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Supplementary Note 1 –Conditioning on the permutation ren-
ders basic learning tasks impossible

Consider the following classical problem SUCCESSε = {(p, σ) ∈ [0, 1]×D({0, 1}) : |p−σ(1)| ≤ ε}. Here,
D({0, 1}) refers to the set of probability distributions over {0, 1}. A strategy in this case is described
by a possibly random function F : {0, 1}N−1 → [0, 1]. Recall the definition of error probability in
Equation (2) of the main text

δ′B(N, ρA1···AN , ε) = Eπ

[
P(c,p)∼B(ρπ)

[(
p, (ρπ)AN

c,p

)
/∈ SUCCESSε

]]
.

Assume we have for any distribution PA1...AN

Eπ [δ
′
F (N,Pπ, ε)] ≤ δ. (1)

Consider the distribution putting mass on a single string x1, . . . , xN . Then Supplementary Equation (1)
can be written as

Eπ

[
P
[
|xπ(N) − F (xπ(1), xπ(2), . . . , xπ(N−1))| > ε

]]
≤ δ. (2)

Now, assume N is even and let xi = 0 for i ≤ N/2 and xi = 1 for i > N/2. We write

δ ≥ P
[
|xπ(N) − F (xπ(1), xπ(2), . . . , xπ(N−1))| > ε

]
= P [π(N) ≤ N/2]P

[
|0− F (xπ(1), xπ(2), . . . , xπ(N−1))| > ε|π(N) ≤ N/2

]
+ P [π(N) > N/2]P

[
|1− F (xπ(1), xπ(2), . . . , xπ(N−1))| > ε|π(N) > N/2

]
≥ 1

2
P
[
|1− F (xπ(1), xπ(2), . . . , xπ(N−1))| > ε|π(N) > N/2

]
. (3)

Note that conditioned on π(N) > N/2, the string (xπ(1), xπ(2), . . . , xπ(N−1)) is uniformly distributed
on all bitstrings that have N/2 zeros and N/2 − 1 ones. We can also apply the success criterion in
Supplementary Equation (2) for the bitstring xi = 0 for i ≤ N/2+1 and xi = 1 for i > N/2+1 which
gives

δ ≥ N/2 + 1

N
P
[
|F (xπ(1), xπ(2), . . . , xπ(N−1))| > ε|π(N) ≤ N/2 + 1

]
. (4)

Note that we also have that conditioned on π(N) ≤ N/2 + 1, the string (xπ(1), xπ(2), . . . , xπ(N−1)) is
uniformly distributed on all bitstrings that have N/2 zeros and N/2 − 1 ones. Let Y1, . . . , YN−1

be a random variable chosen according to this distribution. Then, Supplementary Equation (3)
and Supplementary Equation (4) can be expressed as P [|1− F (Y1, Y2, . . . , YN−1)| > ε] ≤ 2δ and
P [|F (Y1, Y2, . . . , YN−1)| > ε] ≤ N

N/2+1δ ≤ 2δ respectively. For ε < 1/2, the events |1 −
F (Y1, Y2, . . . , YN−1)| ≤ ε and |F (Y1, Y2, . . . , YN−1)| ≤ ε are disjoint, this implies that δ ≥ 1/4.
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Supplementary Note 2 – Illustration of the randomized local de
Finetti Theorem 4

In this section, we illustrate Theorem 4 of the main text for a specific permutation invariant state and
a specific distribution of measurements. Recall Theorem 4 of the main text:

Theorem (Randomized local de Finetti). Let N ≥ 1 be a positive integer and A1
∼= A2

∼= · · · ∼= AN be

N isomorphic quantum systems of dimension d. Let 1 ≤ k <
√

N
log(d) . Let ρ

A1···AN be a state and let

qN be a permutation-invariant measure on RN . Let {Λr}r∈R be a set of measurement channels with
input system A and output system X. Let j = (j1, . . . , jN ) be a random permutation of {1, . . . , N},
l ∼ Unif{k + 1, . . . , k + N

2 }, r = (r1, . . . , rN ) ∼ qN and w = (wl+1, . . . , wk+N/2) be the outcomes of
measuring the systems Ajl+1

, . . . , Ajk+N/2
using the measurements Λrl+1

, . . . ,Λrk+N/2
. The following

inequality holds:

Ej,l,r∼qN

[∑
w

pr(w)

∥∥∥∥∥id⊗
(

k+1⊗
i=2

Λri

)(
ρ
Aj1

···Ajk+1

l,r,w −
k+1⊗
i=1

ρ
Aji

l,r,w

)∥∥∥∥∥
1

]
≤
√

4k2 log(d)

N
,

where pr(w) = Tr
[
⟨w|(Λrl+1

⊗ · · · ⊗ Λrk+N/2
)(ρAj1 ...AjN )|w⟩

]
and we defined the conditional state

ρl,r,w as

ρ
Aj1 ···Ajk+1

l,r,w =
1

pr(w)
TrAjk+2

···AjN

[
⟨w|(Λrl+1

⊗ · · · ⊗ Λrk+N/2
)(ρAj1 ...AjN )|w⟩

]
.

Note that if ρA1...AN is permutation invariant, the random permutation j is not needed and we can

replace ji by i and
⊗k+1

i=1 ρ
Aji

l,r,w by
(
ρAN

l,r,w

)⊗k+1

in the above expressions.

Supplementary Example 1. Let the dimension be d = 2. The quantum state we consider is

ρ =

∫
dHaar(φ)|φ⟩⟨φ|⊗N .

The law of measurement devices is the Dirac delta distribution on the simple POVM M =
{|0⟩⟨0|, |1⟩⟨1|}. Observe that any Dirac delta distribution of measurement devices can be reduced to this
example because of the invariance of Haar measure by unitary conjugation. Let l ∼ Unif{1, . . . , N

2 }
be the number of systems to be measured. For w ∈ {0, 1}l, define Mw =

⊗l
t=1 |wt⟩⟨wt|. We can write

the post-measurement state as follows:

ρA1···Ak

l,w =

∫
dHaar(φ) ⟨φ|⊗lMw |φ⟩⊗l|φ⟩⟨φ|⊗k∫

dHaar(ϕ) ⟨ϕ|⊗lMw|ϕ⟩⊗l
.

The measurement channel related to the POVMM = {|0⟩⟨0|, |1⟩⟨1|} is :

Λ(ρ) = ⟨0|ρ|0⟩|0⟩⟨0|+ ⟨1|ρ|1⟩|1⟩⟨1|.

If we apply the channel id⊗ Λ2 ⊗ · · · ⊗ Λk = id⊗ Λ⊗ · · · ⊗ Λ to the post-measurement state ρA1···Ak
w
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we obtain by writing |ϕ⟩ =
(
α0

α1

)
and p = |α1|2:

id⊗ Λ⊗ · · · ⊗ Λ(ρA1···Ak
w )

=

∫
dHaar(φ)⟨φ|⊗lMw|φ⟩⊗l|φ⟩⟨φ| ⊗ Λ(|φ⟩⟨φ|)⊗k−1∫

dHaar(ϕ)⟨ϕ|⊗lMw|ϕ⟩⊗l

=

∫
dHaar(φ)(|α0|2)l−|w|(|α1|2)|w|

(
|α0|2 α0ᾱ1

α1ᾱ0 |α1|2
)
⊗
(
|α0|2 0
0 |α1|2

)⊗k−1

∫
dHaar(φ)(|α0|2)l−|w|(|α1|2)|w|

=

∫ 1

0
dp
∫ 2π

0
1
2π dθ(1− p)l−|w|p|w|

(
1− p

√
p(1− p)eiθ√

p(1− p)e−iθ p

)
⊗
(
1− p 0
0 p

)⊗k−1

∫ 1

0
dp
∫ 2π

0
1
2π dθ(1− p)l−|w|p|w|

=

∫ 1

0
dp(1− p)l−|w|p|w|

(
1− p 0
0 p

)⊗k

∫ 1

0
dp(1− p)l−|w|p|w|

=

∫ 1

0

dp (l + 1)

(
l

|w|

)
(1− p)l−|w|p|w|

(
1− p 0
0 p

)⊗k

.

By tracing out all but the first system, we obtain an expression of the reduced post-measurement state:

ρA1
w =

∫ 1

0

dp (l + 1)

(
l

|w|

)
(1− p)l−|w|p|w|

(
1− p 0
0 p

)
=

(
1− |w|+1

l+2 0

0 |w|+1
l+2

)
.

Hence if we denote by p⋆ = |w|+1
l+2 we have:∥∥id⊗ Λ⊗ · · · ⊗ Λ(ρA1···Ak
w )− id⊗ Λ⊗ · · · ⊗ Λ

(
(ρA1

w )⊗k
)∥∥

1

=

∥∥∥∥∥
∫ 1

0

dp (l + 1)

(
l

|w|

)
(1− p)l−|w|p|w|

[(
1− p 0
0 p

)⊗k

−
(
1− p⋆ 0

0 p⋆

)⊗k
]∥∥∥∥∥

1

.

By Stirling’s approximation we have:(
l

|w|

)
(1− p)l−|w|p|w| ≤ 1√

2π|w|(1− |w|/l)
exp

(
−lKL

(
|w|
l

∥∥p)) ,
where KL is the Kullback-Leibler divergence defined as KL(a∥b) = a log(ab ) + (1 − a) log( 1−a

1−b ) for

a, b ∈ (0, 1) [1]. Hence if Sε =
{
p ∈ [0, 1] : KL

(
|w|
l

∥∥p) > ε
}

we have by the triangle inequality:∥∥∥∥∥
∫
Sε

dp (l + 1)

(
l

|w|

)
(1− p)l−|w|p|w|

[(
1− p 0
0 p

)⊗k

−
(
1− p⋆ 0

0 p⋆

)⊗k
]∥∥∥∥∥

1

≤ 2

∫
Sε

dp
(l + 1)√

2π|w|(1− |w|/l)
exp

(
−lKL

(
|w|
l

∥∥p)) ≤ 2(l + 1)e−lε√
2π|w|(1− |w|/l)

.
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On the other hand, we have by the triangle and Pinsker’s inequalities [1]:∥∥∥∥∥
∫
Sc
ε

dp (l + 1)

(
l

|w|

)
(1− p)l−|w|p|w|

[(
1− p 0
0 p

)⊗k

−
(
1− p⋆ 0

0 p⋆

)⊗k
]∥∥∥∥∥

1

≤
∫
Sc
ε

dp (l + 1)

(
l

|w|

)
(1− p)l−|w|p|w|

∥∥∥∥∥
(
1− p 0
0 p

)⊗k

−
(
1− p⋆ 0

0 p⋆

)⊗k
∥∥∥∥∥
1

≤
∫
Sc
ε

dp (l + 1)

(
l

|w|

)
(1− p)l−|w|p|w|

∥∥∥∥∥
(
1− p 0
0 p

)⊗k

−
(
1− |w|/l 0

0 |w|/l

)⊗k
∥∥∥∥∥
1

+

∫
Sc
ε

dp (l + 1)

(
l

|w|

)
(1− p)l−|w|p|w|

∥∥∥∥∥
(
1− |w|/l 0

0 |w|/l

)⊗k

−
(
1− p⋆ 0

0 p⋆

)⊗k
∥∥∥∥∥
1

≤
∫
Sc
ε

dp (l + 1)

(
l

|w|

)
(1− p)l−|w|p|w|

√√√√2D

((
1− |w|/l 0

0 |w|/l

)⊗k ∥∥∥∥(1− p 0
0 p

)⊗k
)

+

√√√√2D

((
1− |w|/l 0

0 |w|/l

)⊗k ∥∥∥∥(1− p⋆ 0
0 p⋆

)⊗k
)

=

∫
Sc
ε

dp (l + 1)

(
l

|w|

)
(1− p)l−|w|p|w|

√
2kKL

(
|w|
l

∥∥p)+√2kKL
(

|w|
l

∥∥p⋆)
≤
√
2kε+

√
2kKL

(
|w|
l

∥∥ |w|+1
l+2

)
≤
√
2kε+

√
4k

l
.

Therefore by the triangle inequality we deduce that:∥∥id⊗ Λ⊗ · · · ⊗ Λ(ρA1···Ak
w )− id⊗ Λ⊗ · · · ⊗ Λ

(
(ρA1

w )⊗k
)∥∥

1

=

∥∥∥∥∥
∫ 1

0

dp (l + 1)

(
l

|w|

)
(1− p)l−|w|p|w|

[(
1− p 0
0 p

)⊗k

−
(
1− p⋆ 0

0 p⋆

)⊗k
]∥∥∥∥∥

1

≤ 2(l + 1)e−lε√
2π|w|(1− |w|/l)

+
√
2kε+

√
4k

l

≤ 2

(l + 1)
√

2π|w|(1− |w|/l)
+

√
2k log ((l + 1)2)

l
+

√
4k

l
≤
√

9k log (l + 1)

l

where the last inequalities are achieved for ε = 2
l log (l + 1). Now if we take the average under

l ∼ Unif{1, . . . , N
2 }:

El

[∥∥∥id⊗ Λ⊗k−1(ρA1···Ak

l,w )− id⊗ Λ⊗k−1
(
(ρA1

l,w)⊗k
)∥∥∥2

1

]
≤ 2

N

N/2∑
l=1

9k log (l + 1)

l

≤ 18k log2(N)

N
.

Finally by Cauchy Schwarz’s inequality

El

[∥∥∥id⊗ Λ⊗k−1(ρA1···Ak

l,w )− id⊗ Λ⊗k−1
(
(ρA1

l,w)⊗k
)∥∥∥

1

]
≤

√
18k log2(N)

N
.

4



Supplementary Figure 1: A general algorithm for learning properties of quantum states in the non-i.i.d.
setting. Left (resp. Right) the algorithm B is not (resp. is) allowed to output calibration information
c. Success occurs if prediction p is (approximately) compatible with the remaining post-measurement
test copies ρAN

p or ρAN
c,p .

Supplementary Note 3 –Generalizing the i.i.d. setting without
calibration information

A potential objection to Algorithm 1 of the main text might be that it produces more information
than strictly required. Indeed, in addition to the prediction provided by A

(
ρA1···Ak
w

)
, Algorithm 1 of

the main text also furnishes the observations w that lead to the given prediction. These observations
hold calibration-related data, intended for future utilization. Notably, they are not essential for the
immediate prediction task at hand. In this section, we introduce a framework for extending non-
adaptive algorithms to the non-i.i.d. setting without returning calibration information. This extension
is achievable for a broad range of problems that can be defined by a function under reasonable
assumptions. Instead of Definition 6 of the main text for the error probability with calibration, we will
use the following definition of the error probability without calibration (See Supplementary Figure 1
for an illustration of algorithms without and with calibration information.):

Supplementary Definition 1 (Error probability in the non-i.i.d. setting (no calibration data)). Let
N ≥ 1 be a positive integer, A1

∼= A2
∼= · · · ∼= AN be N isomorphic quantum systems. Let

ρA1···AN ∈ D(A1 · · ·AN ). A learning algorithm B : L(A1 . . . AN−1) → CP has error probability on
ρ given by:

δB(N, ρA1···AN , ε) = Pp∼B(ρ)

[(
p, ρAN

p

)
/∈ SUCCESSε

]
,

where p follows the probability measure B(ρA1...AN−1) and we recall that ρAN
p is defined by conditioning

on the outcome p of the measurement B on the systems A1 . . . AN−1 of ρ.

Note that, if ρ is i.i.d., the conditioning on p does not have any effect on the post-measurement
state and Supplementary Definition 1 coincides with the usual definition of the error probability. The
following example illustrates the possible difference that conditioning on calibration data has.

Supplementary Example 2. We denote the weight of an element x ∈ {0, 1}n by |x| =
∑n

i=1 xi. Let
ρA1···AN =

∑
x∈{0,1}n

1
2n |x⟩⟨x|

⊗N be a permutation invariant state. We want to predict the (average)
weight of the state. A possible algorithm B is to measure the first system A1 with the canonical basis
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{|x⟩⟨x|}x∈{0,1}n , observe x ∈ {0, 1}n and return the prediction p = |x| and possibly the calibration
c = x. The post-measurement state conditioned on the prediction-related information p is:

ρAN
p =

1(
n
p

) ∑
y∈{0,1}n:|y|=p

|y⟩⟨y|.

On the other hand, the post-measurement state conditioned on the prediction and calibration
information is:

ρAN
c,p = |x⟩⟨x|.

The states ρAN
p and ρAN

c,p are in general different. Infact, we have, with probability at least 1− 1/2n−1,∥∥ρAN
p − ρAN

c,p

∥∥
1
= 2

(
1− 1/

(
n
p

))
≥ 2− 2/n.

The learning problems we consider in this section are defined by a function under reasonable
assumptions.

Supplementary Definition 2. Consider a function d designed to determine a particular property
concerning quantum states. The problem of learning the property of quantum states can be formulated
using the following SUCCESS set:

SUCCESSε = {(p, σ) : d(p, σ) ≤ ε} ⊂ P ×D(A)

where P is a set. The function d should satisfy the following properties:

(a) Non-negativity: for all (p, σ), d(p, σ) ≥ 0.

(b) Boundedness: there is a constant C > 0 such that for all (p, σ), d(p, σ) ≤ C.

(c) Robustness: for all (p, σ) and (p, ρ), |d(p, σ)− d(p, ρ)| ≤ 1
2∥σ − ρ∥1.

(d) Convexity in the second entry: for all α ∈ (0, 1), (p, σ) and (p, ρ),

αd(p, σ) + (1− α)d(p, ρ) ≥ d (p, ασ + (1− α)ρ) .

Many problems about learning properties of quantum states can be formulated using Supplementary
Definition 2.

Supplementary Example 3 (State tomography). The problem of state tomography corresponds to the
trace distance function d = dTr where the trace distance is defined by dTr(ρ, σ) = 1

2∥ρ − σ∥1. The
trace distance satisfies all the conditions in Supplementary Definition 2 for C = 1

2 .

Supplementary Example 4 (Shadow tomography). Here we consider M observables 0 ≼ O1, . . . , OM ≼
I. The shadow tomography problem corresponds to the function d between the tuple p =
(µ1, . . . , µM ) ∈ [0, 1]M and the state σ defined as follows:

d(p, σ) = max
1≤i≤M

|µi − Tr [Oiσ] |.

Clearly, 0 ≤ d(p, σ) ≤ 2. Now, let σ, ρ be two states and p = (µ1, . . . , µM ) be a tuple, we have:

|d(p, σ)− d(p, ρ)| =
∣∣∣∣ max
1≤i≤M

|µi − Tr [Oiσ]− max
1≤i≤M

|µi − Tr [Oiρ]

∣∣∣∣
≤ max

1≤i≤M
||µi − Tr [Oiσ]− |µi − Tr [Oiρ]|

≤ max
1≤i≤M

|Tr [Oiσ]− Tr [Oiρ]| ≤
1

2
∥σ − ρ∥1.
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Moreover for α ∈ [0, 1]:

αd(p, σ) + (1− α)d(p, ρ) = α max
1≤i≤M

|µi − Tr [Oiσ] |+ (1− α) max
1≤i≤M

|µi − Tr [Oiρ] |

≥ max
1≤i≤M

(α |µi − Tr [Oiσ]|+ (1− α) |µi − Tr [Oiρ]|)

≥ max
1≤i≤M

|µi − αTr [Oiσ]− (1− α)Tr [Oiρ]|

= d (p, ασ + (1− α)ρ) .

Finally d satisfies the conditions in Supplementary Definition 2.

Supplementary Example 5 (Verification of a pure state). Given an ideal pure state |Ψ⟩ and a binary
prediction p ∈ {0, 1} representing whether the algorithm accepts or rejects, we define d as follows:

d(p, σ) = p+ (1− p)(1− ⟨Ψ|σ|Ψ⟩).

If we can prove that:

Pp

[
d(p, ρAN

p ) > ε
]
≤ δ

Then we have both completeness and soundness:

• Completeness. If the verifier receives the state ρ = |Ψ⟩⟨Ψ|⊗N , then ⟨Ψ|ρAN
p |Ψ⟩ =

⟨Ψ||Ψ⟩⟨Ψ||Ψ⟩ = 1. On the other hand, with probability 1 − δ, we have p = p + (1 − p)(1 −
⟨Ψ|ρAN

p |Ψ⟩) ≤ ε hence p = 0 and the verifier accepts.

• Soundness. If the verifier accepts, i.e., p = 0, then we have with a probability at least 1− δ,
1 − ⟨Ψ|ρAN

p |Ψ⟩ = p + (1 − p)(1 − ⟨Ψ|ρAN
p |Ψ⟩) ≤ ε therefore the post-measurement state ρAN

p

satisfies Tr
[
|Ψ⟩⟨Ψ|ρAN

p

]
≥ 1− ε with a probability at least 1− δ.

Let us show that d satisfies the conditions in Supplementary Definition 2. First, d is clearly non
negative and at most 1. For two states σ and τ , we have:

|d(p, τ)− d(p, σ)| = (1− p)|⟨Ψ|σ − τ |Ψ⟩| ≤ 1

2
∥σ − τ∥1

so d satisfies the robustness condition. For the convexity, let α ∈ [0, 1], we have:

αd(p, σ) + (1− α)d(p, τ) = p+ α(1− p)(1− ⟨Ψ|σ|Ψ⟩) + (1− α)(1− p)(1− ⟨Ψ|τ |Ψ⟩)
= p+ (1− p) (1− ⟨Ψ|ασ + (1− α)τ |Ψ⟩)
= d (p, ασ + (1− α)τ) .

Supplementary Example 6 (Testing mixedness of states). In the problem of testing mixedness of states,
we would like to test whether σ = I

d or 1
2

∥∥σ − I
d

∥∥
1
> ε. We can define d for a binary prediction

p ∈ {0, 1} and a quantum state σ:

d(p, σ) = p+
1

2
(1− p)

∥∥σ − I
d

∥∥
1

where p ∈ {0, 1} represents the outcome of the algorithm, 0 for the null hypothesis and 1 for the
alternate hypothesis. Similar to the previous example, d satisfies the conditions in Supplementary
Definition 2.

Moreover, we can show that d(p, σ) ≤ ε implies that algorithm B is correct. Indeed, if σ = I
d then

d(p, σ) = p thus p = d(p, σ) ≤ ε implying p = 0. On the other hand, if 1
2

∥∥σ − I
d

∥∥
1
> ε then we have

(1− p)ε < 1
2 (1− p)

∥∥σ − I
d

∥∥
1
≤ d(p, σ) ≤ ε implying (1− p) < 1 and finally p = 1.
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Supplementary Figure 2: Illustration of Supplementary Algorithm 1. Supplementary Algorithm 1
measures a large number of the state’s subsystems using MA

r that represents measurement devices
uniformly chosen from the i.i.d. algorithm’s set of POVMs {Mt}t (red and green parts). Then,
Supplementary Algorithm 1 applies the data processing of Algorithm A to the outcomes of a part
of these subsystems (green part) leading to a prediction p. Success occurs if p is (approximately)
compatible with the remaining post-measurement test copy ρAN

p .

Supplementary Algorithm 1 Predicting properties of quantum states in the non-i.i.d. setting
without calibration information - Non-adaptive algorithms

Require: The measurements {MA
t }1≤t≤kA of algorithm A.

A permutation invariant state ρA1···AN .
Ensure: Adapt the algorithm A to non-i.i.d. inputs ρA1···AN .

Sample l ∼ Unif{k + 1, . . . , k + N
2 } and (r1, . . . , rl)

iid∼ Unif{1, . . . , kA}
For t = k + 1, . . . , l, applyMA

rt to system At and obtain outcome w←
⊗l

t=k+1MA
rt(ρ)

For t = 1, . . . , k, applyMA
rt to system At and obtain outcome v←

⊗k
t=1MA

rt(ρw)
For t = 1, . . . , kA, let s(t) ∈ [k] be the first integer such that rs(t) = t
Run the prediction of algorithm A to the measurement outcomes vs(1), . . . , vs(kA) and obtain p
return p.

For problems defined with a function d satisfying the conditions in Supplementary Definition 2,
we propose Supplementary Algorithm 1 in the non-i.i.d. setting (See Supplementary Figure 2 for an
illustration).

Recall the definition of the error probability for algorithms without calibration information:

δB(N, ρA1···AN , ε) = Pp

[(
p, ρAN

p

)
/∈ SUCCESSε

]
.

The main result of this section is to control the error probability of Supplementary Algorithm 1.
Recall that we consider problems defined by a function d upper bounded by a constant C > 0 (see

Supplementary Definition 2) and ρAN

l,r,w = Tr−AN

[
ρ
Al+1···AN

l,r,w

]
.

Supplementary Theorem 1. Let ε > 0 and kA < k < N/2. Let A be a non-adaptive algorithm
performing incoherent measurements with {Mt}1≤t≤kA . There is an algorithm (without calibration
information) B suitable for arbitrary input states, performing i.i.d. measurements drawn from
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Unif{Mt}1≤t≤kA and possessing an error probability satisfying for all η > 0:

δB(N, ρA1···AN , ε)

≤ C

ε
sup
l,r,w

δA

(
kA,

(
ρAN

l,r,w

)⊗kA
, η

)
+

2η

ε
+

C

ε
kAe

−k/kA +
4C

ε

√
k2 log(d)

Nη2
+

2C

ε

√
k2 log(d)

N
.

Proof Here, we show how to relate the approximation of the post-measurement state ρAN
p with the

approximation of the post-measurement state ρAN

l,r,w,p.

Supplementary Lemma 1. We have for all η > 0:

Pp

[
(p, ρAN

p ) /∈ SUCCESSε
]
≤ η

ε
+

C

ε
Pl,r,w,p

[
(p, ρAN

l,r,w,p) /∈ SUCCESSη

]
.

Once we have this lemma, we obtain the theorem by applying Theorem 5 of the main text.

Proof We use the notation
⊗l

t=1Mt = {Mx}x. Since d is convex in the second entry, we have:

El,r,w,p

[
d
(
p, ρAN

l,r,w,p

)]
= El,r

[∑
x

Tr [Mxρ] d
(
p, ρAN

l,r,x,p

)]

= El,r

[∑
y

∑
x:p=y

Tr [Mxρ] d
(
y, ρAN

l,r,x,y

)]

≥ El,r

[∑
y

q(y)d

(
y,

1

q(y)

∑
x:p=y

Tr [Mxρ] ρ
AN

l,r,x,y

)]

= El,r

[∑
y

q(y)d
(
y, ρAN

l,r,y

)]
= Ep

[
d
(
p, ρAN

p

)]
where we use the notation q(y) =

∑
x:p=y Tr [Mxρ]. Finally, we apply a simple Markov’s inequality

then the last inequality to obtain for all η > 0:

Pp

[(
p, ρAN

p

)
/∈ SUCCESSε

]
= Pp

[
d
(
p, ρAN

p

)
> ε
]

≤ 1

ε
Ep

[
d
(
p, ρAN

p

)]
≤ 1

ε
El,r,w,p

[
d
(
p, ρAN

l,r,w,p

)]
=

1

ε

∫ C

0

Pl,r,w,p

[
d
(
p, ρAN

l,r,w,p

)
≥ x

]
dx

≤ η

ε
+

C

ε
Pl,r,w,p

[
(p, ρAN

l,r,w,p) /∈ SUCCESSη

]
.

Similarly, using Supplementary Lemma 1 we can generalize Theorem 8 of the main text to control
the error probability without calibration information of Supplementary Algorithm 2:

Supplementary Theorem 2. Let ε > 0 and 1 ≤ k < N/2. Let A be a general algorithm. Supplementary
Algorithm 2 (without calibration information) has an error probability satisfying for all η > 0:

δB
(
N, ρA1···AN , ε

)
≤ C

ε
sup
l,w

δA

(
k, (ρAN

l,w )⊗k, η
)
+

2η

ε
+

12C

ε

√
2k3d2 log(d)

Nη2
+

2C

ε

√
2k3d2 log(d)

N
.
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Supplementary Algorithm 2 Predicting properties of quantum states in the non-i.i.d. setting
without calibration information - General algorithms

Require: Measurement A : L(A1 . . . Ak)→ CP . A permutation invariant state ρA1···AN .
Ensure: Adapt the algorithm A to non-i.i.d. inputs ρA1···AN .

Run algorithm A on systems A1 . . . Ak and obtain outcome p← A(ρ)
Sample l ∼ Unif{k + 1, . . . , k + N

2 }
ApplyMdist to each system Ak+1 to Al and obtain outcome w←M⊗(l−k)

dist (ρ)
return p.

Supplementary Note 4 –Verification of pure states in expecta-
tion

In Section 4.4.2 of the main text, we mentioned that for the problems of verifying one pure state,
the soundness condition is often formulated in terms of expectation rather than probability. We used
the formulation with probability in Section 4.4.2 of the main text because we wanted to verify many
pure states simultaneously. Here, we show that a similar statement can be formulated in expectation
if we focus on verifying one pure state. The techniques are similar but do not follow directly from
Theorem 5 nor Theorem 8 of the main text.

Recall that in the context of verifying a pure state, we are given an ideal known state Ψ and copies
of an unknown state. The objective is to verify whether the received reduced state is exactly the
ideal state or far from it in fidelity. Formally, a verifier should satisfy the completeness and soundness
conditions:

1. Completeness. The verifier accepts upon receiving the pure i.i.d. states |Ψ⟩⟨Ψ|⊗N with high
probability, i.e., if ΠAccept represents the observable in which the verification protocol accepts,
the completeness condition is met when the following inequality holds:

Tr
[
ΠAccept|Ψ⟩⟨Ψ|⊗N−1

]
≥ 1− ε.

2. Soundness. When the verifier accepts, the quantum state passing the verification protocol
(post-measurement state conditioned on a passing event) is close to the pure ideal state |Ψ⟩⟨Ψ|
with high probability, i.e., if ΠAccept represents the observable in which the verification protocol
accepts, the soundness condition is met when the following inequality holds:

Tr
[
ΠAccept ⊗ (I− |Ψ⟩⟨Ψ|) ρA1···AN

]
≤ ε.

In the latter scenario, the protocol can receive a possibly highly entangled state ρA1···AN .

We can show the following proposition:

Supplementary Proposition 1. A pure state can be verified using Clifford measurements and a number
of copies satisfying:

N =
8002e4 log(5/ε)2 log(d)

ε6
.

Proof Let |Ψ⟩ be the ideal state. We will use classical shadows with Clifford random measurements [2].

Let K = 2 log(1/ε), k = 4e252 log(5/ε)
ε2 , N = 82k2 log(d)

ε2 , l ∼ Unif{k + 1, . . . , k +N/2} and U1, . . . , Ul ∼
Cl(2n). The state ρA1···Al is measured with the corresponding basis of U1⊗ · · ·⊗Ul and the outcomes
are denoted (v,w) = (v1, . . . , vk, wk+1, . . . , wl). Then K classical shadows are constructed as follows:

ρ̂(j) =
1

N0/K

jk/K∑
t=(j−1)k/K

(d+ 1)U†
t |vt⟩⟨vt|Ut − I for 1 ≤ j ≤ K.
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Next we use the median of means statistic for v = (v1, . . . , vk) [2]:

µv = median
{
Tr
[
ρ̂(j)|Ψ⟩⟨Ψ|

]}
1≤j≤K

.

We define the observable corresponding to ‘Accept’:

ΠAccept =
2

N

k+N/2∑
l=k+1

EU∼Cl(2n)

[∑
v,w

1{µv ≥ 1− ε/5}Mv ⊗Mw ⊗ I

]

where Mv =
⊗k

t=1 Ut|vt⟩⟨vt|U†
t and Mw =

⊗l
t=k+1 Ut|wt⟩⟨wt|U†

t .

Completeness. When the verifier receives the i.i.d. state ρA1···AN = |Ψ⟩⟨Ψ|⊗N , it should accept
with probability at least 1 − ε. The probability of acceptance can be expressed using the notation
E(v,w)∼ρ [·] =

∑
v,w Tr [(Mv ⊗Mw)ρ] [·]:

Tr
[
ΠAccept|Ψ⟩⟨Ψ|⊗N

]
= EU∼Cl(2n)

 2

N

k+N/2∑
l=k+1

∑
v,w

1{µv ≥ 1− ε/5}Tr
[
Mv ⊗Mw|Ψ⟩⟨Ψ|⊗l

]
= Pl,U∼Cl(2n),(v,w)∼|Ψ⟩⟨Ψ|⊗l [µv ≥ 1− ε/5] ≥ 1− ε

where we use the fact that here the input state |Ψ⟩⟨Ψ|⊗N is i.i.d., the observable O = |Ψ⟩⟨Ψ| satisfies
Tr [O|Ψ⟩⟨Ψ|] = 1 and the correctness of classical shadow protocol ([2], k = 4e252 log(5/ε)

ε2 ).

Soundness. By the randomized local de Finetti Theorem 4 of the main text we have using the

notation El,U,(v,w)∼ρ [X] = 2
N

∑k+N/2
l=k+1 EU∼Cl(2n)

[∑
v,w Tr [(Mv ⊗Mw)ρ]X

]
:

Tr
[
ΠAccept ⊗ (I− |Ψ⟩⟨Ψ|)ρA1···AN+1

]
= El,U,(v,w)∼ρ

[
1{µv ≥ 1− ε/5}Tr

[
(I− |Ψ⟩⟨Ψ|)ρAN

v,w

]]
≤ El,U,(v,w)∼ρ

[
1{µv ≥ 1− ε/5}∥ρAN

w − ρAN
v,w∥1

]
+ El,U,(v,w)∼ρ

[
1{µv ≥ 1− ε/5}Tr

[
(I− |Ψ⟩⟨Ψ|)ρAN

w

]]
= El,U,(v,w)∼ρ

[
1{µv ≥ 1− ε/5}∥ρAN

w − ρAN
v,w∥1

]
+ El,U,(v,w)∼ρ

[
1{µv ≥ 1− ε/5}1{Tr

[
(I− |Ψ⟩⟨Ψ|)ρAN

w

]
≤ 2ε/5}Tr

[
(I− |Ψ⟩⟨Ψ|)ρAN

w

]]
+ El,U,(v,w)∼ρ

[
1{µv ≥ 1− ε/5}1{Tr

[
(I− |Ψ⟩⟨Ψ|)ρAN

w

]
> 2ε/5}Tr

[
(I− |Ψ⟩⟨Ψ|)ρAN

w }
]]

≤ El,U,(v,w)∼ρ

[
∥ρAN

w − ρAN
v,w∥1

]
+

2ε

5
· El,U,(v,w)∼ρ [1{µv ≥ 1− ε/5}]

+ El,U,w∼ρ

[∑
v

∣∣∣Tr [Mvρ
A1···Ak
w

]
− Tr

[
Mv

(
ρAN
w

)⊗k
]∣∣∣]

+ E
l,U,w∼ρ,v∼

(
ρ
AN
w

)⊗k

[
1{µv ≥ 1− ε/5}1{Tr

[
(I− |Ψ⟩⟨Ψ|)ρAN

w

]
> 2ε/5}

]
≤ 2

√
4k2 log(d)

N
+

2ε

5
+

√
4k2 log(d)

N
+ E

l,U,w∼ρ,v∼
(
ρ
AN
w

)⊗k

[
1{µv − ⟨Ψ|ρAN

w |Ψ⟩ ≥ ε/5}
]

≤ ε

where we set k = 4e252 log(5/ε)
ε2 ([2]), N = 82k2 log(d)

ε2 and use Equation (10) proven in Lemma 1 of the
main text that we recall in the following:

El,r,w,v

[∥∥∥ρAN

l,r,w,v − ρAN

l,r,w

∥∥∥
1

]
≤ 2

√
4k2 log(d)

N
.
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