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Materials and methods:
Phase and Microstructure Characterization: The room temperature X-ray diffraction (XRD) was
carried out for obtained n-type Bi2Te3+x and p-type Bi0.4Sb1.6Te3+x films after the annealing process with
Bruker D8 Advance SS/ 18 kW, which is equipped with Cu Kα radiation (λ1 = 1.54056 Å, λ2 = 1.54443 Å)
and a PIXcel detector, the current maintained at 40 mA and the working voltage was set as 40 kV. The
field-emission scanning electron microscope (SEM, Thermo Scientific Apreo 2 S HiVac, 5 kV) equipped
with an energy dispersive spectroscopy (EDS) is adopted to characterize the microstructure and
composition. The orientation factor F of the films were calculated using the formula F = (Pi − P0)/(1 − P0),
where Pi  = I(00l)/∑ I(hkl), P0 = I0(00l)/∑ I0(hkl), I(00l) is the (00l) plane diffraction intensity, Pi is the
intensity ratio of the (00l) plane and I(hkl) is the diffraction peaks intensity. I(00l), P0 and I0(hkl) were the
parameters of the standard peaks (PDF no. 15-0863).

TE Property Measurement: The in-plane resistivity, Seebeck coefficient, carrier concentration and Hall
mobility were simultaneously measured by a home-built apparatus from 300 to 420 K. The Seebeck
coefficient was obtained from the slope of the thermopower vs. temperature difference from 0 to 5 K1. The
thermopower was measured by two Nb wires welded to the thermocouple tips, the hot and cold side
temperatures were measured by two K-type thermocouples attached to the opposite edges of the film. Four
probes were connected to the films for resistivity and Hall coefficient measurement by the Van der Pauw
technique under a reversible magnetic field of 1.5 T. The thermal conductivity is evaluated by transient
photo-electro-thermal (TPET) technique2 for both PI substrate and deposited PI films.

DFT calculations: Density Functional Theory (DFT) calculations were performed using the Vienna ab
initio Simulation Package (VASP)3-5. The generalized gradient approximation (GGA) with the Perdew,
Burke, and Ernzerhof (PBE) exchange-correlation functional was employed 6 Structural optimizations
were conducted until the forces on the atoms were less than 0.01 eV/Å, with the electronic energy
convergence criterion set to 10-6 eV in the self-consistent calculations. A cutoff energy of 350 eV was used
for all computations. The structural data for Bi2Te3 and Sb2Te3 were sourced from the MatHub-3d
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database7. Defect calculations were performed using a 4×4×1 supercell containing 240 atoms, with a
Γ-centered 2×2×1 k-point mesh. The effective band structures (EBS) for the defective structures were
calculated using the BandUP code 8, 9.

In this study, we calculated the binding energies of various surfaces, including the (100), (110), (015),
and (001) facets. By varying the interlayer distance between the exfoliated layer and the bulk material and
computing the system's energy at each state, we obtained a curve depicting the variation of the system's
energy as a function of the interlayer distance. The energy of the system exhibited a trend of initial
decrease followed by an increase, and ultimately reached convergence as the distance was extended. The
binding energy is defined as the difference between the minimum point of the system's energy and its
converged value：

  /b vally convE E E A  

where A is the surface area. Evally and Econv are the minimum and convergence energies of systems,
respectively.

For perfect structures, both lattice constants and atomic positions for the supercells were relaxed,
whereas for defective supercells, only the atomic positions were optimized. The formation energy of a
point defect can be expressed as follows10,11:

�� = ������� − ������� − � ����� (2)

where ������� ​ is the total energy of the defective structure, and ������� ​ is the total energy of the

perfect supercell. In the defect structure, �� ​ represents the number of atoms of the i-th type (either host
or impurity atoms) added to (�� > 0 ) or removed from (�� < 0 ) the supercell during defect formation.
�� ​ denotes the chemical potential for the i-th type of the atom.
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Figures

Fig. S1. Power factor of film thermoelectric materials. The room temperature power factor of films Bi0.4Sb1.6Te3+x (p)
and Bi2Te3+x (x=0.17)(n) obtained in this work, with a comparison to that of other p-type12-16 and n-type17-21 thin films.

Fig. S2. Te content distribution in the film from bottom to top. The room temperature surface (a) and sectional (b) SEM
images of n-type sample Bi2Te3+x (x=0.12), together with the Te element distribution on the sectional face from bottom to top
before (c) and after (d) annealing process.
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Fig. S3. XRD patterns showing amorphous phase above 675 K. Temperature-dependent X-ray diffraction data for
sample Bi0.4Sb1.6Te3+x (x=0.17) with temperature ranging from 313 K to 723 K. The halo peak in the 2 range 10~30。when
temperature above 675 K indicating the appearance of amorphous phase Te.

Fig. S4. Heat flow change due to Te melting. The temperature dependent normalized heat flow of sample Bi0.4Sb1.6Te3+x
(x=0.17) with (solid black line) and without (solid red line) substate PI, the heat absorption peak at ~690 K indicates the
appearance of extra Te phase transition in the film.
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Fig. S5. The orientation enhancement by annealing temperature for Bi2Te3-based samples. (a, c) The XRD
patterns and (b, d) (00l) orientation factor of Bi0.4Sb1.6Te3+x (x=0.24), and Bi2Se0.3Te2.7+x (x=0.12) samples annealed at
different temperature, respectively.
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Fig. S6. The orientation enhancement for Bi2Te3-based samples. The room temperature XRD patterns and

corresponding orientation factor for p-type Bi0.4Sb1.6Te3+x films (a, b) and n-type Bi2Te3+x films (c, d) (0x0.17); #1 and #2
represent two parallel samples.

Fig. S7. EBSD analysis for p-type and n-type samples. The room temperature EBSD image (a) and inverse pole figure
(b) for p-type Bi0.4Sb1.6Te3+x (x=0.17); EBSD image (c) and inverse pole figure (d) for p-type Bi0.4Sb1.6Te3; EBSD image (e) and
inverse pole figure (f) n-type Bi2Te3+x (x=0.17); EBSD image (g) and inverse pole figure (h) Bi2Te3 (c~d) films.

Fig. S8. The grain size increase for p-type samples. The room temperature SEM images of p-type Bi0.4Sb1.6Te3+x(x=0, 0.12,
0.17, 0.24) samples (a~d), and the EDS analysis for x=0.17 (e~f) and x=0.24 (h~j), indicating the increase of grain size and

Te-rich distribution around grain boundary.
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Fig. S9. The room temperature SEM images of n-type Bi2Te3+x (x=0, 0.12, 0.17, and 0.24) (a~d) samples

Fig. S10. The grain size distribution for p-type Bi0.4Sb1.6Te3+x (a~b) and n-type Bi2Te3+x samples. (x=0 and 0.17)
(c~d) samples
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Fig.S11. HAADF magnified images of regular and staggered layers. HAADF magnified
images (a, b) and corresponding intensity image (e, f) of atom columns utilizing the Z-contrast feature.
The blue, green lines point to twin boundary and layer faults, respectively. and GPA analysis image
of p-type Bi0.4Sb1.6Te3+x (x=0.17) sample; (c) are for the regular layered structure, (d) is GPA analysis
image corresponding (c); (e, f, g) are for staggered stacking fault structure, and (h) is GPA analysis
image corresponding (g).

Fig.S12. TEM image of the staggered layers and dislocation for the p-type Bi0.4Sb1.6Te3+x (x=0.17) sample.
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Fig. S13. Electrical properties for n- and p-type Bi2Te3-based films. The temperature dependent Seebeck coefficient,
resistivity and power factor for p-type Bi0.4Sb1.6Te3+x (x=0, 0.12, 0.17 and 0.24) (a~b) and n-type Bi2Te3+x (x=0, 0.08,0.12 and
0.17) (c~d) films in this work. The data of parallel samples #1 and #2 show good consistency in electrical properties

Fig. S14. Electrical properties for p- and n-type Bi2Te3-based samples. The temperature dependent hall carrier
concentration and hall mobility for p-type Bi0.4Sb1.6Te3+x (x=0, 0.12, 0.17 and 0.24) (a~b) and n-type Bi2Te3+x (x=0, 0.08, 0.12
and 0.17) (c~d) films in this work. The T-1.5 temperature dependence of hall mobility indicated the dominated acoustic phonon
scattering in this work.
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Fig. S15. The calculated Lattice thermal conductivity properties for p-type Bi0.4Sb1.6Te3+x (x=0 and 0.17). The
experimental data are showed by scatter dots and the lines are the calculated results according to Debye-Callaway model.

Fig.S16. Planar device size and simulation process. The optimized geometry size of the planar device (a), and simulated
temperature difference when changing p and n leg angle (b).

Fig. S17. Cooling ability of planar f-TEC for laser heating hot spot. The cooling ability of the f-TEC device prepared in this

work measurement with difference laser heating power. Three times test results show ~8 K temperature cooling.
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Fig. S18. Output power of planar film thermoelectric device. The current dependent voltage and output power at different

temperature different (a), and the body heating generated voltage at room temperature (b) of the film thermoelectric device prepared in this

work. the output power density of various of film TEGs published (c)12,17,25-29.

Table S1. The final compositions of p-type Bi0.4Sb1.6Te3+x and n-type Bi2Te3+x films determined by EDS.

Samples Extra Te content Bi(at％) Sb(at％) Te(at％)

Bi0.4Sb1.6Te3+x

x=0 8.81 33.92 57.26

x=0.12 8.67 32.18 59.14

x=0.17 8.17 32.2 59.63

x=0.24 8.32 32.19 59.48

Bi2Te3+x

x=0 40.2 - 59.8

x=0.08 40.3 - 59.7

x=0.12 40.3 - 59.7

x=0.17 40.4 - 59.6

Table. S2. The length L, αmea, αsub, ���� , ��� , and the final calculated TE in thermal diffusion coefficient determination for
sample Bi2Te3+x (x=0 and 0.17).

Sample T (K) L(mm) αmea(mm2/s) αsub(mm2/s) ����(mm2/s) ���(mm2/s) TE(W/mK)

x=0

300
1.638 1.70

0.33 0.41 0.81 0.981.859 2.08
1.953 2.26

330
1.638 1.71

0.36 0.43 0.82 0.981.859 2.11
1.953 2.25

350

1.638 1.74

0.38 0.46 0.87 1.04
1.859 2.15
1.953 2.27
1.766 1.73
1.916 1.94

x=0.17
300

1.529 1.43
0.33 0.45 0.67 0.811.702 1.68

1.785 1.79

330
1.529 1.47

0.36 0.49 0.73 0.88
1.702 1.71
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Table. S3. The L, αmea, αsub, ����, ���, and the final calculatedTE in thermal diffusion coefficient determination for
sample Bi0.4Sb1.6Te3+x (x=0, 0.12, 0.17 and 0.24).

1.785 1.82

350
1.637 1.74

0.38 0.51 0.75 0.901.859 2.15
1.953 2.27

Sample T (K) L(mm) αmea(mm2/s) αsub(mm2/s) ����(mm2/s) ���(mm2/s) TE(W/mK)

x=0

300
0.938 0.60

0.32 0.49 0.77 1.061.283 0.60
2.313 0.99

325
0.938 0.58

0.35 0.50 0.75 1.041.283 0.76
2.313 1.19

350

0.938 0.60

0.37 0.50 0.72 0.99
1.283 0.75
2.313 1.22
0.938 0.60

x=0.12 300

0.454 0.46

0.32 0.48 0.74 1.02
1.018 1.20
1.814 2.31
2.559 4.09

x=0.17

300

0.494 0.51

0.32 0.46 0.68 0.89
0.812 0.65
1.575 1.06
2.592 2.16

313

0.494 0.50

0.35 0.46 0.65 0.85
0.812 0.64
1.575 1.10
2.592 2.15

323

0.494 0.52

0.35 0.46 0.63 0.83
0.812 0.63
1.575 1.13
2.592 2.23

333

0.494 0.55

0.36 0.49 0.69 0.91
0.812 0.64
1.575 1.22
2.592 2.32

343

0.494 0.58

0.37 0.50 0.71 0.93
0.812 0.66
1.575 1.21
2.592 2.40

353

0.494 0.62

0.38 0.52 0.76 0.99
0.812 0.67
1.575 1.33
2.592 2.56

x=0.24 300
1.575 0.72

0.32 0.51 0.80 1.06
2.592 0.93
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Table S4. The Fitting Results according to Debye-Callaway Model for p-type Bi0.4Sb1.6Te3+x(x=0 and0.17).

Samples L(μm) A(10-41 s3) B (10-18 sK-1) C(10-31 s2) D(10-3) E(10-15 s)

Bi0.4Sb1.6Te3 0.21 2.74 1.70 1.03 1.81 4.50

Bi0.4Sb1.6Te3+0.17 5.41 3.91 1.70 4.48 7.88 8.99

Table S5. Parameters Used for the Debye-Callaway Model

Parameters Description Values

θD Debye temperature 164 K17

vl Longitudinal sound velocity 2800 m/s17

vt Transverse sound velocity 1660 m/s17

vs Average sound speed 1778 m/s17

r Poisson's ratio 0.2418

L Average grain size 5.41 μm for x=0.17 sample
0.21 μm for x=0 sample

v Average atomic volume 3.48×10-29 m3

M Average atomic mass 2.66×10-25 kg
γ
Γ

Gruneisen parameter
Point defect scattering parameter

1.519

0.053
B Van der waals gap 2.52 Å

Nd Dislocation density
5.56×1016 m-2 for x=0.17 sample (fitted)
1.28×1016 m-2 for x=0 sample(fitted)

Ns Number of staggered layers in a line of
unit length

1.66×108 m-1 for x=0.17 sample(fitted)
0.80×108 m-1 for x=0 sample(fitted)
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