Supporting Information (SI)

The synergic effect of *h*-MoO₃, α-MoO₃, and β-MoO₃ phase mixture as a solid catalyst to obtain methyl oleate

Gabrielle Sophie Medeiros Leão^{1#}, Marcos Daniel Silva Ribeiro^{1#}, Rubens Lucas de Freitas Filho², Libertalamar Bilhalva Saraiva¹, Ramón R. Peña-Garcia³, Ana Paula de Carvalho Teixeira², Rochel Montero Lago², Flávio Augusto Freitas⁴, Silma de Sá Barros⁵, Sérgio Duvoisin Junior⁶, Yurimiler Leyet Ruiz⁷, and Francisco Xavier Nobre^{1*}

¹Departamento de Química, Meio Ambiente e Alimentos (DQA), Grupo de Recursos Energéticos e Nanomateriais (GREEN Group), Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Campus Manaus Centro, Manaus, 69020-120, AM, Brazil

²Departamento de Química, ICEx, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG 31270-901, Brazil.

³Universidade Federal Rural de Pernambuco, programa de Pós-Graduação em Engenharia Física

⁴Núcleo de Materiais e Energia – Centro de Bionegócios da Amazônia. Av. Gov. Danilo de Matos Areosa, 160 - Distrito Industrial I, Manaus - AM, 69075-351, Brazil

⁵Programa de Pós-graduação em Engenharia de materiais, Escola de Engenharia de Lorena, Universidade de São Paulo, Estrada Municipal Chiquito de Aquino, nº 1000 – Mondesir, Lorena, SP, 12612-550, Brazil.

⁶Curso de Engenharia Química, Universidade do Estado do Amazonas, Escola Superior de Tecnologia, Av. Darcy Vagas, 1200, Parque Dez de Novembro, Manaus, AM, 69050-020, Brazil

⁷Departamento de Engenharia de Materiais, Laboratório de Processamento de Materiais Tecnológicos (LPMaT), Universidade Federal do Amazonas, Instituto de Ciências Exatas, Rua Av. General Rodrigo Otávio Jordão Ramos, 1200, Coroado I, Manaus, 69067-005, Brazil

[#]These authors have been equally contributed to this manuscript.

**Corresponding author: Francisco X. Nobre (Francisco.nobre@ifam.edu.br)*

Table of content	Page no	
1)Complementary Rietveld Refinement Results	S 3	
2) High Resolution deconvoluted XPS spectrum	S 4	

1. Complementary Rietveld Refinement Results

The complementary study of crystallographic information of samples $MoO_3_2.5$, MoO_3_5 , $MoO_3_7.5$, and MoO_3_10 , is performed out by structural Rietveld refinement, in focus, the lattice parameters, unit cell volume, crystallite size and phase composition.

Table S1: Rietveld refinement results obtained for samples $MoO_3_{2.5}$, MoO_3_{5} , $MoO_3_{7.5}$, and MoO_3_{10} .

Parameters	Samples				ICSD	ICSD	ICSD
	MoO ₃ _2.5	MoO ₃ _5	MoO ₃ _7.5	MoO ₃ _10	87962	76651	80577
h-MoO3							
a (Å)	10.575(3)	10.574(3)	10.578(1)	10.468(7)	10.576(1)		
b (Å)	10.575(3)	10.574(3)	10.578(1)	10.468(7)	10.576(1)		
<i>c</i> (Å)	3.725(7)	3.725(7)	3.725(7)	3.708(2)	3.728(1)		
V (Å ³)	360.85(02)	360.78(2)	361.03(9)	351.94(7)	361.12(12)		
\overline{D}_{hkl} (nm)	46	55	56	77			
Xr (%)	100	97.96	95.71	9.38			
a-MoO3							
a (Å)		13.855(9)	13.867(3)	13.758(5)		13.8550	
<i>b</i> (Å)		3.696(5)	3.6949(4)	3.672(7)		3.7010	
<i>c</i> (Å)		3.959(7)	3.957(7)	3.940(1)		3.9620	
V (Å ³)		202.81(1)	202.78(1)	199.09(9)		203.16	
\overline{D}_{hkl} (nm)		22	21	20			
Xr (%)		2.04	4.29	73.78			
β-ΜοΟ3							
a (Å)				3.936(5)			3.954(1)
<i>b</i> (Å)				3.670(2)			3.687(2)
<i>c</i> (Å)				7.078(3)			7.095(4)
V (Å ³)				99.38(9)			100.47(8)
$\overline{\pmb{D}}_{\pmb{hkl}} \ (nm)$				120			
Xr (%)				16.84			

Legend: V = Unit cell volume; \overline{D}_{hkl} = crystallite size and X_r = phase composition.

Figure S1: Deconvoluted high resolution Mo $3d_{3/2}$ and $3d_{5/2}$, O 1s and N 1s XPs spectrum of Rietveld refinement results obtained for samples (a-c) MoO₃_2.5, (d-f) MoO₃_5, (g-i) MoO₃_7.5, and (j-l)MoO₃_10.