (Figure S5). However, the difference was
not statistically significant, indicating that MGMT methylation likely contributes to the treat-
ment effect in terms of cells being more responsive to TMZ, but it is not the main explanatory
factor for the identified synergistic combination.

These updates are reflected in Figure S5 and described in the main manuscript, page
10-11.

9. Also, PR cells (which are enriched in OPC/NPC-like cells in sc GBM classifi-
cation in the Neftel study) are more sensitive to TMZ treatment. Why is blocking
the transition to state 5 which seems to correspond to OPC-like cells make them
more sensitive to TMZ? Could it be that the original study was performed on a cell
line, U3065MG, and state5 reflects a more undifferentiated/stem-like cell state in
this cell line?
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Response. Thank you for your comment. We are assuming that ”PR” refers to the proneural
subtype as described by [5], not the PPR subtype as mentioned by [6]. The original study
utilized a patient-derived primary cell culture, U3065MG. The rationale for suppressing state
5 is explained in Larsson et al., Molecular Systems Biology 2021. According to the STAG
model—which was fitted to longitudinal data collected over three weeks and provided the
net rate of growth for each state along with transitions between states—it was predicted that
the simplest effective intervention in U3065MG cells was to suppress transitions to state 5.
As detailed in the paper, the STAG model accounts for state-specific differences in growth
rates, and the ’stemness’ of each state is assessed by its position within the network. Our
findings indicated that state 5, while enriching for the OPC-like signature, does not enrich for
the proneural signature. Furthermore, state 5 is less proliferative than several other states and
lacks the proliferativemarkers or stemnessmarkers that other, more undifferentiated/stem-like
cells exhibit.

The central point of the U3065MG example in the current paper is highlighting the modulation
of drug-sensitive states as a potentially significant application of scregclust. In this context, we
demonstrated how scregclust integrates into a workflow for making predictions about modi-
fying state transitions. The actual problem motivation (blocking the transition to state 5 to
enhance TMZ treatment) is more thoroughly discussed in the previous paper.

We have revised the data presentation to make clear that the U3065MG example is to highlight
a particular application of scregclust, done in Results page 8 and Discussion page 14.

10. Their observation is incongruent with many previously published works. They
should test their predictions in primary GBM cells, not a single cell line. Minimally,
they should use GBM sc datasets to make their predictions.

Response. Thank you for the comment. We would like to clarify that the original submission
did involve a patient-derived GBM culture and that we tested a prediction derived from a
single cell data set from patient-derived GBM cells. Thank you for the suggestion to extend
the experimental tests. As detailed above, while the original prediction applied to 3065MG
cells, we have tested the prediction in five more patient-derived cultures, discussed above. In
our view, the targeting of a gene signature found by dynamic analysis of longitudinal single-
cell data is a new and interesting application. We have carefully worded the revised paper
to emphasize that we bring up this example as a use-case for the algorithm that opens for
extended work.

11. Did they perform the analysis shown in Figure 4 by first identifying different
cell types from each data set (cancer, normal neural, immune, endothelium, et)
and extracting the same cell types first before performing the analysis? Different
transcription factors can have different functions depending on the cell type. For
example, the microglia signature in module 5 may come from microglia.

Response. The analysis was conducted separately on each dataset; subsequently, the mod-
ules were merged into one regulatory table and visualized in the same heatmap in Figure
4B. For the patient-derived tumor datasets, non-malignant cells were filtered out based on
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metadata from each respective study or copy number aberration (CNA) analysis. In the anal-
ysis underlying Figure 4, any module derived from a dataset representing a patient tumor
(annotated as GBM, MB, or NB) is composed solely of malignant cells. The enrichment of
a microglia-related signature for that specific disease module is not due to the module rep-
resenting microglia cells but instead suggests a previous interaction between the malignant
cells and microglia, as discussed in the paper. Conversely, if the module is derived from a
normal (non-malignant) developing brain dataset (annotated as Normal), the enrichment of
the microglia signature indeed indicates that the module represents microglia cells. It is im-
portant to note that meta-module 5 consists of a mix of modules derived from both disease
datasets and a normal developing brain (Figure 4B, Box 1) and that the enrichment of mi-
croglia signatures occurs in both types of modules. This is very interesting, as it shows that
tumor cells can adopt the regulatory programs that are usually active only in immune cells, a
phenomenon previously described as myeloid mimicry by [7] (referenced in the manuscript).

Regarding the statement that different transcription factors can have varying functions de-
pending on the cell type, we agree. Nevertheless, we expect that scregclust can capture
these nuances even if the analysis is not run separately on each cell type (cancer, normal
neural, immune, endothelium). This would be evident in the output as one transcription fac-
tor regulating several modules, each with distinct functions and possibly varying modes of
interaction (activating or repressing).

The above points have been clarified throughout the manuscript.

12. The correlation between MES glioma cell state and immune signatures is well
established in previous studies.

Response. We agree with the reviewer that this topic has been discussed in previous studies.
The new point we sought to make is that our model identifies a possible mechanism behind
the immune cell-induced mesenchymal shift, showcasing how our method can be used to
derive new biological hypotheses. In the initial submission, we did reference previous studies
on this topic in the Introduction and now emphasize this also in the Results section (page
11).

Comments regarding the R Package: 1. The authors should make it clear that
the modulator list is only available for human datasets and that users will need to
convert the row names of their expression matrices to humans prior to initiating
the analyses.

Response. We thank the reviewer for bringing this to our attention. It is correct that the
package is distributed with lists for human regulators (transcription factors and kinases). That
said, the user is entirely free to provide the algorithm with any custom regulator list (e.g. FDA-
approved drug targets or similar). If the data is murine, this could for instance be a set of
mouse transcription factors (c.f. https://www.nature.com/articles/ncomms15089). We have
clarified this in the manuscript and user information (Methods page 16).

If the user wishes to add regulators manually, this is done by modifying the input vector
“is_regulator.” This is an indicator vector, telling which rows in the expression matrix should be
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considered regulators, and the user can make any custom assignment they wish. Of note, the
scregclust algorithm itself, and the main function scregclust, are indifferent to species or regu-
lator type, it is only the convenience function scregclust_format that comes with pre-compiled
lists of human transcription factors and kinases, as we expect this to be the most common
scenario.

2. It would be useful if the authors allow the “manual” addition of other regulators
in addition to TFs and Kinases.

Response. Please see above. This is already a feature. The user is entirely free to pro-
vide the algorithm with any custom regulator list and instructions for this are provided in the
package. As a long-term goal, we will expand on the set of regulator panels available in the
distributed software, also addressing multi-species and cross-species functionality.

3. While testing the package, it performed well when using only the 2000most vari-
able genes, however, it crashed when attempting to test the entire matrix. Sim-
ilarly, the package won’t run if the number of cells is lower than the number of
regulators.

Response. Thank you for testing the algorithm. Two issues are mentioned. The first is that
the algorithm requires the number of cells (n) to be greater than the number of regulators (p).
The second is that the program ’crashes’ on the reviewer’s computer when running the full
matrix. The first issue is not something we usually encounter as for real-life use cases, the
number of cells (n) is often substantially larger than that of regulators (p). For instance, a 10X
scRNAseq run generates approximately n = 8,000-10,000 cells. One possible workaround,
e.g. when analyzing smartSEQ or similar data sets, is to make an informed pre-selection of
important regulators to reduce their quantity. The requirement that n > p (more cells than listed
regulators) is linked to both Steps 1 and 2 of scregclust. In Step 1, we use an ordinary least
squares (OLS) estimate of the residual variance for each target gene using all regulators as
predictors. However, since this quantity is only used to scale the data we have now added
an alternative estimator of residual variance based on ridge regression so that the package
can be used even with n < p. Similarly, in Step 2 (the non-negative least squares (NNLS)
estimation), the number of regulators used during estimation depends on the cluster. For low
penalization parameters, all p regulators may be involved. Even though NNLS can technically
be performed even when n < p, a unique solution requires n > p. Here, we have added a
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warningmessage to the package, stating that when the number of selected regulators exceeds
n, NNLS can perform poorly and the penalization parameter has been set too low.

Regarding the second issue, it appears to be a memory issue on the reviewer’s machine. The
algorithm has been observed to consume memory (RAM) proportional to the size of the input
data. Without the exact error message and further information on the runtime environment,
we cannot definitively explain why this occurs for the reviewer. We have added a clarification
in the text that the machine used must contain enough memory to handle the data set at hand.
The algorithm is efficient in the sense that all calculations in our original and revised paper
were conducted on a laptop (MacBook Pro, M1, 16 GB RAM).

We have added a clarification to the manuscript (Results p 5, Methods p 24).

4. It appears that the package performs well with TFs and kinases that are highly
expressed in a large number of cells. How about important regulators that are
expressed by a smaller number of cells or at a lower level?

Response. We thank the reviewer for this perceptive comment. To understand how well our
algorithm can detect regulators that are expressed in a smaller number of cells, we chose a
few representative scregclust-runs (on real datasets of differing sizes and from different cancer
types) and investigated the relation between the percentage of cells the regulator is expressed
in vs the effect size for the fitted models’ regulators. Three examples can be seen below. If
it would be essential for the algorithm that the regulator is expressed in a large number of
cells, we would expect to see a clear positive correlation between effect size and percentage
of cells, as well as a sharp drop in detected regulators when the percentage of cells goes
below a certain point. As can be seen in the figures below, neither of these two scenarios are
observed. Rather, the effect size and number of detected regulators seems to be stable going
from regulators expressed in a low percentage of cells to regulators expressed in the majority
of cells in the dataset.
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Minor comments 1. The figures are referenced in the text out of order. For exam-
ple, Figure 2A and sup Figure S6

Response. Thank you for drawing our attention to this. We have updated our figure number-
ing to better align with the text.

2. Some of the legends do not adequately describe the figures.

Response. We have carefully revised the figure legends to align with the figure and meet the
journal’s style.
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3. Figure 3M module numbers should be labeled.

Response. Thanks for pointing this out. We assume that the reviewer means Figure 3B.
Module numbers have been added.

4. Figure 4 legend colors are not distinguishable, another color scheme with colors
further apart on the spectrum would be more advisable. Also, the row names of
the top heatmap need to be resized to prevent overlap. Where is the legend for
color-coded heading (different modules???)?

Response. We agree and have updated the figure accordingly. We have also clarified in the
figure legend that the color-coded middle heading references the meta-modules described in
Box 1.

Point-by-point response, reviewer 3

1. Gene clustering and regulator prediction are well-established in scRNA-seq re-
search. Although this study’s innovation lies in simultaneously addressing these
issues, users would still be better off choosing a separatemethod for each question
if they individually perform better than scRegClust. The absence of comparisons
with existing techniques for these two areas is notably troubling. While the paper
briefly mentions various gene regulatory network reconstruction methods, it sel-
dom discusses individual gene regulation links. The comparison with SCENIC+
appears barely relevant. To properly position scRegClust, the authors should con-
duct comprehensive comparisons with establishedmethods in gene clustering and
regulator prediction separately, particularly focusing on statistical performance.

Response. Thank you for the careful assessment of our manuscript. We have extended the
presentation, motivation of the approach, and technical evaluations. First, the reviewer will
likely agree that while the clustering of cells is commonplace in scRNA-seq, less has been
said about clustering of genes. As an example of the current emphasis in the field, a recent
review by Fabian Theis and colleagues [8] elaborates substantially on cell clustering but does
not mention gene clustering. The same review also mentions SCENIC+ as a go-to method for
estimating regulators of cell states with combined scATAC and scRNA data. We agree with
the reviewer that scregclust and SCENIC+ are different (crucially, the input data), but they
have a similar biological intent, and for that reason we thought it is a good comparison that
readers will be interested in.

We agree that methods have been proposed to build gene-gene association networks for
single-cell data. However, due to the high noise and sparsity of single-cell transcriptomic data,
the effect of technical variation could be more critical for single-cell co-regulatory network
inference. An evaluation of coexpression-based network inference using scRNA-seq data
from 31 individual studies comprising 163 cell types showed lower retrieval of known functional
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links compared to bulk RNA-seq data [9]. This uncertainty in network estimation underscores
the importance of models with fewer degrees of freedom. The number of parameters in a gene
network with n genes grows by n2, whereas a module network has only (1+k)n parameters,
where k�n is the number of modules (typically around 5-10, with n in the thousands). Despite
having 1-2 orders of magnitude fewer parameters, the module network fitted by scregclust
retains the key links of interest, typically between TFs or kinases and co-expressed genes with
similar functions. As demonstrated, this approach extracts meaningful insights from datasets
by selecting a sparse, actionable set of regulators per process and aligning processes across
multiple datasets and diagnoses, providing a comprehensive overview. Users can flexibly
change the set of regulators beyond TFs and kinases.

scregclust is not intended for clustering genes per se, but for identifying correlated gene blocks
best explained, in a sign-consistent manner, by a limited set of regulators. It is designed to
avoid creating a complete network with an unfeasibly high number of parameters, focusing
instead on how key regulators affect major cellular processes.

Despite these important differences in concept and scope, three types of technical comparison
were possible:

• First, focusing on the task of robustly clustering genes, we compared scregclust to the
most commonly used clustering algorithms. Here, scregclust performs better than
hierarchical clustering and shows more consistent behavior compared to k-means
when applied to 10X data from PBMCs and brain tumors (Supplementary Figure
S8). This is reassuring, but we point out that scregclust provides more information
than clustering methods do. As explained in the Supplementary material, clustering
stability was measured by Adjusted Rand Index; genes were randomly broken into
three groups. Each algorithm was run on Part 1 + 3 and then Part 2 + 3. Stability of
clustering was evaluated by comparing the clustering of Part 3 between the two runs
repeated 50 times.

• Second, focusing on the task of robustly finding regulators linked to clusters, we
compared scregclust to network construction methods combined with community de-
tection. Specifically, we included partial correlation-based networks, PPCOR, and
weighted correlation networks, WGCNA. Ours and WGCNA perform best in terms
of stable selection of regulators. However, WGCNA tuning performance appears to
vary a lot across the two data sets, and fewer regulators exhibit a stable selection
performance. Similarly, the partial correlation network (PPCOR) is very sensitive to
tuning parameter settings, and is very unstable in terms of selection performance,
especially for the PBMC data (Supplementary figure S9, S10). In addition, PPCOR
and WGCNA cannot allocate a regulator to more than one module, thus preventing
the detection of cell-state specific regulatory programs. As explained in the Supple-
mentary Material, the stability metric was computed by finding all edges between
regulators and genes in Part 3 above predicted by a method, each method for a
range of parameters, and computing the proportion of times across 50 runs a regu-
lator is associated with at least one of the modules. We also compare the stability
of regulator identification with GRNboost2. Here, regulator identification is, by con-
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struction, conducted separately for each target gene. Thus, when we cluster target
genes there is no guarantee that the same regulators are selected for all targets in
the same cluster. This is illustrated in Supplementary figure S11), where we plot
the proportion of target genes in a cluster that share a selected regulator against the
number of clusters.

• Third, we assessed regulator sign-consistency within clusters. The main idea behind
scregclust was to make sure genes in a clusters are influenced by the identified reg-
ulators in a consistent way. To assess this, we calculated the signs of the regulatory
effects on genes in Part 3. Because one regulator can affect multiple genes in a
cluster, we examined the distribution of signs for that regulator within the cluster. We
then plotted the proportion of the most common sign (+1 or -1) against the number of
connections to that regulator in the cluster. In scregclust, this process is integrated
into the method, ensuring that sign consistency within clusters is always achieved
with a majority sign proportion of 1. Other methods (PPCOR, WGCNA, and kmeans
with GRNboost2) don’t have a straightforward way of doing this. One approach used
in other methods, such as SCENIC+, is to consider the sign of the marginal Spear-
man correlation between a regulator and a gene. This was the method used for the
other three approaches we compared (Supplementary figure S12, S13). However,
it’s clear that these methods don’t guarantee sign consistency within clusters, mean-
ing target clusters contain genes that are not regulated by the identified regulators in
the same way.

Taken together, scregclust has a different scope than clustering and network construction
methods. When used for clustering, scregclust shows top-level performance. Scregclust also
outperforms ’naive’ combinations of clustering and network construction. These points are
now made in Results (page 8) and Supplementary Material)

2. Linear predictive model results are influenced by the covariance matrix, which
encompasses various factors including actual gene regulation, co-regulation, co-
variation across cell types, and technical variation. In scRNA-seq, true gene reg-
ulation is often a minor element. If the model only considers gene regulation and
neglects other factors, finding true positives can become challenging. A potential
validation approach is to select an equal number of non-TF, non-kinase genes as
regulators. These could be random, highly expressed, or highly variable genes.
Would their gene clustering performance, measured by R2, ARI, and silhouette
score, be comparable to that achieved using TF and kinase genes?

Response. Thank you for this comment. First, we note that the biological goal of this paper is
to identify TFs and kinases that best explain the plasticity of neural and non-neural cancers.
This is an unaddressed problem, where strong methods are needed that process the data
using principled algorithms. An important prior, or premise, for our analysis is that capturing
TFs and kinases is intrinsically interesting. The TFs are of particular interest for capturing ways
in which the cancer co-opts developmental, differentiation, or wound healing mechanisms.
The kinases are of particular interest given their proven feasibility as pharmacological targets.
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In the paper, we illustrate how scregclust uses this prior to link TFs, kinases and processes
to illuminate several neural cancer diagnoses, as well as carcinomas and leukemias. The
method can thus be a starting point to pick genes for further experimentation, rather than as
a general feature selection tool. These points have now been clarified further. The user is
free to define the is_regulator vector of the package to deal with any gene set as possible
explanatory variables. We are not trying to estimate the optimal set of predictive genes for
other genes. This would be a suboptimal approach and mainly correspond to a clustering or
regulatory network setup, and thus associated with instabilities. Our focus is here to allow a
user to input actionable units that can be used for experimental follow-up and gear the study
based on identified regulatory programs. There may, of course, be both a random assignment
and optimal assignment of target genes that are better predictors for other target genes than
TFs/kinarses due to their pairwise correlation, but these might not be good candidates for
intervention.

3. The study’s significance is currently limited, as both applications focus on brain
cancer. Can the authors demonstrate its utility in a different scenario?

Response. We thank the reviewer for this interesting suggestion, which has led to our sub-
stantially extended analyses presented in the paper. In defense of neuro-oncology: brain
tumors represent the most common cause of cancer death in children, and effective therapies
are lacking in both children and adults. The regulation of brain tumor plasticity is a central dis-
cussion in this big field. This said, we think it is a very interesting idea to explore scregclust’s
applicability to other cancer types. Accordingly, using the Curated Cancer Cell Atlas (3CA,
https://www.weizmann.ac.il/sites/3CA/) as a starting point, we chose data sets repre-
senting 15 different cancer types (AML, breast, colorectal, glioblastoma, head and neck, liver,
medulloblastoma, neuroblastoma, lung, osteosarcoma, ovarian, PDAC, prostate, renal and
skin). For each of these data sets, we applied scregclust and merged the resulting output to a
pan-cancer regulatory landscape (analogous to the analysis in Figure 4B). From this analysis,
we found a total of 650 regulators out of which 122 were cancer-specific.

In addition, we scored each individual gene module against gene signatures for the 41 meta-
programs from [10] and generated a regulator x meta-program matrix. Here the reader can
inquire what regulator is predicted to most strongly interact with what meta-program. As an
example, we find that the regulator most strongly associated with meta-program 12 (epithelial-
to-mesenchymal transition) is PRRX1, a known regulator of EMT. This allows for generating
new hypotheses of how to target specific meta-programs in cancer.

The pan-cancer analysis is described in Results p. 12-13, Figure 5, Supplementary
Figure S7 and Supplementary Table 3.

4. ScRegClust involves several user-defined hyperparameters, such as lambda,
theminimum size for non-empty clusters, and the initial value for K. Unreported and
inconsistent hyperparameter values might lead to unstable performance and irre-
producibility, as evidenced in Fig 2AB. Could the authors list all hyperparameters
and their values for each analysis in this study? Furthermore, can they propose a
strategy for selecting hyperparameters in typical use cases lacking ground truth,
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even if it’s as simple as default values? Does this strategy consistently yield satis-
factory results against ground truth in a wide range of simulations, varying in data
dimensions, module size, regulator count, and coefficient distribution? The sup-
plementary material’s simulations address some of these points but with limited
variation in simulation parameters and focused only on lambda.

Response. Thank you for your suggestion. We agree that a detailed description of how
hyperparameters are selected is crucial. All hyperparameters in each analysis in this study
(where default values were not used) have now been listed in Supplementary Table 4. These
include the target number of gene clusters (recommended range: 10-20), penalty parame-
ter (recommended range: 0.01-0.05), and minimum cluster size (recommended value: 20).
Throughout the manuscript, e.g. in the section ”Regulatory-driven clustering: performance
and robustness” (page 7-8) and in the Supplementary material, we present a number of simu-
lation scenarios and two metrics (regulator importance and predictive R2) which can guide the
selection of the penalty parameter lambda. In the same section, we discuss how the number
of starting clusters (K) can be chosen using a modified variant of the silhouette score, with
several examples on simulated data provided in Figure S1. The minimal size of a nonempty
cluster is less critical than the other two parameters and reflects the smallest size of a cluster
(signature) that we are interested in.

To facilitate for the user in selecting hyperparameters, we have now included a section in the
Supplementary material called “Choosing hyperparameters” page 8-9, intended to guide
the typical user in which hyperparameters that are important to tailor in their analysis, how to
do this and where in the manuscript they can find more information on these parameters and
the selection strategy.

5. The current simulation methodology lacks detail. Could the authors mathemat-
ically describe their simulation methodology? Does it include a discrete sampling
process and produce scRNA-seq read counts?

Response. Thank you for pointing this out. We agree that this could have beenmore carefully
explained. We have now improved the presentation to describe how simulated data were
generated (Supplementary Material, Generation of simulated data, Page 3 and 4). In
brief, simulations were performed to investigate the statistical model and to demonstrate our
procedure for model selection. As we describe in Supplementary Materials, scRNA-seq count
data was used as a starting point, but after pre-processing, data was manipulated according
to model assumptions to generate artificial datasets.

6. Fig S1B, 1DE: Employing a hypergeometric test could enhance result intewr-
pretation. Please report sample sizes, odds ratios, and P-values for each test.
Also, clarify the definition of the background population in the Methods section.

Response. Thank you for the comment. We agree. We indeed used Fisher’s test to show that
the overlap in 1D is significant. Odds ratios and p-values are given (see page 6 in Results),
as well as test details (Methods page 16). See also the response to Reviewers 1 and 2.
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7. How are results integrated in Fig 4A?

Response. For the analysis in Figure 4 (and newly added Figure 5, described above) the
algorithm is run on each dataset separately. Each run generates a “regulatory table”, a ma-
trix of dimension regulators x modules. Thereafter, the regulatory tables from each run are
combined by merging the matrices by row names (the function merge(x,y,by=’row.names’,
all=TRUE) in R, to be specific). Finally, the merged regulatory table is centered and scaled
and the generated z-scores are used for plotting. A clarification has been added to Methods,
page 16.

8. The software can be installed. The tutorial can be partially run with errors
quoted below. The outputs from the figures were not entirely error-free, and only
a variant of Fig 2A was reproducible, albeit with discrepancies from the paper’s
version. The tutorial also resulted in over 70% of genes falling into the ’rag bag’
cluster. The tutorial should represent a realistic use case and performance, and
the authors need to clearly communicate anticipated outputs.

Errors encountered:

> plot_regulator_network(fit) Error in base::colSums(x, na.rm = na.rm, dims = dims,
...) : ’x’ must be an array of at least two dimensions

> for (i in 1:5){ regulator_importance[,i] <- rowMeans(fit$results[[i]]$output[[1]]$importance,
na.rm = TRUE) }

Error in regulator_importance[, i] <- rowMeans(fit$results[[i]]$output[[1]]$importance,
: number of items to replace is not a multiple of replacement length

Response. We are grateful to the reviewer for taking the time to go through the tutorial and
alert us to the error messages that arise. We realized that the tutorial on GitHub is not as
up-to-date or well-commented as the vignette, which explains the error messages. To make
the package more user-friendly, we have removed the old tutorial from GitHub and replaced
it with a link to a website (scmethods.github.io/scregclust/) featuring the updated vignette and
a thorough explanation of all functions included in the package. We hope that everything will
run smoothly from now on.

Regarding the large number of genes in the rag-bag cluster, we would like to clarify that screg-
clust aims to find groups of genes that are sign-consistently regulated. If a gene ends up in the
rag-bag cluster, then its correlation with the available regulator/sign-patterns associated with
the available clusters is not strong enough to be included in one of the groups. Re-running
scregclust on only the rag-bag genes to find additional clusters that might have been missed
in the initial run has not proven fruitful, and genes are again sorted into the rag-bag cluster.
This suggests that no sign-consistent regulator signatures can be found that regulate any sub-
stantial group of target genes in the rag-bag cluster. Since scregclust is neither a pure target
gene clustering method nor focuses purely on regulatory link estimation, it is acceptable and
desirable to only find groups of target genes that are sign-consistently regulated. Thus, 70%
is a typical number, and this has been explained more fully in the documentation. WGCNA
exhibits a similar behaviour in this regard as well.
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That said, we acknowledge that it can occasionally be of interest to place target genes in one of
the available clusters. In addition to the usual cluster label vector cluster, we have introduced
an additional output vector cluster_all that places rag-bag genes in the cluster which explains
it best (highest overall R², despite it being under the set threshold).

Minor concerns: The use of sigma_i,j is confusing, as it seems independent of i.

Response. Thank you for the perceptive comment. σ_i, j is truly allowed to vary with cluster
i and target gene j such that different clusters are allowed to have different spread. It depends
on the cluster through the chosen set of regulators Ri and on the target gene through the
current Response. This can be seen in the sign-constrained linear model for target genes in
Eq. 1 (equation numbers follow the revised manuscript): Z(:,j)

t = Z
(:,Ri)
r diag(si)B

(:,j)
i +σi,jei,j .

The reviewer is correct in stating that the plug-in estimate for residual variance in Eq. 4 truly
is independent of cluster i due to how ordinary least squares for linear multi-response models
works. This estimate is only used as a technical tool to stabilize the variance of target genes
before coop Lasso estimation. However, the final estimate of σi,j is performed with the help
of the NNLS estimate in Eq. 7 and is dependent on both the cluster i and target gene j. A
clarification of the statistical model and reasoning behind it has been added inMethods, Page
17.

For regulatory i not selected for cluster j, is it regarded as a target in cluster j? This
should be communicated and justified clearly in Methods.

Response. No, the assignment of genes to be tentative regulators or targets is provided at the
start of the algorithm and not changed dynamically later. This has now been communicated
and justified clearly in Methods, Page 18.

Fig 1C: What criteria were used by the authors to select specific regulators for
visualization?

Response. Variance across modules.

Phrases like ”Improving accuracy” as in ”Regulatory-driven clustering improves
accuracy” can be misleading. The authors should reword such claims to avoid
confusion with improvements over existing methods. Additionally, any claims of
improvement, even over initial conditions, should be substantiated through com-
prehensive comparisons.

Response. Thank you for the comment. The heading specifically referred to the observa-
tional fact that our method substantially improved clustering quality when compared to only
clustering genes using kmeans++ in the simulation study described in the main manuscript,
Figure 2 and in the Supplementary Material. We do agree that the phrasing can bemademore
exact and have changed that heading and carefully gone through the manuscript to avoid un-
necessary jargon, subjective language, or comparative claims, consistent with journal style.
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The manuscript alternates between ”penalty parameter” and ”penalization param-
eter” – consistency in terminology would be beneficial.

Response. Thank you for the comment. We have carefully revised the manuscript to ensure
consistent terminology.

The paper made several mention of regulatory network, but scRegClust primarily
reconstructs bipartite graphs, which lack several key features of typical regula-
tory networks, like perturbation propagation through chain reactions. The authors
should clearly justify why scRegClust reconstructs regulatory networks, or con-
sider other terms.

Response. Thank you for the comment. True, we are not estimating GRNs in the traditional
perturbation biology sense, where genes are allowed to regulate each other. Rather we have
developed a method that can give insight on how a predefined set of regulators affects a
predefined set of target genes. We agree that this produces a bipartite GRN subgraph when
regulators/targets of interest are fixed. We have not used the word bipartite graph in the text
since this can be a bit abstract for many readers. The restrictions that the clustering and
coop-lasso puts on the bipartite graph (target clusters sharing the same set of regulators and
signs) is why scregclust is more stable than the network estimation methods.
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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors satisfactorily addressed most of our comments and we were able to validate known 

regulators in our own dataset. A couple of issues remain to be fixed. 

1. Although the manuscript was revised to replace the term ‘cluster’ with ‘module,’ the R package (v1.8) 

still uses ‘cluster.’ Do the authors intend to update this in the future? 

2. Row names on some of the heatmaps are crowded and difficult to read. 

 

 

Reviewer #1 (Remarks on code availability): 

 

The code works well with few issues and reproducible results. The authors also improved their tutorial. 

The new version shows improvements and runs with very minor issues. The package still uses a lot of 

memory which is understandable. 

 

I tested it with multiple mixed population datasets and the results align with other analyses and 

biologically make sense. 

 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is part of 

the Nature Communications initiative to facilitate training in peer review and to provide appropriate 

recognition for Early Career Researchers who co-review manuscripts. 

 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

The manuscript has been significantly improved in terms of clarity, details, and potential impact. 

However, as the details unveiled, several major concerns remained and became more apparent. It is 

increasingly clear that scregclust relied on assumptions more suitable for bulk RNA-seq than scRNA-seq, 

used simulated data more similar to bulk RNA-seq for benchmarking, and compared against 

conventional methods widely applied on bulk RNA-seq. Lacking both simulation methods and competing 

methods for scRNA-seq data, its performance claims require additional evidence to justify. Without a 

comprehensive evaluation of its statistical performance in the context of existing methods, the impact of 

this study remains unclear. In particular, my following existing concerns remain: 

 

1. While the authors provided the background of this study, the scope of scregclust, and improved 



benchmarking, I still have major concerns after reviewing their response. 

a. While the benchmarking of traditional clustering algorithms is valuable, they may fail to account for 

the widely known challenges in scRNA-seq data. A google search of scRNA-seq biclustering or scRNA-seq 

gene clustering provided plenty of method papers, such as "An Effective Biclustering-Based Framework 

for Identifying Cell Subpopulations From scRNA-seq Data", "QUBIC2: a novel and robust biclustering 

algorithm for analyses and interpretation of large-scale RNA-Seq data", "scSTEM: clustering pseudotime 

ordered single-cell data", and "Celda: a Bayesian model to perform co-clustering of genes into modules 

and cells into subpopulations using single-cell RNA-seq data". These or similar studies appear to have 

sufficient relevance and importance to be referenced and benchmarked in this manuscript. 

b. Similarly, more methods are proposed for gene regulatory network reconstruction from scRNA-seq, 

which can be challenging for traditional algorithms. However, very few are referenced and none is 

compared against. 

c. To provide readers with sufficient background for existing research, the authors should perform a 

literature search and reference a few symbolic studies for each of the two fields above. 

d. To put the performance of scregclust into proper context, the authors should include several methods 

from each of the two fields above for comprehensive benchmarking. Although scregclust is not expected 

to perform better than all other methods because it needs to balance two goals, putting its performance 

into a real context would allow better understanding and help readers to choose the method to use. 

e. The authors' response provides a somewhat different intention of scregclust than the one presented 

in the abstract and introduction. For example, the current manuscript still describes scregclust as "a new 

method for the fast construction of regulatory programs". The manuscript should be updated 

accordingly in many places to reflect the actual intention described in this response. 

 

5. The conclusions drawn from simulated data rest on the similarity of simulated data with real data. This 

study relies heavily on simulated data, particularly for benchmarking. However, without a discrete 

sampling process, simulated data would greatly differ from real scRNA-seq datasets. In fact, the normal 

distribution observed in this simulation is known to be violated in scRNA-seq data, leading to all the 

statistical challenges we face in recent years. The simulations for benchmarking need to include a 

discrete sampling step to generate count data to become sufficiently similar to real scRNA-seq data and 

lead to valid performance conclusions. 

 

 



Response to comments by Reviewer #1 & 2

1. Although the manuscript was revised to replace the term ‘cluster’ with ‘module,’
the R package (v1.8) still uses ‘cluster.’ Do the authors intend to update this in the
future?

Response: We are happy to hear that scregclust performed well on your in-house data
sets. We have now updated the R-package to use the term module instead of cluster in
the appropriate places.

2. Row names on some of the heatmaps are crowded and difficult to read.

Response: Thank you for pointing this out, we agree. We have adjusted the row names
in figure 3B, 4B and 5A to make the figure more straightforward to read.

The code works well with few issues and reproducible results. The authors also
improved their tutorial. The new version shows improvements and runs with very
minor issues. The package still uses a lot of memory which is understandable.

I tested it with multiple mixed population datasets and the results align with other
analyses and biologically make sense.

Response: Thank you for testing our package, we are glad to hear that it runs well.

Response to comments by Reviewer #3

1.a. While the benchmarking of traditional clustering algorithms is valuable, they may
fail to account for the widely known challenges in scRNA-seq data. A google search
of scRNA-seq biclustering or scRNA-seq gene clustering provided plenty of method
papers, such as "An Effective Biclustering-Based Framework for Identifying Cell
Subpopulations From scRNA-seq Data", "QUBIC2: a novel and robust biclustering
algorithm for analyses and interpretation of large-scale RNA-Seq data", "scSTEM:
clustering pseudotime ordered single-cell data", and "Celda: a Bayesian model to
perform co-clustering of genes into modules and cells into subpopulations using
single-cell RNA-seq data". These or similar studies appear to have sufficient
relevance and importance to be referenced and benchmarked in this manuscript.

1b. Similarly, more methods are proposed for gene regulatory network reconstruction
from scRNA-seq, which can be challenging for traditional algorithms. However, very
few are referenced and none is compared against.

1c. To provide readers with sufficient background for existing research, the authors
should perform a literature search and reference a few symbolic studies for each of
the two fields above.

1d. To put the performance of scregclust into proper context, the authors should



include several methods from each of the two fields above for comprehensive
benchmarking. Although scregclust is not expected to perform better than all other
methods because it needs to balance two goals, putting its performance into a real
context would allow better understanding and help readers to choose the method to
use.

1e. The authors' response provides a somewhat different intention of scregclust than
the one presented in the abstract and introduction. For example, the current
manuscript still describes scregclust as "a new method for the fast construction of
regulatory programs". The manuscript should be updated accordingly in many places
to reflect the actual intention described in this response.

Response: Thank you for these valuable comments. We agree that it is important to
consider software developed with an eye on single-cell data, and to contextualize our
method further.

● Response to 1a (additional single cell clustering methods),
We agree that benchmarking against clustering methodology specifically designed
for single-cell data is essential. To address this, we have expanded our analysis
by including Celda [1] in our cluster stability evaluation, alongside k-means,
hclust, and scregclust. Celda shows performance comparable to k-means and
sometimes exceeds scregclust in terms of stability for smaller clusters, though
scregclust demonstrates more consistent behavior overall. We also attempted to
incorporate QUBIC2 into our benchmarking. However, due to the non-exclusivity
of gene cluster membership, QUBIC2 was not suitable for our purposes. The
majority of genes were not assigned to any cluster, and those that were assigned
appeared in multiple clusters (See figures below). This issue, as noted in the
Celda publication, is common in biclustering-based methods. The other methods
you mentioned either faced reproducibility issues (DivBiClust) or were not
applicable to our data analysis setting (scSTEM). Overall, scregclust
demonstrates robust gene clustering performance, on par with or better than
traditional and new single-cell clustering methods. We have cited these methods
for readers who may seek alternative approaches.

● Response to 1b (additional network methods).
We agree and have extended our comparison to include additional methods. Our
initial focus on GRNboost2 was due to its strong performance in a recent
systematic evaluation of single-cell network construction methods (Pratapa et al.,
Nature Methods 2020). This study identified PIDC, GENIE3, and GRNBoost2 as
the leading methods in terms of accuracy. We initially excluded GENIE3 due to its
mathematical similarity to GRNBoost2, which is significantly faster. To broaden
our analysis, we have now added PIDC and a single-cell adaptation of WGCNA
(hdWGCNA) [2] to our supplementary figures (S2-S7). Scregclust performed
exceptionally well in comparison to these methods, particularly in regulator
stability and sign consistency.

● 1c. Literature Citations.
We agree that it's important to acknowledge advancements in clustering and



gene-to-gene network construction. We have added the relevant references to
give proper credit to these developments.

● 1d. Comprehensive Benchmarking:
This concern has been addressed through the additional benchmarking described
above.

● 1e. Clarification of Scregclust’s Purpose.
We have further clarified in the Results section that the primary goal of scregclust
is to detect clusters assigned to actionable regulators rather than constructing a
complete gene-to-gene network. We believe that the term "regulatory program"
effectively communicates this concept and is more intuitive than alternatives like
"module networks," "gene batteries," or "bipartite graph." Additionally, we consider
it a strength that our computational method development is conducted within the
context of cancer research.

Figure (related to 1a): QUBIC2 applied to the Wang et al dataset. Clustered
genes ordered by the number of clusters to which that gene was assigned.

Figure (related to 1a): QUBIC2 applied to the PBMC dataset. Clustered genes
ordered by the number of clusters to which that gene was assigned.



2. The conclusions drawn from simulated data rest on the similarity of simulated data
with real data. This study relies heavily on simulated data, particularly for
benchmarking. However, without a discrete sampling process, simulated data would
greatly differ from real scRNA-seq datasets. In fact, the normal distribution observed
in this simulation is known to be violated in scRNA-seq data, leading to all the
statistical challenges we face in recent years. The simulations for benchmarking
need to include a discrete sampling step to generate count data to become
sufficiently similar to real scRNA-seq data and lead to valid performance conclusions.

Response: It is correct that our previous submission, in Figure 2, used simulated data to
illustrate the behavior of scregclust. Crucially, other than that, all benchmarking was
performed on real data sets (count data). That said, we agree that our simulation approach
was simplistic and have now updated Figure 2 so that samples are generated from a
negative binomial distribution (i.e. counts) to more closely reflect single-cell data. The new
simulation produces very similar results. We also clarify in the results part that the purpose
of the simulation is to illustrate how to select appropriate penalty parameters for scregclust.

References:

[1] https://academic.oup.com/nargab/article/4/3/lqac066/6696781
[2] https://www.cell.com/cell-reports-methods/fulltext/S2667-2375(23)00127-3
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REVIEWERS' COMMENTS 

 

Reviewer #3 (Remarks to the Author): 

 

The authors addressed most of my concerns. In principle, more recent methods proposed for gene 

regulatory network reconstruction from scRNA-seq should be included for benchmarking and the ROC 

should be included in benchmarking. However, I also recognize the effort from the authors and would 

like to defer the judgement of method performance to the community. 

 

As such, I recommend the publication of this manuscript and wish to congratulate the authors on this 

achievement! 



Response to comment from Reviewer #3 

1. The authors addressed most of my concerns. In principle, more recent methods proposed for gene 

regulatory network reconstruction from scRNA-seq should be included for benchmarking and the 

ROC should be included in benchmarking. However, I also recognize the effort from the authors 

and would like to defer the judgement of method performance to the community. 

 

As such, I recommend the publication of this manuscript and wish to congratulate the authors on 

this achievement! 

 

Response: We thank the reviewer for their kind feedback and for assessing our manuscript. We 

aimed to demonstrate the stability and reliability of scregclust in comparison to state-of-the-art 

clustering and network construction algorithms. Since our benchmarking emphasizes solution 

stability rather than the reconstruction of full gene-to-gene regulatory networks, we chose not to 

include a ROC curve in the analysis. We agree that users will benefit from selecting tools based 

on their specific goals, whether that is focusing on regulatory programs with scregclust or 

reconstructing full gene-to-gene networks. 

 

Thank you again for your thoughtful review and for recommending publication. 
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