
1 / 42

Supplementary Software for using Copilot of OCTOPUS

This file provides a detailed and step-by-step protocol to assist potential users in

using Copilot of OCTOPUS without difficulty.

Hyuk Jun Yoo, Kwan-Young Lee*, Donghun Kim* and Sang Soo Han*

2 / 42

Table of contents

1. Overview: directory description of OCTOPUS.. 4

2. Prerequisite of installation : Auth0 setting .. 5

2.1 Sign up Auth0 .. 5

2.2 Create application in Auth0 page .. 5

2.3 Set Auth0 administrator page .. 6

2.4 Connect Auth0 administrator page to OCTOPUS ... 8

2.5 Register user in Auth0 page .. 8

3. Installation & environment setting ... 10

3.1 Installation ... 10

3.2 Environment setting ... 10

4. Copilot of OCTOPUS for module generation and registration... 11

4.1 Set module information in `copilot.py` .. 11

4.1.1 Example of “SolidStateModule” ... 12

4.1.2 Example of “ElectroChemicalRDEModule” .. 12

4.2 Action generation of experimental device in module node and device server 13

4.2.1 Add new action ... 14

4.2.2 Modify action .. 15

4.2.3 Delete action .. 16

4.2.4 Code automated generation of module node and device server ... 17

4.3 Task generation of module node ... 18

4.3.1 Add new task .. 19

4.3.2 Modify task ... 20

4.3.3 Delete task ... 21

4.4 Match action sequence for task execution in module node .. 22

4.4.1 Insert new action in action sequence ... 23

4.4.2 Switch two actions in action sequence .. 24

4.4.3 Delete action in action sequence ... 25

4.5 Generate task template and type validation .. 26

4.5.1 Add new key in task template... 26

4.5.2 Rename key in task template ... 27

4.5.3 Delete key in task template .. 28

4.5.4 Code automated generation of action translator, task template and task Pydantic 29

3 / 42

4.6 Address long device standby times for job trigger... 30

4.6.1 Add task with long device standby time ... 30

4.6.2 Delete task with long device standby time ... 31

4.6.3 Code automated generation of device_standby_time.json .. 32

4.7 Masking table generation for safe task execution ... 33

4.7.1 Add new device in masking table for each task ... 35

4.7.2 Delete device in masking table for each task... 36

4.7.3 Code automated generation of resource manager .. 37

5. Appendix: Manual modification in OCTOPUS .. 38

5.1 Connect device to module node .. 38

5.1.1 Set device information .. 38

5.1.2 Translate action to device protocol based on manufacturer manual ... 39

5.2 Complete action data .. 40

5.3 [Optional] Define `calculateData` function in `Analysis` directory ... 42

4 / 42

1. Overview: directory description of OCTOPUS

Directory name Description

Action Script of ActionTranslator, ActionExecutor

Algorithm Script of customized AI model

Analysis
Script of customized analysis function from

raw spectrum data for each task

AutoModuleGeneration
Script of GPT, feedback system, rule-based

generation function

DB Script of MongoDB manager

Job Script of JobScheduler, JobTrigger, Job

JobScriptTemplate JSON file of job script for each module

Log Script of logger and log files

Loss Script of loss function

Resource Script of ResourceManager

Task
Script of TaskGenerator, TaskScheduler, and

task template, task Pydantic, device actions for
each task

USER
User folder included user of job script,

generated data with csv format, log, and pre-
trained model object file

UserManager
Script of UserManager for login process with

Auth0

5 / 42

2. Prerequisite of installation : Auth0 setting

2.1 Sign up Auth0

Please sign up in https://auth0.com/.

2.2 Create application in Auth0 page

Click “Create Application” and generate application

Click “Machine to Machine Applications” button, and click “Create” button.

6 / 42

Please click and check all items, and click “Authorize” button.

2.3 Set Auth0 administrator page

Please copy the domain, client ID, Client Secret, and save them in another text file. They are different for each

user account.

7 / 42

Scroll down to "Application URIs" and enter https://localhost:8000/callback in "Allowed Callback URLs."

Scroll down to "Advanced Settings," click the "Grant Types" button, and select the items inside the red box.

8 / 42

2.4 Connect Auth0 administrator page to OCTOPUS

Enter the OCTOPUS folder and open the “UserManager/auth0_config.py” file. In this file, enter the previously

saved domain, client ID, client secret, and callback URL in order. In “UserManager/auth0_config.py” file, for

"AUTH0_SCOPE," enter the Auth0 account ID in email format.

2.5 Register user in Auth0 page

Click on "Users" under "User Management" in the left toolbar, then click the "Create User" button.

9 / 42

Enter the email and password to be registered, then click the "Create" button to register the user.

10 / 42

3. Installation & environment setting

3.1 Installation

Copy and paste the following git clone command into the terminal window to download the OCTOPUS directory.

git clone https://github.com/KIST-CSRC/Octopus.git

3.2 Environment setting

Using pip (recommended)

pip install -r requirements.txt

Using conda

conda env create -f requirements.txt

11 / 42

4. Copilot of OCTOPUS for module generation and registration

4.1 Set module information in `copilot.py`

The following illustration shows only the lines that the user needs to fill in within the “copilot.py file”. By entering

just a few pieces of information, the code for the components owned by the master node will be automatically

generated according to the logic explained above.

Key of module
information

Type Description of module information

author (=email format). str The author name who generated the code for the module node

module_name/server_name str The name of module node or device server

module_type str
The type of module node (please choose from following options:
["Synthesis", "Preprocess", "Evaluation", "Characterization"])

module_description str
The description of module node

(More detailed description could improve the accuracy of code generation.)

device_type str in list The names of the devices that need to be registered with the module node

task_type str in list The name of the task that must be included in the module node

resource dict The resources of the module node

HOST str The IP address of the module node

PORT int The port number of module node

gpt_on boolean
Set whether to use the existing GPT answer (=False) ,
or to ask GPT new answer (True)

gpt_api_key str api key of OpenAI

12 / 42

4.1.1 Example of “SolidStateModule”

4.1.2 Example of “ElectroChemicalRDEModule”

Input your GPT api key

Input your GPT api key

13 / 42

If the configuration for the module node is complete, please execute the following command to run the copilot

of OCTOPUS:

python copilot.py

4.2 Action generation of experimental device in module node and device server

Below is the result of inputting the devices connected to the actual SolidStateModule into GPT to get

recommendations for the actions of each device.

However, since the available functions vary by manufacturer, the user needs to add, modify, or delete them in

command line interface. Therefore, you can enter the index of the device to add, modify, or delete its actions.

Once all actions are correctly entered, you can press 'done' to finish editing the actions.

If you enter index 1 to modify the actions of 'RobotArm', all the actions of 'RobotArm' will be displayed in a table

format, as shown in the illustration above.

14 / 42

4.2.1 Add new action

If the client inputs 'a' to add a new action, you need to enter the name of the new action in command line

interface. In the figure above, an action called 'Home,' which moves the robot arm to a predetermined position,

was added. Once this task is completed, you can see that 'Home' in red box has been added to the actions of

'RobotArm'.

15 / 42

4.2.2 Modify action

If the client inputs 'm' to modify an action, you need to enter both the existing action name and the new action

name in command line interface. In the illustration above, the action 'Grasp,' which is the movement of the robot

arm's gripper to pick up an object, was modified to 'Grab.' Once this task is completed, you can see that 'Grasp'

has been changed to 'Grab' in the actions of 'RobotArm', via red boxes.

16 / 42

4.2.3 Delete action

If the client inputs 'd' to delete an existing action, you need to enter the name of the action to be deleted in the

command line interface. In the illustration above, the action 'Retrieve,' which involves the robot arm retrieving a

specific object, cannot be performed by the currently registered module node. Therefore, the 'Retrieve' action

was deleted. Once this task is completed, you can see that 'Retrieve' has been removed from the actions of

'RobotArm.'

If all device actions have been configured, all the actions of the devices will be displayed in a table format, as

shown in the figure above.

17 / 42

4.2.4 Code automated generation of module node and device server

Directory name Description

ElectroChemicalRDEModule Script for module node (RDE process)

└─BaseUtils
Functions for read/write of JSON file and socket

communication

└─Log Script of logger and log files

└─PumpDeviceServer Script of controlling pump as device server

└─RobotArmDeviceServer Script of controlling robotic arm as device server

└─module_node.py
Interface for controlling devices by

communicating with the master node

GPT_answer_generation
A text file containing GPT-based recommended
actions for the devices saved in this directory

GPT_answer_registration
A text file containing GPT answers to questions
related to the master node saved in this directory

SolidStateModule Script for module node (solid-state process)

jobscript_generation.py
Script for automated generation of job script

template in ‘JobScriptTemplate’ directory

module_generation.py Script of automated generation for module node

module_registration.py
Script of automated generation for registration in

master node

18 / 42

4.3 Task generation of module node

After configuring the device actions, GPT will recommend tasks to perform the module, highlighted in the orange

box in the illustration above. Among the tasks recommended by GPT, the researcher can add, modify, or delete

task names through the feedback system.

19 / 42

4.3.1 Add new task

If the client inputs 'a' to add a new task in command line interface, you need to enter the name of the new task

in yellow box. In the figure above, a task called 'AddSolution,' which involves adding a solution, was registered.

When entering the task name, the module name should be omitted, and only the task name should be inputted.

Once this process is completed, you will see 'SolidStateModule_AddSolution' added to the list of tasks in red

box.

20 / 42

4.3.2 Modify task

If the client inputs 'm' to modify an existing task in command line interface, you need to enter both the task index

and the new task name in yellow box. In the figure above, the task 'PressPowder,' which involves molding

powder, was modified to 'Press.' Once this task is completed, you will see that 'SolidStateModule_PressPowder'

has been changed to 'SolidStateModule_Press' in red boxes.

21 / 42

4.3.3 Delete task

If the client inputs 'd' to delete an existing task, you need to enter the index of the task to be deleted in the

command line interface. In the illustration above, the task 'CharacterizeTest' generated by GPT could not be

performed, so the task was deleted. Once all tasks are completed, you will see that

'SolidStateModule_CharacterizeTest' has been removed.

22 / 42

If all process is done, client input ‘done’ in command line interface. This figure show all task of ‘SolidStateModule’.

4.4 Match action sequence for task execution in module node

After configuring the tasks, GPT recommends combinations and sequences of actions to perform each task.

The red box in the figure shows the recommended action combination and sequence for 'LoadPowder' via GPT.

Unlike action and task generation, configuring the action sequence is crucial for performing chemical experiment

tasks correctly. Therefore, researchers can use the feedback logic to insert new actions in action sequence,

change the sequence, or delete actions based on GPT's recommended sequence. This feedback system could

provide the correct action sequence.

23 / 42

4.4.1 Insert new action in action sequence

If the client inputs 'i' to insert a new action into the sequence, the feedback system will first ask for the type of

device to be added. The client will enter the device’s index to be added, and then the system will ask for the

type of action for that device. When the client inputs the action's index, the feedback system will ask for the

index of the position where the action should be inserted in the action sequence. The position index starts at 1,

and if the client types 1, the action will be inserted at the very beginning. For example, if 1 is entered, the 'Home'

action of 'RobotArm' will be inserted at the first of the action sequence, as shown in the figure.

24 / 42

4.4.2 Switch two actions in action sequence

If the client inputs 's' to switch the order of specific actions within the existing action sequence, they need to

enter the index of each action to be switched in command line interface. In the illustration above, the second

and third actions were switched. Once this task is completed, you will see that the order of 'RobotArm_Move'

and 'RobotArm_Grab' actions has been swapped.

25 / 42

4.4.3 Delete action in action sequence

If the client inputs 'd' to delete an existing action from the sequence, they need to enter the index of the action

to be deleted in the command line interface. In the illustration above, you can see that the 'RobotArm_Position'

action has been deleted from the sequence.

If all process is done, client input ‘done’ in command line interface. Through the GPT and feedback system,

each task can be performed by customizing the action sequence for that task. The illustration above shows the

resulting action sequences configured for each task.

26 / 42

4.5 Generate task template and type validation

The process involves creating a template in JSON format for the information that needs to be filled out for tasks

made through the GPT and feedback system. The task template must include all the necessary information for

the actions included in the action sequence. The example above shows the task template for

'SolidStateModule_LoadPowder' recommended by GPT. 'LoadPowder' is the process of loading a stock

container filled with powder into the solid dispenser.

4.5.1 Add new key in task template

The task template must include information about which material is being loaded. However, the current template

does not include the position information for the robot arm. Therefore, if the client inputs 'a' to add new

information, they will then enter the key for the new information. In this example, 'FromTo' was entered to denote

the position information for the robot arm. When asked if the information is quantitative, the client entered 'n,'

indicating that 'FromTo' is not quantitative. Quantitative information refers to data requiring numerical values,

such as 'Volume,' 'Concentration,' 'InjectionRate,' 'Weight,' and 'StirRate'. If 'y' is input here, the task's value will

be created as {'Value': 0, 'Dimension': ''}, and if 'n' is input, {'Type': ''} will be created. As a result, 'FromTo' as a

key, with its value being a dictionary, was added to the template, as shown in the example.

27 / 42

4.5.2 Rename key in task template

If you want to change a specific key to another word, the client can input 'r' to modify it. In the example above,

'Fromto' key was intended to be changed to 'Location.' Therefore, the index of the key to be renamed was

entered, and since the modification is not within the value, 'k' was input to change the key word. Then, the new

word was entered, and since it is not quantitative information, 'n' was input. As seen in the example, the 'Fromto'

key was successfully renamed to 'Location.'

Unlike the 'LoadPowder' task, the 'AddPowder' task template requires the 'Amount' information. In the example

above, the value of the 'Amount' key's 'Dimension' was intended to be renamed from 'g' to 'mg.' Therefore, 'r'

was input, followed by the index of the key to be renamed. Then, 'v' was input to indicate that the value inside

the key should be modified, and the word to be changed within the 'Dimension' was entered. Through this

28 / 42

process, the 'Dimension' was successfully changed from 'g' to 'mg.'

4.5.3 Delete key in task template

Since the 'LoadPowder' task involves loading a stock container filled with powder into the solid dispenser, the

'Amount' key, which indicates how much to load, is more suitable for the 'AddPowder' task. Therefore, 'd' was

input, followed by the key's index, to delete it.

If all process is done, client input ‘done’ in command line interface. Each task template can be customized

through the GPT and feedback system. The figure shows the resulting task templates configured for each task

of the ‘SolidStateModule’.

29 / 42

4.5.4 Code automated generation of action translator, task template and task Pydantic

Directory name Description

Task The directory related to tasks

└─Pydantic
Script of type validation of task
template via Pydantic package

└─Task_DeviceAction
A JSON file that stores the action
sequences for all tasks for each

module

└─Template

A JSON file that stores templates
containing the necessary

information for each task for each
module

└─TaskGenerator_Class.py Script of task generator

└─TaskScheduler_Class.py Script of task scheduler

Action The directory related to actions

└─Module
Script of module node for action

translation

└─ActionExecutor_Class.py Script of action executor

└─ActionTranslator_Class.py Script of action translator

└─routing_table.json
A JSON file that stores IP/Port

number of each module

30 / 42

4.6 Address long device standby times for job trigger

Device standby times, where no significant actions are performed in terms of devices, may substantially impair

job execution efficiency. An example of device standby times is the chemical reaction period ("React" task) in

the "BatchSynthesisModule", where chemical reactions occur in chemical vessels but no actions are performed

in terms of devices.

In this chapter, the process of registering a task with a long device standby time for the job trigger's decision

policy is demonstrated. The illustration above shows all the tasks currently available in the 'SolidStateModule.'

4.6.1 Add task with long device standby time

If the client inputs 'a' to add a task with a long device standby time, they need to enter the index of the task.

Since the 'MixPowder' task in 'SolidStateModule' has a long device standby time,

'SolidStateModule_MixPowder' will be added.

31 / 42

4.6.2 Delete task with long device standby time

If a task has been incorrectly added and needs to be deleted, the client can input 'd' and then enter the index of

the registered task to delete it. In the example above, the 'AddSolution' task was incorrectly registered, so 'd'

and 2 were input to delete it.

32 / 42

4.6.3 Code automated generation of device_standby_time.json

If all process is done, client input ‘done’ in command line interface. The figure shows the addressed task with

long device standby times in ‘SolidStateModule’.

Directory name Description

device_standby_time.json
A JSON file that addresses tasks
with long device standby time

of each module

Job_Class.py Script of job generation

JobScheduler_Class.py Script of job scheduler

JobTrigger.py Script of job trigger

33 / 42

4.7 Masking table generation for safe task execution

This chapter demonstrates the process of registering the task-specific masking table for the resource manager.

The figure above shows the masking table for all tasks in the 'SolidStateModule.' Therefore, if you want to add

the devices from existing modules to the task-specific masking table of the new module being registered, input

'y'; otherwise, input 'n'.

Let’s assume that 'ElectroChemicalRDEModule' was already registered and you are registering

'SolidStateModule.' If the user wants to add the 'RobotArm' of 'SolidStateModule' to the masking table of the

'LoadSample' task in 'ElectroChemicalRDEModule', you should input 'y' and then enter the index of the task.

The figure above input ‘3’, which represents 'ElectroChemicalRDEModule_LoadSample' task. Following this,

the command line interface will prompt the user to enter the index of the 'SolidStateModule's 'RobotArm' that

you want to register. The figure above input ‘1’, which represents 'SolidStateModule_RobotArm' task.

If you want to add another device, you should input the index of the device. Once the modifications to the

masking table of the 'LoadSample' task in 'ElectroChemicalRDEModule' are complete, input 'done.' When the

modifications to the task-specific masking table of 'SolidStateModule' are finished, input 'n'.

34 / 42

After completing the registration of the new module's device into the masking tables of the previously registered

module, the next step is to modify the task-specific masking table of the new module. Therefore, the figure

above shows all devices registered in OCTOPUS and asks if you want to modify the masking table of each task

in new module.

If the you want to register a new device into the masking table of each task, shown by the feedback system,

you should input 'a'. To delete a registered device, you should input 'd'. To finish modifying the masking table,

you should input 'done'.

35 / 42

4.7.1 Add new device in masking table for each task

For example, let's assume that the same robot arm is shared between 'SolidStateModule' and

'ElectroChemicalRDEModule.' To register 'ElectroChemicalRDEModule_RobotArm' into the masking table of

'SolidStateModule_LoadPowder,' input the index (=1) corresponding to 'RobotArm' in

'ElectroChemicalRDEModule'. As a result, as shown in the red box in the illustration above,

'ElectroChemicalRDEModule_RobotArm' will be newly registered in the masking table of

'SolidStateModule_LoadPowder.'

36 / 42

4.7.2 Delete device in masking table for each task

This time, let's delete a device registered in the masking table. To delete

'ElectroChemicalRDEModule_RobotArm' from the masking table of 'SolidStateModule_LoadPowder,' input the

index corresponding to 'RobotArm' in 'ElectroChemicalRDEModule,' which is 2. As a result, as shown in the red

box in the illustration above, 'ElectroChemicalRDEModule_RobotArm' will be removed from the masking table

of 'SolidStateModule_LoadPowder.'

Once all modifications to the masking table are complete, input 'done' to exit the feedback system for masking

table modifications. After that, the Copilot of OCTOPUS will proceed with code generation related to the masking

table.

37 / 42

4.7.3 Code automated generation of resource manager

Directory/Script name Description

Module Resource allocator for each module

device_location.json Device resources (location
information) for each module

device_masking_table.json Device status table included all
devices for each module

device_status.json Device masking table for all task of
each module

ResourceAllocator_Class.py Script of resource allocator inherited
by Module/{module name}.py

ResourceManager_Class.py Script of resource manager

38 / 42

5. Appendix: Manual modification in OCTOPUS

5.1 Connect device to module node

To perform the defined tasks using devices, you must define the communication methods (RS232, RS486 or

ethernet) and data transmission protocols according to the specifications set by each manufacturer. This

requires consulting the manuals or libraries provided by the manufacturers. For example, if you use a syringe

pump from “Tecan”, refer to the “TecanAPI” library provided by Tecan to select the communication method and

enter the data transmission protocol in the code. If you created a custom Arduino-based device, you should

predefine the data transmission protocol based on serial communication and register it with the module node.

5.1.1 Set device information

Device information requires the input of device settings. Since device information is stored in the task template

by the master node, providing more detailed device information can enhance the reliability of the task.

For example, in the case of a powder dispenser based on Arduino, you can include the powder type, the

resolution, device port and baud rate as device information. The figure above represents manual modification

of constructor (=‘__init__’) function in ‘PowderDispenser.py’

39 / 42

5.1.2 Translate action to device protocol based on manufacturer manual

After code generation through the Copilot of OCTOPUS, the action functions of the module node's devices are

not implemented as shown in the red box in the illustration. Therefore, you need to translate the actions into

device protocols according to the manufacturer's manual.

For example, in the case of a powder dispenser made with Arduino, the coding that entered material name,

amount, and dimension is already done. Therefore, the ‘action_data_list’ should include these three information,

and should be included diverse information depending on device. Use the ‘write’ function of 'self.arduino',

defined in the constructor function, to execute the 'Dispense' function of the powder dispenser made with

Arduino.

40 / 42

5.2 Complete action data

After completing the modifications to the module node, you need to modify the script file located in the

'Action/Module' directory.

When you open the script saved under the module name, you will find several functions, defined for each task

name of the module. These functions are defined for task execution, and the Copilot of OCTOPUS has

automatically generated the functions to execute actions according to the defined action sequences.

The important point is that you need to define the action data for each action using 'task_dict,' which contains

task information, 'location_dict,' which includes resources assigned to the module, and 'task_idx,' which

indicates the sequence of operations.

41 / 42

Since the action data has already been defined in Chapter 5.1, you need to modify red boxes to customized

action data on module node's device script using 'task_dict,' 'location_dict,' and 'task_idx', according to the

previously defined format from module node's device script.

For example, the 'AddPowder' task is composed of the action sequence, such as 'RobotArm_Move,'

'RobotArm_Grasp,' 'PowderDispenser_Dispense,' and 'RobotArm_Release.' You need to customize the action

data for each action. The powder dispenser was predefined in the module node to receive material name,

amount, and dimension when executing the "Dispense" action. Therefore, the action data is extracted from the

task_dict and customized into a single list. Additionally, the 'RobotArm_Move' action can use the resource index

assigned by the resource manager as action data. After defining the action data, the 'self.executeAction' function

is used to command the module node to execute the action by inputting the module name, job ID, device name,

action type, action data, mode type, and data dictionary.

42 / 42

5.3 [Optional] Define `calculateData` function in `Analysis` directory

After code generation via the Copilot of OCTOPUS, you will find that functions are created in the

'Analysis/Module' folder to preprocess raw data or spectrum data for each task of the module, if needed. In

above figure, the functions received raw data or spectrum data from the 'ElectroChemicalModule' to extract

specific properties, such as overpotential, current density, or stability about electrochemical properties. In such

cases, you need to define how to handle the raw data or spectrum data in each function.

For example, 'PerformCV' refers to CV (Cyclic Voltammetry) analysis. Therefore, you should define the

necessary hyperparameters for CV in the function, such as the number of cycles, scan rate, current value, and

impedance value. This allows data processing using the predefined hyperparameters.

More detailed information of defining analysis script, please refer https://github.com/KIST-

CSRC/Octopus/blob/main/Analysis/Module/UVVisModule.py.

