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Fig. S1. EOL1-conditioned medium affects the apoptotic response of non-epithelioid ZL.34 cells
to chemotherapy

(a) Experimental design. EOL1 progenitors were differentiated in eosinophils (Dif-EOL1) with
valproate for 8 days. Supernatant from differentiated cells (SN Dif-EOL1) was added at 25% v/v to the
medium of ZL.34 cell cultures for 48 hours. After treatment with 10 uM cisplatin and 10 uM pemetrexed
(C+P) for 48 hours, the rates of apoptosis were quantified by Annexin V/PI labelling and cell cycle
analysis (Sub-G1). (b) Percentages of apoptotic ZL34 cells evaluated by flow cytometry analysis of
annexin V/PI labelled cells. (c) After ethanol permeabilization and Pl staining, the proportion of cells
with fragmented DNA (i.e., Sub-G1) was determined by flow cytometry. (d) ZL34 cells were cultured
for 72 hours in a 96-well plate coated with DMEM-agarose 1.5% in presence of SN Dif-EOL1 and then
treated with C+P for 2 days. The proportion of ZL34 cells with fragmented DNA (i.e., Sub-G1) was
analysed after spheroid dissociation, cell permeabilization and propidium iodide staining. (e) S phase
blockade in ZL34 spheroids. Data are expressed as means +/- SD, each dot representing an independent
test. Normality of the data distribution was analysed by Shapiro-Wilk and equality of the variances was
determined by Brown-Forsythe. The variance of the means was compared by one-way ANOVA
followed by Tukey’s multiple comparison test.
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Fig. S2. EOL1-conditioned medium affects late apoptosis of M14K and ZL34 cells in response to
chemotherapy

After annexin V/PI labelling, the proportion of M14K (a,b) and ZL34 (c,d) cells in early (i.e., Annexin
V* PI') (a,c) and late apoptosis (i.e., Annexin V* PI*) (b,d) were determined by flow cytometry. Data is
expressed as means +/- SD, each point representing an independent test. Normality of the data
distribution was analysed by Shapiro-Wilk and equality of the variances was determined by Brown-

Forsythe. Variance of the means was compared by one-way ANOVA followed by Tukey’s multiple
comparison test.
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Fig. S3. Compared to M14K, non-epithelioid ZL34 cells preferably undergo S phase arrest in
presence of C+P

Representative cell cycle distributions of M14K (a) and ZL34 (c) cells. The proportion of cells in each
phase of the cell cycle (Sub-G1, GO, S and G2-M) in the different conditions are indicated. Statistical
analysis of S-phase blockade in M14K (b) and ZL34 (d). Data is expressed as means +/- SD, each point
representing an independent test. Normality of the data distribution was analysed by Shapiro-Wilk and
equality of the variances was determined by Brown-Forsythe. Variance of the means was compared by
one-way ANOVA followed by Tukey’s multiple comparison test.
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Fig. S4. Co-administration of Dif-EOL1 and C+P does not affect apoptosis

MPM cells were cultured in presence of differentiated EOL-1 supernatant (SN Dif-EOLL1) at 25% v/v,
10uM cisplatin and 10 pM pemetrexed (C+P) for 48 hours. After labelling with Annexin V/PI, apoptosis
was evaluated by flow cytometry. Apoptotic rates in M14K (a) and ZL34 (b) cells. (c) MPM cells were
cultured in a 96-well plate coated with DMEM-agarose 1.5% for 72 hours. Spheroids were then cultured
for 48 hours in presence or absence of SN Dif-EOL1 and 10uM C+P. After spheroid dissociation,
ethanol permeabilization and propidium iodide staining, the proportion of M14K cells with fragmented
DNA (i.e., Sub-G1) (d) and ZL34 cells in S phase (e) were analysed by flow cytometry. Data is
expressed as means +/- SD, each dot representing an independent test. Normality of the data distribution
was analysed by Shapiro-Wilk and equality of the variances was determined by Brown-Forsythe. The
variance of the means was compared by one-way ANOVA followed by Tukey’s multiple comparison

test.
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Fig. S5. Transcriptomic profiles of ZL34 cells in response to Dif-EOL1 supernatant

(a) Unsupervised heatmap of the top 25 up- and down-regulated most significant genes deduced from 3
independent experiments. (b) Volcano plot of DEGs in M14K treated with C+P in presence of mock or
conditioned medium of differentiated EOL1 (SN Dif-EOL1). DEGs |Log.(FC) | > 1 and p-adj < 0.05
are coloured in red. (c) Venn diagram of significant DEGs in the different conditions. Numbers of genes
impacted by SN Dif-EOL1 are in bold. (d) Representative chord diagram of the most significative
pathways affected in GO Molecular Functions (GO:MF) in conditions C+P+SN Dif-EOL1 and C+P.
Pathways (right half of the diagram) are linked to the genes (on the left side) according to their Logs.
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Fig. S6. Gene ontology enrichment analysis of M14K CP vs. mock

(a) Dot plot of the significant pathways related to cisplatin+pemetrexed response as results of gene ontology (GO) of the gene set enrichment analysis (GSEA)
of M14K CP vs. mock. Dot size represents the number of genes belonging to each pathway. The colour gradient is related to the level of significance, adjusted
with the Benjamini-Hochberg method. The box on the left collects activated pathways, while the box on the right the suppressed ones. (b) The gene concept
network reports the enriched pathways in the list of differentially expressed genes (DEGSs) resulting from the comparison CP vs. mock. Individual genes are
represented in grey dots, while GOs are represented in category colour. The size of GO points indicates the number of significantly enriched genes belonging to

the specific GO.
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Fig. S7. Gene ontology enrichment analysis of ZL34 CP vs. mock
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(a) Dot plot of the significant pathways related to cisplatin+pemetrexed response as results of gene ontology (GO) of the gene set enrichment analysis (GSEA)
of ZL.34 CP vs. mock. Dot size represents the number of genes belonging to each pathway. The colour gradient is related to the level of significance, adjusted
with the Benjamini-Hochberg method. The box on the left collects activated pathways, while the box on the right the suppressed ones. (b) The gene concept
network reports the enriched pathways in the list of differentially expressed genes (DEGSs) resulting from the comparison CP vs. mock. Individual genes are
represented in grey dots, while GOs are represented in category colour. The size of GO points indicates the number of significantly enriched genes belonging to

the specific GO.
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Fig. S8. Gene ontology enrichment analysis of M14K CP+ SN Dif-EOL1 vs. CP

(a) Dot plot of the significant pathways related to cisplatin+pemetrexed response and resistance, as results of gene ontology (GO) of the gene set enrichment
analysis (GSEA) of M14K CP + SN Dif-EOL1 vs. M14K CP. Dot size represents the number of genes belonging to each pathway. The colour gradient is related
to the level of significance, adjusted with the Benjamini-Hochberg method. (b) The gene concept network reports the enriched pathways in the list of
differentially expressed genes (DEGs) resulting from the comparison CP + SN Dif-EOL1 vs. CP. Individual genes are represented in grey dots, while GOs are
represented in category colour. The size of GO points indicates the number of significantly enriched genes belonging to the specific GO.
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Fig. S9. Gene ontology enrichment analysis of ZL34 CP + SN Dif-EOL1 vs. CP
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(a) Dot plot of the significant pathways related to cisplatin+pemetrexed response and resistance, as results of gene ontology (GO) of the gene set enrichment
analysis (GSEA) of ZL34 CP + SN Dif-EOLL1 vs. ZL34 CP. Dot size represents the number of genes belonging to each pathway. The colour gradient is related
to the level of significance, adjusted with the Benjamini-Hochberg method. (b) The gene concept network reports the enriched pathways in the list of
differentially expressed genes (DEGs) resulting from the comparison CP + SN Dif-EOL1 vs. CP. Individual genes are represented in grey dots, while GOs are
represented in category colour. The size of GO points indicates the number of significantly enriched genes belonging to the specific GO.
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Fig. S10. Expression of CLC-P/Gall10 increases upon differentiation of EOL1 into Dif-EOL1
cells

EOL1 were differentiated (Dif-EOL1) for 8 days with valproate 2 uM. After 8 days, both EOL1
progenitors and Dif-EOL1 were collected, fixed, permeabilized, stained for CLC-P/Gal10 and analysed
by flow cytometry. The relative median intensity (rMFI) corresponds to the ratio of intensities associated
with CLC-P/Gal10 compared to control isotype. Normality of the population was checked with Shapiro-
Wilk and variance of the means was compared by unpaired t-test using Welch’s correction.
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Fig. S11. C+P treatment does not modify CLC-P/Gall10 secretion by primary eosinophils

(a) Experimental design. Primary eosinophils were isolated by Ficoll gradient centrifugation and
purified with CCR3-magnetic beads. Eosinophils were then cultured in presence of mock or C+P (10
MM cisplatin and 10 uM pemetrexed) for 48 hours. (b) The concentration of CLC-P/Gal10 (in ng/mL
of eosinophil supernatant) was quantified by ELISA. Normality was checked by Shapiro-Wilk and
variance of the means was compared with Wilcoxon matched-pairs signed rank test.
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Fig. S12. Supernatant of MPM cells does not significantly affect CLC-P/Gal10 expression by

primary eosinophils

() Experimental design. M14K and ZL34 cells were cultured in presence or not of cisplatin and
pemetrexed for 48 hours. These supernatants were added to primary eosinophils for 48 hours and the
concentration of CLC-P/Gal10 (ng/mL) was quantified by ELISA. Normality of the populations was
checked by Shapiro-Wilk and equality of the variances were determined by Brown-Forsythe and Welch.
Variance of the means was compared by one-way ANOVA followed by Dunn’s multiple comparison

test.
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Fig. S13. Low-passage primary cells from mesothelioma patients show different responses to
cisplatin and pemetrexed
(a) Three low-passage cultures established from patients’ tumours (#07, #80, and #27) were incubated
in presence of cisplatin and pemetrexed at different concentrations (i.e., 0, 10, 15, 20, 25, 30 and 50 pM)
for 48 hours. Apoptotic rates were determined by flow cytometry after Annexin V and propidium iodide
(PI) staining. (b) Histological characteristics and mutational profile of the cell cultures. D: deleted; WT:

wild-type; M: mutated; E-score: Epithelioid score; S-score: Sarcomatoid score. E-score and S-score

were established by RNA-sequencing 2. The IC50 corresponds to the concentration of C+P inducing
50% apoptosis in these primary cells.
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Fig. S14. Low passage primary MPM cultures exhibit different cell cycle proportion response to

CLC-P/Gal10

Cell cultures from patients #07 (epithelioid), #80 (sarcomatoid) and #27 (biphasic) *? were cultured in
presence of CLC-P/Gall10 at 0.1; 0.5; 1 or 5 pg/ml for 48 hours. Then, cells were treated for 48 hours
with 10 uM C+P (MPM_80 and MPM_27) or 30 uM C+P (MPM_07). Representative cell cycle
distributions of MPM_07 (a), MPM_80 (c), and MPM_27 (e). The proportion of cells in each phase of
the cell cycle (Sub-G1, GO, S, G2-M and polyploids) in the different conditions are indicated. (b, d, f)
Respective analysis of the proportion of cells in Sub-G1. Data is expressed as medians + 95% CI, each
point representing an independent test (Exp. 1 in blue, Exp. 2 in orange).
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CLC-P/Gal10

Fig. S15. Immunofluorescence of tumour biopsies from MPM patients

Sections of 4 um from formalin fixed-tumour biopsies from MPM patient with low (a) and high (b)
absolute eosinophil count (AEC) were stained with DAPI (blue), labelled with anti-CCR3 antibody
conjugated with APC (red) and with anti-CLC-P/Gal10 antibody combined with an AlexaFluor488
conjugate (green). Images were acquired using a Zeiss 880 Airyscan Elyra confocal microscope
equipped with a x63-1.4 oil immersion objective. The average number of eosinophils infiltrating MPM
biopsies (indicated by whit arrows) was estimated on 8 different zones of the same slice. A total of 0 to
17 eosinophils were found in the two tumours, among a total of 3,000 cells per tumour. (c, d)
Representative images of an eosinophil within the tumour were generated using Imaris. Scale bars
represent a length of 3 um.
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Fig. S16. ZL 34 cells internalize CLC-P/Gal10

MPM cells were incubated or not (mock) with SN Eos or recombinant h-CLC-P/Gal10 for 48 hours
before staining with DAPI (blue), CellMask (red) and CLC-P/Gal10 (green). Images were acquired
using a Zeiss 980 Airyscan Elyra confocal microscope equipped with a x63-1.4 oil immersion objective.
Representative images were computed with Imaris.
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Fig. S17. The CLC-P/Gal10 levels in pleural fluids of MPM patients do not correlate with
survival during the first-year post-diagnosis

(a) Correlation of CLC-P/Gal10 in pleural fluids with duration of survival. (b) Aalen additive regression
model conducted to assess the consistency of the effects of CLC-P/Gal10 groups found with rpart on
survival over time. (c) Effect of the CLC-P/Gal10 levels on the first-year survival of MPM patients.
L-R test: Log-Rank test; HR: Hazard ratio; CI: Confidence Interval; Grp: group; grpHigh: patients
with CLC-P/Gal10 > 128.3 ng/mL.
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Fig. S18. Cytokine-induced blood eosinophilia does not influence tumour growth in C57BL/6

(a) C57BL/6 mice were inoculated subcutaneously in both flanks with syngeneic AK7 cells. When the
tumour reached 200 mm?, mice were injected intraperitoneally with IL-5 (5 ng /gBW) and IL-33 (20
ng/gBW) as indicated by the arrows. (b) Absolute eosinophil counts were determined with an
hematocytometer when the tumour reached 500 mm?, before chemotherapy administration. Normality
of the populations was checked by Shapiro-Wilk and homogeneity of the variances was evaluated by
Brown-Forsythe. Variance of the means were compared by one-way ANOVA followed by Tukey’s
multiple comparison test. (c) Kinetics of the tumour volume (in mm?®). The tumour volume was regularly
determined by using the hemi-ellipsoid formula (L x I x W x ©t/6), where L=length, W=width, H=height.
Growth curves were constructed based on median and range. Normality of the populations was checked
by Shapiro-Wilk and homogeneity of the variances was assessed with the Levene’s test. Growth curves

were compared by using the “growth index” method followed by two-way ANOVA.
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Fig. S19. Expression of MBP is increased in tumours of eosinophilic mice
(a) Representative image of cells co-expressing the major basic protein (MBP) and lysin 6G (Ly6G)

within a mesothelioma tumour. After staining with DAPI (blue), formalin-fixed sections were labelled
with antibodies specific for the major basic protein (MBP; AlexaFluor 488 in green) and lysine 6G
(Ly6G; AlexaFluor 467 in red). Images were acquired using a Zeiss 880 Airyscan Elyra confocal
microscope equipped with a x63-1.4 oil immersion objective. (b) The average number of Ly6G and
MBP positive events was estimated on 15 different zones of the same slice.
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Fig. S20. The cisplatin+pemetrexed regimen reduces tumour growth in C57BL/6 mice
(a) C57BL/6 mice were inoculated subcutaneously with syngeneic AK7 cells. When the tumour reached

500 mm?, mice were injected with cisplatin (6 pug /gBW) and pemetrexed (150 pg/gBW). (Mock, C+P
n = 5 mice) (b) Absolute eosinophil counts (number of cells / yL of blood) measured with an
hematocytometer just before C+P treatment. (c) The tumour volume was regularly determined by using
the hemi-ellipsoid formula (L x | x W x =/6), where L=length, W=width, H=height. Growth curves were
constructed based on median and range. Normality of the populations was checked by Shapiro-Wilk and
homogeneity of the variances was assessed with the Levene’s test. Growth curves were compared by
using the “growth index” method followed by t-test.
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