

Supplementary Information for

OCTOPUS: Operation Control System for Task Optimization and Job

Parallelization via a User-Optimal Scheduler

Hyuk Jun Yoo,1,2 Kwan-Young Lee,2* Donghun Kim,1* and Sang Soo Han1*

1Computational Science Research Center, Korea Institute of Science and Technology, Seoul 02792,

Republic of Korea
2Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of

Korea

*Correspondence to: sangsoo@kist.re.kr (S.S.H.); donghun@kist.re.kr (D.K.); kylee@korea.ac.kr

(K.-Y.L.).

Table of contents

1. Terminology definition in OCTOPUS ... 6

Supplementary Figure S1. Definition of words ... 6

2. Job submission via the interface node and job scheduler of the master node 7

Supplementary Figure S2. Detailed job script structure for manual and automated

experimentations .. 7

Supplementary Figure S2a. Job script for manual experimentations 7

Supplementary Figure S2b. Job script for automated experimentations 8

Supplementary Figure S3. Login process with Auth0 in the interface node of OCTOPUS10

Supplementary Figure S4. Commands definitions for clients and administrators........... 10

Supplementary Figure S5. Workflow of job submission in job scheduler 11

Supplementary Figure S6. Examples of job management via a command line interface 12

Supplementary Figure S6a. Command line interface examples of master node and module

node initializations ... 12

Supplementary Figure S6b. Command line interface examples of module node updates ... 13

Supplementary Figure S6c. Command line interface examples of login process, job

submission and job status... 14

Supplementary Figure S6d. Command line interface examples of job submission, hold,

restart and deletion ... 15

3. Job executions in the master node ... 16

Supplementary Figure S7. Functions of the task generator ... 16

Supplementary Figure S7a. Detailed workflow of update device settings in resource manager

.. 16

Supplementary Figure S7b. Task reflection depending on latest device information 17

Supplementary Figure S7c. Detailed workflow of the task generator 17

Supplementary Figure S7d. Examples of task templates ... 18

Supplementary Figure S7e. Conversion of job script in terms of task sequences in the task

generator .. 20

Supplementary Figure S8. Examples of resource allocation in batch synthesis module . 21

Supplementary Figure S9. The role of action translator for abstraction and digitalization21

Supplementary Figure S10. Functions of the action executor ... 22

Supplementary Figure S10a. Predefined device commands of the action executor 22

Supplementary Figure S10b. Detailed workflow of the action executor 22

Supplementary Figure S11. Hierarchy structure of the generated material data 23

4. Network-protocol-based modularization ... 24

Supplementary Figure S12. Process modularization for homogeneity via device server 24

Supplementary Figure S12a. An actual example of heterogeneous environments 24

Supplementary Figure S12b. Virtual workflow of the network protocol with a hierarchical

structure.. 25

Supplementary Figure S13. Process modularization for scalability via internal and external

network .. 26

Supplementary Figure S13a. Utilization of the internal network protocol in the routing table

.. 26

Supplementary Figure S13b. Virtual examples of scalable autonomous experiment platform

based on internal and external network ... 27

Supplementary Figure S14. Process modularization and utilization for safety. 28

Supplementary Figure S14a. Broadcast-enabled module node shutdown 28

Supplementary Figure S14b. Workflow of the safety alert system 28

Supplementary Figure S14c. Real messages of the alert system showing the experiment

progress .. 29

Supplementary Figure S14d. Real messages of the alert system for device disconnection via

heartbeat ... 29

Supplementary Figure S14e. Real messages of the alert system via the restock function for

chemical vessels ... 29

5. Job parallelization to address the module overlap challenge ... 30

Supplementary Figure S15. Schematic algorithm of job parallelization 30

Supplementary Figure S16. The timeline of the modules used for catalyst development included

device standby time.. 31

Supplementary Figure S17. Multiple jobs for catalyst application.................................. 32

Supplementary Figure S18. Definition of performance metrics 32

Supplementary Table S1. Performance metrics of job parallelization 33

Supplementary Table 1a. Job waiting time between serialization and parallelization 33

Supplementary Table 1b. Job turnaround time between serialization and parallelization. . 33

Supplementary Table 1c. Job total time between serialization and parallelization. 33

6. Task optimization for preventing device overlaps. .. 34

Supplementary Figure S19. A bird’s eye view image of modules including “BatchSynthesis” and

“UV-Vis” ... 34

Supplementary Figure S20. Computing results of Boolean operation in python 34

Supplementary Figure S21. Real examples of masking table .. 35

7. The closed-packing schedule for optimizing module resource .. 36

Supplementary Figure S22. Definition of resource in realistic platform 36

Supplementary Figure S23. Detailed workflow of closed-packing schedule in multi jobs37

8. Performance test of user-optimal schedulers ... 38

Supplementary Figure S24. Schematic design of conventional scheduling algorithm (FCFS)

.. 38

Supplementary Figure S25. Job information for benchmark test of user-optimal schedulers

.. 38

Supplementary Figure S26. Residual resources-based job split via closed-packing schedule in

user-optimal schedulers ... 39

Supplementary Table S2. Performance test in realistic platform 40

Supplementary Table 2a. Result of job waiting time in realistic platform 40

Supplementary Table 2b. Result of job turnaround time in realistic platform 40

Supplementary Table 2c. Result of job total time in realistic platform 41

Supplementary Figure S27. Results of closed packing schedule in UV-Vis module 42

Supplementary Figure S28. Results of task optimization between batch synthesis and UV-Vis

module.. 43

Supplementary Figure S29. Cause analysis for the delay time of CPS in batch synthesis module

.. 44

9. Copilot of OCTOPUS .. 45

Supplementary Figure S30. Reusability comparison with and without Copilot of OCTOPUS

.. 45

Supplementary Table S3. The description of inputs and outputs of GPT 46

Supplementary Figure S31. Example of action generation for each device in module ... 47

Supplementary Figure S31a. GPT prompt example of action generation for each device in

module.. 47

Supplementary Figure S31b. Example of generated actions for each device via GPT

recommendation and client feedback... 47

Supplementary Figure S32. Example of task generation for module 48

Supplementary Figure S32a. GPT prompt example of task generation for module 48

Supplementary Figure S32b. Example for generated tasks via GPT recommendation and

client feedback ... 48

Supplementary Figure S33. Example of the action sequence generation for task execution

.. 49

Supplementary Figure S33a. GPT prompt example of action sequence generation for task

execution .. 49

Supplementary Figure S33b. Example of generated action sequences for task execution via

GPT recommendation and client feedback .. 49

Supplementary Figure S34. Example of task template and type validation generation .. 50

Supplementary Figure S34a. Prompt engineering of task template generation for type

validation using the OpenAI API ... 50

.. 50

Supplementary Figure S34b. Prompt engineering of Pydantic class generation for type

validation using the OpenAI API ... 51

Supplementary Figure S34c. Example of generated task template and type validation for

each task ... 52

Supplementary Table S4. The result of automated code generation/customization via Copilot of

OCTOPUS ... 53

Supplementary References ... 55

1. Terminology definition in OCTOPUS

Supplementary Figure S1. Definition of words

2. Job submission via the interface node and job scheduler of the

master node

Supplementary Figure S2. Detailed job script structure for manual and automated

experimentations

The “metadata” key represents information about the experiments, including the subject, group name
and log level. The “algorithm” key represents the process recommendation, including the model name,
the total number of experiments and the model hyperparameters. The “process” key represents the
experimental process information, including the module and task sequences and the fixed experimental
conditions for each module.
Supplementary Figure S2a. Job script for manual experimentations

{

 "metadata" :

 {

 "subject":"Manual Experiment",
 "group":"KIST_CSRC",

 "logLevel":"DEBUG"

 },

 "model":

 {

 "modelName":"Manual",
 "totalExperimentNum":2,

 "inputParams":[

 {

 "AddSolution=AgNO3_Concentration" : 0.0125,

 "AddSolution=AgNO3_Volume" : 1000,
 "AddSolution=AgNO3_Injectionrate" : 100

 },

 {

 "AddSolution=AgNO3_Concentration" : 0.0175,

 "AddSolution=AgNO3_Volume" : 800,

 "AddSolution=AgNO3_Injectionrate" : 300
 }

]

 },

 "process":

 {
 "Synthesis":{

 "BatchSynthesis":{

"Sequence":["AddSolution_Citrate","AddSolution_H2O2","AddSolution_NaBH4","Stir",

"Heat","Mix", "AddSolution_AgNO3", "React"],

 "fixedParams":

 {
 "AddSolution=H2O2_Concentration" : 0.375,

 "AddSolution=H2O2_Volume" : 1100,

 "AddSolution=H2O2_Injectionrate" : 100,

 "AddSolution=Citrate_Concentration" : 0.04,

 "AddSolution=Citrate_Volume" : 1100,
 "AddSolution=Citrate_Injectionrate" : 100,

 "AddSolution=NaBH4_Concentration" : 0.01,

 "AddSolution=NaBH4_Volume" : 3000,

 "AddSolution=NaBH4_Injectionrate" : 100,

 "Stir=StirRate":1000,
 "Heat=Temperature":25,

 "Mix=Time":300,

 "React=Time":3600

 }

 },

 "FlowSynthesis":{}
 },

 "Preprocess":{

 "Washing":{},

 "Ink":{}

 },

 "Characterization":{
 "UV":{}

 },

 "Evaluation":{

 "RDE":{},

 "Electrode":{}
 }

 }

}

Supplementary Figure S2b. Job script for automated experimentations

{

 "metadata" :

 {

 "subject":"Automated Experiment",

 "group":"KIST_CSRC",
 "logLevel":"DEBUG"

 },

 "model":

 {

 "modelName":"BayesianOptimization",

 "batchSize":6,
 "totalCycleNum":3,

 "verbose":0,

 "randomState":0,

 "sampling":{

 "samplingMethod":"latin",
 "samplingNum":20

 },

 "acq":{

 "acqMethod":"ucb",

 "acqSampler":"greedy",

 "acqHyperparameter":{
 "kappa":10.0

 }

 },

 "loss":{

 "lossMethod":"lambdamaxFWHMintensityLoss",
 "lossTarget":{

 "GetAbs":{

 "Property":{

 "lambdamax":573

 },

 "Ratio":{
 "lambdamax":0.9,

 "FWHM":0.03,

 "intensity":0.07

 }

 }
 }

 },

 "prange":{

 "AddSolution=AgNO3_Concentration" : [25, 375, 25],

 "AddSolution=AgNO3_Volume" : [100, 1200, 50],

 "AddSolution=AgNO3_Injectionrate" : [50, 200, 50]
 },

 "initParameterList":[],

 "constraints":[]

 },
 "process":

 {

 "Synthesis":{

 "BatchSynthesis":

 {

"Sequence":["AddSolution_Citrate","AddSolution_H2O2","AddSolution_NaBH4",
"Stir","Heat","Mix", "AddSolution_AgNO3", "React"],

 "fixedParams":

 {

 "AddSolution=AgNO3_Concentration" : 1250,

 "AddSolution=H2O2_Concentration" : 375,
 "AddSolution=H2O2_Volume" : 1200,

 "AddSolution=H2O2_Injectionrate" : 200,

 "AddSolution=Citrate_Concentration" : 20,

 "AddSolution=Citrate_Volume" : 1200,

 "AddSolution=Citrate_Injectionrate" : 200,

 "AddSolution=NaBH4_Concentration" : 10,
 "AddSolution=NaBH4_Volume" : 3000,

 "AddSolution=NaBH4_Injectionrate" : 200,

 "Stir=StirRate":1000,

 "Heat=Temperature":25,
 "Mix=Time":300,

 "React=Time":7200

 }

 },

 "FlowSynthesis":{}

 },
 "Preprocess":{

 "Washing":{},

 "Ink":{}

 },

 "Characterization":{
 "UV-Vis":

 {

 "Sequence":["GetAbs"],

 "fixedParams":

 {

 "UV=Hyperparameter_WavelengthMin":300,
 "UV=Hyperparameter_WavelengthMax":849,

 "UV=Hyperparameter_BoxCarSize":10,

 "UV=Hyperparameter_Prominence":0.01,

 "UV=Hyperparameter_PeakWidth":20

 }
 }

 },

 "Evaluation":{

 "RDE":{},

 "Electrode":{}

 }
 }

}

Examples of job scripts for manual and automated experiments. The job script is based on the JSON
(JavaScript Object Notation) format. Other job script formats were uploaded to the GitHub repository.
(https://github.com/KIST-CSRC/Octopus)

Supplementary Figure S3. Login process with Auth0 in the interface node of

OCTOPUS

Supplementary Figure S4. Commands definitions for clients and administrators

Supplementary Figure S5. Workflow of job submission in job scheduler

Supplementary Figure S6. Examples of job management via a command line

interface

Supplementary Figure S6a. Command line interface examples of master node and module node

initializations

When the master node is executed, it sends a heartbeat to the activated module nodes to check their
connectivity. If all module nodes are successfully connected, the resource manager retrieves the device
information from each module node. In the two examples mentioned above, this information includes
the experimental device information associated with each module node.

Supplementary Figure S6b. Command line interface examples of module node updates

If the client makes changes to the device settings, or adds additional devices to a module node, the
master node must be updated due to the allocation of device action via the new settings. The client can
use the 'updateNode' command in the prompt interface to refresh the latest device information of the
module node.

Supplementary Figure S6c. Command line interface examples of login process, job submission

and job status

The client tries to log in to the master node via their ID and password. If the client ID or password
does not match, the master node notifies the client of a login failure. After the login process is
successful, the client can submit a job script using the 'qsub' command. The master then converts to an
activated job and conducts the experiment based on the information in the job script. The client can
monitor the status of their job using the 'qstat' command. The job status table includes the client name,
job submission time, filename of job script, number of current experiments, number of total
experiments, job status and mode type of the job.

Supplementary Figure S6d. Command line interface examples of job submission, hold, restart

and deletion

The client can temporarily pause the submitted job or execute the job using the 'qhold' command.
When the client enters 'qhold', the master node sends the job ID to the module node due to a job pause.
Then, the module node stores the job ID and holds all the device actions of that job ID. If the client
enters the 'qrestart' command, the paused job resumes. However, if the client enters the 'qdel' command,
the paused job will be deleted.

3. Job executions in the master node

Supplementary Figure S7. Functions of the task generator

Supplementary Figure S7a. Detailed workflow of update device settings in resource manager

Supplementary Figure S7b. Task reflection depending on latest device information

Supplementary Figure S7c. Detailed workflow of the task generator

Supplementary Figure S7d. Examples of task templates

Robot

self.MoveContainer_template={

 "Task":"MoveContainer",

 "Data":{

 "From":"",

 "To":"",

 "Container":"",

 "Device":{}

 }

}

BatchSynthesis

self.PrepareContainer_template={

 "Task":"PrepareContainer",

 "Data":{

 "From":"",

 "To":"",

 "Container":"",

 "Device":{}

 }

}

self.AddSolution_template={

 "Task":"AddSolution",

 "Data":{

 "Solution":"",

 "Volume":{

 "Value":0,"Dimension":"μL"

 },

 "Concentration":{

 "Value":0,"Dimension":"mM"

 },

 "Injectionrate":{

 "Value":0,"Dimension":"μL/s"

 },

 "Device":{}

 }

}

self.Stir_template={

 "Task": "Stir",

 "Data": {

 "StirRate": {

 "Value": 0,

 "Dimension": "rpm"

 },

 "Device":{}

 }

}

self.Heat_template={

 "Task": "Heat",

 "Data": {

 "Temperature": {

 "Value": 0,

 "Dimension": "ºC"

 },

 "Device":{}

 }

}

self.Mix_template={

 "Task": "Mix",

 "Data": {

 "Time": {

 "Value": 0,

 "Dimension": "sec"

 },

 "Device":{}

 }

}

self.React_template={

 "Task": "React",

 "Data": {

 # "To": "",

 "Time": {

 "Value": 0,

 "Dimension": "sec"

 },

 "Device":{}

 }

}

UV-Vis

self.GetAbs_template={

 "Task":"GetAbs",

 "Data":{

 "Device":{},

 "Hyperparameter":{

 "WavelengthMin":{

 "Description":"WavelengthMin=300 (int): slice wavlength section

depending on wavelength_min and wavelength_max",

 "Value": 0,

 "Dimension": "nm"

 },

 "WavelengthMax":{

 "Description":"WavelengthMax=849 (int): slice wavlength section

depending on wavelength_min and wavelength_max",

 "Value": 0,

 "Dimension": "nm"

 },

 "BoxCarSize":{

 "Description":"BoxCarSize=10 (int): smooth strength",

 "Value": 0,

 "Dimension": "None"

 },

 "Prominence":{

 "Description":"Prominence=0.01 (float): minimum peak Intensity for

detection",

 "Value": 0,

 "Dimension":"None"

 },

 "PeakWidth":{

 "Description":"PeakWidth=20 (int): minumum peak width for detection",

 "Value": 0,

 "Dimension": "nm"

 }

 }

 },

}

The origin of task template has empty value. The examples of template uploaded in Github repository.
(https://github.com/KIST-CSRC/Octopus)
Supplementary Figure S7e. Conversion of job script in terms of task sequences in the task

generator

A task generator allows clients to create process recipes based on their desired experimental conditions
and process sequences. To execute various process sequences for each job script, we would present
the generated recipe in the JSON data format shown in the GitHub repository.

Supplementary Figure S8. Examples of resource allocation in batch synthesis

module

Supplementary Figure S9. The role of action translator for abstraction and

digitalization

Supplementary Figure S10. Functions of the action executor

Supplementary Figure S10a. Predefined device commands of the action executor

Supplementary Figure S10b. Detailed workflow of the action executor

Supplementary Figure S11. Hierarchy structure of the generated material data

The second auxiliary function is to store the results of the experiments in individual JSON files, and
is conducted during the job cycle. (Figure S12a, Supplementary Information) The reason for choosing
JSON is its flexible, computer-readable structure. In the MAP for chemical experiments, there are
various modules, each containing diverse tasks, device types and device settings. Given this variability,
storing the material data in a structured format within a relational database would be challenging. In
other words, tabular data with a relational database to store the task information in MAPs, inevitably
face quite a sparse table due to the tremendous diversity of the attributes and methods from the various
device settings and module components.

Therefore, we implement a nonstructured data format with inclusivity for the data structure of MAP.
The most significant feature of JSON is its hierarchical structure. A well-defined JSON format
enhances the flexibility of storing attributes/methods of diverse tasks and aids in data readability,
making it easier for clients to understand the processes. Furthermore, the JSON format is a commonly
used data specification on the web, so it helps to easily convert CLI to a web-based interface. We
designate the standard material data structure with four main hierarchical keys—metadata, algorithms,
processes and property/performances—as the highest-level categories. To enable the utilization of the
accumulated data for AI-driven experimental planning in the future, we implement MongoDB, which
stores and manages the JSON data.

4. Network-protocol-based modularization

Supplementary Figure S12. Process modularization for homogeneity via device

server

Supplementary Figure S12a. An actual example of heterogeneous environments

We configured the module node using Python based on the Windows OS. Communication between
the environment of the module node and other devices is designed to set up a device server, enabling
interaction with the module node. The table represents the configuration of our module node, as
presented in our recent research.[3]

Supplementary Figure S12b. Virtual workflow of the network protocol with a hierarchical

structure

This workflow depends on device settings of modules.

Supplementary Figure S13. Process modularization for scalability via internal and

external network

Supplementary Figure S13a. Utilization of the internal network protocol in the routing table

The third number represents the type of experimental process, and the fourth number represents the
module information. The types of experimental processes include synthesis, preprocessing, evaluation,
characterization and database, which are commonly defined in chemical experiments. These
experimental processes were represented by numbers from 1 to 5, making it easy for researchers to
identify which process they belong to via the third number alone. Starting from the fourth number,
different modules are included in the same process type. For example, within the same preprocessing
category, various modules might be grouped, such as processes for washing, ball milling, ink
preparation, spray coating and sonication. In the fourth part of the internal network address, the
presence of '1' represents the gateway. Consequently, modules should be sequentially recorded in the
routing table starting from '11'.

In network protocols, broadcast refers to a method of sending messages or data packets across a
network to multiple computers or network devices simultaneously via a single transmission. This
means that the information is sent to all the devices on the network without specifying a specific target
computer or device. Broadcast is typically used for network management, debugging, or when the
same message needs to be sent to multiple devices. We set the internal network address of the
emergency stop to “192.168.255.255”. The term “255” enables broadcasting via an internal network
protocol.

Supplementary Figure S13b. Virtual examples of scalable autonomous experiment platform

based on internal and external network

Supplementary Figure S14. Process modularization and utilization for safety.

Supplementary Figure S14a. Broadcast-enabled module node shutdown

In network protocols, broadcast refers to a method of sending messages or data packets over network
to multiple computers or network devices simultaneously via a single transmission. This means that
the information is sent to all devices on the network without specifying a specific target computer or
device. Broadcast is typically used for network management, debugging, or when the same message
needs to be sent to multiple devices. We set internal network address of emergency stop to
“192.168.255.255”. “255” enables broadcast in internal network protocol.

Supplementary Figure S14b. Workflow of the safety alert system

Supplementary Figure S14c. Real messages of the alert system showing the experiment progress

This message is the result of communication through Dooray Messenger.[4]

Supplementary Figure S14d. Real messages of the alert system for device disconnection via

heartbeat

This message is the result of communication through Dooray Messenger.[4]

Supplementary Figure S14e. Real messages of the alert system via the restock function for

chemical vessels

This message is the result of communication through Dooray Messenger.[4]

5. Job parallelization to address the module overlap challenge

Supplementary Figure S15. Schematic algorithm of job parallelization

1. Check the resources of the experimental equipment set on the modules.
2. Set an index i (the index i represents the position index of the stacked job ID in the waiting queue).
3. The name of the module that is to be executed is retrieved first according to the predefined module
execution order from the job, with the job ID corresponding to the i-th position within the waiting
queue. This is denoted as a "module" in the diagram.
4. Does the "module" own a device standby task?
 4-1. If yes, proceed to (5).
 4-2. If not, proceed to (8).
5. Is the "module" executing a device standby task?
 5-1. If yes, proceed to (8).
 5-2. If not, proceed to (6).
6. The index i is incremented by 1.
7. Determine if index i is the last.

7-1. If i is the last order, return to (2) → Reset i to check the job with the job ID corresponding
to the first order in the waiting queue.

7-2. If i is not the last order, proceed to (3) → Search for the first module to execute in the job
with the job ID corresponding to the next order in the waiting queue.

8. Pop the job ID corresponding to index i from the waiting queue.
9. End the job trigger.

Supplementary Figure S16. The timeline of the modules used for catalyst

development included device standby time

Supplementary Figure S17. Multiple jobs for catalyst application

Supplementary Figure S18. Definition of performance metrics

Supplementary Table S1. Performance metrics of job parallelization

Supplementary Table 1a. Job waiting time between serialization and parallelization

Job ID Serialization (h) Parallelization (h)

0 0 0

1 0 0

2 0 0

3 1 0.5

4 4 0.5

5 2 1

6 1 0.5

Supplementary Table 1b. Job turnaround time between serialization and parallelization

Job ID Serialization (h) Parallelization (h)

0 10 9

1 5 5

2 6 6

3 9 6

4 6 5

5 5 4

6 7 5

Supplementary Table 1c. Job total time between serialization and parallelization

Job ID Serialization (h) Parallelization (h)

0 10 9

1 5 5

2 6 6

3 10 6.5

4 10 5.5

5 7 5

6 8 5.5

6. Task optimization for preventing device overlaps.

Supplementary Figure S19. A bird’s eye view image of modules including

“BatchSynthesis” and “UV-Vis”

This image is a module used in a previous study[3].

Supplementary Figure S20. Computing results of Boolean operation in python

Supplementary Figure S21. Real examples of masking table

The “BatchSynthesis” module has four resources which include the number of vials that can be
processed in the magnetic stirrer. The “UV-Vis” module has also four resources which represents the
number of vial holders storing vials for “UV-Vis” spectrum measurements. The image of hardware is
a module used in a previous study[3].

7. The closed-packing schedule for optimizing module resource

Supplementary Figure S22. Definition of resource in realistic platform

The batch synthesis module has four resources which include the number of vials that can be processed
in the magnetic stirrer. The UV-Vis module has also four resources which represents the number of
vial holders storing vials for UV-Vis spectrum measurements. The image of hardware is a module used
in a previous study[3].

Supplementary Figure S23. Detailed workflow of closed-packing schedule in multi

jobs

8. Performance test of user-optimal schedulers

Supplementary Figure S24. Schematic design of conventional scheduling

algorithm (FCFS)

Supplementary Figure S25. Job information for benchmark test of user-optimal

schedulers

The bold text corresponds to “job waiting time” and the underline text corresponds to “job turnaround
time”.

Supplementary Figure S26. Residual resources-based job split via closed-packing

schedule in user-optimal schedulers

Supplementary Table S2. Performance test in realistic platform

Supplementary Table 2a. Result of job waiting time in realistic platform

Job ID FCFS (h) User-Optimal Schedulers (h)

0 0 0

1 9.75 0.63

2 11.04 0

3 11.34 0

4 11.72 0

5 12.17 0.72

6 13.81 0.07

7 14.41 0

8 15.16 0.72

9 14.86 0

10 15.92 0

Supplementary Table 2b. Result of job turnaround time in realistic platform

Job ID FCFS (h) User-Optimal Schedulers (h)

0 9.75 9.75

1 1.29 2.04

2 0.3 0.3

3 0.38 0.68

4 0.45 0.83

5 1.64 1.64

6 0.6 0.6

7 0.45 0.45

8 0.76 1.18

9 0.3 0.3

10 0.93 1.39

Supplementary Table 2c. Result of job total time in realistic platform

Job ID FCFS (h) User-Optimal Schedulers (h)

0 9.75 9.75

1 11.04 2.67

2 11.34 0.3

3 11.72 0.68

4 12.17 0.83

5 13.81 2.36

6 14.41 0.67

7 14.86 0.45

8 15.92 1.89

9 15.16 0.3

10 16.84 1.39

Supplementary Figure S27. Results of closed packing schedule in UV-Vis module

(A) Job split by residual resource-based CPS.
(B) Job parallelization in characterization module without device standby times.

Supplementary Figure S28. Results of task optimization between batch synthesis

and UV-Vis module

Supplementary Figure S29. Cause analysis for the delay time of CPS in batch

synthesis module

9. Copilot of OCTOPUS

Supplementary Figure S30. Reusability comparison with and without Copilot of

OCTOPUS

Supplementary Table S3. The description of inputs and outputs of GPT

Inputs in GPT prompt Outputs as GPT answer

Module name
Actions of each device in module node or device server

All device names in module

Module name,

Tasks of module Module description

Needed task in module information

Module name

Action sequence for task execution Generated tasks

Generated actions

Module name

Task template and type validation for each task Generated action sequences

Generated tasks

Supplementary Figure S31. Example of action generation for each device in

module

Supplementary Figure S31a. GPT prompt example of action generation for each device in

module

Supplementary Figure S31b. Example of generated actions for each device via GPT

recommendation and client feedback

Supplementary Figure S32. Example of task generation for module

Supplementary Figure S32a. GPT prompt example of task generation for module

Supplementary Figure S32b. Example for generated tasks via GPT recommendation and client

feedback

Supplementary Figure S33. Example of the action sequence generation for task

execution

Supplementary Figure S33a. GPT prompt example of action sequence generation for task

execution

Supplementary Figure S33b. Example of generated action sequences for task execution via GPT

recommendation and client feedback

Supplementary Figure S34. Example of task template and type validation

generation

Supplementary Figure S34a. Prompt engineering of task template generation for type validation

using the OpenAI API

Supplementary Figure S34b. Prompt engineering of Pydantic class generation for type

validation using the OpenAI API

Supplementary Figure S34c. Example of generated task template and type validation for each

task

Supplementary Table S4. The result of automated code generation/customization

via Copilot of OCTOPUS
1st hierarchy 2nd hierarchy 3rd hierarchy Description

Action

Module {module name}.py
Action translator script of
module

routing_table.json
JSON file included IP
addresses and port number of
each module

ActionExecutor_Class.py Script of action executor

ActionTranslator_Class.py Script of action translator

Analysis

Module {module name}.py
Preprocess script for raw
spectrum or performance data
of each module

Analysis.py
Script of analysis method
inherited by Module/{module
name}.py

Algorithm
Manual Manual.py

Script of manual
experimentation method

{algorithm name} {algorithm name}.py
Script of AI for experiment
planning

AutoModuleGeneration

GPT_answer_ generation
{module name}

_actions.txt

GPT recommendations for
actions and tasks generation
saved as text files

GPT_answer_registration

{module name}
_actionsequence.txt

GPT recommendations for
action sequences saved as
text files

{module name}
_task_pydantic.txt

GPT recommendations for
task template generation
saved as text files

{module name}
_task_template.txt

GPT recommendations for
type validation of task
(=Pydantic) saved as text files

{module name
or

device server name}

BaseUtils

json_func.py
Functions for socket
communications

TCP_Node.py
Functions for JSON file
read/write

Log
Logging_
Class.py

Logger for recording all
actions

{device_name}

Functions for device controller
based on manufacturer’s API
(Application Programming
Interface)

module_node.py
or device_server.py

Interface of module node or
device server

DB DB_Class.py Script of MongoDB manager

Job
device_standby_time.json

JSON file included tasks with
long device standby time for
each module

JobTrigger.py Script of job trigger

JobScheduler.py Script of job scheduler

JobScriptTemplate {module name}.json
Template of job script for
each module

Log Logging_Class.py Script of logger

Resource

Module {module name}.py
Resource allocator for each
module

device_location.json
Device resources (location
information) for each module

device_status.json
Device status table included
all devices for each module

device_masking_table.json
Device masking table for all
task of each module

ResourcAllocator_Class.py
Script of resource allocator
inherited by Module/{module
name}.py

ResourcManager_Class.py Script of resource manager

Task

ActionSequence {module name}.json
JSON file included action
sequence of tasks for each
module

Pydantic {module name}.py
Script of type validation for
each module via Pydantic
library

Template {module name}.json
JSON file included task
templates for each module

Template_module.json
JSON file included all module
templates

TaskGenerator_Class.py Script of task generator

TaskScheduler_Class.py Script of task scheduler
USER {client ID}

UserManager
auth0_config.py

Script of Auth0 configuration
for login process

UserManager_Class.py
Script of Auth0 functions for
login process

client.py Script of client

copilot.py Script of Copilot of OCTOPUS
master_node.py Script of master node

* {}: the real name of module, ex) {module name}=“SolidStateModule”

Purple boxes represent the core software of OCTOPUS. Green boxes indicate the automated code
generation for module operation via Copilot of OCTOPUS, which includes functions for module
operation. Red boxes represent the JSON file addressing new module information via Copilot of
OCTOPUS.

Supplementary References
[1] L. Parziale, W. Liu, C. Matthews, N. Rosselot, C. Davis, J. Forrester, D. T. Britt, others, TCP/IP

tutorial and technical overview, IBM Redbooks, 2006.
[2] A. C. Vaucher, F. Zipoli, J. Geluykens, V. H. Nair, P. Schwaller, T. Laino, Nat. Commun. 2020,

11.
[3] H. J. Yoo, N. Kim, H. Lee, D. Kim, L. T. C. Ow, H. Nam, C. Kim, S. Y. Lee, K.-Y. Lee, D.

Kim, S. S. Han, Bespoke Metal Nanoparticle Synthesis at Room Temperature and Discovery of
Chemical Knowledge on Nanoparticle Growth via Autonomous Experimentations. Adv. Funct.
Mater. 2024, 2312561. https://doi.org/10.1002/adfm.202312561

[4] NHN Dooray! Corporation, https://dooray.com/main/service/messenger.

