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Version 0: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
Summary: 

This submission deals with learning with the non-iid quantum states, in which the authors propose a generic approach to
upgrade an algorithm designed for i.i.d. input states to be the one to handle non-i.i.d. input states in any learning problem
(under some mild assumptions), albeit at the expense of an increase in copy complexity. 

To that end, the authors propose to consider the permutation-invariant state \rho = \rho^{A_1A_2… A_N}, and call this state
non-iid input state with copy complexity N. Because the state is no longer iid, the authors propose to define the learning
target as the average of the reduced quantum state of \rho over all possible outcomes of a given learning algorithm, which is
deemed as a quantum-to-classical channel. 

Under this assumption/setup, the authors prove that any learning algorithm for iid input states can be generically upgraded to
be a learning algorithm for non-iid input states in the above sense. The authors further analyze the special case of learning
algorithms with non-adaptive incoherent measurements. The authors also investigate the application of the above generic
learning algorithms to many fundamental tasks like shadow tomography, pure state verification, state tomography, and so
on. 

The central idea in proving these results is a new “randomized” local quantum de Finetti theorem, and the proof reads
sound. I have attached a more technical pdf explaining these results. 

Strengths: (1) It is conceptually interesting to study the learning in the non-iid case. 
(2) The development of a variant of the local quantum de Finetti theorem could be of independent interest. 

Weakness: (1) I feel the definition of non-iid setting needs better first-principle motivation and justification. In general, I feel
the new definition of the target learning states and treating N as the corresponding copy complexity is at least confusing, and
sometimes hard to make sense in the applications. For example, what is the first-principle operational meaning of learning a
non-iid input state, especially when your definition of non-iid input states seems motivated by the technique rather than the
first principles? I have more detailed comments in the attached PDF. 

(2) It is not clear why you can assume your input state is permutation-invariant without loss of generality. (e.g., line 99-100).
In your current definition, your learning target is the average of reduced quantum states over this permutation. Here you
make an implicit assumption that your learning algorithm does not memorize the random permutation itself. One can also
come up with a definition where the learning target is the reduced quantum state per permutation, where you calculate the
success probability per each permutation, and average them to get the average success probability. These two definitions
are generally not equivalent because your learning procedure could be non-linear. Your technique does not seem able to
handle the other case. Please justify your setting. 



Typos: see attached pdf. 

Reviewer #2 

(Remarks to the Author) 
This paper provides a framework for learning properties of quantum states that are not independent and identically
distribution (iid). There is a long history of rigorous results on the sample complexity of learning quantum states and
processes, but one of the drawbacks to many of these results is that their assumptions are substantially broken in real-world
quantum information systems. One of those common assumptions is that of iid states, and so this work is addressing a
problem of practical relevance as well as of fundamental scientific interest. In this work, the authors show how to adapt
methods for learning quantum states in the iid setting to the non-iid setting, with a reasonably small overhead. In my opinion,
this is a significant result. Furthermore, the paper is well-written and fairly approachable (at least if we condition on how
technical the subject is). I recommend publication in Nature Communications, after the authors address my minor comments
below. 

1. In the abstract, the term "copy complexity" could be clarified, as readers unfamiliar with the formal state learning literature
might not know what this means. Similarly, is there a way to be more descriptive about what "non-adaptive incoherent
measurements" are in the abstract? 

2. In the final sentence of the abstract, "can" -> "may" or "will". 

3. The high-level results in this work are, I think, fairly intuitive. If I understand how this works correctly, the intuition is the
following (1) by effectively randomized the label of each subsystem (by randomizing whether each system is a test or
training system), this makes all N subsystems identically distributed, and (2) in the algorithms presented here, a certain
number of the subsystems are measured with the results more-or-less discarded and, as long as you measure enough of the
subsystems, this makes the remaining subsystems very close to independent. This is because the measurements
necessarily destroy dependencies/correlations, and which set of systems you're measuring is random. If this intuition is
correct it'd be great if this was communicated in the paper. If it's wrong it'd be great if you more clearly explain what the
intuition is. 

4. I found the distinction between 'delta' for protocols with and without calibration data (i.e., Eq (1) and the following
unnumbered equation) unnecessarily cumbersome. Why not just have a single Eq. (1) where rho is conditioned by p and
any other output of the learning algorithm B? I can see the reason for allowing B to have different outputs (i.e., calibration
data c ranging from trivial to the entire measurement record), but I can't see why you would ever define 'delta' to not condition
on everything that B outputs, in which case there is no need for two definitions but just flexibility in what c corresponds to. If I
am wrong and (1) is still useful when there is calibration data that should be explained. [I also found the paragraph justifying
why rho is condition on p in Eq (1) unnecessary -- this seemed obvious to me, but I'm just one data point, and maybe other
people will find it useful]. 

5. In the first sentence of 2.2 it isn't stated that A is an algorithm for iid learning but it should be for the sentence to make
sense. 

6. In Theorem 2.1 it would be worth re-stating what d is. I had forgotten by this point and initially thought it was undefined. 

7. The description of algorithm B [line 106-110] was very terse and has no lead in. It starts "*The* algorithm B", but so far
there is no single algorithm B -- Theorem 2.1 just says there exists an algorithm B that etc etc. Unless I have misunderstood,
this paragraph is describing an explicit algorithm that, by its existence, proves Theorem 2.1 and which could be used. It
would also be helpful here to have an intuitive description of how and why this algorithm works (see point 3 above). 

8. In line 114 there is a missing 'be'. 

9. Footnote 1 would probably be better as a parenthetical in the main text (I didn't notice it and I just guessed, fortunately
correctly, at what a measurement channel meant). 

10. In line 149, it would help the reader if you briefly described what 'non-adaptive and incoherent' means. 

11. The paragraph beginning on line 158 again starts with "*The* algorithm B" and this makes the reader guess that you are
about to present an explicit algorithm achieving Theorem 2.3. 

12. In line 164 and 165 it states that B outputs the calibration data w. It is strange to me that nothing is said about what is
done with the calibration data. As far as I can tell, the algorithm does nothing with the data, and its role is purely in
conditioning the state that we're trying to estimate properties of. Perhaps this is always what is meant by the term 'calibration
data' in this context, but it is not a term that I am familiar with and I think many readers' reaction to a term like 'calibration data'
is to assume that an action is going to be based on it. It would probably be helpful to explain what calibration data means the
first time the term is used. 



13. In Section 2.3 it is unclear if it must be *assumed* that the state is pure. Does the state verification protocol presented
here break (i.e., potentially give incorrect results) if the state might actually be mixed? I suspect that is the case, but it wasn't
clear in the paper. 

Finally, I would like to point out that I did not check all of the mathematics in the Methods section. Everything appears to be
correct, and all the results are plausible, but I do not have the time to check all the derivations. 

Reviewer #3 

(Remarks to the Author) 
Comments in the pdf attachment 

Reviewer #4 

(Remarks to the Author) 
I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is part of the Nature
Communications initiative to facilitate training in peer review and to provide appropriate recognition for Early Career
Researchers who co-review manuscripts. 

Version 1: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
I would like to thank the authors for the updated draft and a detailed list of responses to my previous review. I have the
following two major comments: 

(1) I believe that the theorem statement of Theorem 4.7 is incorrect. I compiled a counterexample in the attached PDF. As a
result, my previous comment 2 still holds. 

(2) I agree with the need to go beyond the setting of IID, which you spend a lot of effort in addressing. My real question is
why your particular setting is an appropriate definition beyond IID. To address this, I suppose you can demonstrate that your
definition suffices for important applications. However, in order to show that, you need to first fix the technique gap that I
pointed up above, if your applications implicitly assume that the input state is permutationally invariant without loss of
generality. 

Reviewer #2 

(Remarks to the Author) 
In my previous review we (I and my early-career co-reviewer) recommended publication in Nature Communications if the
authors addressed some minor concerns. The authors' response letter and changes to their manuscript have indeed
addressed all of these concerns. In our opinion, the authors have also adequately responded to all of the criticisms of the
other referees. We therefore recommend publication in Nature Communications. 

Reviewer #3 

(Remarks to the Author) 
The authors have convincingly responded to all the comments in our review. In particular, they have provided more
discussions in Section 4.3, expanded further on the verification of computation, and motivated the "non-iid" setting better.
The authors have also better explained why they prefer to keep the calibration data separate from the prediction. Removing
it would not significantly simplify the presentation, so we are fine with keeping it around. 

Reviewer #4 

(Remarks to the Author) 
I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is part of the Nature
Communications initiative to facilitate training in peer review and to provide appropriate recognition for Early Career
Researchers who co-review manuscripts. 

Reviewer #5 

(Remarks to the Author) 
"I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is part of the Nature
Communications initiative to facilitate training in peer review and to provide appropriate recognition for Early Career
Researchers who co-review manuscripts." 

Version 2: 



Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
Thanks for the revision. I am happy that my previous counter-example was helpful and agree with the current technical
statement. 

However, without the original theorem statement, the current result looks conceptually weaker. Although this submission
made progress toward the non-iid case, the current proposal is more like a technical outcome rather than a convincing first-
principle alternative to the iid case. 

I would suggest the authors explicitly discuss this limitation. Overall, this submission is still an interesting attempt. 

Open Access This Peer Review File is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were
made.
In cases where reviewers are anonymous, credit should be given to 'Anonymous Referee' and the source.
The images or other third party material in this Peer Review File are included in the article’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/



Learning Properties of Quantum States Without the I.I.D. Assumption

Omar Fawzi, Richard Kueng, Damian Markham, and Aadil Oufkir

We thank the reviewers for their thorough feedback and comments. In the following we
provide a point-by-point response to the reviewers’ comments. The changes in the manuscript
are highlighted by red color. Note that the numbering of the lines might be different between
the previous submission and the actual one.

I. REVIEWER 1

A. Typos

1. In the equation below line 92, should Pρ be Pc,p?

2. Line 114: “which should an informationally-completely” should be “which should be
an informationally-complete”.

3. The equation (lF) below line 127 does not make sense. I guess you intend to write

sup
Λ2,...,Λk

∥∥∥∥id⊗ Λ2 ⊗ · · · ⊗ Λk

(
ρA1···Ak −

∫
dν(σ)σ⊗k

)∥∥∥∥
1

≤
√

2k2 log(d)

N − k
.

4. Line 446: “for the states on conditioned” should be “for the states conditioned”.

5. In the 4th line of equation (6), ρA1A2...Ak

l,r,w should be ρ
A1A2...AkAk+1

l,r,w

We thank the reviewer for finding these typos. We implemented all of them, the changes are in
red color.

B. Comment 1

I feel the definition of non-iid setting needs better first-principle motivation and justi-
fication. In general, I feel the new definition of the target learning states and treating N
as the corresponding copy complexity is at least confusing, and sometimes hard to make
sense in the applications. For example, what is the first-principle operational meaning of
learning a non-iid input state, especially when your definition of non-iid input states seems
motivated by the technique rather than the first principles? I have more detailed comments
in the attached PDF.

Our definition is operationally motivated by the task described in Figure 1. We imagine a black
box from which we can request “copies”. On the first query, we receive system A1 and on the
k-th query, we receive Ak. Learning means making a statement about some of the outputs of
the black box (e.g., the state is close to |0⟩). With the i.i.d. assumption, the black box always
outputs the same state. Removing the i.i.d. assumption, we have to specify the system about
which we make the statement (this is the system that would be used for a later application for
example). The most natural choice is to take a system at random among the ones that were
requested. In fact, for any system index that is fixed in advance, no non-trivial statement can
be made in general.

We updated Section 2.1 of the manuscript with this discussion, which we hope clearly mo-
tivates the definition.



C. Comment 2

It is not clear why you can assume your input state is permutation-invariant without
loss of generality. (e.g., line 99-100). In your current definition, your learning target is
the average of reduced quantum states over this permutation. Here you make an implicit
assumption that your learning algorithm does not memorize the random permutation itself.
One can also come up with a definition where the learning target is the reduced quantum
state per permutation, where you calculate the success probability per each permutation, and
average them to get the average success probability. These two definitions are generally not
equivalent because your learning procedure could be non-linear. Your technique does not
seem able to handle the other case. Please justify your setting.

Thank you for this comment. We indeed do not need permutation invariance of the state,
the statement can be proved in expectation over the choice of a random permutation, the new
version of Theorem 4.7 is now written in this way. To keep the notation simple (i.e., not
explicitly mentioning the permutation), we still make the assumption of permutation invariance
in most of the statements of the paper and we added a remark about the stronger statement
after Theorem 2.1.

D. Comment 3

The concept of “learning” a non-i.i.d. state is awkward. For example, in the context
of fidelity estimation, the goal is to estimate the fidelity between an unknown state and a
known target state |ψ⟩. This makes perfect sense in the i.i.d. scenario. However, if the
input state is globally entangled across N subsystems, and suppose in one execution of the
algorithm you get (c, p) and in another execution on the same input state you get (c, p). It
could be the case that ⟨ψ| ρAN

c,p |ψ⟩ and ⟨ψ| ρAN

c′,p′ |ψ⟩ are completely different. Then what’s

the point of learning the fidelity of ρAN
c,p when you can’t guarantee that you will get the same

reduced state next time?

In the non i.i.d. setting, repeating the learning procedure might indeed lead to very different
outcomes. However, this is a feature and not a problem: the guarantee that is achieved by
the learning task is that for the test system (which we denote N after applying the random
permutation and is the system that we would want to use for another task) has the property
being learned correspond to p. If we later run the whole process with the same devices and a
new training and testing set, the outcome could be different as expected.

However, depending on the application, we only repeat the learning procedure when neces-
sary. This is the case, for instance, of verification when we accept the post measurement state
only when the fidelity is close to 1. As a bonus, in this case we have many remaining copies that
are close to the ideal state and can be reused for other applications (see Figure 2, the copies on
the right of the random bar). Hence, we only need to repeat the experiment until obtaining a
state with high fidelity. On the other hand, while it is clear that the post measurement states
are all equal to the marginal state in expectation, we also expect that, in situations when the
state is close to i.i.d. or having weak correlations, the post measurement states are close to the
marginal. Finally, we conjecture that for randomized measurement (optimal for many learning
problems) lead to post measurement states close to the marginal with high probability.

E. Comment 4

I think it doesn’t make sense to call N “copy complexity”. In the i.i.d. scenario, we call
it copy complexity because we want to understand how many copies of an unknown state

2



are needed to learn some property about the state. As we ask for more and more copies,
we get a better and better estimate of the unknown state. In the non-i.i.d. scenario, for a
general input state ρA1...AN , the number N is basically “fixed”: You don’t have the choice
of asking for more subsystems.

The word “copy complexity” is standard in the learning literature (which always makes the
i.i.d. assumption) and we use it by analogy. In addition, we hope that the motivation provided
in the answer to Comment 1 (IB) justifies it as the number of requested “copies” from the black
box.

F. Comment 5

In section 2.3, you say that “Obtaining a statement beyond the i.i.d. assumption is
particularly important for cryptographic applications”. Could you provide more arguments
for that?

In cryptographic applications it is important to address all assumptions made in proofs carefully.
Section 2.3 deals with the verification of pure states, which in turn can be used to verify
applications for which they are the resource state, against a malicious adversary. In general, a
malicious adversary could use the assumption of IID to form an attack which would invalidate
security claims. For example, if they collaborate with the source, if they knew which copies
were being tested, they could act honestly on those systems, and arrange for bad states to be
used when they are used for an application - this would then pass the test, and be potentially
fully corrupt the application.

For example, in measurement based quantum computing the difficult part is to generate a
large, entangled state, called a graph state, then (universal) computation can be carried out by
applying a sequence of ’easy’ local measurements. In this sense the graph state is a resources
state. If a ’weak’ party, the user, with only local measurements wants to run a computation,
they simply ask a powerful server to send them the graph state (even qubit by qubit if they
don’t have a quantum memory). However, they may not trust the server, who may either
not really have a powerful quantum computer, or may want to corrupt their computation by
sending a bad state (if the user performed the same measurements on a non entangled state,
the output would be garbage). It is possible to verify a graph state, also using single qubit
measurements, hence the state can be verified in the same framework. Typically this is done
by asking the server for many copies of the resource graph state and testing some of them, and
then using the remaining to run the computaiton (see ref [22]). However, if the server knew
that the user assumed IID, they could send any state they like, not IID, which may invalidate
the verification. In particular, the usefulness of IID is that it assumes the same state that is
tested is that which is used. However, if the server knew which copies were to be tested, and
which copy the computation was run on, they could pass the verification but totally corrupt
the computation.

We have included a deeper discussion on this topic in Section 2.3 of new draft that we hope
clarifies this point.

II. REVIEWER 2

A. Comment 1

In the abstract, the term “copy complexity” could be clarified, as readers unfamiliar with
the formal state learning literature might not know what this means. Similarly, is there a
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way to be more descriptive about what “non-adaptive incoherent measurements” are in the
abstract?

We reformulated the abstract. In particular we changed the term “copy complexity” to
“training data size” and “non-adaptive incoherent measurements” to “non-adaptive single-copy
measurements”.

B. Comment 2

In the final sentence of the abstract, ”can” → ”may” or ”will”.

This sentence is removed in the new reformulation.

C. Comment 3

The high-level results in this work are, I think, fairly intuitive. If I understand how
this works correctly, the intuition is the following (1) by effectively randomized the label
of each subsystem (by randomizing whether each system is a test or training system), this
makes all N subsystems identically distributed, and (2) in the algorithms presented here, a
certain number of the subsystems are measured with the results more-or-less discarded and,
as long as you measure enough of the subsystems, this makes the remaining subsystems
very close to independent. This is because the measurements necessarily destroy dependen-
cies/correlations, and which set of systems you’re measuring is random. If this intuition
is correct it’d be great if this was communicated in the paper. If it’s wrong it’d be great if
you more clearly explain what the intuition is.

Your intuition is correct. We tried to improve the communication of this intuition in the paper
around lines 107 to 135 and in more detail around 495.

D. Comment 4

I found the distinction between ’delta’ for protocols with and without calibration data
(i.e., Eq (1) and the following unnumbered equation) unnecessarily cumbersome. Why not
just have a single Eq. (1) where rho is conditioned by p and any other output of the learning
algorithm B? I can see the reason for allowing B to have different outputs (i.e., calibration
data c ranging from trivial to the entire measurement record), but I can’t see why you would
ever define ’delta’ to not condition on everything that B outputs, in which case there is no
need for two definitions but just flexibility in what c corresponds to. If I am wrong and
(1) is still useful when there is calibration data that should be explained. [I also found the
paragraph justifying why rho is condition on p in Eq (1) unnecessary – this seemed obvious
to me, but I’m just one data point, and maybe other people will find it useful].

Based on the comments from Reviewer 2 and Reviewer 3 regarding “calibration data”, we
have decided to concentrate on the setting in which a learning algorithm can output any calib-
ration data in the main text (see the paragraph about error probability around line 428). We
have also deferred the distinction between the post-measurement states conditioned only on the
prediction and those conditioned on both the prediction and the calibration to Appendix B.

Allowing the learning algorithm to output any calibration data simplifies the analysis and
permits non i.i.d. learning for a broad class of problems. See Appendix B where we were only
able to prove non i.i.d. learning without calibration for a restricted class of learning problems.
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Moreover the error terms in the error probability without calibration (Theorem B.3) are worse
than the ones with calibration (Theorem 4.8).

We think that justifying why the target state should be the post measurement state is
important since choosing the marginal state as a target state might be tempting at first.

E. Comment 5

In the first sentence of 2.2 it isn’t stated that A is an algorithm for iid learning but it
should be for the sentence to make sense.

We added that A is designed for i.i.d. input states.

F. Comment 6

In Theorem 2.1 it would be worth re-stating what d is. I had forgotten by this point and
initially thought it was undefined.

We edited Theorem 2.1 by adding “Let ε > 0, 1 ≤ k < N/2 and d be the dimension of the
Hilbert spaces A1, . . . , AN”.

G. Comment 7

The description of algorithm B [line 106-110] was very terse and has no lead in. It
starts ”*The* algorithm B”, but so far there is no single algorithm B – Theorem 2.1 just
says there exists an algorithm B that etc etc. Unless I have misunderstood, this paragraph
is describing an explicit algorithm that, by its existence, proves Theorem 2.1 and which
could be used. It would also be helpful here to have an intuitive description of how and why
this algorithm works (see point 3 above).

The algorithm B is exactly Algorithm 2 that achieves Theorem 2.1. We clarified this in the
main text (line 117).

H. Comment 8

In line 114 there is a missing ’be’.

Thank you, we added it.

I. Comment 9

Footnote 1 would probably be better as a parenthetical in the main text (I didn’t notice
it and I just guessed, fortunately correctly, at what a measurement channel meant).

We moved the definition of measurement channels to the main text.
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J. Comment 10

In line 149, it would help the reader if you briefly described what ’non-adaptive and
incoherent’ means.

We added a brief definition of non-adaptive incoherent algorithms: performing single copy
measurements using a set of measurement devices chosen before starting the learning procedure.

K. Comment 11

The paragraph beginning on line 158 again starts with ”*The* algorithm B” and this
makes the reader guess that you are about to present an explicit algorithm achieving The-
orem 2.3.

The algorithm B is exactly Algorithm 1 that achieves Theorem 2.3. We clarified this in the
main text (line 178).

L. Comment 12

In line 164 and 165 it states that B outputs the calibration data w. It is strange to me
that nothing is said about what is done with the calibration data. As far as I can tell, the
algorithm does nothing with the data, and its role is purely in conditioning the state that
we’re trying to estimate properties of. Perhaps this is always what is meant by the term
’calibration data’ in this context, but it is not a term that I am familiar with and I think
many readers’ reaction to a term like ’calibration data’ is to assume that an action is going
to be based on it. It would probably be helpful to explain what calibration data means the
first time the term is used.

We agree with the Reviewer’s comment that the role of the calibration data is to specify the
target state which is the post measuring state conditioned on the prediction and the calibration
data. At this stage, the algorithm does nothing with this calibration data since its role is
predicting the property p. However, the calibration data and the post-measurement state could
be used afterwards for other applications. We added an explanation of the calibration data
around line 80.

M. Comment 13

In Section 2.3 it is unclear if it must be *assumed* that the state is pure. Does the state
verification protocol presented here break (i.e., potentially give incorrect results) if the state
might actually be mixed? I suspect that is the case, but it wasn’t clear in the paper.

Since we have two states in hand, one of them is the unknown state ρ to be verified and the
other one is the known target/ideal state σ = |Ψ⟩⟨Ψ|. The question admits two possibilities:
Do we need to assume ρ is pure? or do we need to assume σ is pure? We answer both:

• Assuming ρ is pure: We do not assume ρ to be pure. Our verification protocol works for
an arbitrary input state ρA1...AN that can be mixed and entangled (see Proposition 4.20).
We followed (General framework for verifying pure quantum states in the adversarial
scenario, Huangjun Zhu and Masahito Hayashi) for the name “verification of pure state”.
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• Assuming σ = |Ψ⟩⟨Ψ| is pure: Verification of pure states via fidelity estimation is possible
because F (ρ, |Ψ⟩⟨Ψ|) = ⟨Ψ| ρ |Ψ⟩. The overlap ⟨Ψ| ρ |Ψ⟩ can be easily estimated (in the
i.i.d. setting) since it is an expectation Tr [ρO] of a known observable O = |Ψ⟩⟨Ψ| under
the unknown state ρ. In the non-i.i.d. setting we use our framework applied on the
classical shadows (note that the observable O = |Ψ⟩⟨Ψ| has shadow norm at most 1). The
same verification protocol breaks for non-pure states as the identity F (ρ, σ) = Tr [ρσ] is
not true in general and hence shadow tomography is not applicable. Note that the known
algorithms for estimating the fidelity (e.g., Improved Quantum Algorithms for Fidelity
Estimation, András Gilyén, Alexander Poremba) require a number of copies polynomial
in the rank of σ.

III. REVIEWER 3

A. Comment 1.1

- Authors give several motivations in first paragraph of the paper in the following state-
ment: verified quantum computation [37] or tasks using entangled states in networks [50],
such as authentication of quantum communication [6], anonymous communication [9] or
distributed quantum sensing. Can they provide clear applications that work for this motiv-
ation? We strongly recommend providing more precise applications for the non-iid frame-
work.

We have expanded the discussions and applications of our results for verification of pure
states, and how this in turn can be applied to the different problems mentioned in the intro-
duction, and why the non-iid setting is so important.

In section 2.3 we have make a more detailed explanation of how verification of pure states
can be applied, and in section 4.4.2 we have outlined two specific examples where our results
provide applications for networks of sensors and communication.

B. Comment 1.2

-Verified quantum computation is particularly discussed in Sec 2.3 - but there is a dif-
ference between verifying quantum computation and verifying pure quantum state. In what
sense are the authors thinking of an application here? Is there a Kitaev’s history state
being used here?

The referee is of course correct that verification of states is not the same as computation and
we regret this was not clear in the previous draft. The simplest application of state verification,
for the verification of quantum computation is in reference [22], where the verification of a graph
state is used to directly verify universal quantum computation (see also Reviewer 1 comment 3).
In particular the verification of the computation itself follows directly as a consequence of the
state verification. Indeed, in general once a resource state is verified, as long as one trusts the
subsequent operations performed on it, the induced application is also verified (see e.g. [50]).
It does not make use of Kitaev’s history state.

We have expanded the discussion in section 2.3 which hopefully clarifies this issue.

C. Comment 1.3

- The recent work of Huang, Preskill, Soleimanifar gives conditionally efficient veri-
fication algorithm when one only has access to amplitudes of the state psi (that is to be
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verified). Do the techniques in this submission apply here too? We understand that Huang,
Preskill, Soleimanifar’s work comes after the current submission.

Yes our result can be applied because their algorithm is non-adaptive.

D. Comment 2.1

Technique: the main technique is that of quantum de-finetti theorem, in particular
the formalism due to Brandao and Harrow (BH). - Generally, BH does not require per-
mutation invariance in the state (since its mostly based on classical measurements fol-
lowed by chain rule of CMI, which is general - see Section 2.3 in the related paper ht-
tps://arxiv.org/pdf/1310.0017.pdf ). Why is permutation invariance assumed in the cur-
rent work?

Thank you for this comment. We indeed do not need permutation invariance of the state, the
statement can be proved in expectation over the choice of random permutation, the new version
of Theorem 4.7 is now written in this way. To keep the notation simple (i.e., not explicitly
mentioning the permutation), we still make the assumption of permutation invariance in most
of the statements of the paper and we added a remark about the stronger statement after
Theorem 2.1.

E. Comment 2.2

- The difference between Thm 2.2 and Equation lF is that the former does not need
mixture of product states. It’s not clear why that is useful - in other words, why didn’t
Equation lF already work for the authors. If a learning algorithm works well for all product
states, shouldn’t it work for mixtures of product states due to convexity of some relevant
quantity?

The convexity argument might be used for another definition of non i.i.d. learning where we want
to estimate, for example, properties of the marginal state. This can be done if the property
we want to estimate, the algorithm’s statistic/estimator and the approximation distance all
behave nicely (e.g., convex) as well as a guarantee in terms of expectation and not with high
probability.

In this work, we focus on predicting properties of the post-measurement state (see around
line 88 for the motivation and for a counter example) and do not want to limit too much the
problems we consider (the property we want to learn and the approximation distance) as well
the algorithms (statistic/estimator). For these reasons, Theorem 2.2 is more suitable to us.

F. Comment 2.3

- Is it possible to extend Thm 2.2 to measurements that are adaptive but non-entangling?

It is not clear to us how to generalise Theorem 2.3 to adaptive algorithms at least with the
same approach and performance. The reason is that adaptive algorithms can use up to O(dk−1)
different POVMs where k is the copy complexity. Naively using the same method leads to an
algorithm that measures all these POVMs and thus uses a number of copies O(k2d2k−2/ε2) in
the non-i.i.d. setting.
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G. Comment 2.4

- In Theorem 4.8, why not set k <
√
N? The bound seems trivial if the RHS is > 1.

Indeed we could set k <
√
N or even k <

√
N

4 log(d) .

H. Comment 2.5

- In Theorem 4.8, the role of r is quite unclear. It seems to specify the choice of
the POVMs being performed. Why does r have to come from a permutation invariant
distribution? It goes back to the previous question about why permutation invariance is
needed in the first place

See the response to Comment 2.1 (IIID). r indeed specifies the choice of POVM that is per-
formed. Without the permutation invariance assumption for q, it is not clear how to exchange
the different registers Xj in the proof of the theorem.

I. Comment 3.1

Section 4.3 is a little difficult to read and needs to be significantly clarified. Here are
some questions that come to one’s mind after a few reads: Can the algorithm 1 be described
in words? Why is so much randomization necessary in this algorithm? what is kA vs k (will
be clarified once the algorithm is described in words)? Some of the complexity of Algorithm
1 comes from Thm 4.8 in Sec 4.2. There are too many random variables to worry about.
If the authors can simplify some of it, would be great.

To simplify Section 4.3, we implemented the following changes:

• We added a description of Algorithm 1 in words before stating formally the algorithm
(see around lines 493-498 ): In words, given a non-adaptive incoherent algorithm A that
uses a set of measurement devices {Mt}t, Algorithm 1 measures a large number of the
state’s subsystems using measurement devices uniformly chosen from {Mt}t. This ensures
that the (small) portion of measured subsystems intended for the learning algorithm
approximately behave like i.i.d. copies. Then, in order to predict the property, Algorithm
1 applies the data processing of Algorithm A) to the outcomes of these subsystems.

• The difference between k and kA: kA is the copy complexity in the i.i.d. setting and k =
kA log(kA/δA) is the number of copies in the non-i.i.d. setting we use for the prediction.
We need slightly more copies to span all the kA (possibly) different POVMs that a non-
adaptive algorithm performs in the data acquisition part. The reason is that we sample at
each time a POVM uniformly at random from the set of POVMs used by the non-adaptive
algorithm. The results are now stated with only kA (we set k = kA log(kA/δA)),
and we only differentiate between k and kA in the proof.

• We set k = kA log(kA/δA), ε
′ = ε and group the third and fourth terms in Theorem 4.8.

Now the non-i.i.d. error probability is roughly bounded by the i.i.d. error probability and
an additional error term accounting for the possibility of the input state being non i.i.d.
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J. Comment 3.2

Calibration information is an unclear aspect. It seems to be put in place to have a
general theorem - but note that ‘less is more’. It might be worth moving this notion to
supplementary info, if it’s not a crucial concept. As an example of the confusion, consider
example 3 of Page 12. The string x could easily be the prediction and one could defer the
job of deriving |x| from x to the learner. Then why is the distinction between c and p so
much emphasized?

Based on the comments from Reviewer 2 and Reviewer 3 regarding “calibration data”, we have
decided to concentrate on the setting in which a learning algorithm can output any calibration
data in the main text (see the paragraph about error probability around line 428). We have also
deferred the distinction between the post-measurement states conditioned only on the prediction
and those conditioned on both the prediction and the calibration to Appendix B.

K. Comment 3.3

- Example 4 could fit better in the supplementary part. For those who know the BH
proof, thm 4.8’s proof is clear enough. For those who don’t know the BH proof, Example 4
is complex enough to not help.

We moved Example 4 to the supplementary part (Appendix A).
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Learning Properties of Quantum States Without the I.I.D. Assumption

Omar Fawzi, Richard Kueng, Damian Markham, and Aadil Oufkir

We thank the reviewers for their important feedback and comments. In the following we
provide a response to the Reviewer 1 comments. The changes in the manuscript are highlighted
by red color. Note that the numbering of the lines might be different between the previous
submissions and the actual one.

I. REVIEWER 1

A. Comment 1

I believe that the theorem statement of Theorem 4.7 is incorrect. I compiled a counter-
example in the attached PDF. As a result, my previous comment 2 still holds.

We thank the Reviewer for pointing out this mistake. The inequality in Theorem 4.7 should
be

Ej,l,r∼qN

∑
w

⟨w|

(
k+N/2⊗
i=l+1

Λri

)
(ρAj1

···AjN ) |w⟩

∥∥∥∥∥id⊗

(
k+1⊗
i=2

Λri

)(
ρ
Aj1

···Ajk+1

l,r,w −
k+1⊗
i=1

ρ
Aji
l,r,w

)∥∥∥∥∥
1


≤
√

4k2 log(d)

N
, (I.1)

and if the state ρ is permutation invariant (or at least has the same post-measurement marginals)
the inequality (I.1) becomes

Ej,l,r∼qN

∑
w

⟨w|

(
k+N/2⊗
i=l+1

Λri

)
(ρAj1

···AjN ) |w⟩

∥∥∥∥∥id⊗

(
k+1⊗
i=2

Λri

)(
ρ
Aj1

···Ajk+1

l,r,w −
(
ρ
AjN
l,r,w

)⊗k+1
)∥∥∥∥∥

1


≤
√

4k2 log(d)

N
.

This error is now corrected.

B. Comment 2 (from previous revision)

It is not clear why you can assume your input state is permutation-invariant without
loss of generality. (e.g., line 99-100). In your current definition, your learning target is
the average of reduced quantum states over this permutation. Here you make an implicit
assumption that your learning algorithm does not memorize the random permutation itself.
One can also come up with a definition where the learning target is the reduced quantum
state per permutation, where you calculate the success probability per each permutation, and
average them to get the average success probability. These two definitions are generally not
equivalent because your learning procedure could be non-linear. Your technique does not
seem able to handle the other case. Please justify your setting.

We also corrected the comment that we had added to the previous revision. We now clearly
state that we start the process by applying a random permutation that the learner does not have



access to (see around lines 70 - 75). We show that in fact for the alternative definition where
the permutation is available to the learner, even very simple learning tasks are not possible (see
around lines 102 - 115 and Appendix A). We would actually like to thank the referee for his
detailed example concerning the previous version of Theorem 4.7 as we use a similar example
in Appendix A. We also point out that for some verification tasks (e.g., the prediction is of the
form Accept/Reject and we consider the expected fidelity to a pure state), the two definitions
are equivalent.

C. Comment 2

I agree with the need to go beyond the setting of IID, which you spend a lot of effort
in addressing. My real question is why your particular setting is an appropriate definition
beyond IID. To address this, I suppose you can demonstrate that your definition suffices for
important applications. However, in order to show that, you need to first fix the technique
gap that I pointed up above, if your applications implicitly assume that the input state is
permutationally invariant without loss of generality.

We hope the previous discussion motivates our choice of definition. Our objective was to
encompass general learning tasks (i.e., not only specific verification scenarios) and in such a
setting, we argued it is essential to hide the permutation from the learner.
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1 Summary of Results

This paper shows that given any learning problem (under reasonable assumptions), an algorithm
designed for i.i.d. input states can be adapted to handle non-i.i.d. input states, albeit at the expense
of an increase in copy complexity.

1.1 Framework of learning with non-i.i.d. input states

The input state is a permutation-invariant state ρA1A2...AN over N subsystems A1
∼= A2

∼= · · · ∼= AN ,
each of dimension d. Here N is called the copy complexity. We say that ρ is an i.i.d. state if it
has the form ρ = σ⊗N .

A learning algorithm B is a measurement channel (i.e., a quantum-to-classical channel) applied
to the subsystems A1 . . . AN−1. The learning algorithm outputs a “prediction” p and possibly some
“side information” c. We denote ρAN

c,p to be the reduced state of subsystem AN conditioned on
observing the outcome (c, p).

The goal is to design learning algorithms such that, with high probability, the output p is an ap-
proximately correct prediction of a property of the quantum state ρAN

c,p . We evaluate the performance
of the learning algorithm by its error probability:

δB
(
N, ρA1...AN , ε

)
:= Pr

(c,p)∼B(ρA1...AN−1)

[
p is not a correct prediction for ρAN

c,p with precision ε
]
.

For this paper, one needs an extra robustness assumption of the property of quantum states to
be learned: If p is a correct prediction of the property for state ρ with precision ε, and ∥ρ− ξ∥1 ≤ ε′,
then p is also a correct prediction of the property for state ξ with precision ε+ ε′.

1.2 Main result 1: transforming a general learning algorithm

Given a learning algorithm A designed for i.i.d. input states, one constructs a learning algorithm B
that works for arbitrary permutation-invariant input states ρA1...AN :

1. Choose 1 ≤ k < N
2 , which is a hyper-parameter of the algorithm.

2. Run A on the first k subsystems A1A2 . . . Ak and obtain outcome p.

3. Pick l ∼ Unif
{
1, 2, . . . , N2

}
and perform a fixed measurement Mdist on each of the next l

subsystems Ak+1Ak+2 . . . Ak+l, obtaining an output string w.

4. Return prediction p along with side information (l, w).

The paper proves the following bound on the performance of the learning algorithm:

sup
ρ
δB
(
N, ρA1···AN , 2ε

)
≤ sup

σ
δA

(
k, σ⊗k, ε

)
+O

(√
k3d2 log d

Nε2

)
.

Thus, any i.i.d. learning algorithm can be transformed into a non-i.i.d. one with an overhead in copy
complexity that is polynomial in the dimension d.
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1.3 Main result 2

Let A be a learning algorithm designed for i.i.d. input states and performing non-adaptive incoherent
measurements, which means that, on k-copy input states, A applies a measurement of the form
MA

1 ⊗ MA
2 ⊗ · · · ⊗ MA

k and then outputs a prediction based on the measurement outcomes. One
constructs a learning algorithm B that works for arbitrary permutation-invariant input states ρA1...AN :

1. Choose 1 ≤ k < m < N
2 , which are hyper-parameters of the algorithm.

2. Pick l ∼ Unif
{
1, 2, . . . , N2

}
and r = (r1, . . . , rN )

i.i.d.∼ Unif {1, . . . , k}.

3. According to coupon collector’s problem, (r1, . . . , rm) contains all elements in {1, . . . , k} with
high probability. Run A on those k subsystems among the first m subsystems A1A2 . . . Am,
obtaining outcome p.

4. Perform measurement MA
rm+1

⊗ MA
rm+2

⊗ · · · ⊗ MA
rm+l

on subsystems Am+1Am+2 . . . Am+l,
obtaining an output string w.

5. Return prediction p as well as side information (l, r, w).

The paper proves the following bound on the performance of the learning algorithm: with a proper
choice of m,

sup
ρ
δB
(
N, ρA1···AN , 2ε

)
≤ sup

σ
δA

(
k, σ⊗k, ε

)
+O

(√
k2(logN)2 log d

Nε2

)
.

The copy complexity overhead has a much better dependence in d than that in Main Result 1.
The central technique used in proving the result is a new “randomized local” quantum de Finetti

theorem.

1.4 Applications

The authors apply the two results to many learning tasks: shadow tomography, verification of pure
states, fidelity estimation, state tomography, and testing mixedness of states.

2 Typos

1. In the equation below line 92, should Pρ be Pc,p?

2. Line 114: “which should an informationally-completely” should be “which should be an informationally-
complete”.

3. The equation (lF) below line 127 does not make sense. I guess you intend to write

sup
Λ2,...,Λk

∥∥∥∥id⊗ Λ2 ⊗ · · · ⊗ Λk

(
ρA1···Ak −

∫
dν(σ)σ⊗k

)∥∥∥∥
1

≤
√

2k2 log(d)

N − k
.

4. Line 446: “for the states on conditioned” should be “for the states conditioned”.

5. In the 4th line of equation (6), ρA1A2···Ak
l,r,w should be ρ

A1A2···Ak+1

l,r,w .
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3 Comments

1. The concept of “learning” a non-i.i.d. state is awkward. For example, in the context of fidelity
estimation, the goal is to estimate the fidelity between an unknown state and a known target
state |ψ⟩. This makes perfect sense in the i.i.d. scenario. However, if the input state is globally
entangled across N subsystems, and suppose in one execution of the algorithm you get (c, p) and
in another execution on the same input state you get (c′, p′). It could be the case that ⟨ψ|ρAN

c,p |ψ⟩
and ⟨ψ|ρAN

c′,p′ |ψ⟩ are completely different. Then what’s the point of learning the fidelity of ρAN
c,p

when you can’t guarantee that you will get the same reduced state next time?

2. I think it doesn’t make sense to call N “copy complexity”. In the i.i.d. scenario, we call it
copy complexity because we want to understand how many copies of an unknown state are
needed to learn some property about the state. As we ask for more and more copies, we get a
better and better estimate of the unknown state. In the non-i.i.d. scenario, for a general input
state ρA1...AN , the number N is basically “fixed”: You don’t have the choice of asking for more
subsystems.

3. In section 2.3, you say that “Obtaining a statement beyond the i.i.d. assumption is particularly
important for cryptographic applications”. Could you provide more arguments for that?
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In the usual framework of learning theory (classical or quantum), the inputs are given as 
independent and identically distributed samples. The learning algorithm uses some of 
these samples to make a prediction and then tests the prediction against rest of the 
samples. This work considers the realistic scenario where the inputs can be arbitrarily 
entangled across the copies and tries to understand how many more samples would be 
needed to achieve the same learning goal. Since the entangled input can always be made 
symmetric by a random permutation, the authors' main observation is that the powerful 
quantum de-finetti theorem can be used. 

 

The main result of the authors is that as long as non-adaptive measurement strategy is 
used, the learning can be achieved with mildly more number of copies. Since non-adaptive 
strategies are standard learning methods (and arguably easier to implement than adaptive 
entangled strategies), this is a powerful result. An important application of the result is 
verification of quantum states (i.e. - are the samples from a pure state psi?) by performing 
measurements that do not depend on psi, except in the classical postprocessing.  

 

However, the paper does not yet meet the bar of Nature Communications, since it is not 
written in its most accessible sense and the applications are not very clearly explored. The 
authors can find below a series of questions and comments addressing this aspect. 

 

1. Applications:  

 

- Authors give several motivations in first paragraph of the paper in the following statement: 

 

verified quantum computation [37] or tasks using entangled states in networks [50], such 
as authentication of quantum communication [6], anonymous communication [9] or 
distributed quantum sensing. 

 

Can they provide clear applications that work for this motivation? We strongly recommend 
providing more precise applications for the non-iid framework. 

 



-Verified quantum computation is particularly discussed in Sec 2.3 - but there is a 
difference between verifying quantum computation and verifying pure quantum state. In 
what sense are the authors thinking of an application here? Is there a Kitaev's history state 
being used here? 

 

- The recent work of Huang, Preskill, Soleimanifar gives conditionally efficient verification 
algorithm when one only has access to amplitudes of the state psi (that is to be verified). 
Do the techniques in this submission apply here too? We understand that Huang, Preskill, 
Soleimanifar's work comes after the current submission. 

 

2. Technique: the main technique is that of quantum de-finetti theorem, in particular the 
formalism due to Brandao and Harrow (BH).  

 

- Generally, BH does not require permutation invariance in the state (since its mostly based 
on classical measurements followed by chain rule of CMI, which is general - see Section 
2.3 in the related paper https://arxiv.org/pdf/1310.0017.pdf ). Why is permutation 
invariance assumed in the current work? 

 

- The difference between Thm 2.2 and Equation lF is that the former does not need mixture 
of product states. It’s not clear why that is useful - in other words, why didn’t Equation lF 
already work for the authors. If a learning algorithm works well for all product states, 
shouldn't it work for mixtures of product states due to convexity of some relevant quantity? 

 

- Is it possible to extend Thm 2.2 to measurements that are adaptive but non-entangling?  

 

- In Theorem 4.8, why not set k< sqrt{N}? The bound seems trivial if the RHS is >1.  

 

- In Theorem 4.8, the role of r is quite unclear. It seems to specify the choice of the POVMs 
being performed. Why does r have to come from a permutation invariant distribution? It 
goes back to the previous question about why permutation invariance is needed in the first 
place. 



 

3. Presentation 

 

- Section 4.3 is a little difficult to read and needs to be significantly clarified. Here are some 
questions that come to one's mind after a few reads: Can the algorithm 1 be described in 
words? Why is so much randomization necessary in this algorithm? what is k_A vs k (will be 
clarified once the algorithm is described in words)?  

 

Some of the complexity of Algorithm 1 comes from Thm 4.8 in Sec 4.2. There are too many 
random variables to worry about. If the authors can simplify some of it, would be great.  

 

 

- Calibration information is an unclear aspect. It seems to be put in place to have a general 
theorem - but note that `less is more'. It might be worth moving this notion to 
supplementary info, if it’s not a crucial concept. As an example of the confusion, consider 
example 3 of Page 12. The string x could easily be the prediction and one could defer the 
job of deriving |x| from x to the learner. Then why is the distinction between c and p so much 
emphasized?  

 

- Example 4 could fit better in the supplementary part. For those who know the BH proof, 
thm 4.8's proof is clear enough. For those who don't know the BH proof, Example 4 is 
complex enough to not help. 

 

 



I don’t think your claim that you don’t need permutation invariance of the state is correct. In
particular, one step in the new version of Theorem 4.7 seems unjustified: How did you deduce the
last line from the second-to-last line in Eq (6)?

The statement of Theorem 4.7 itself seems counterintuitive. Let me provide an easy coun-
terexample to Theorem 4.7: Consider k = d and let N be large enough so that your assumption

1 ≤ k <
√

N
4 log(d) is satisfied. For concreteness, let’s say N = d4. Let the state be the product state

ρA1...AN = |1⟩⟨1|⊗d3 ⊗ |2⟩⟨2|⊗d3 ⊗ · · · ⊗ |d⟩⟨d|⊗d3 .

Let {Λr}r∈R consist of a single measurement channel {Λ} (i.e., R has cardinality one) chosen to be
the standard basis measurement, i.e.,

Λ(σ) = ⟨1|σ|1⟩|1⟩⟨1|+ · · ·+ ⟨d|σ|d⟩|d⟩⟨d|.

There is no need to specify qN in this case since it is a probability measure on a set of a single element.
Now, no matter what values the random permutation j = (j1, . . . , jN ) and the random number
l ∈ {k + 1, . . . , k + N

2 } take, if you measure the systems Ajl+1
, . . . , Ajk+N/2

using the measurement
Λ, you always get a single possible outcome w (which depends on j and l but there is no other
randomness). Moreover, since ρ is a product state, the post-measurement state of the remaining

systems is simply the reduced state of ρ on those systems. Hence the states ρ
Aj1

···Ajk+1

l,r,w and ρ
AjN
l,r,w

in your notation are simply ρAj1
···Ajk+1 and ρAjN , respectively. Therefore the left-hand side of your

claimed inequality reduces to

LHS = Ej

[∥∥∥(id⊗Λ⊗k
)(

ρAj1
···Ajk+1 −

(
ρAjN

)⊗k+1
)∥∥∥

1

]
.

Furthermore, since each system of ρ is already diagonal in the standard basis, the channel Λ does
nothing to it:

LHS = Ej

[∥∥∥ρAj1
···Ajk+1 −

(
ρAjN

)⊗k+1
∥∥∥
1

]
.

Obviously,
∥∥∥ρAj1

···Ajk+1 −
(
ρAjN

)⊗k+1
∥∥∥
1
= 2 whenever any one of ρAj1 , . . . , ρAjk+1 is different from

ρAjN . One can then calculate that

LHS = 2×
(
1− Pr

j

[
ρAj1 = · · · = ρAjk+1 = ρAjN

])
= 2×

(
1− d3 − 1

d4 − 1
× d3 − 2

d4 − 2
× · · · × d3 − d− 1

d4 − d− 1

)
> 2×

(
1− 1

d
× 1

d
× · · · × 1

d

)
≈ 2

On the other hand, the right-hand side of your claimed inequality is

RHS =

√
4 log(d)

d2
→ 0 as d → ∞.
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