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Supplementary Table 1. Selection criteria for the nineteen machine learning-based methods 

considered in this study. These are the criteria employed to select machine learning-based 

Method Source Review Install Docs Model Included 

VN-EGNN ✓ ✓ ✓ ✓ ✓ ✓ 

IF-SitePred ✓ ✓ ✓ ✓ ✓ ✓ 

GrASP ✓ ✓ ✓ ✓ ✓ ✓ 

RefinePocket ✓ ✓ ? × ✓ × 

EquiPocket ✓ × ? × ✓ × 

GLPocket ✓ ✓ ? × ✓ × 

SiteRadar × ✓ × × × × 

NodeCoder ✓ × ? ✓ × × 

DeepPocket ✓ ✓ ✓ ✓ ✓ ✓ 

RecurPocket ✓ × ? × ✓ × 

PointSite ✓ ✓ × ✓ ✓ × 

DeepSurf ✓ ✓ × ✓ ✓ × 

PUResNet ✓ ✓ ✓ ✓ ✓ ✓ 

Kalasanty ✓ ✓ × ✓ ✓ × 

BiteNet × ✓ × ✓ × × 

GRaSP ✓ ✓ ✓ × ✓ × 

P2Rank ✓ ✓ ✓ ✓ ✓ ✓ 

PRANK ✓ ✓ ✓ ✓ ✓ ✓ 

DeepSite × ✓ × × × × 
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methods for this benchmark. Source: whether the method is open source and code is publicly 

accessible; Review: whether the method has been published after peer-review; Install: whether 

installation of the method was successful; Docs: whether the method is sufficiently documented 

to install it and run it on an example input; Model: whether the method provides pre-trained model 

weights; Included: whether the method was included in this analysis. Check marks(✓) indicate 

meeting the requirement and crosses (×) the opposite. Question marks (?) indicate uncertainty. 

Installation was not attempted for some methods as they already did not meet other 

requirements. Methods in bold font are the ones included in this work.  

 

 

Supplementary Figure 1. Where methods do not predict any sites. IF-SitePred does not 

predict any ligand binding sites on 700 of the 2,775 protein chains in the LIGYSIS set (25%), 

PUResNet on 415 (15%), DeepPocketSEG (426; 15%), P2RankCONS (196; 7%) and P2Rank (373; 

13%). All methods struggle to predict on elongated proteins, regardless of their size, as well as on 

tiny globular proteins. Globular proteins comprise the most common group amongst the proteins 

with no predictions for IF-SitePred (53%). 
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Supplementary Note 1: Number of Pockets vs Protein Size 

IF-SitePred [1], DeepPocketSEG [2], P2RankCONS [3, 4], P2Rank [5] and fpocket [6, 7] predict 

more pockets as protein chain size, i.e., number of amino acids, increases, with fpocket 

being the clearest example. DeepPocketSEG follows, as it takes as candidates fpocket 

predicted pockets. P2RankCONS, which is P2Rank passing evolutionary conservation 

scores as an extra feature predicts fewer pockets than P2Rank. Lastly, LIGYSIS does not 

follow this trend. It is true that in principle, the larger a protein is, the larger the solvent 

accessible surface area is, and more pockets are possible. However, in the observed 

data, the number of ligand sites per protein will depend mostly on the number of 

experimentally determined structures of a protein. Regardless of how big the protein is, 

if there are only a few structures, this will most likely lead to a small number of defined 

ligand binding sites. 

VN-EGNN [8], GrASP [9], PUResNet [10, 11], PocketFinder+ [12], Ligsite+ [13]  and 

Surfnet+ [14] do not predict more sites as protein chain size increases, and the number of 

predicted pockets stays constant regardless of the protein chain size. VN-EGNN places 

K = 8 virtual nodes, by default, which are passed to the equivariant graph neural network 

(E-GNN). Eventually these virtual nodes converge on the location of the predicted binding 

pocket centroids. As a result, a maximum of N = 8 binding pockets can be predicted by 

VN-EGNN with default parameters. This is not an argument on VN-EGNN command line 

interface but can be changed in the source code. Despite this, our results show a 

maximum of N = 7 pockets. This means that one of the 8 virtual nodes always converges 

in the same location of another pocket, resulting in a maximum of 7 and not 8 pockets. In 

the case of GrASP, the distribution of the number of predicted pockets per chain is 

narrow, with a maximum of 12. This might be due to the conservative per-residue 

ligandability scores of GrASP, or their clustering strategy. PUResNet predicts a single 

pocket in 90% of the cases and a maximum of 4. Ligsite+ and Surfnet+ (geometry-based) 

and PocketFinder+ (energy-based) are implementations of the original methods by Capra 

et al., 2009 [15]. They all use a grid of points which are then scored and clustered to define 

the pockets. They systematically predict fewer pockets than the methods above-

mentioned with a median of 2-3 pockets per protein. 
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Supplementary Figure 2. Protein chain length vs number of pockets. Number of defined 

(LIGYSIS) and predicted sites against protein chain size, i.e., number of amino acid residues. 

Number of residues has been discretised into intervals of 50 until 650, and larger intervals until 

the maximum, ≈3,800. Error bars represent one standard deviation (SD). (d) preceding method 

names indicate that these are predictions by default methods and not variants. 
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 Supplementary Note 2: Pocket Scoring, Ranking and 

Redundancy 

Predictions by VN-EGNN, IF-SitePred, and DeepPocketSEG are highly redundant, i.e., 

>50% of their predicted pockets are within 5Å or present JI ≥ 0.75 with another predicted 

pocket. This is particularly problematic form VN-EGNN (67%) and IF-SitePred (50%), and 

less so for DeepPocketSEG (31%). Ligand binding site predictors are usually evaluated by 

taking the top-N or N+2 predictions, where N is the number of known pockets for a 

protein. The redundant prediction of pockets will result in a sub-optimal ranking. 

Redundancy in prediction can often result in an overestimate of the precision and an 

underestimate of the recall. 

For this reason, non-redundant “NR” variants of these methods were generated. 

Moreover, methods like PUResNet, PocketFinder+, Ligsite+ or Surfnet+ do not report 

pocket scores, and therefore their predictions are, to the best of our knowledge, not 

ranked in a systematic manner. To explore the effect this has on pocket ranking and 

performance “PRANK”, “AA”, “RESC” and “SS” re-scoring variants were generated. 

Because of K = 8 virtual nodes are used in the default VN-EGNN implementation, 

a maximum of N = 8 predicted pockets are possible. However, only seven are observed in 

our dataset, as in all cases at least one virtual node gets clustered with another, resulting 

in 7 “unique” predictions. Supplementary Figure 3A illustrates the issue of redundancy in 

pocket predictions and how it affects the scoring and ranking of the pockets. A prediction 

of the same pocket is reported multiple times as distinct virtual nodes, or pocket 

centroids, which are very close to each other, and present very similar scores. This is why 

there is no apparent difference in the distribution of scores across the ranks for VN-

EGNN, unlike all other methods. After removing redundancy, this is no longer the case 

(Supplementary Figure 3B). 

IF-SitePred predictions are also highly redundant, however, these predictions, 

despite being close to each other, will present different scores (number of points), that is 

why higher ranks (1, 2, 3...) present higher scores (Supplementary Figure 3C). The 

redundancy removal can be identified in Supplementary Figure 3D as the scatter plot is 

less crowded and the maximum rank across the dataset is 60, as opposed to 120. 

Supplementary Figure 3E shows the non-redundant set of re-scored IF-SitePred 
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predictions. This score distribution is wider, i.e., scores take values from a larger 

distribution of values, which might yield a more relevant scoring of pockets. 

There is no clear difference between Supplementary Figure 3G-H, meaning that 

using PRANK to score PUResNet predictions does not alter the ranking of the predictions 

made within a protein. This makes sense, as only 10% of proteins present >1 predicted 

pocket. This new score, however, could help in the ranking of pockets across the dataset, 

and not just within a protein. 

The distribution of scores does not change when removing the redundancy from 

DeepPocketSEG predictions (Supplementary Figure 3I-J), but the maximum rank goes from 

200 to 140 indicating the decrease in total predictions. The score distributions of 

fpocketPRANK (Supplementary Figure 3N) and fpocket (Supplementary Figure 3O) are 

completely different which means the ranking of pockets, and therefore recall and 

precision might differ considerably between these two scoring schemes of the same 

predictions. 

The score distributions of “AA”, “SS” and “PRANK” variants of PUResNet, 

PocketFinder+, Ligsite+ and Surfnet+ are similar, suggesting that the number of pocket 

amino acids might dictate the order in which these pockets are reported Supplementary 

Figure 3P-X. 
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Supplementary Figure 3. Pocket score vs pocket ranking. (A) VN-EGNN reported pocket 

scores; (B) Non-redundant VN-EGNN predictions (VN-EGNNNR); (C) Default IF-SitePred 

predictions are ranked based on the number of pocket cloud points; (D) Non-redundant variant 
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of IF-SitePred (IF-SitePredNR); (E) Re-scored non-redundant IF-SitePred predictions (IF-

SitePredRESC-NR). Score is calculated as sum of squares of residue ligandability scores (Equation 

15); (F) GrASP; (G) PUResNet does not score its pockets. PUResNetAA. This variant uses the 

number of pocket amino acids as a score; (H) PRANK scored PUResNet pockets; (I) 

DeepPocketSEG; (J) Non-redundant DeepPocketSEG predictions (DeepPocketSEG-NR); (K) 

DeepPocketRESC; (L) P2RankCONS; (M) P2Rank; (N) fpocketPRANK; (O) fpocket. This distribution differs 

massively from the re-scored fpocketPRANK one; (P) PocketFinder+ does not report pocket scores, 

so the number of pocket residues is displayed for the PocketFinder+
AA variant; (Q) 

PocketFinder+
PRANK; (R) PocketFinder+

SS. This variant uses the pocket grid points’ scores to 

calculate a pocket score by summing the squared scores (Equation 16); (S) Just like 

PocketFinder+, Ligsite+ does not score pockets, Y-axis is number of pocket residues (Ligsite+
AA); 

(T) Ligsite+
PRANK; (U) Ligsite+

SS; (V) Surfnet+
AA; (W) Surfnet+

PRANK; (X) Surfnet+
SS. (d) and (v) indicate 

whether methods are default, or a variant generated in this work. 
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Supplementary Note 3: Recall Curves for Scoring and Ranking 

Variants  

Supplementary Note 2 and Figure 3 demonstrate how removing redundancy from 

predictions can have a drastic effect in the ranking of the predictions, with VN-EGNN 

being the clearest example. We wanted to explore how redundancy removal affects recall 

as well as the effect that different pocket scoring schemes might have on recall for those 

methods that do not report a pocket score: PUResNet, PocketFinder+, Ligsite+ and 

Surfnet+. 

 Supplementary Figure 4A shows a significant +5.2% increase in recall when 

removing redundancy for VN-EGNN predictions (Recall = 46.1%), which corresponds to 

346 extra predictions that fall within the top-N+2 after removing redundancy. An even 

stronger improvement can be observed for IF-SitePred (Supplementary Figure 4C), where 

a combination of redundancy removal and pocket re-scoring (Equation 13) results in a 

significant increase of +13.4% (Recall = 39.1%), corresponding to 901 added predictions 

falling in the considered top-N+2 predictions. Most of this change is due to the 

redundancy removal, as can be seen by the higher recall of IF-SitePredNR. Scoring of 

PUResNet predictions using the number of pocket amino acids (PUResNetAA) nor PRANK 

(PUResNetPRANK) had no effect on the recall. This was expected as PUResNet predicts a 

single pocket in 90% of the cases, and therefore, there is no strong need for a score to 

sort predictions within a protein (Supplementary Figure 4G-I). Just like VN-EGNN and IF-

SitePred, the recall of DeepPocketSEG benefits from redundancy removal, increasing by 

+5.7% (Supplementary Figure 4J) with a final recall = 49.4% (+377 pockets within ranking 

threshold). 

 For PocketFinder+, Ligsite+ and Surfnet+, none of the variants had a significant 

improvement in recall (Supplementary Figure 5). This is expected as these predict only a 

few non-redundant sites per protein, medians ranging 1-3 pockets per protein. 
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Supplementary Figure 4. Recall curves for method variants (I). Recall curves for different 

scoring and ranking variants of four machine-learning based methods that are either redundant: 



 12 

VN-EGNN, IF-SitePred and DeepPocketSEG, or do not score their pockets: PUResNet. Recall 

represents the proportion of observed ligand binding sites that are correctly identified by each 

method. For each method, three panels are shown to illustrate how recall changes as DCC, rank 

and Irel threshold vary. In this last one Irel is the criterion used to classify predictions. Dashed lines 

indicate the thresholds used as reference in this work: DCC = 12Å, rank = top-N+2, and Irel = 0.5 

(50% of residue overlap). For VN-EGNN and NR variant, recall vs DCC (A), rank (B) and Irel (C); For 

IF-SitePred and variants, recall vs DCC (D), rank (E) and Irel (F); For PUResNet and PRANK variant, 

recall vs DCC (G), rank (H) and Irel (I). Rescoring pockets with PRANK has no effect on the recall; 

For DeepPocketSEG and NR variant, recall vs DCC (J), rank (K) and Irel (L). Error bars show 95% CI 

of recall (proportion). (d) and (v) preceding method names indicate whether methods are default 

or variants, respectively. (d) and (v) indicate whether methods are default, or a variant generated 

in this work.  
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Supplementary Figure 5. Recall curves for method variants (II). Recall curves for different 

scoring and ranking variants for PocketFinder+, Ligsite+, and Surfnet+. For PocketFinder+ and 

variants, recall vs DCC (A), rank (B) and Irel (C); For Ligsite+ and variants, recall vs DCC (D), rank 

(E) and Irel (F); For Surfnet+ and variants, recall vs DCC (G), rank (H) and Irel (I). Error bars show 95% 

CI of recall (proportion). (d) and (v) indicate whether methods are default, or a variant generated 

in this work.  
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Supplementary Note 4: ROC100 Curves for Scoring and 

Ranking Variants 

There are no negative predictions, either True (TN) or False (FN) in the context of ligand 

binding site prediction at the pocket level and accordingly, standard ROC/AUC curves 

cannot be obtained. Only positives are predicted (sites). FN can be obtained by 

examining the observed pockets that are not predicted, but there are not scores for them. 

ROC100 curves provide an alternative to observe the relationship between True Positives 

(TP) and False Positives (FP). Predictions for each method across the whole test dataset, 

LIGYSIS, are sorted based on the pocket scores, and cumulative TP and FPs are counted 

until a certain number of FP is reached, in this case, 100. This visualisation provides 

insight into how well high-scoring predictions match the ground truth. A higher number 

of TP at FP = 100 indicates that the high scoring pockets recapitulate well the ground 

truth, whereas a low number indicates that the high scoring pockets do not match with 

the observed data, given the used thresholds of DCC ≤ 12Å. It is important to understand 

that the FP in this context might not always be incorrect predictions, but might be binding 

sites that are not considered in our ground truth dataset, that is comprised by biologically 

relevant protein-ligand interactions as defined in BioLiP [16], or relevant sites that simply 

have not been experimentally determined yet. It is also important to contextualise this 

metric with success rate, or recall (top-N+2), i.e., how many of the observed sites are 

predicted by each method given the above-mentioned threshold, as well as a rank 

threshold: top-N+2. A method might present a high number of TP within the first 100 FP 

yet have a low recall overall. Supplementary Figure 6 explores how ROC100 changes for 

the non-redundant “NR” and re-scored “AA”, “SS” and “PRANK” sets of VN-EGNN, IF-SitePred, 

PUResNet, DeepPocketSEG, PocketFinder+, Ligsite+ and Surfnet+. 

Supplementary Figure 6A illustrates how redundancy can be misleading and 

overestimate the performance of VN-EGNN. Removing redundancy results in ΔTP = −273 

(TP = 1,028). This is because redundant predictions by VN-EGNN are very close in space 

and present very similar scores (Supplementary Figure 3A). Because of this, in the 

redundant default set of predictions, multiple TP counts are being added for predictions 

of the same observed pocket. Even with redundancy removed, VN-EGNN reached 1,028 
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TP for the first 100FP, indicating that the non-redundant higher scoring pockets 

recapitulate well the observed data. 

There is no difference between IF-SitePred and IF-SitePredNR (curves overlap 

completely), which indicates that despite the redundancy in predictions by this method, 

its scoring scheme can sort sites in a meaningful manner. Let us consider multiple 

proteins with redundant predictions for IF-SitePred. The scoring scheme allows for the 

top-1 site of each of these proteins to rank above any of the other redundant predictions 

of the other proteins. The re-scored and non-redundant set of IF-SitePred predictions 

results in a ΔTP = +285 (TP = 1,246), indicating that IF-SitePred could benefit from a more 

sophisticated scoring scheme, rather than the number of cloud points per binding site 

(Supplementary Figure 6B). 

Supplementary Figure 6C shows how important it is to score pocket predictions. 

PUResNet does not score its predictions. For this reason, within a protein, pockets have 

been ranked based on the order they are reported. When sorting across the whole 

dataset, pockets with the same ID or rank where randomly shuffled. A massive increase 

in TP can be observed when simply sorting by the number of pocket residues and using 

PRANK to score this pockets provides an even larger increment in TP (ΔTP = +563) (TP = 

1,097). An application of this could be running PUResNet on a list of potential drug target 

proteins. It would add great value to be able to rank the predictions among the targets to 

decide on a target. 

The curve does not change much for DeepPocketSEG, (ΔTP = −27) (TP = 643), 

indicating that despite the segmentation module of DeepPocket might result in 

overlapping pockets, their scoring scheme is robust. It is important to consider that the 

pocket score results from re-scoring the fpocket candidates, which are not redundant. 

The redundancy in DeepPocketSEG is therefore unrelated to their scoring scheme. These 

results suggest that there is a big difference between fpocket candidates and extracted 

DeepPocket pockets, and it might not be appropriate to consider the score of the former 

for the latter (Supplementary Figure 6D). 

For the last three methods, PocketFinder+, Ligsite+ and Surfnet+, the results agree 

in that simply using the number of pocket amino acids results in the maximum TP for 100 

FP: ΔTP = +114 (TP = 178) (Supplementary Figure 6E), ΔTP = +44 (TP = 159) (Supplementary 

Figure 6F) and ΔTP = +247 (TP = 308) (Supplementary Figure 6G). This is surprising, as sum 
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of squares “SS” and PRANK scoring schemes have worked better for other methods. This 

result might be related to the fact that pockets predicted by these three methods tend to 

be larger than those predicted by other methods. 

 

Supplementary Figure 6. ROC100 curves for different scoring and ranking variants. For each 

method, predicted pockets across the whole dataset, i.e., all LIGYSIS proteins, are ranked by their 

score. This way, pockets with the highest scores will be at the top of the list, whereas pockets with 

the lowest scores will be at the bottom. Note that this ranking will not correspond to ranking 
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pockets across the dataset by their rank, as a pocket ranked #2, #3 or lower could have a higher 

score than a pocket #1 of another protein. Each method has a colour assigned, and each scoring 

variant its own line style. (A) VN-EGNNNR presents 273 fewer true positives (TP) when 100 false 

positives (FP) are reached compared to VN-EGNN. This is because redundant predictions for the 

same site are being counted as multiple TPs; (B) IF-SitePredRESC-NR reaches +285 TPs than default 

IF-SitePred; (C) Using PRANK to score and sort (unscored) PUResNet predictions increases the 

number of TPs for 100 FPs by 563; (D) 27 fewer TP for DeepPocketSEG-NR, again a consequence of 

removing redundant predictions; (E) Using the number of pocket amino acids (PocketFinder+
AA) 

increase TPs by +114; (F) Ligsite+
AA adds 44 TPs; (G)  Likewise, with the ranking of Surfnet+

AA, +247 

are gained relative to unscored Surfnet+ predictions. (d) and (v) indicate whether methods are 

default, or a variant generated in this work. 

  



 18 

Supplementary Note 5: Precision curves for scoring and 

ranking variants  

For the same reason as why ROC/AUC curves cannot be calcualted for ligand binding site 

prediciton (at the pocket level), precision-recall (PR)/AUC curves cannot be either, as 

False Negatives (FN) are not predicted, and therefore not scored. Nevertheless, 

precision, as the ratio of TP/TP+FP, can be measured. For this, as it was done for ROC100, 

all predictions for a method were sorted by pocket score, and precision calculated as 

more predictions are considered. 

 Supplementary Figure 7 portrays the precision curve for the top-1,000 predictions 

for the non-redundant and re-scored variants for VN-EGNN, IF-SitePred, PUResNet, 

DeepPocketSEG, PocketFinder+, Ligsite+ and Surfnet+. 

 There is no significant (p > 0.05) change in precision between VN-EGNN and VN-

EGNNNR within the first 1,000 predictions, precision = 91.5% (Supplementary Figure 7A). 

The same can be said for IF-SitePred with a precision = 94.3% (Supplementary Figure 7B). 

Using PRANK to score PUResNet pockets results in a significant +11.7% increase in 

precision of the top-1,000 predictions (precision = 93.3%) (Supplementary Figure 7C). 

DeepPocketSEG-NR, as the other redundant methods, does not experience a significant 

change in precision as redundancy is removed (precision = 81.6%) (Supplementary 

Figure 7D). For PocketFinder+, Ligsite+ and Surfnet+, using the number of pocket amino 

acids results, “AA”, in a precision increase of +23.3% (precision = 65.3%), (Supplementary 

Figure 7E), +16.5% (precision = 68.8%) (Supplementary Figure 7F) and 29.1% (precision 

= 68.8%) (Supplementary Figure 7G), respectively.  
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Supplementary Figure 7. Precision (%) for the top-scoring 1,000 predictions, Precision1K. For 

each method, predicted pockets across the whole LIGYSIS set, are ranked by their score. This 

way, pockets with the highest scores will be at the top of the list, whereas pockets with the lowest 

scores will be at the bottom. Each method has a colour assigned, and each scoring variant its 

own line style. ΔPrecision indicates the difference in precision between the selected method variant 

and the default one. (A) VN-EGNN; (B) IF-SitePred; (C) PUResNet; (D) DeepPocketSEG; (E) 

PocketFinder+; (F) Ligsite+; (G) Surfnet+. Error bars indicate 95% CI of the precision (proportion) 
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and are displayed every 100 predictions. (d) and (v) indicate whether methods are default or a 

variant generated in this work. 

Supplementary Figure 8. Ligand binding site prediction benchmark at the pocket level. For 

methods with scoring or non-redundant variants, only the top-performing, i.e., highest top-N+2 

recall, variant of each method is drawn on this figure, e.g., VN-EGNNNR, IF-SitePredRESC-NR, or 

DeepPocketSEG-NR, indicated by a (v) next to their name. Default modes are represented for all 

other methods, indicated by (d). (A) Recall, percentage of observed sites that are correctly 

predicted by a method according to a DCC threshold and ranking within the top-N+2 predictions. 

Reported recall on Table 4 corresponds to DCC = 12Å; (B) Recall using DCC = 12Å but considering 

increasing rank thresholds. ALL represents the maximum recall of a method, obtained by 

considering all predictions, regardless of their rank or score; (C) Recall curve considering top-

N+2 pockets and using Irel as a criterion; (D) ROC100 curve (cumulative TP against cumulative FP 

until 100 FP are reached); (E) Precision curve for the top-1,000 predictions of each method across 

the LIGYSIS dataset. Error bars represent 95% CI of the recall (A-C) and precision (E), which are 

100 × proportion. Numbers at the right of the panels indicate groups or blocks of methods that 

perform similarly for each metric. Asterisks (*) indicate outlier methods, or methods that perform 

very differently than the rest. 
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Method % Recall
top-N

 % Recall
top-N+2

 % Recall
max

 % Precision
1K

 # TP
100 FP

 % RRO % RVO 

(v) VN-EGNN
NR

 44.5     (#7) 46.1   (#11) 46.3  (#11) 91.5     (#4) 1028    (#3) 31.6–  (#11) 26.7–  (#11) 

(v) IF-SitePred
RESC-NR

 29.7– (#12) 39.1– (#13) 51.0     (#6) 94.3+    (#1) 1246+   (#1) 49.3   (#10) 43.7     (#9) 

(d) GrASP 48.0     (#2) 49.9     (#5) 50.0     (#8) 92.5     (#3) 1017    (#4) 54.5     (#7) 59.8     (#6) 

(v) PUResNet
PRANK

 40.8    #10) 41.1   (#12) 41.1– (#12) 93.3     (#2) 1094    (#2) 61.0     (#4) 63.9     (#4) 

(v) DeepPocket
SEG-NR

 43.4     (#8) 49.4     (#6) 55.4     (#5) 81.6     (#7) 643       (#6) 58.4     (#5) 61.3      (#5) 

(d) DeepPocket
RESC

 46.6     (#4) 58.1     (#2) 89.3     (#2) 81.7     (#6) 637       (#7) 52.6     (#9) 38.2    (#10) 

(d) P2Rank
CONS

 48.8+    (#1) 53.9     (#3) 57.0     (#3) 90.7     (#5) 932       (#5) 56.4     (#6) 43.8      (#8) 

(d) P2Rank 46.7     (#3) 51.9     (#4) 57.0     (#4) 79.2     (#8) 586       (#8) 54.4     (#8) 58.2      (#7) 

(d) fpocket
PRANK

 48.8+    (#1) 60.4+     (#1) 91.3+     (#1) 81.7     (#6) 526       (#9) 52.6     (#9) 38.2    (#10) 

(d) fpocket 38.8     (#11) 46.5     (#10) 91.3+     (#1) 47.3–  (#12) 94–      (#13) 52.6     (#9) 38.2    (#10) 

(v) PocketFinder
+

AA
 44.5     (#6) 48.9     (#8) 50.5     (#7) 65.3  (#11) 178    (#11) 72.3     (#2) 75.9      (#2) 

(v) Ligsite
+

AA
 44.9     (#5) 49.0     (#7) 49.7     (#9) 68.8   (#9) 159    (#12) 77.6+   (#1) 77.0+    (#1) 

(v) Surfnet
+

AA
 43.3     (#9) 47.4     (#9) 48.9  (#10) 68.6  (#10) 308    (#10) 71.7     (#3) 72.0      (#3) 

  

Supplementary Table 2. Summary table of ligand binding site prediction benchmark at the pocket level. Only the top-performing, i.e., highest 

(top-N+2) recall, variant of each method appear on this table, e.g., VN-EGNNNR, IF-SitePredRESC-NR or DeepPocketSEG-NR, instead of their default modes. 

Recall (%) considering top-N, N+2 and all predictions without taking rank into consideration, i.e., maximum recall. Precision (%) of the method for the 

top-1,000 scored predictions. Number of TP reached for the first 100 FP. Mean relative residue overlap (RRO) for those sites correctly predicted and 

mean relative volume overlap (RVO) only for correctly predicted sites that have a volume, i.e., are pockets or cavities, and not exposed sites, which 

don’t have a volume. These last two metrics are also percentages and represent the overlap in residues and volume relative to the observed site. Within 

each cell, the numbers  following a dash (#) indicate the rank of each method according to the metric in the column. The best and worst performing 

methods are indicated with bold font and “+” and “–” respectively. (d) and (v) in the first column indicate whether these are default or a method variant.
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Supplementary Figure 9. Change in % Recall when benchmarking on the subset of LIGYSIS with no 

ions, LIGYSISNI. % Recall is calculated considering top-N+2 pockets at DCC = 12Å and default method 

variants on a set of LIGYSIS binding sites containing at least one non-ion ligand, N = 4,141/6,882 (60%). 

Solid lines indicate recall curve on LIGYSIS and dashed lines for LIGYSISNI. The relative change in % Recall 

and Rank are indicated by Recall and Rank. These changes are relative to LIGYSIS metrics. All methods 

except for fpocket present an increase in % Recall when removing ion binding sites. This is expected ad 

none of the methods are trained on ion sites. However, ion sited were kept on the main benchmark to 

challenge and test the limits of the methods. fpocket does not improve recall at this DCC threshold, but it 

does at more stringent thresholds. Most methods rank the same except fpocket that goes down three 

positions, PUResNet that climbs one position and DeepPocketSEG that climbs two. (A) VN-EGNN; (B) IF-

SitePred; (C) GrASP; (D) PUResNet; (E) DeepPocketSEG; (F) DeepPocketRESC; (G) P2RankCONS; (H) P2Rank; (I) 

fpocketPRANK; (J) fpocket; (K) PocketFinder+; (L) Ligsite+; (M) Surfnet+. These results originate from default 

methods, indicated by (d) preceding method names. 
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Supplementary Figure 10. Variation in ROC curve and AUC across LIGYSIS proteins. For each of the 

methods that report or for which residue ligandability scores were calculated, a ROC curve was calculated 

for each of the 2,775 protein chains in the LIGYSIS set and AUC calculated. The curves plotted here 

represent the mean ROC curve for each method. These are obtained by averaging the TPR for each FPR 

interval across proteins. Shaded area represents one standard deviation (1 SD) from the mean ROC curve. 

Reported AUC is the mean AUC calculated by averaging the AUC for the 2,775 ROC curves obtained. 

Baseline AUC is random chance (AUC = 0.5).  (A) IF-SitePred; (B) GrASP; (C) P2RankCONS; (D) P2Rank; (E) 

PocketFinder+; (F) Ligsite+; (G) Surfnet+. These results originate from default methods, indicated by (d) 

preceding method names. 
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Supplementary Figure 11. Variation in PR curve and AP across LIGYSIS proteins. For each of the 

methods that report or for which residue ligandability scores were calculated, a precision-recall (PR) curve 

was calculated for each of the 2,775 protein chains in the LIGYSIS set and average precision (AP) 

calculated. The curves plotted here represent the mean PR curve for each method. These are obtained by 

averaging the precision for each recall interval across proteins. Shaded area represents one standard 

deviation (1 SD) from the mean PR curve. Reported AP is the mean AP calculated by averaging the AP for 

the 2,775 PR curves obtained. Baseline AP is the proportion of true positives, i.e., observed ligand-binding 

residues (AP = 0.1).  (A) IF-SitePred; (B) GrASP; (C) P2RankCONS; (D) P2Rank; (E) PocketFinder+; (F) Ligsite+; 

(G) Surfnet+. These results originate from default methods, indicated by (d) preceding method names. 
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Supplementary Figure 12. Protein chains superposition. Transformation matrices obtained from the 

PDBe-KB were utilised to structurally align protein chains. Three examples are depicted here. For each one, 

superposed chain trace (C atoms) are shown in sticks and coloured using the rainbow scheme from N- to 

C-terminus and average distance across residues from the aligned chains to the PDBe-KB-defined 

representative chain is reported as 𝑑𝐶𝛼
̅̅ ̅̅ ̅ (Å) (left). On the right the superposition is visualised with a heatmap. 

Protein chain residues are on the X axis and aligned protein chains on the Y axis. Protein chains are sorted 
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by the average distance to the representative chain, so more dissimilar chains are on the bottom. Cells are 

coloured based on their 𝑑𝐶𝛼
̅̅ ̅̅ ̅  using the rocket colour scheme. White cells represent residues present in the 

representative chain but not the aligned one, i.e., discontinuities or chain breaks. Residues with very high 

> 20Å represent alternative locations that were not transformed correctly. (A) Pancreatic alpha-amylase 

with 52 superposed chains; (B) cAMP and cAMP-inhibited cGMP 3’,5’-cyclic phosphodiesterase 10A with 

1,166 chains; (C) Peroxisome proliferator-activated receptor gamma with 443 chains.   

 
 

 

Supplementary Figure 13. Distance to representative chain for ligand binding residues. This histogram 

represents the distribution of the average C distance across transformed chains to the representative 

chain for 74,536 ligand binding residues across the 2,478 segments that present more than one chain. 

Black dash line indicates 5Å. 95% of ligand binding residues are within 5Å of the representative structure 

in average across chains. This demonstrates that the variation in the C trace for ligand binding residues 

across different structures of the same protein is very small. 
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Supplementary Figure 14. Closest predicted pockets for each method. For each method, the 

two closest predicted pockets across all protein chains are shown. This is the pair of pockets with 
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the minimum Euclidean distance between their centroids. Protein surface is coloured in tan. The 

larger pocket (more residues) and centroid is coloured in the method colour, and the other in grey. 

A distance threshold of D = 5Å was selected to determine whether a pocket prediction was 

redundant. LIGYSIS, VN-EGNN, IF-SitePred and DeepPocket clearly differ from other methods 

presenting distances < 1Å. (d) next to the method names indicate these refer to default methods 

and not variants. 
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Supplementary Note 6: empirical determination of a DCC 

threshold 

Most methods employ distance to any atom of the ligand (DCA) and a threshold of 4Å to 

consider a prediction as correct. Because of the way the LIGYSIS dataset has been 

curated, it is easier to use DCC, as our binding sites result of the clustering of multiple 

ligands, and not just a single ligand binding a protein. Despite DCC and DCA being 

different metrics, the same threshold of D = 4Å is used for both when benchmarking 

methods [2, 8, 10]. Supplementary Figure 15A shows the relation between DCC, and 

pocket residue overlap for the best pocket predictions, i.e., minimum inter-centroid 

Euclidean distance, for each observed pocket for each method. Across all methods, 

there are more than 15,000 predicted pockets with a DCC > 4Å and a residue overlap ≥ 

50%. Setting the DCC threshold at 4Å would result in the wrong labelling of these 

predictions as “false positives”. For this reason, we endeavoured into empirically 

establishing a more meaningful DCC threshold through the thorough visual inspection of 

predicted-observed pocket pairs. Supplementary Figure 15B suggests this threshold 

might be somewhere in between 10-15Å, where the proportion of pockets with Irel ≥ 0.5 

decreases until reaching 0. 

Supplementary Figure 15. Irel vs DCC. (A) Hexagonal binned plot of Irel (Y) vs DCC (X). Data points 

are grouped into hexagonal bins, and these are coloured by the number of data points within each 

bin using the viridis colour palette. Colour bar axis is in log scale. Black dashed lines indicate the 

literature consensus DCC = 4Å threshold and an arbitrary Irel threshold of 0.5, i.e., coverage of half 

of the observed residues by the predicted pocket.  Red lines delimit the likely location of a 

potentially more informative DCC thresholds; (B) Cumulative proportion of predicted pockets 
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with Irel ≥ 0.5 for each DCC 1Å interval. The commonly used threshold of DCC = 4Å would label 

>15,000 predictions with Irel ≥ 0.5 as false. Error bars indicate 95% CI of the proportion. 

We set a hard threshold at D = 20Å and decided that based purely on distance, 

pockets with DCC > 20 would not be considered as correct predictions. For each DCC 

interval of 1Å, the pocket with the highest and lowest Irel were inspected (Supplementary 

Figure 16). This initial visual inspection supported the hypothesis that a more meaningful 

DCC threshold is between 10-14Å. For the next step, only predicted-observed pocket 

pairs with minimal overlap (Irel < 0.25) were considered. Starting at DCC = 10Å, and using 

unit intervals, the 100 farthest pockets were inspected for each interval, and the 

proportion of correct predictions was calculated as the number of pockets labelled as 

“correct” upon visual inspection divided by 100, i.e., %. For D = 10Å, 94% of pockets were 

correct (Supplementary Figure 17), 86% for D = 11Å (Supplementary Figure 18), 85% for 

D = 12Å (Supplementary Figure 19) and 66% for D = 13Å. Due to the considerable drop of 

correct pockets at D = 13Å, the final distance threshold was set at D = 12Å. Accordingly, 

predictions were considered as true positives if DCC ≤ 12Å (Supplementary Equation 1). 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ⟺ (𝐷𝐶𝐶 ≤ 12)  (1) 
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Supplementary Figure 16. Determination of DCC threshold. Highest and lowest-residue 
overlap predictions for each 2Å DCC unit interval. Observed LIGYSIS sites are coloured in green, 
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predicted pockets in other colours. D represents DCC and Irel the relative intersection between 
predicted and observed pocket residues, i.e., proportion of observed site residues covered by 
predicted pocket residues. “YES” or “NO” labels indicate whether we considered a given 
prediction as correct upon visual inspection. “???” at DCC = 12Å illustrates the inflection point 
between 10-12Å, where it is not clear anymore whether predicted pockets within this DCC 
interval and Irel ≈ 0 agree with the observed pockets. To facilitate the visualisation of the observed 
pocket, this one is coloured after the predicted one. Otherwise, for cases where Irel = 1 only the 
predicted pocket would be shown. Despite 1Å intervals were inspected, only representatives of 
2Å intervals are shown here for simplicity. 
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Supplementary Figure 17. Examples of predicted-observed pocket pairs at DCC = 10Å and 

Irel < 0.25. Out of the 100 examples visually inspected, 94 were considered as correct predictions 

on the bases that the predicted and observed pockets are adjacent, i.e., their surface area is in 

contact, and it is therefore easy to imagine a ligand that would bind to this region. LIGYSIS 

observed sites are coloured in green, and predicted pockets in other colours.  
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Supplementary Figure 18. Examples of predicted-observed pocket pairs at DCC = 11Å and 

Irel < 0.25. Out of the 100 examples visually inspected, 86 were considered as correct predictions. 

LIGYSIS observed sites are coloured in green, and predicted pockets in other colours. 
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Supplementary Figure 19. Examples of predicted-observed pocket pairs at DCC = 12Å and 

Irel < 0.25. Out of the 100 examples visually inspected, 85 were considered as correct predictions. 

LIGYSIS observed sites are coloured in green, and predicted pockets in other colours. 
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