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SUMMARY
The ‘‘innate-like’’ T cell compartment, known as Tinn, represents a diverse group of T cells that straddle the
boundary between innate and adaptive immunity. We explore the transcriptional landscape of Tinn compared
to conventional T cells (Tconv) in the human thymus and blood using single-cell RNA sequencing (scRNA-seq)
and flow cytometry. In human blood, the majority of Tinn cells share an effector program driven by specific
transcription factors, distinct from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells
displays an effector phenotype, while others share transcriptional features with developing Tconv cells, indi-
cating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not differentiate
into multiple effector subsets but develop a mixed type 1/type 17 effector potential. Cross-species analysis
uncovers species-specific distinctions, including the absence of type 2 Tinn cells in humans, which implies
distinct immune regulatory mechanisms across species.
INTRODUCTION

Conventional CD4+ and CD8+ T cells (Tconv) are essential for

adaptive immunity, recognizing peptide antigens presented by

HLA class I or II proteins via their T cell antigen receptors

(TCRs). Upon antigenic stimulation, these T cells undergo tran-

scriptional and epigenetic changes, secreting pro-inflammatory

cytokines, acquiring cytotoxic abilities to clear pathogens, or

forming memory T cells for rapid response upon reencounter.

Thus, Tconv cells within the circulation are heterogeneous and

are commonly classified into naive (Tn), central memory (Tcm),

effector memory (Tem), and terminally differentiated effector

memory (Temra) subsets.
1–3

Innate-like T cells (Tinn), such as invariant natural killer T (iNKT)

cells, mucosal-associated invariant T (MAIT) cells, and certain gd

T cells, maintain consistent TCRs among individuals and func-

tion without prior pathogen exposure. They account for 10%–

20% of human T cells.4,5 Tinn cells, originating from thymic pro-

genitors, do not recognize peptides presented by HLA class I

or II. Instead, iNKT cells use semi-invariant TCRs to recognize

lipid antigens presented by CD1D.6 MAIT cells, also character-
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ized by semi-invariant TCRs,7 recognize riboflavin precursor-

derived metabolites presented by MR1.8,9 Some gd

T cells recognize self- and foreign phosphoantigens in conjunc-

tion with the transmembrane butyrophilin-family receptors

BTN2A1-BTN3A1-BTN3A2 complex.10–12 The antigens recog-

nized by other human gd T cell populations remain unclear.13

Thus, Tinn cells enhance immune detection of diverse

threats.14–16 Furthermore, the secretion of cytokines at steady

state by mouse iNKT cells influences surrounding cells and Tconv
development,17–19 suggesting that they may also function

as gatekeepers, ensuring proper T cell development and

maturation.

The conservation of Tinn cells throughoutmammalian evolution

indicates their crucial and non-redundant role in the immune sys-

tem, which may be attributed to their rapid activation kinetics

and their ability for TCR-independent activation.20–22 In mice,

the rapid effector capacity of Tinn cells stems from unique tran-

scriptional programs formed during their development in the

thymus.23,24 Analogous to CD4 Tconv cells, which can be polar-

ized by cytokines into T helper (Th) phenotypes such as Th1,

Th2, and Th17 that secrete interferon-g (IFN-g), interleukin-4
ber 24, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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(IL-4), and IL-17, respectively, mouse Tinn cells diverge into

distinct, terminally differentiated subsets that can be readily

identified based on the expression of specific transcription fac-

tors (TFs) such as PLZF, GATA3, T-bet, and RORgt.17

In this study, using single-cell genomics and flow cytometry,

we assessed the range of phenotypic states Tconv and Tinn cells

can adopt in vivo in the human thymus and blood. We uncovered

that unlike adult blood Tinn cells most postnatal thymic Tinn cells

resemble naive Tconv cells, with few displaying an ‘‘effector’’

state. A distinct transcriptional program is shared among human

Tinn cells, and major TFs driving this program are also expressed

in mice. However, unlike themouse, human Tinn cells do not form

distinct subsets but develop amixed type 1/type 17 effector pro-

gram. We further highlight differences in CD1D and SLAMF6

expression in the thymus between the two species, which could

potentially impact the maturation process of iNKT cells in hu-

mans. This comprehensive transcriptomic dataset of human

Tinn cells provides a valuable resource to explore their funda-

mental properties and may serve as a guide for their strategic

application in immunotherapeutic approaches.

RESULTS

Single-cell RNA-sequencing analysis of T cell
maturation and post-maturation stages in humans
We explored the transcriptional profiles of Tinn and Tconv cells

through single-cell RNA sequencing (scRNA-seq) of antibody

DNA-barcoded (‘‘hashtags’’) tetramer-sorted iNKT (PBS57-

CD1d tetramer+, TRAV10+), MAIT (5-OP-RU-MR1 tetramer+,

TRAV1–2+), and total gd T cells, along with single-positive (SP)

CD4 and CD8 Tconv cells from pediatric thymus and adult blood

samples (Figure S1). A subset of samples was also subjected to

VDJ sequencing (Figure 1A and Table S1). We analyzed 78,355

cells (37,369 pediatric thymus and 40,986 adult blood) after qual-

ity control, integrating them into a reference dataset (Figures 1B,

1C, S2A, and S2B). Using unsupervised clustering, we identified

18 distinct and stable clusters (c), primarily separating into

thymus (c0–c9) or blood-associated regions (c12–c17,

Figures 1C and S2C), with transitioning clusters (c10 and c11)

showing cells from both tissues (Figures 1D and 1E), represent-

ing naive T cells prepared to leave the thymus or just entering the

blood, in agreement with their over-representation of an

‘‘egress’’ gene signature25 (Figure 1F and Table S3).

Cluster identities and transcriptional states were determined

using reference genes (Figures S3A and S3B; Table S2), with

cell types validated by neighbor voting26 with the human thymus

atlas27 (Figure S4). Early T cell development included immature

single positive (ISP) cells (c0 and c1), double-positive (DP) thy-

mocytes (c2), and early SP stages characterized by CCR9

expression (c3 for CD4 SP and c9 for CD8 SP). Later stages ex-

pressed CCR7 (c11 for CD4 SP, c10 for CD8 SP; Figure S5A).

Differentially expressed gene (DEG) analysis comparing CD4

SP cells (c3 and c11) to CD8 SP cells (c9 and c10) further con-

firms these annotations (Figure S5B). Specialized lineages

were also detected, including CD8aa cells (GNG4 and

NUCB2), thymic gd T cells (TRDC, TRGC2), and regulatory

T cells (Tregs) with high expression of FOXP3 (c5, c6, and c7,

respectively). Other signaling states included ‘‘agonist’’ cells
2 Cell Reports 43, 114705, September 24, 2024
with high levels of TF transcripts associated with TCR signaling

(c4; NR4A1, EGR1, EGR3, and NFKBID), cells with high expres-

sion of type I IFN signaling genes (IFI6, MX1, and IFI44L in c8),

and AP-1 TFs (JUN, FOS, JUNB in c12). We also found cells

(c13 through c17) expressing effector-encoding genes (GZMK,

GZMH, GZMB, PRF1, and CCL5), suggesting involvement in

effector functions of these cells (Figures S3A, S3B, and S5A).

Altogether, we observed cells with distinct transcriptional pro-

files, representing unique cell types (CD8aa, Tregs) and stages

of T cell development and maturation.

Identification of the gene-expression programs that
characterize T cell populations in thymus and blood
Deciphering scRNA-seq data can be challenging due to the

complexity of gene-expression patterns reflecting cell identity

and activity. We used consensus non-negative matrix factoriza-

tion (cNMF)28 to reduce dimensionality, identifying 12 gene-

expression programs (GEPs; Figure 1K and Table S4). Each

cell type’s contribution to these GEPs was assessed, revealing

some GEPs shared across cell types, with others unique to

specific clusters (Figures 1G and 1K). GEPs 7–11 were linked

to thymic gd T cells, Tregs, thymic CD8aa T cells, quiescent

ISP, and proliferating ISP, respectively (Figure 1K). GEP 12

was excluded due to batch effects (Figure S6). GEPs 1 and

2, marked by CCR9 and CCR7, were active in early and late

thymic T cells, respectively. GEP3 was expressed by naive

T cells. GEPs 4, 5, and 6, associated with ‘‘effectorness,’’

were active in clusters 12, 13–14, and 15–17, respectively

(Figures 1G–1K). Leveraging insights from these GEPs, we con-

ducted an in-depth analysis of thymic and blood T cell popula-

tions, providing an integrated understanding of T cell differenti-

ation and function.

Gene-expression similarities between ab thymocyte
lineages
We separated each sample by cell type and tissue, using the

identifying tag (Figure 1G). CD4+ thymic cells were found in clus-

ters 0–4, 7, 8, and 11, while CD8+ thymic cells were in clusters 2

and 5–10. Cell proportions in each cluster were consistent

across samples, with about 1% (1.1% ± 0.4%) of the cells

showing an effector signature (Figures 1G–1I and Table S3).

Thymic iNKT cells were distributed similarly to conventional

CD4+ SP, and thymic MAIT cells shared clusters with CD8+ SP

(Figure 1G). Thymic gd T cells were distinct, mainly in cluster 6

and GEP7 (Figures 1G and 1K).

Global gene-expression analysis between thymocyte lineages

revealed three distinct patterns. First, effector stages of iNKT,

MAIT, and gd thymocytes (clusters 12–17) exhibited high gene-

expression similarity. Second, non-effector gd thymocytes

showed no expression similarity to other lineages. Third, non-

effector iNKT and MAIT thymocytes (clusters 0–11) resembled

CD4+ and CD8+ thymocytes, respectively (Figure 2A). This sug-

gests that specific subpopulations of iNKT thymocytes engage

transcriptional programs akin to those of conventional CD4+ thy-

mocytes, with a parallel observation between MAIT and CD8+

thymocytes. Pseudo-bulk DEG analysis between non-effector

iNKT/CD4+ and non-effector MAIT/CD8+ further demonstrated

that non-effector iNKT and CD4+ thymocytes share 43



Figure 1. Integrative view on Tinn and Tconv development and peripheral function

(A) Experimental setup specifying donor type (postnatal/adult), tissue, and sorted cell types.

(B) Harmony batch-corrected and integrated dataset across donors, tissues, and cell types.

(C–E) (C) Stable Louvain-derived cell clusters distributed across (D) both blood and thymus-derived cells and (E) their respective frequencies in these clusters.

(F) ‘‘Egress’’ score on thymus- and blood-derived cells.

(G) Cells color coded by cluster (as in C) visualized by their hashtag-sorted cell type (columns) and the tissue they originated from (rows).

(H–J) (H) Projection of naive and effector scores and the proportion of (I) thymic and (J) blood cell types per donor, classified on the basis of these scores (bottom

row); top row shows analogous proportions by cell cluster (as in C).

(K) Gene-expression programs (GEPs) in thymus and blood identified using cNMF, with color scale representing GEP usage. Sample numbers for all panels as

depicted in (A). Score defining genes as described in text.
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commonly upregulated and 38 commonly downregulated genes

(Figure 2B). Key genes such as GATA3, ZBTB7B, and CD40LG

were upregulated in non-effector iNKT thymocytes, indicating

CD4 lineage differentiation, while CD8A, CD8B, and RUNX3

were elevated in non-effector MAIT thymocytes. Using DEG

analysis between CD4+/MAIT and CD8+/iNKT cells as a negative

control revealed only EPHB6, ZFAS1, and EEF1A1 as differen-

tially expressed (Figure 2B). Comparing conventional CD4+/

CD8+ thymocytes with non-effector iNKT/MAIT cells highlighted

11 DEGs (Figure 2C), including ZBTB16 and SLAM family recep-

tors SLAMF5 (CD84) and SLAMF6, underscoring specific path-

ways crucial for effector differentiation, similar to observations

in mice.23
Unbiased transcriptomic analysis of human Tinn

differentiation
To further explore the transcriptional heterogeneity of human Tinn
thymocytes, we re-analyzed iNKT and MAIT cell populations indi-

vidually (Figures 2D–2E and S7). We identified seven clusters for

both cell types (Figure 2D), with some variability in their proportion

across donors (Figures S7B and S7F). Five major cell signatures

were shared across Tconv, iNKT, and MAIT cells (Figures S3C

and S3D). First, we observed a distinctive gene signature associ-

ated with CD8aa T cells (captured by GEP9; Figure S8;

TablesS5andS6). This signaturewas characterizedby the height-

ened expression of NUCB2, MINDY2, and HIVEP3 (Figures S3C

and S3D), and intriguingly, it was observed in both iNKT and
Cell Reports 43, 114705, September 24, 2024 3
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Figure 2. Gene-expression patterns in thymocyte lineages

(A) Heatmap showing MetaNeighbor’s AUROC scores between thymocytes split by donor, lineage, and non-effector (c0–11) versus effector (c12–17) clusters.

Barplots indicate thymocyte proportions per lineage.

(B) Pseudo-bulk differential expression analysis between CD4+/iNKT and CD8+/MAIT thymocytes in naive clusters (3, 9, 10, 11). As a negative control, the only

three genes that were differentially expressed between CD4+/MAIT and CD8+/iNKT thymocytes are displayed in the center of the heatmap.

(C) Pseudo-bulk differential expression analysis between CD4+/CD8+ and iNKT/MAIT thymocytes in naive clusters (3, 9, 10, 11). For both (B) and (C), heatmap

displays the expression level of genes (represented with color scale as a Z score of the average normalized expression) that are significantly differentially

expressed (padj < 0.01).

(D) Clustering of hashtag-separated thymic iNKT cells (top), MAIT cells (middle), and gd T cells (bottom). Right panel shows the score of type I and type III effector

gene signature for the corresponding thymic lineage.

(E) Kernel density estimates of the normalized expression level of genes of interest. The expression level distribution varies between genes and lineage. The range

of kernel density estimate values also varies between each panel (from 0 to 0.04 for the smallest range and 0 to 0.4 for the largest range). A unique color scale was

represented to indicate the direction of the values.
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MAIT cells (termed NKT_c0 and MAIT_c1; Figures S7C and S7G).

This subset of thymicCD8A-expressing iNKT cells, which also ex-

hibited some PLZF expression while lacking KLRB1 (coding for

CD161), EOMES, and GZMK expression (Figure 2E), could be

readily identified using flow cytometry (Figure S9). Second, we

identified a shared pattern of expression for the CCR9 and

CCR7 chemokine receptors across Tconv cells, iNKT cells, and

MAIT cells (Figure 2E). Initially, iNKT and MAIT cells exhibited an

upregulation of CCR9 in conjunction with TOX and SATB1

(Figures S3C and S3D), resembling the developmental program

of early developing CD4 SP and CD8 SP cells, respectively.

Subsequently, the elevated expression of CCR7 marked cells at

a seemingly more advanced developmental stage (termed
4 Cell Reports 43, 114705, September 24, 2024
NKT_c2 and MAIT_c4). These sequential waves of chemokine re-

ceptor expression align with gene modules GEP1 and GEP2 (Fig-

ure S8 and Table S4), suggesting their sequential induction during

the development of CD4, CD8, iNKT, and MAIT cells. These find-

ings establish that the human thymusharbors iNKTandMAIT cells

with a transcriptome resembling that of developing naive Tconv
cells. The existence of such naive-like populations (CD161�

EOMES�GZMK�) of iNKT and MAIT cells in the human thymus

was confirmed by flow cytometry (Figure S9).

Third, we discovered iNKT andMAIT cells characterized by up-

regulation of genes associated with type I IFN signaling such as

MX1 and IFI6, similar to CD4 and CD8 SP cells (NKT_c3 and

MAIT_c5; Figures S3C and S3D). Fourth, TCR signaling/AP-1



Figure 3. Innate T cell TCR diversity during development

Cells with VDJ sequencing and their cell-type-specific characteristic chain arrangement for thymic iNKT cells (A), MAIT cells (G), and gd T cells (L). For each cell

type, the respective proportions of gene segment usage in each chain (B and D; H and J; M and N) are shown together with their CDR3 length and sequence logo

(C, I, O) and their cluster-specific usage (E, with clusters as in Figure 2A). Shannon index as an estimation of TCR diversity in the naive-like and effector-like iNKT

(F) and MAIT (K) cells, based on clusters in Figure 2D. n = 1 human thymus sample for all panels.
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signatures were found in iNKT cells, with AP-1 TFs FOS and JUN

upregulated alongside ZBTB16 and KLRB1. These cells also ex-

pressed CD4 transcripts but not CD8A (NKT_c5; Figures 2E and

S3C). The TCR signature was more pronounced in MAIT cells,

where a small subset showedclear upregulation of genes involved

in TCR signaling (NR4A1, NFKBID, REL; MAIT_c3; Figure S3D).

Unlike Tconv, a proportion of both thymic iNKT and MAIT cells dis-

played an ‘‘effector’’ signature. iNKTcells in cluster 6 (NKT_c6) ex-

press classically iNKT-associated genes along with upregulation

of effector genes usually associated with type 1 or type 17 immu-

nity (EOMES/GZMK and RORA/CCR6, respectively; Figures 2E

and S3C). Some of these cells expressed CD8A transcripts, sug-

gesting that CD4+ and CD8+ iNKT cells might develop into tran-

scriptionally distinct subsets, with CD8+ iNKT cells having a

more effector-associated signature. We found the same type 1

(EOMES/GZMK) and type 17 (RORA/CCR6) immunity effector

co-expression signatures in MAIT cells (MAIT_c6; Figures 2D

and S3D), with upregulation of genes encoding for granzymes

(GZMA andGZMK) and chemokines (CCL5), aswell as genes pre-

viously associated with MAIT cells29,30 (KLRB1, SLC4A10, IL23R;

Figure 2E).

Analysis of the thymic gd T cells identified eight distinct clus-

ters (Figures 2D, S3E, and S7I–S7L; Table S7), confirming previ-
ous findings on pediatric gd thymocytes25 with immature popu-

lations (GD_c0, 1, 2), TCR activation profiles (GD_c3), type I IFN

response (GD_c6), and effector gd T cells with egress and mixed

type 1/type 17 effector potential (GD_c7).We also observed cells

with a cycling gene signature (GD_c4), which was notably absent

in iNKT andMAIT cells. Overall, we found a shared utilization of a

mixed type 1/type 17 effector programs by iNKT, MAIT, and gd

T cells, with 28.7% ± 22.3% of thymic Tinn cells displaying this

effector signature (Figures 1G and 1I, in clusters 12–17).

Lastly, because effector Tinn cells in the thymus might repre-

sent cells that initially acquired an effector signature in the blood

and subsequently recirculated back to the thymus, we

compared expression profiles between thymic and blood

effector iNKT and MAIT cells. We found distinctive tissue-spe-

cific gene-expression profiles for both cell types (Figure S5C),

indicating that thymic effector Tinn cells are unlikely to be derived

from recirculating blood cells.

Effect of clonal selection on iNKT, MAIT, and gd T cells’
effector states
To investigate whether Tinn cells with an effector transcriptome

had distinct TCR repertoires compared to naive Tinn cells, we

conducted paired VDJ sequencing (Figure 3).
Cell Reports 43, 114705, September 24, 2024 5
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For iNKT cells, most VDJ sequenced cells used the TRAV10

gene segment (encoding for the Va24 chain) rearranged with

TRAJ18 (Figures 3A and 3B), resulting in a canonical CDR3a

sequence of 14 amino acids (Figure 3C), crucial for antigen

recognition.31 This invariant TCRa chain paired with diverse

TCRb rearrangements, mainly involving the TBV25 chain (Fig-

ure 3D), and was used evenly across all clusters (Figure 3E).

The Shannon index, a measure of TCR diversity, revealed that

no clonal selection had occurred or was associated with effector

transcriptome development (Figure 3F), and no shared TCR clo-

notypes were identified between naive- and effector-like cells.

Thymic MAIT cells primarily used the TRAV1–2 gene segment

(encoding for the Va7.2 chain) with TRAJ33, TRAJ20, and

TRAJ12 (Figures 3G and 3H), maintaining a conserved Y95 res-

idue in the CDR3a loop (Figure 3I) essential for MAIT cell activa-

tion.32,33 These TCRa chains paired with diverse TCRb chains

(Figure 3J) dominated by TRBV6, TRBV20, and TRBV4 gene

segments.34,35 Like iNKT cells, MAIT cells showed no shared

TCR clonotypes and no clonal selection in effector transcriptome

cells (MAIT_c6) compared to naive-like cells (MAIT_c2-4), based

on the Shannon index (Figure 3K).

Effector gd T cells (GD_c7) were enriched for cells expressing

TRDV2 and TRGV9 gene segments, while TRDV1 and TRDV3

segments were excluded from this cluster (Figure 3L). Some

TRDV2+ or TRGV9+ cells were also found in non-effector clus-

ters, suggesting a potential role for these gene segments in the

development of effector gd T cells in the postnatal human

thymus. Supporting this hypothesis, we observed that the rear-

rangements of both the Vd2 chains and associated Vg9 chains

differed largely between cells in the effector versus non-effector

clusters (Figure 3N). Specifically, the Vg9 chains of effector cells

were found to be preferentially rearranged with the TRGJP gene

segment and enriched for the public CDR3 sequence typically

found among Vd2Vg9 gd T cells in adult blood36 (Figure 3O),

whereas Vd2+ cells in the non-effector clusters showed more

diverse Vg gene usage and rearrangements (Figure 3N). In sum-

mary, the acquisition of effector programs in iNKT andMAIT cells

is not associated with changes in TCR diversity, whereas Vd2

and Vg9 chain rearrangements in gd T cells suggest a predispo-

sition toward the effector program.

Gene-expression programs that characterize T cell
effector functions
To further characterize the functionality of Tinn and Tconv cells in

the blood, we examined the distribution of these cell types

across transcriptional clusters. Conventional CD4+ T cells were

primarily located in cluster 11 (naive CD4 T cells) and cluster 7

(Tregs). CD4
+ T cells also appeared in effector clusters, particu-

larly clusters 12 and 16, with proportions varying among donors

(18.4%–93.7%; Figures 1G and 1J). Blood CD8+ T cells were

predominantly in cluster 10 (naive CD8 T cells), with varying pro-

portions in effector clusters, reflecting differences in donor

immunological history (16.5%–94%; Figure 1J). In contrast, the

majority of blood Tinn cells (�94.3% ± 6.7%) were distributed

across effector clusters 12–17, regardless of donor (Figure 1J).

We next investigated transcriptional states in blood T cell pop-

ulations using cell hashtags to reanalyze blood iNKT cells,

MAIT cells,gdT cells, and TconvCD4
+ andCD8+ T cells individually
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(Figures 4A and 4B). Each cell type was found within previously

identified GEPs (GEP3–6; Figure 1K; Tables S8, S9, S10, S11,

and S12), albeit with varying proportions for each cell type

(Figures 4C and 4D). To contextualize these GEPs, we computed

overlap scores and statistically assessed their enrichment with

literature-derived signatures.37–40 Subsequently, we scored the

joint signature-GEP interactions in our dataset (Figure S10).

GEP3 was found to be closely associated with signatures of naive

T cell characteristics. In contrast, GEP4 displayed similarities with

Tcm, Tem, or literature-derived signatures classified as a mix

thereof (Tcm/Tem), while GEP6 exhibited characteristics akin to

Temra. GEP5, on the other hand, shared elements with Tem cells

and previously identified CD8 MAIT signatures (Figure S10A).

Blood iNKT cells predominantly expressed GEP3 or GEP5,

with some expressing GEP4 or GEP6 (Figure 4D). GEP4-ex-

pressing iNKT cells had CD4 transcripts, while GEP5 and

GEP6 cells lost CD4 expression (Figures S11A and S11B). To

validate this observation, we examined the cellular phenotype

of blood iNKT cells. Blood CD4+ iNKT cells were mostly

PLZF�CD161�EOMES�GZMK� but CCR7+, indicating a naive

GEP3 program (Figure S11C). In contrast, CD8+ and double-

negative iNKT cells were mostly PLZF+CD161+ and displayed

an effector phenotype (EOMES+GZMK+CCR7�CD62L�; Fig-

ure S11). Interestingly, the distribution of these programs varied

significantly among different donors (Figure 4B). These findings

are in line with previous data indicating that CD4-negative

iNKT cells becomemore prevalent in the blood with age, eventu-

ally becoming the dominant population in the adult blood iNKT

cell compartment.41,42 This suggests that CD4-negative iNKT

cells may originate from CD4+ iNKT cells that undergo a loss of

CD4 expression as they transition toward a more effector-like

state. Conversely, when examining MAIT cells in the blood, we

observed that the majority of them exhibited the GEP5 program,

with only a minor fraction utilizing the GEP6 program (Figure 4D).

This GEP phenotype was further confirmed by flow cytometry,

revealing that most MAIT cells were CD8+ and, interestingly,

that all MAIT cells displayed a uniform effector state (character-

ized by PLZF+CD161+EOMES+GZMK+CCR7�CD62L�), regard-
less of CD8 expression (Figure S12). These findings indicate that

MAIT cells in the bloodstream primarily exist in an exclusive tran-

scriptional state.

Blood gd T cells were stratified into five clusters: naive (c0,

GEP3), cycling (c4, GEP11), and clusters c1–c3 categorized

into GEP5 or GEP6 programs (Figures 4C and 4D). This division

in GEP utilization closelymirrored the specific TCR usage among

these cells. TRDV2/TRGV9-expressing cells were predominantly

GEP5, while TRDV1+ or TRDV3+ cells were enriched in GEP6

(Figures S13A–S13C). Flow cytometry confirmed Vg9+Vd2+

T cells primarily expressed PLZF and GZMK, while Vd2�

T cells were increased in GZMB+ cells (Figures S13D and

S13E). Thus, GEP5 is an effector gene module unique to Tinn
cells, indicating common transcriptional states in human Tinn
cells.

The distribution of CD4 and CD8 Tconv cells in the blood re-

vealed two primary patterns. Tconv cells were found either within

clusters containing naive cells (clusters 0 and 1) characterized by

high expression of GEP3 or dispersed across clusters of cells

displaying a gradient of the GEP6 program, with intermediary



Figure 4. Gene-expression programs in circulating Tinn and Tconv

(A–C) (A) Clustering of hashtag-separated blood iNKT, MAIT, gd T, CD4, and CD8 T cells, (B) the respective proportion of cells per cluster and donor, and (C) the

effector GEP signature scores (as in Figure 1K) per cell type and cluster.

(D) Top GEP usage for each cell type, based on cNMF-derived usage matrix.

(E) Pseudo-bulk, pairwise differential gene expression between cell types.

(F) Cell-type-specific genes among Tinn cells using GEP5. For both (E) and (F), heatmaps depict the expression level of genes (represented with color scale as a Z

score of the average normalized expression) that are significantly differentially expressed (padj < 0.01). n = 4, 4, 9, 4, and 9 for iNKT, MAIT, gd, CD4, and CD8 cells,

respectively.
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cells expressing GEP4 (Figure S14). The proportions of cells in

these clusters exhibited variations among donors (Figure 4B).

Together, these findings underscore the distinct associations

between different T cell types and effector programs. In the

blood, CD4� iNKT,MAIT, and Vg9+Vd2+ gd T cells predominantly

employ the GEP5 program, a program also shared by effector

Tinn cells in the thymus (Figure S8). Conversely, conventional

CD4+ and CD8+ T cells transition into effector cells along a

gradient defined by the GEP6 program. Notably, this GEP6 pro-

gram is also shared by Vd3+ and Vd1+ gd T cells.

Next, we used pairwise DEG analyses between T cell lineages

in human blood to identify lineage-specific genes.We uncovered

a total of 167 genes that exhibited significant differential expres-

sion (padj < 0.01) in at least two of the comparisonswe conducted

(Figure 4E). These distinct patterns of DEGs provided insights
into changes linked to the transition from a ‘‘naive’’ state to an

‘‘effector’’ state across cell types. Furthermore, we identified

genes that were commonly expressed by two distinct cell types

when compared to the others. Nevertheless, we did not readily

discern any gene-expression patterns specific to a particular

cell type. However, intriguingly, among these, a group of 104

genes distinguished gd, MAIT, and iNKT cells from Tconv CD4

and CD8 T cells, with 63% overlapping with GEP5. Given that

only Vg9+/Vd2+ T cells share the GEP5 program with iNKT and

MAIT cells, while Vd2� T cells exhibit greater similarity to Tconv
cells as they share the GEP6 program (Figure S13C), we

explored whether we could identify cell-type-specific gene sig-

natures specifically among GEP5-expressing cells using the

same analytical approach. Surprisingly, the results demon-

strated that the only significant DEGs between iNKT, MAIT,
Cell Reports 43, 114705, September 24, 2024 7



Figure 5. Effector gene-expression programs in Tinn and Tconv

(A) Key genes categorized by function and depicted by their expression level (Z-score color scale) and percentage of expression in cells belonging to the indicated

GEPs.

(B–D) (B) Single-cell regulatory network inference and clustering of TFs and enrichment score per cell (as row-scaled Z scores), ordered by cluster (as in Fig-

ure 1C), with tissue of origin and GEP assignment (based on cNMF usage) indicated by color bar. Two row clusters are marked, which are preferentially enriched

in Tinn (upper bracket) and Tconv (lower bracket). (C and D) TFs with pronounced activity in (C) Tinn and (D) Tconv (corresponding to brackets in B) and their targets.

Green dots indicate TFs (y axis) that have other TFs as their target (x axis), where purple labels TFs that can interact in either direction. The marginal bar chart

shows the number of TFs per target, color coded by their functional categorization (as in A).
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and gd T cells employing the GEP5 program (Figure 4F) were

genes encoding the constant regions of the TCR genes

(TRGC1, TRAC), the CD8 coreceptor (CD8A, CD8B), and the

CD94 receptor (encoded by KLRD1). Thus, human blood Tinn
cells, which encompass iNKT, MAIT, and Vg9+/Vd2+ cells, distin-

guish themselves from Tconv cells by employing a specific gene

program, but there is minimal transcriptional difference among

Tinn cells themselves.

The effector GEPs exhibit distinct migration, cytokine,
chemokine, and integrin characteristics established by
distinct gene-regulatory networks
The differentiation states of T cells are intricately linked to their

phenotypic, functional, and migratory attributes, making their

characterization clinically relevant. Each GEP aligns with distinct
8 Cell Reports 43, 114705, September 24, 2024
sets of chemokine and cytokine receptors as well as molecules

related to cytotoxicity, NK receptors, and integrins (Figure 5A).

For example, the GEP4 program, shared by Tcm/Tem (Figure S10)

and some iNKT cells depending on the donor (Figures 4B–4D),

shows high expression of chemokine receptors CXCR3 and

CCR4, sphingosine-1-phosphate receptor 4, and oxysterol re-

ceptor GPR183, with the latter offering survival and migratory

signals to thymocytes and CD4 T follicular helper cells.43 GEP4

also features high levels of IL2RA, IL6R, IL4R, and ITGB1, while

conspicuously lacking cytotoxic molecules (Figure 5A). In

contrast, the GEP5 program, predominant in Tinn cells across

most donors (Figures 4B–4D), shows elevated expression of

CCR1,CCR2,CCR5, andCCR6, as well asCXCR6 and cytokine

receptors such as IL18R1, IL18RAP, IL12RB1, IL12RB2, IL23R,

and IFNGR1 (Figure 5A). This pattern includes GZMA and
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GZMK but lacks GZMB and GZMH (Figures 5A and S5A) and

features the NK receptor KLRB1. On the other hand, the GEP6

program, mainly associated with Tem/Temra cells (Figure S10)

and Vd1+ and Vd3+ gd T cells across the majority of donors

(Figures 4B, 4C, and S13), shows increasedCX3CR1 expression

(Figure S14), correlating with effector state differentiation in CD4

and CD8 T cells.44 GEP6 includes IFNG, CCL4, CCL5, and

KLRD1, several integrins (ITGAL, ITGB2, ITGAM), and cytotox-

icity genes such as GZMB, GZMH, and granulysin (GNLY), with

reduced GZMK compared to GEP5 (Figure 5A). These findings

align with studies indicating that GZMK+ and GZMB+ cells delin-

eate Tcm and Tem/Temra cell populations.
45,46

We then used a network inference approach to identify the ac-

tivity of regulons—TFs and their targets—in single cells.47 We

identified 149 of such regulons, with 11 regulons more active in

Tinn compared to Tconv cells (Figure 5B). These regulons were

governed by TFs such as ELK3, MBD2, CREM, NFE2L2,

NR1D2, XBP1, MYBL1, RORA, MAF, CEBPD, and FOSL2.

Curated analysis of their predicted target genes indicates that

these TFsmay play a central role in shaping the unique transcrip-

tional profile observed in Tinn cells during steady-state condi-

tions. This role encompasses the regulation of chemokine and

cytokine receptors as well as other genes associated with Tinn
cells, including ZBTB16 (encoding PLZF), the master regulator

of the Tinn cell lineage (Figure 5C). A second group of regulons

exhibited enriched activity within effector Tconv cells, although

some shared activity with Tinn cells (including EOMES, RUNX3,

PRDM1, and FLI1; Figure 5B). As Tconv cells differentiate into

Tem/emra cells, there is an increased activity of regulons driven

by TBX21, KLF, and NFAT family TFs (Figures 5B and 5D), in

agreement with their functions in regulating the cytolytic activity

of CD8 T cells.48–50 Taken together, we discovered novel candi-

date regulators of Tinn and Tconv effector programs, along with

their predicted target genes, which warrant further experimental

validation.

Cross-species analysis of thymic Tinn cell development
Only a minority of human Tinn thymocytes display an effector

phenotype, contrasting with the predominant effector associa-

tion of mouse Tinn thymocytes, which develop into distinct

effector subsets.23,51,52 To explore transcriptional similarities be-

tween mouse and human Tinn cells in the thymus, we con-

structed a reference mouse Tinn dataset from nine studies.51–59

This dataset revealed 13 transcriptionally distinct clusters, with

iNKT, MAIT, and gd T cells coexisting in variable proportions

(Figures 6A and S15; Table S13). Lineage-specific clusters

included those unique to gd T cells (c1 and c2, immature

Cd24a+Gzma+ cells51,58), signaling cells (c3 and c4), cycling cells

(c5), type 1 cells (c8 and c9), type 2 cells (c6 and c7), and type 17

cells (c10 and c11). Cluster 0, expressing markers such as Sell

(encoding for Cd62l), Klf2, Ccr7, Foxo1, and S1pr1, likely repre-

sents Tinn cells positively selected on thymic epithelial cells

(TECs), bypassing the ‘‘innate’’ pathway.23,60 We performed a

cross-species comparison of cell identities by assessing the

pairwise correspondence between murine Tinn signatures and

human iNKT, MAIT, and gd T cell clusters (Figure 6B). Human

iNKT cells in cluster 0 (NKT_c0), exhibiting a CD8aa T cell gene

signature, showed the strongest resemblance to signaling cells
(Figure 6B), likely due to shared TCR activation genes.

Conversely, cells with an effector profile (NKT_c5 and NKT_c6)

showed the closest relationship to mouse type 1 and to a lower

extent type 17 cells (Figure 6B). Importantly, we did not find hu-

man clusters corresponding uniquely to specific mouse subsets,

confirming that human iNKT cells do not differentiate into distinct

subsets but rather acquire amixed type 1/type 17 transcriptome.

We also did not detect any human iNKT cell clusters that

matchedwith themouse type 2 subset with a high degree of con-

fidence (area under the receiver operator characteristic curve

[AUROC] > 0.65; Figure 6B), suggesting that type 2 iNKT cells

are likely absent in the human thymus. Corroborating this finding,

we did not detect any expression of IL-4- or IL-13-encoding tran-

scripts in human thymic iNKT cells, which are typically associ-

ated with mouse type 2 thymic iNKT cells. Similar patterns

were observed for MAIT and gd T cells in the human thymus,

with effector cells resembling more closely mouse type 1 and

type 17 effector cells (Figure 6B). This indicates that human

Tinn cells follow a distinctive path with mixed effector potential,

unlike the mouse model with multiple effector subsets.

We next assessed whether the TFs driving human Tinn cell reg-

ulons (Figure 5A) were also expressed in mouse Tinn cells (Fig-

ure 6C). Most TFs were indeed expressed in mouse Tinn cells,

although their expression varied across clusters. However, ex-

ceptions included CEBPD, EOMES, and MYBL1, which were

highly expressed in human Tinn cells (Figure S5A) but barely

detectable in mouse Tinn cells (Figure 6C). Conversely, mouse

type 1 Tinn cells exhibited high T-bet levels (encoded by Tbx21,

Figure 6C), while human Tinn cells had low T-bet expression

(Figures S5A, S11B, and S12B). These findings highlight some

species-specific differences in TF expression that could play a

role in modulating Tinn cell development and functions.

CD1D, SLAMF6, and SLAMF1 expression in the mouse
and human thymus
The existence of Tinn cells in the human thymus with a transcrip-

tome similar to developing Tconv cells raises questions about

their origin. In mice, a subset of MAIT cells is positively selected

by radiation-resistant TECs, which do not lead to a memory or

effector phenotype acquisition.52,59 This is because TECs lack

SLAM receptors, crucial for Tinn commitment.61 Although this is

more common among MAIT cells, some thymic mouse iNKT

cells also exhibit a similar transcriptome.23

We hypothesized that naive Tinn cells in humans might result

from a similar TEC-mediated selection process. Given the chal-

lenge of detecting surface MR1 expression at steady state, we

investigated CD1D protein expression in the thymus instead.

Mouse TECs have been reported to express CD1d on their sur-

face.62 scRNA-seq of the mouse thymus27 confirmed Cd1d1

expression across various cell types, including thymocytes and

cortical and medullary TECs (Figures 7A and 7B). Flow-cytome-

try analyses corroborated these findings (Figures 7C and 7D).

In contrast, human thymus scRNA-seq data27 showed a more

limited pattern ofCD1D andSLAMF6 expression (Figures 7E and

7F). Human DP thymocytes express CD1D transcripts and sur-

face CD1D molecules, but this expression is lost in mature SP

thymocytes. Flow cytometry confirmed that, as in mice,61

SLAMF1 is expressed by human DP and SP thymocytes, but
Cell Reports 43, 114705, September 24, 2024 9



Figure 6. Cross-species comparison of mouse and human Tinn development

(A) Mouse Tinn reference atlas with seven characteristic cell states highlighted, which are found across lineages (as in Figure S15).

(B) MetaNeighbor analyses showing pairwise correspondence (AUROC scores) between murine Tinn (as in A) and human iNKT, MAIT, and gd T cell clusters (as in

Figure 2D). Marginal bar charts indicate number of cells in the corresponding clusters.

(C) Expression of human regulon-driving TFs (as in Figure 5) together with murine TFs of importance in Tinn development (Rorc, Tbx21) projected on mouse Tinn
reference atlas (as in A).
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SLAMF6 is not detectable on the surface of human thymocytes

(Figure 7H). Additionally, human cortical TECs (cTECs) express

CD1D transcripts and have surface CD1D protein, whereas

medullary TECs (mTECs) do not (Figures 7G and 7H). This inter-

species difference in CD1D and SLAM family members’ expres-

sion might affect iNKT cell development, given the crucial role of

mTECs in murine iNKT cell development.19,63

DISCUSSION

In this study, we employed multi-modal single-cell transcriptom-

ics to explore the diverse phenotypic states of Tinn cells within

the human thymus and blood. By comparing these states to

those of Tconv cells, we provided insights into human T cell

biology and a comprehensive resource for further studies of

health and disease. Our work emphasizes Tinn cells as promising

candidates for immunotherapies.64–66
10 Cell Reports 43, 114705, September 24, 2024
Our study demonstrated that the majority of Tinn cells in adult

human blood exhibit a distinct transcriptional program shared by

most iNKT, MAIT, and Vd2Vg9+ T cells under steady-state con-

ditions. This program implies a blended type 1/type 17 transcrip-

tional pattern, driven by specific TFs that enable the expression

of distinct chemokine and cytokine receptors, NK receptors, and

cytotoxic molecules. This equips Tinn cells to swiftly respond to

cytokines such as IL-12, IL-18, and IL-23 independently of

TCR signaling.22,67 Notably, human Tinn cells constitutively ex-

press GZMK but lack GZMB while also expressing cathepsins

necessary for activating granzymes.68 This suggests that Tinn
cells are prepared to release active GZMK upon stimulation,69

which can induce pro-inflammatory cytokines45,70 and activate

complement,71 implying a role in immune regulation and inflam-

matory responses. In contrast, mouse Tinn cells do not express

GZMK transcripts but possess pre-formed cytokine-encoding

transcripts, allowing for immediate responses.72,73 Hence,
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despite their evolutionary conservation, Tinn cells may have

evolved species-specific mechanisms to provide early signaling

and amplification of the adaptive immune response.

We identified TFs and their predicted target genes with

increased transcriptional activity in human Tinn cells compared

to naive and effector Tconv cells. Many of these TFs are associated

with IFN-g, cytotoxicity,48–50,74 and IL-17 production,75–77 consis-

tent with the type 1/type 17 transcriptional program observed in

Tinn cells. In mice, the Th1/Th17 paradigm identifies IL-12 and

IL-23 as cytokines that induce IFN-g and IL-17 production,

respectively. By contrast, activating human MAIT cells through

their TCR or with IL-12 and IL-18, and stimulating Tinn cells with
IL-23, results in IFN-g production.67,78 Yet, only a subset of these

cells produces IL-17 in the same conditions, a phenomenon

thought to be influenced by epigenetic modifications at the IL-

17 gene loci.78 Underlining the importance of understanding the

regulation of IL-17 production in Tinn cells, IL-17 production in hu-

man MAIT cells is increased in diseases such as severe asthma,

community-acquired pneumonia in children,79,80 and colorectal

cancer patients.81 Interestingly, NR1D family TFs, associated

with Th17 cell regulation,77,82 drive regulons in human Tinn cells.

These factors are regulated by the circadian clock, suggesting

that circadian rhythms might affect IL-17 production in Tinn cells,

a hypothesis that warrants further investigation.
Cell Reports 43, 114705, September 24, 2024 11
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While many TFs essential for the human Tinn program are also

expressed in mouse Tinn cells, there are notable exceptions such

as CEBPD, EOMES, and MYBL1, which are highly expressed in

human Tinn cells but barely detectable inmouse Tinn. CEBPD reg-

ulates CCR6 in humanMAIT cells83 andmay play a crucial role in

the human Tinn program. MYBL1 is expressed in human Tinn
cells,84 but its function remains to be defined. EOMES, essential

for mouse iNKT cell development, shows low expression under

steady-state conditions in mice85,86 but is highly expressed in

human Tinn cells. By contrast, T-bet is highly expressed in type

1 mouse Tinn cells and is essential for their development and

functions.86,87 However, human effector Tinn cells, which are

most similar to mouse type 1 Tinn cells, express relatively low

levels of T-bet. Instead, T-bet’s expression and activity were

correlated with the acquisition of the GEP6 program by Tconv
cells in humans. These findings suggest the possibility of spe-

cies-specific transcriptional regulation of Tinn cells, which could

be relevant for their future therapeutic applications. Curiously,

high-confidence regulons such as PLZF and Rorgt were not

identified in the gene-regulatory network of human Tinn cells,

possibly due to the relatively low gene detection in this context.

In the postnatal thymus, iNKT and MAIT cells display a tran-

scriptional profile similar to that of developing conventional

CD4+ and CD8+ T cells. Unlike conventional thymocytes selected

by cTECs, murine iNKT and MAIT cells undergo selection by DP

thymocytes via SLAM family receptors, leading to PLZF expres-

sion and effector differentiation.61,88,89 A minor fraction of murine

MAIT cells with a naive-like phenotype is TEC selected.52 The cor-

responding expression patterns of CD1d on cTECs and DP thy-

mocytes in bothmurine and human thymus suggests a similar se-

lection of human iNKT thymocytes by cTECs or DP thymocytes.

The expression of PLZF in non-effector iNKT cells, as observed

through both scRNA-seq and flow cytometry, supports the hy-

pothesis of DP selection. However, the initial selection process

may not provide all necessary signals for complete maturation,

as cells just experiencing positive selection are more akin to

CD4+ and CD8+ Tconv cells. Additional signals may be required

for human iNKT and MAIT cells to acquire effector functionalities.

This hypothesis alignswith the prevalence of naive iNKT andMAIT

cells in human cord blood and the gradual increase in effector Tinn
cells with age.41,42,90 Unlike murine Tinn cells, which use SLAMF6

and SLAMF1 to induce PLZF expression and effector matura-

tion,61 human thymocytes do not express SLAMF6, possibly

affecting Tinn cell maturation. Additionally, human mTECs lack

CD1D expression, which could also contribute to the variations

in iNKT cell maturation observed in cross-species analyses.19,63

Our study highlights a distinct path taken by Tinn cells with an

effector program in the human postnatal thymus, characterized

by a mixed type 1/type 17 effector potential, contrasting with

mice where Tinn cells split into multiple effector subsets. We

did not observe specific clusters of proliferative human iNKT

and MAIT thymocytes. In mice, proliferative thymic iNKT and

MAIT cell clusters are identifiable52,54,55 and reflect the prolifera-

tive burst following positive selection,91 crucial for establishing a

substantial Tinn cell pool. While Tinn cells constitute 1%–2% of

thymocytes in mice, their proportion is much lower in pediatric

humans. Moreover, our analysis did not reveal any type 2 Tinn
cells in humans, unlike in mice, where thymus-resident iNKT2
12 Cell Reports 43, 114705, September 24, 2024
cells significantly impact the thymic environment through IL-4

production.17,18,63,92,93 The scarcity of type 2 Tinn cells in the hu-

man thymus suggests that these phenomena may be species

specific or regulated by different cell types in humans.

Taken together, our findings hold significance in elucidating

the diverse functional attributes of human Tinn cells and their po-

tential applications in immunotherapeutic contexts.

Limitations of the study
Our study presents a comprehensive atlas of human Tinn cells in

the thymus and blood, revealing a blended type 1 and type 17

transcriptional profile. However, there are several limitations to

consider. We noted variations in effector cell percentages

among donors, which may be influenced by factors such as

age, sex, or immunological history. Additionally, our analysis

focused on steady-state transcriptional profiles, leaving unclear

how these profiles might change in various disease states.

Comparing pediatric thymic T cells with adult blood samples in-

troduces age-related differences that could impact transcrip-

tional profiles. Ideally, matched samples would offer a more ac-

curate comparison, but the limited availability of iNKT and MAIT

cells in neonates presents challenges in obtaining sufficient cell

quantities. Future research should explore thymus-derived fetal

Tinn cells to investigate whether they exhibit specific type 1 and

type 17 profiles akin to those described in mice. Recent studies

on fetal gd T cells suggest that fetal Tinn cells might also develop

unique transcriptional subsets.25 Given that iNKT andMAIT cells

appear from gestational weeks 18–2394,95 and fetal hematopoi-

etic stem and progenitor cells are predisposed to innate-like lym-

phocytes,96 examining these cells could yield insights into their

development and function. Furthermore, the potential for distinct

waves of Tinn cells arising from fetal versus adult hematopoietic

stem cells in mice97 highlights the need for further investigation

into their transcriptional differences.
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94. Loh, L., Ivarsson, M.A., Michaëlsson, J., Sandberg, J.K., and Nixon, D.F.

(2014). Invariant natural killer T cells developing in the human fetus accu-

mulate and mature in the small intestine. Mucosal Immunol. 7, 1233–

1243. https://doi.org/10.1038/mi.2014.13.

95. Leeansyah, E., Loh, L., Nixon, D.F., and Sandberg, J.K. (2014). Acquisi-

tion of innate-like microbial reactivity in mucosal tissues during human

fetal MAIT-cell development. Nat. Commun. 5, 3143. https://doi.org/

10.1038/ncomms4143.

96. Yuan, J., Nguyen, C.K., Liu, X., Kanellopoulou, C., andMuljo, S.A. (2012).

Lin28b reprograms adult bone marrow hematopoietic progenitors to

mediate fetal-like lymphopoiesis. Science 335, 1195–1200. https://doi.

org/10.1126/science.1216557.

97. Rudd, B.D. (2020). Neonatal T Cells: A Reinterpretation. Annu. Rev. Im-

munol. 38, 229–247. https://doi.org/10.1146/annurev-immunol-091319-

083608.

98. Rouse, R.V., Bolin, L.M., Bender, J.R., and Kyewski, B.A. (1988). Mono-

clonal antibodies reactive with subsets of mouse and human thymic

epithelial cells. J. Histochem. Cytochem. 36, 1511–1517. https://doi.

org/10.1177/36.12.2461413.

99. Chen, Y.H., Chiu, N.M., Mandal, M., Wang, N., and Wang, C.R. (1997).

Impaired NK1+ T cell development and early IL-4 production in CD1-

deficient mice. Immunity 6, 459–467. https://doi.org/10.1016/s1074-

7613(00)80289-7.

100. McCarthy, D.J., Campbell, K.R., Lun, A.T.L., and Wills, Q.F. (2017). Sca-

ter: pre-processing, quality control, normalization and visualization of

single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186. https://

doi.org/10.1093/bioinformatics/btw777.

101. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Ba-

glaenko, Y., Brenner, M., Loh, P.R., and Raychaudhuri, S. (2019). Fast,

sensitive and accurate integration of single-cell data with Harmony.

Nat. Methods 16, 1289–1296. https://doi.org/10.1038/s41592-019-

0619-0.

102. Blanco-Carmona, E. (2022). Generating publication ready visualizations

for Single Cell transcriptomics using SCpubr. bioRxiv. https://doi.org/

10.1101/2022.02.28.482303.
103. Gu, Z., Gu, L., Eils, R., Schlesner, M., and Brors, B. (2014). circlize Imple-

ments and enhances circular visualization in R. Bioinformatics 30, 2811–

2812. https://doi.org/10.1093/bioinformatics/btu393.

104. Wagih, O. (2017). ggseqlogo: a versatile R package for drawing

sequence logos. Bioinformatics 33, 3645–3647. https://doi.org/10.

1093/bioinformatics/btx469.

105. Durinck, S., Spellman, P.T., Birney, E., and Huber, W. (2009). Mapping

identifiers for the integration of genomic datasets with the R/Bio-

conductor package biomaRt. Nat. Protoc. 4, 1184–1191. https://doi.

org/10.1038/nprot.2009.97.

106. Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., DeMoor, B., Brazma, A.,

and Huber, W. (2005). BioMart and Bioconductor: a powerful link be-

tween biological databases and microarray data analysis. Bioinformatics

21, 3439–3440. https://doi.org/10.1093/bioinformatics/bti525.

107. Brunson, J.C. (2020). ggalluvial: Layered Grammar for Alluvial Plots.

J. Open Source Softw. 5, 2017. https://doi.org/10.21105/joss.02017.

108. Moerman, T., Aibar Santos, S., Bravo González-Blas, C., Simm, J., Mor-
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Antibodies

Human PBS57 CD1d tetramer PE NIH tetramer core facility N/A

Human 5-OP-RU MR1 tetramer PE NIH tetramer core facility N/A

Anti-human CCR7 – APC-Fire810 (clone G043H7) Biolegend Cat#353263; RRID: AB_2894483

Anti-human CD1d – PE (clone 51.1) Biolegend Cat#350305; RRID: AB_10642028

Anti-human CD3 purified (clone UCHT1) Biolegend Cat#300402; RRID: AB_314056

Anti-human CD3 – AF488 (clone OKT3) Biolegend Cat#317310; RRID: AB_571877

Anti-human CD3 – BUV496 (clone UCHT1) BD Biosciences Cat#612941; RRID: AB_2916883

Anti-human CD4 purified (clone RPA-T4) Biolegend Cat#300570; RRID: AB_2810427

Anti-human CD4 – AF488 (clone OKT4) Thermo Fisher Scientific Cat#53-0048-42; RRID: AB_10735503

Anti-human CD4 – redFluor710 (clone OKT4) Tonbo biosciences Cat#80–0048; RRID: AB_2621976

Anti-human CD4 – BV570 (clone RPA-T4) Biolegend Cat# 300533; RRID: AB_10896788

Anti-human CD8ɑ purified (clone RPA-T8) Biolegend Cat#301002; RRID: AB_314120

Anti-human CD8ɑ – APC (clone RPA-T8) Thermo Fisher Scientific Cat#17-0088-42; RRID: AB_10669564

Anti-human CD8ɑ – BUV395 (clone RPA-T8) BD Biosciences Cat#563795; RRID: AB_2722501

Anti-human CD8ɑ – PE-Cy7 (clone SK1) Tonbo biosciences Cat#60–0087; RRID: AB_3106994

Anti-human CD14 – eFluor450 (clone 61D3) Thermo Fisher Scientific Cat#48-0149-42; RRID: AB_1272050

Anti-human CD14 – PE-Cy5 (clone 61D3) Thermo Fisher Scientific Cat#15-0149-42; RRID: AB_2573058

Anti-human CD19 – eFluor450 (clone H1B19) Thermo Fisher Scientific Cat#48-0199-42; RRID: AB_1272053

Anti-human CD19 – PE-Cy5 (clone H1B19) Thermo Fisher Scientific Cat#15-0199-42; RRID: AB_10853658

Anti-human CD45 purified (clone HI30) Biolegend Cat#304002; RRID: AB_314390

Anti-human CD45 – AF647 (clone QA17A19) Biolegend Cat#393406; RRID: AB_2750083

Anti-human CD45 – BV421 (clone HI30) Biolegend Cat#304032; RRID: AB_2561357

Anti-human CD62L – BV650 (clone DREG-56) Biolegend Cat#304832; RRID: AB_2563821

Anti-human CD161 – BUV805 (clone HP-3G10) BD Biosciences Cat#749221; RRID: AB_2873599

Anti-human CD235a (clone HI264) Biolegend Cat#349102; RRID: AB_10612565

Anti-human Eomes – BUV737 (clone X4-83) BD Horizon Cat# 567170; RRID: AB_2916487

Anti-human EPCAM – BV421 (clone 9C4) Biolegend Cat#324220; RRID: AB_2563847

Anti-human GZMB – AF700 (clone GB11) BD Biosciences Cat#560213; RRID: AB_1645453

Anti-human GZMK – eFluor660 (clone G3H69) Thermo Fisher Scientific Cat#50-8897-42; RRID: AB_2574299

Anti-human HLADR – BV711 (clone L243) Biolegend Cat#307643; RRID: AB_11218794

Anti-human PLZF – PE-CF594 (clone R17-809) BD Horizon Cat#565738; RRID: AB_2739339

Anti-human T-bet – BV605 (clone 4B10) Biolegend Cat#644817; RRID: AB_11219388

Anti-human TCR gd – BV650 (clone 11F2) BD Biosciences Cat#569510; RRID: AB_3106997

Anti-human Vɑ7.2 – BV785 (clone 3C10) Biolegend Cat#351721; RRID: AB_2566041

Anti-human Vɑ24 – PerCP-Cy5.5 (clone C15) Biolegend Cat#360004; RRID: AB_2562495

Anti-human Vd1 – PerCP-Vio700 (clone REA173) Miltenyi Biotec Cat#130-120-441; RRID: AB_2784469

Anti-human Vd2 – FITC (clone 123R3) Miltenyi Biotec Cat#130-125-095; RRID: AB_2819745

Anti-human Vg9 – PE (clone B3) BD Biosciences Cat#555733; RRID: AB_396076

CDR2 purified98 Dr. Sheena Pinto N/A

Anti-mouse CD1d – PE (clone 1B1) Biolegend Cat#123509; RRID: AB_1236547

Anti-mouse CD4 – AF488 (clone GK1.5) Biolegend Cat#100423; RRID: AB_389302

Anti-mouse CD8ɑ – APC (clone 53–6.7) Biolegend Cat#100711; RRID: AB_312750

Anti-mouse CD45 (clone 30-F11) Thermo Fisher Scientific Cat#14-0451-85; RRID: AB_467252
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Anti-mouse CD45 – BV605 (clone 30-F11) Biolegend Cat#103139; RRID: AB_2562341

Anti-mouse CD90.2 purified (clone 53–2.1) Biolegend Cat#140302; RRID: AB_10641692

Anti-mouse EpCAM – BV421 (clone G8.8) Biolegend Cat#118225; RRID: AB_2563983

Goat anti-mouse IgG Vector Laboratories Cat#AI-9200-1.5; RRID: AB_3107016

Anti-mouse Ly51 – AF647 (clone 6C3) Biolegend Cat#108312; RRID: AB_2099613

Goat anti-rat IgG Vector Laboratories Cat#BA-9400-1.5; RRID: AB_3107017

Human Fc receptor blocking FcgR block Miltenyi Biotec Cat# 130-059-901; RRID: AB_2892112

Human Fc receptor blocking TruStain FcX Biolegend Cat#422302; RRID: AB_2818986

Mouse Fc receptor blocking

anti-CD16/32 (clone 93)

Thermo Fisher Scientific Cat#14-0161-85; RRID: AB_467134

UEA1 – FITC Vector Laboratories Cat#FL-1061; RRID: AB_2336767

Human Single Cell Sample Multiplexing Kit BD Biosciences Cat# 633781; RRID: AB_2870299

Biological samples

Healthy human whole blood (Human Immune

Tissue Network Biobank); COMIRB

protocol #17-2159

Colorado Anschutz Medical

Campus Clinical and Translational

Sciences Institute, Aurora (USA)

N/A

Healthy human blood (from plateletpheresis

leukoreduction filter chambers); Vitalant

Vitalant Blood Donation Center,

Denver (USA)

N/A

Human pediatric thymic tissue;

IRB protocol #20-0150

Children’s Hospital Colorado,

Aurora (USA)

N/A

Human pediatric thymic tissue;

IRB protocol #IRB-23-4

Mount Sinai, New York City (USA) N/A

Human pediatric thymic tissue;

protocol #NHBR2101

Northwell Health Biospecimen

Repository, Lake Success (USA)

N/A

Chemicals, peptides, and recombinant proteins

Bovine Serum Albumin (BSA) ThermoFisher Scientific Cat#J10857-22

Collagenase type IV StemCell Technologies Cat#07427

Dispase I Sigma-Aldrich Cat#04942086001

DMSO Sigma-Aldrich Cat#D8418-100ML

DNase I Sigma-Aldrich Cat#11284932001

Fixable Viability Dye efluor780 ThermoFisher Scientific Cat#65-0865-14

Fetal Bovine Serum (FBS) Corning Cat#35-010-CV

GlutaMAX Gibco Cat#35050-061

Liberase TH Sigma-Aldrich Cat#5401135001

2-Mercaptoethanol Sigma-Aldrich Cat#21985-023

2-Mercaptoethanol Gibco Cat#21985023

Penicillin/streptomycin Gibco Cat#15140-122

Non-essential amino acids Sigma-Aldrich Cat#11140-050

Sodium pyruvate Sigma-Aldrich Cat#11360-070

Ficoll-paque Premium Cytiva Cat#17544203

Critical commercial assays

AF488 antibody labeling kit ThermoFisher Scientific Cat#A20181

Anti-PE microbeads Miltenyi Cat#130-048-801

BD Transcription Factor Buffer Set BD Biosciences Cat#562574

Live/dead Fixable Near-IR dead cell stain kit ThermoFisher Scientific Cat#L10119

BD Rhapsody Cartridge Kit BD Biosciences Cat#633773

BD Rhapsody Enhanced Cartridge Kit BD Biosciences Cat#664887

BD Rhapsody Cartridge Reagent Kit BD Biosciences Cat#633773

BD Rhapsody cDNA Kit BD Biosciences Cat#633773

BD Rhapsody TCR/BCR Amplification Kit BD Biosciences Cat#665345

BD Rhapsody WTA Amplification Kit BD Biosciences Cat#633801

(Continued on next page)
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Deposited data

Raw data (fastq files)

Preprocessed Seurat object

This study GEO: GSE249684

Web browser exploration tool (ShinyCell)

of human and murine integrated datasets

This study https://xspeciestcells.cshl.edu/

Code This study https://doi.org/10.5281/zenodo.13737916.

https://doi.org/10.5281/zenodo.13251142

Experimental models: organisms/strains

C57BL/6J Jackson Laboratories Strain #000664; RRID:IMSR_JAX:000664

C57BL/6J CD1d1d2�/� Bred in house Chen et al.99

Software and algorithms

Flow cytometry software FlowJo (v10.7.1) BD Biosciences RRID: SCR_008520

Flow cytometry software SpectroFlo (v3.0) Cytek Biosciences RRID: SCR_019826

FastQC (v0.11.9) https://github.com/s-andrews/FastQC RRID: SCR_014583

MultiQC (v1.12) https://github.com/MultiQC/MultiQC RRID: SCR_014982

cNMF (v1.5) https://github.com/dylkot/cNMF RRID: SCR_025495

Python (version R3.8) https://www.python.org/ RRID: SCR_008394

R (version R4.0.3) https://www.r-project.org/ RRID: SCR_001905

Other

Public dataset – peripheral blood CD4+ T cell

gene signatures (Cano-Gamez et al.)

Cano-Gamez et al.37 Supplementary Data 6

Public dataset – peripheral blood T cell gene

signatures (Rose et al.)

Rose et al.38 Supplementary Data 2, Supplementary Data 3

Public dataset – peripheral blood T cell gene

signatures (Terekhova et al.)

Terekhova et al.40 Table S5

Public dataset – T cell gene signatures across

human tissues (Poon et al.)

Poon et al.39 Table S6

Public dataset – scRNAseq of human

thymus (Park et al.)

Park et al.27 https://datasets.cellxgene.cziscience.com/

de8665a2-0476-4865-b4af-

c7b8d3b1b87f.h5ad

Public dataset – scRNAseq of murine

iNKT thymocytes (Baranek et al.)

Baranek et al.54 https://datasets.cellxgene.cziscience.com/

de8665a2-0476-4865-b4af-

c7b8d3b1b87f.h5ad

Public dataset – scRNAseq of murine

iNKT thymocytes (Krovi et al.)

Krovi et al.55 GEO: GSE152786

Public dataset – scRNAseq of murine

iNKT thymocytes (Maas-Bauer et al.)

Maas-Bauer et al.56 GEO: GSE172169

Public dataset – scRNAseq of murine

iNKT thymocytes (Wang et al.)

Wang et al.57 GEO: GSE130184

Public dataset – scRNAseq of murine

iNKT, MAIT, gd thymocytes (Lee et al.)

Lee et al.51 SRA: PRJNA549112

Public dataset – scRNAseq of murine

MAIT thymocytes (Chandra et al.)

Chandra et al.59 GEO: GSE189484

Public dataset – scRNAseq of murine

MAIT thymocytes (Koay et al.)

Koay et al.53 GEO: GSE137350

Public dataset – scRNAseq of murine

MAIT thymocytes (Legoux et al.)

Legoux et al.52 EMBL-EBI: E-MTAB-7704

Public dataset – scRNAseq of murine

gd thymocytes (Li et al.)

Li et al.58 GEO: GSE179422

HBSS Gibco Cat#14175079

HEPES (1M) Gibco Cat#15630080

RPMI 1640 Corning Cat#10-040-CV

(Continued on next page)
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RPMI 1640 with 25mM HEPES Gibco Cat#22400071

RPMI 1640 without phenol red Gibco Cat#11835030

TrypLE Express Enzyme Gibco Cat#12604013
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice
C57BL/6 mice were purchased from Jackson Laboratories. The Cd1d1d2�/� mice backcrossed to the C57BL/6 background were

previously described.99 All mice used were between 6 and 15 weeks and age-matched for each experiment. Mice were raised in a

specific pathogen-free environment at the Office of Laboratory Animal Research at the University of Colorado Anschutz Medical

Campus or the Animal Core Facility at Cold Spring Harbor Laboratory. Animal procedures were approved by the UCD (00065) Insti-

tutional Animal Care and Use Committees and the Cold Spring Harbor Laboratory IACUC (23–1); all procedures were carried out in

accordance with the approved guidelines.

Human
Thymus tissues were obtained from anonymous human donors who were undergoing medically necessary surgery where removal of

a portion of the thymus was required to facilitate exposure of the operative field. No tissues were obtained specifically for the pur-

poses of this study. This use of discarded tissue was approved by the Institutional Review Board (IRB) of the University of Colorado

Anschutz Medical Campus (IRB-17-2159). Additional samples were collected under the Mount Sinai Biorepository with a Waiver of

Consent and under the Northwell Health Biospecimen Repository (IRB 20–0150) with patient consent; the use of these human tissues

was reviewed by Cold Spring Harbor Institutional Review Board. Pediatric thymus samples for scRNAseq came from individuals be-

tween 10 and 20 weeks old (Table S1), and samples used for flow cytometry experiments came from individuals between 4 days and

5months old. Plateletpheresis leukoreduction filters (LRS chambers) were purchased from Vitalant Blood Center (Denver, CO, USA).

Additional PBMCs were collected under COMIRB #17–2159 at the University of Colorado Clinical and Translation Research Centers

(CTRC) which is a part of the Colorado Clinical and Translation Sciences Institute (CCTSI), with all donors having provided written

informed consent. Overview of sample metadata is provided in Table S1.

METHOD DETAILS

Murine thymus samples
To isolate thymocytes, thymus tissue was immersed in RPMI 1640 media (Corning, #10-040-CV) and gently pressed through a 40mm

cell strainer using the plunger of a 1 mL syringe. For TEC isolation, the thymus tissue was cut into small fragments and submerged in

RPMI 1640 media without phenol red (Gibco, #11835030), supplemented with 20mM HEPES, 1.3 U/mL Liberase TH, and 100 U/mL

DNase I. These tissue fragments were incubated for 5min on ice followed by an additional 20min at 37�C. After digestion, the solution
was repeatedly mixed with a micropipette to ensure complete tissue disintegration. To stop the digestion process, cells were sus-

pended in HBSS, 4% heat-inactivated FBS (HI-FBS, FBS preheated for 20 min at 56�C), 20mM HEPES, and 10U/mL DNase I. To

remove immune cells, the cell suspension was incubated with rat anti-mouse CD90.2 (clone 53–2.1), anti-mouse CD45 (clone

30-F11), and anti-mouse CD45-BV605 (clone 30-F11) antibodies for 30 min at 4�C. Subsequently, the cell suspension was placed

on panning plates coated with goat anti-rat IgG for 20 min at room temperature. Unattached cells were then transferred to new

panning plates for a second depletion round. The remaining cell suspension, following this depletion process, was prepared for

flow cytometry analysis.

Human thymus samples – Thymocytes
To extract thymocytes for both scRNAseq and flow cytometry, the thymus tissue was placed in complete RPMI 1640 media (Gibco,

#22400–071), with 10% HI-FBS, 1% non-essential amino acids, 1% sodium pyruvate, 1X GlutaMAX, 1% Penicillin/Streptomycin,

and 1X 2-Mercaptoethanol (Sigma-Aldrich #21985–023). The tissue was cut into small pieces, and gently pressed with the back

of a 10 mL syringe to release thymocytes. The resulting suspension was passed through a 70 mm filter. Thymocytes were isolated

using a Ficoll-Paque density gradient provided by Cytiva. Tetramer staining for MAIT and iNKT cells, and surface staining for

CD4+, CD8+ and gd T cells was performed on freshly isolated thymocytes.

Human thymus samples – thymic epithelial cells
To enrich TECs for flow cytometry, thymus tissue was cut into small pieces and placed in RPMI 1640 media without phenol red

(Gibco, #11835030), 5% HI-FBS, 1% Penicillin/Streptomycin, 10mM HEPES, and 0.55mM 2-Mercaptoethanol (Gibco,
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#21985023). The thymus tissue in this media was stirred on a magnetic plate for 40 min. The supernatant was removed and replaced

with fresh media every 10 min to remove released thymocytes. The remaining tissue chunks were placed in a digestion buffer con-

sisting of RPMI 1640media without phenol red (Gibco, #11835030), 2%HI-FBS, 20mMHEPES, 80 U/mL DNase I, 1.6 U/mL Dispase

I, and 0.3 mg/mL Collagenase IV, for digestion at 37�Cwith gentle shaking. This digestion process was conducted in two sessions of

25 min each, in between which the supernatant was extracted and replaced with fresh digestion buffer. At the end of the digestion,

the tissue chunks had nearly entirely disintegrated, and the digestion was halted by resuspending cells in the same buffer used for

thymocyte release (RPMI 1640 media without phenol red, 5% HI-FBS, 1% Penicillin/Streptomycin, 10mM HEPES, 0.55mM

2-Mercaptoethanol). The combined supernatants were further incubated in TrypLE Express Enzyme, 1mM MgCl2, 2mM CaCl2,

100U/mL DNase I for 5 min at 37�C to obtain a single-cell suspension. The digestion was stopped by resuspending cells in the pre-

viously described thymocyte release buffer. To remove immune cells and erythrocytes, cells were incubated with mouse anti-human

CD3 (clone UCHT1), anti-human CD4 (clone RPA-T4), anti-human CD8ɑ (clone RPA-T8), anti-human CD45 (clone HI30) and anti-hu-

man CD235a (clone HI264) antibodies in HBSS, 4%HI-FBS and 20U/mL DNase I, for 30 min at 4�C. Cells were then placed on

panning plates coated with goat anti-mouse IgG for 20 min at room temperature, and the unadhered cells were transferred to

new panning plates for a second round of depletion. The remaining cells following depletion were then stained for flow cytometry.

Human peripheral blood samples
De-identified peripheral blood samples from the Human Immune Tissue Network Biobank (COMIRB # 17–2159) were collected using

sodium heparin tubes. De-identified peripheral blood samples from the Vitalant Blood Center were acquired from plateletpheresis

leukoreduction filter chambers (LRS). Peripheral blood mononuclear cells (PBMCs) were isolated from these samples using a

Ficoll-Paque density gradient provided by Cytiva. PBMCs were cryopreserved in FBS with 10% DMSO and stored in liquid nitrogen.

Magnetic-bead enrichment of iNKT and MAIT cells
To enrich for thymic MAIT and thymic/blood iNKT cells, up to 23 109 cells were incubated with MR1-5-OP-RU-PE or CD1d-PBS57-

PE tetramers respectively inMACS buffer (1X PBS, 0.5%BSA, 2mMEDTA), for 25min at room temperature. Cells were washed twice

and incubated with anti-PE microbeads, followed by separation using an autoMACS Pro Separator (Miltenyi) according to manufac-

turer’s instructions. PE-microbead-labelled cells in the enriched fraction were stained with the specified panel of antibodies listed

below.

Fluorescence-activated cell sorting
To sort CD4+ T, CD8+ T, gd T, or peripheral bloodMAIT cells, 23 106 cells unenriched cell suspensions were used. To sort iNKT cells

(thymocytes or PBMCs) or thymic MAIT cells, the staining and sorting was performed on magnetic bead-enriched cell suspensions

from 0.5 to 103 108 cells (above). All single cell suspensions were stained with efluor780 viability dye for 10 min at room temperature

and washed once prior to cell surface staining. The cell suspensions were then stained in MACS buffer (1X PBS, 0.5% BSA, 2mM

EDTA) at room temperature for 20min, both with cell surface markers and a unique oligonucleotide-tagged antibody sample tag (Hu-

man Single Cell Sample Multiplexing Kit, BD Biosciences) to allow separation in downstream scRNAseq analyses. The following cell

surface markers were included in the staining: CD3-AF488 (clone OKT3), CD14-eFluor450 (clone 61D3), CD19-eFluor450 (clone

H1B19), Va7.2-BV785 (clone 3C10), Va24-PerCP-Cy5.5 (clone C15), CD4-redFluor710 (clone OKT4), CD8a-PE-Cy7 (clone SK1),

TCRgd-BV650 (clone 11F2), FcgR block. Following cell surface staining, cells were washed twice and resuspended in MACS buffer

prior to cell sorting on the Aria 3 (BDBiosciences). Purified cell populations were sorted intoMACSbuffer. Validation of the cell sorting

panel was performed on the Cytek Aurora flow cytometry system using SpectroFlo software (v3.0). Overall, from infant thymus and

PBMC donors up to 5 populations were sorted after doublet, viability, B cell (CD19+CD3�) and monocyte (CD14+CD3�) discrimina-

tion: 1. MAIT cells (MR1-5-OP-RU-Tet+Va7.2+CD3+), 2. iNKT cells (CD1d-PBS57-Tet+Va24+CD3+), 3. gd T cells (CD3+TCRgd+), 4.

CD4+ T cells (CD4+CD8a�CD3+) and CD8+ T cells (CD8a+CD4�CD3+). Cell subsets sorted for the different donors are listed in

Table S1 and the gating strategy is shown in Figure S16.

Flow cytometry — Thymic and peripheral blood T cells
To confirm gene expression from scRNAseq analysis, MAIT and iNKT cells were enriched from the human thymus as described

above, as were iNKT cells from human blood. Peripheral blood MAIT and gd T cells were stained directly without enrichment. Single

cell suspensions were stained as above with efluor780 viability dye prior to incubation at 37�C for 10 min with CCR7-APC-Fire810

(clone G043H7) and FcgR block. A combination of the following cell surface markers were subsequently added and cells were

stained at room temperature for 15 min: CD3-BUV496 (clone UCHT1), CD14-PE-Cy5 (clone 61D3), CD19-PE Cy5 (clone H1B19),

Va7.2-BV785 (clone 3C10), Va24-PerCP-Cy5.5 (clone C15), CD4-BV570 (clone RPA-T4), CD8a-BUV395 (clone RPA-T8),

TCRgd-BV650 (clone 11F2), Vd1-PerCP-Vio700 (clone REA173), Vd2-FITC (clone 123R3), Vg9-PE (clone B3), CD161-BUV805 (clone

HP-3G10), CD62L-BV650 (clone DREG-56). Cells were then washed twice with MACS buffer, and intracellular staining was per-

formed with BD Transcription Factor Buffer Set according to the manufacturer’s specification. The following antibodies were

used to stain for intracellular proteins: PLZF-PE-CF594 (clone R17-809), Eomes-BUV737 (clone X4-83), T-bet-BV605 (clone

4B10), GZMK-eFluor660 (clone G3H69), GZMB-AF700 (clone GB11). Phenotypic analyses were performed on the Cytek Aurora

flow cytometry system using SpectroFlo software (v3.0). Data were analyzed using FlowJo software (v10.7.1).
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Flow cytometry -— CD1d, SLAMF1, SLAMF6
For murine experiments, thymocytes were resuspended in PBS, 5% FBS, 4mM EDTA and stained for 30 min at 4�C with: Fc blocker

anti-CD16/32 (clone 93), CD4-AF488 (clone GK1.5), CD8a-APC (clone 53–6.7), CD1d-PE (clone 1B1). For murine thymus samples

which were depleted of immune cells, the single cell suspension was resuspended in HBSS, 4% HI-FBS, 20mM HEPES, 10U/mL

DNase I, 2.5mM EDTA, and stained for 30 min at 4�C with: Fc blocker anti-CD16/32 (clone 93), EpCAM-BV421 (clone G8.8),

CD45-BV605 (clone 30-F11), UEA1-FITC, Ly-51-AF647 (clone 6C3), and CD1d-PE (clone 1B1). For flow cytometry experiments

on human samples, thymocytes were resuspended in PBS, 2% FBS, and stained for 30 min at 4�C with: TruStain FcX, CD45-

BV421 (clone HI30), CD4-AF488 (clone OKT4), CD8a-APC (clone RPA-T8), CD1d-PE (clone 51.1). For human samples which

were depleted of immune cells and erythrocytes, cells were resuspended in PBS, 2% FBS, and stained for 30 min at 4�C with:

TruStain FcX, CD45-AF647 (clone QA17A19), EPCAM-BV421 (clone 9C4), CDR2-AF488 (purified CDR2 antibody kindly provided

by Dr. Sheena Pinto, conjugated with the AF488 antibody labeling kit from ThermoFisher Scientific), HLADR-BV711 (clone L243),

CD1d-PE (clone 51.1). In all experiments, to measure viability cells were stained with the live/dead Fixable Near-IR dead cell stain

kit, simultaneously with cell surface markers. Flow cytometry was performed on a BD LSR Fortessa Cell Analyzer (BD Biosciences).

Single-cell RNA sequencing
Prior to cDNA library preparation for the whole transcriptome (WTA) and VDJ libraries, all cell subsets from the different donors were

pooled, with up to 12 unique sample tags combined per library. Single cell WTA and VDJ sequencing libraries were prepared using

the BDRhapsody Single-Cell Analysis System (BDBiosciences) according to themanufacturer’s specifications. Libraries were quan-

tified and pooled according to equivalent molar concentrations and sequenced on the NovaSeq sequencing platform at the Univer-

sity of Colorado Genomics Core with the following read lengths: read 1–150 cycles; read 2–150 cycles; and i7 index - 8 cycles.

Single-cell RNA-seq data analysis
The quality of sequencing reads was evaluated using FastQC and MultiQC. Sequencing reads (FASTQ) were mapped and sample

tags were deconvoluted with The BD Rhapsody WTA Analysis Pipeline on the GRCh38 genome sequence. This pipeline produced

a gene expression matrix for each sample, which records the number of UMIs for each gene associated with each cell barcode.

Aggregated data were then imported into the R environment (version R4.0.3) and analyzed with Seurat (v4.3.0). Low-quality cells

were filtered using the cutoffs nFeature_RNAR 500 & nFeature_RNA <3000. Cells with a high mitochondrial content were removed

using a batch-dependent threshold with the isOutlier function from the scater package (v1.26.1).100 Genes expressed in less than 20

cells were ignored. This resulted in 78,607 cells with 17,204 genes for downstream analyses. The NormalizeData function of Seurat

was performed using default parameters to remove the differences in sequencing depth across cells. Dimensionality reduction was

performed prior to integration for visualization purposes (Figure S2A), by selecting 2000 highly variable genes for principal component

analysis (PCA) and uniform manifold approximation and projection (UMAP). To integrate the data and remove batch-effects from the

PCA subspaces based on the correct cell alignment, we used Harmony101 following PCA to project cells into a shared embedding in

which cells group by cell type rather than dataset-specific conditions. We then applied the RunUMAP function on 20 dimensions of

the harmony embedding to obtain bidimensional coordinates for each cell. We determined the k-nearest neighbors of each cell using

the FindNeighbors function and used this knn graph to cluster cells using the Louvain algorithm from FindClusters based on the same

harmony dimensions as the RunUMAP function (20 dimensions, resolution 1.2). For analyses performed on individual lineages (CD4+

T, CD8+ T, iNKT, MAIT or gd T cells) in Figures 2 and 4, the dataset was split up based on cell hashing tags. Each lineage from each

tissue was re-analyzed individually using the same steps to obtain UMAPs and clusters in Figures 2 and 4. Plots displaying cells on

UMAPs were generated using the SCpubR package (v2.0.2).102

LISI metric and analysis of cluster stability
The local inverse Simpson’s index (LISI) was used to assess the degree of mixing during batch correction and dataset integration in

scRNAseq analysis.101 This approach helps evaluate the effectiveness of data integration methods by quantifying how well datasets

are merged without introducing artificial batch effects. To assess the integration process, we employed the ‘‘integration LISI’’ (iLISI)

score. iLISI measures the effective number of datasets within a neighborhood and provides an indication of how effectively the in-

dividual datasets were harmoniously integrated into a unified whole during the process. In addition, we used the ‘‘cell-type LISI’’

(cLISI) score to evaluate the accuracy of cell-type assignments in the integrated dataset. cLISI is a modified version of the LISI score,

but instead of assessing dataset labels, it focuses on the accuracy of cell type assignments within the integrated data. As the specific

identities of individual cells were not known beforehand, we assignedmock cell identities based on anticipated gene expression pat-

terns. These mock identities were determined using prior knowledge of gene expression markers associated with distinct cell types.

For instance, we identified DN thymocytes as cells expressingPTCRA > 1; B cells as cells expressingCD19 > 1 and IGKC > 1; Tregs as

cells expressing FOXP3 > 1; MAIT cells as cells expressing SLC4A10 > 1 and FOXP3 < 1; CD4+ T cells as cells expressing CD4 > 1,

CD8A < 1, SLC4A10 < 1, FOXP3 < 1, and CCR7 > 1; DP thymocytes as cells expressing RAG1 > 1 and CD1C > 1; and CD8aa thy-

mocytes as cells expressingCD8A > 1 andGNG4 > 1. Thesemock identities were used as initial cell type assignments and served as

the basis for assessing the success of integration, as indicated by increased iLISI scores and the maintenance of a cLISI score of 1

(Figure S2B). Only cells with assigned mock identities were included in the cLISI analysis. To evaluate the stability of clusters, we

conducted a bootstrapping procedure in which cells from each predefined cluster were repeatedly sampled and then subjected
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to re-clustering. Cluster stability was assessed by examining co-assignment probabilities (CP), where higher CP values indicated

greater cluster stability (Figure S2C). In essence, a high CP suggests that the cells within a cluster consistently grouped together

across multiple iterations, reinforcing the reliability and robustness of that cluster’s identity.

TCR analysis
V(D)J single cell sequencing data were mapped and quantified using the BD Rhapsody WTA Analysis Pipeline and the GRCh38

genome sequence. To connect the VDJ data with transcripts data for each cell, we established links based on cell indexes extracted

from the consensus annotation files (VDJ_percell.csv) and MolsPerCell.csv files from each demultiplexed sample. Only TCR paired

sequences were retained for subsequent analyses. TCR data from each VDJ-sequenced sample were combined together and added

to the metadata of the Seurat object. Clonotypes were defined based on unique TCR VJ usage and complementary-determining re-

gion (CDR3) motifs. Basic TCR statistics, such as the distribution of length and counts were computed using the tidyverse package

(v1.3.2). The assessment of clonotype diversity was conducted using the mean value of the Shannon index, computed through the

diversity function of the vegan R package (v2.6–4) after 100 iterations. Prior to the diversity calculation, the data was subjected to

rarefaction to match the lowest sequence count found within the studied groups. Chord diagrams were generated using the circlize

package (v0.4.15)103 and CDR3 motif logos using the ggseqlogo package (v0.1).104 The stacked letters’ cumulative height at each

position signifies the degree of sequence conservation, portraying the relative abundance of amino acids, which is further depicted

by the varying heights of individual letters within the stack.

Identification of differentially expressed genes between clusters
We identified cluster-enriched genes by using the FindAllMarkers function in Seurat with test.use = wilcox. This function identified

differentially expressed genes for each cluster by comparing the gene expression for cells belonging to a cluster versus cells

belonging to all other clusters. Only those genes that passed an adjusted p value (Benjamini-Hochberg) cutoff of 0.05, log fold change

>0.4 and min.pct = 0.3 were included in Figure S3.

Characterizing the replicability of cell types defined by scRNAseq between studies and between species
We assessed the consistency of cell clusters in our integrated thymic data by comparing them with the human thymus atlas from the

Park et al. dataset.27 To do this, we focused exclusively on thymocytes, totaling 37,369 cells in our dataset. We also acquired the

annotated AnnData object from the Park et al. dataset, which specifically contained T cells. To enable a meaningful comparison,

we combined the two raw count matrices, concentrating on the top 2000 highly variable genes shared across both datasets. This

resulted in a matrix containing 3,106 genes and 114,363 cells. To evaluate the consistency of cell types between these datasets,

we employed the pyMN package to perform unsupervised MetaNeighbor analysis.26 MetaNeighbor assesses the similarity of cell

types by constructing a network of cells based on the correlation of their gene expression profiles. It then predicts cell type labels,

hiding them from one dataset while using the other. The result is expressed as amean area under the receiver operator characteristic

(AUROC) score, whichmeasures the probability of correctly identifying a cell’s type based on its gene expression profile.We used the

ggplot2 package to visualize the AUROC scores obtained from pyMN, comparing our integrated clusters with the thymocyte clusters

defined in the Park et al. dataset. For assessing gene expression similarity between thymic lineages in Figure 2A, we considered do-

nors as distinct datasets (study_id parameter); and cell lineages (based on cell hashing) as the cell groups of interest to compare

(cell_type parameter), more particularly splitting thymocytes in each lineage into non-effector (clusters 0–11) versus effector states

(clusters 12–17). MetaNeighbor was run on the top 2000 highly variable genes chosen on our integrated dataset. For assessing the

replicability of cell clusters across species in Figure 6, we utilized the reference scRNAseq murine Tinn dataset (see below) and our

human thymic iNKT, MAIT, and gdT individual Seurat objects from Figure 2. To ensure an appropriate comparison, we obtained or-

thologous genes between mouse and human with the biomaRt package.105,106 We filtered the murine count matrix to retain only

genes with known 1:1 orthologs in humans. Then, we performed unsupervised MetaNeighbor analysis with pyMN on the combined

set of highly variable genes from both human and mouse datasets. Finally, we used ggplot2 to create visualizations of the AUROC

scores returned by pyMN, including clusters that contained at least 1% of the cells in each species to ensure greater confidence in

assessing the replicability of clusters across species.

Identification of gene expression programs
The count matrix was used for conducting consensus non-negative matrix factorization (cNMF).28 This process enabled us to infer

both identity and activity programs, alongwith their respective contributions in each cell. The usage of each program for each cell was

added to the metadata of the Seurat object and displayed as a feature plot (Figure 1K). To determine the genes associated with each

program, we plotted the gene ranks (ranging frommost associated to least associated) against the gene_spectra_score output from

the cNMF analysis. The plotted gene ranks were fitted to a sigmoid curve and the slope at the first elbow point was calculated as the

minimum threshold for genes to be retained in a given GEP. The same slope was applied to every GEP to prevent bias in ranked gene

selection, as the gene rankings between GEPs are not comparable and are relative to each GEP (as depicted in Figure S17). Cells

from blood samples were assigned to the GEPwith the highest usage (as provided by cNMF), to display an alluvial plot with ggalluvial

in Figure 4D (v0.12.5).107
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Scoring of gene signatures
Gene signatures were scored on our Seurat object, or on other dataset’s Seurat or AnnData objects using either the

function AddModuleScore in Seurat, or scanpy.tl.score_genes in scanpy. In both cases, the score is computed as the average

expression of all genes contained in the gene list, and subtracting the average expression of 100 control genes (randomly chosen

to match the expression bins of the gene list). Gene signatures used throughout this manuscript and their source can be found in

Table S2.

Gene regulatory network inference
To deduce gene regulatory networks, we employed pySCENIC from a pre-built singularity container, aertslab/pyscenic:0.12.1, a tool

utilizing cis-regulatorymotif analysis to identify potential transcription factors (TFs) that might govern a cluster of co-expressed genes

within individual cells.47 pySCENIC was run using the –mask-dropouts flag and a normalized enrichment score threshold of 2 to help

mitigate the effects of the varying degrees of sparsity across the datasets we generated. The initial step involved generating modules

composed of transcription factors and co-expressed genes using GRNboost2.108 These modules were pruned to remove indirect

targets that lacked significant enrichment for the corresponding TF motif within ±10 kb from the transcription starting site of the pu-

tative target (cisTarget). This process yielded a collection of transcription factor regulons. Considering the inherent stochasticity in

gene regulatory network inference using GRNBoost2, each run of pySCENIC may yield different quantities of regulons, along with

distinct target genes associated with each TF. To mitigate this variability, we performed 100 pySCENIC runs and retained regulons

present in 100% of the runs. We also removed regulons that did not have at least 5 target genes defining the regulon activity. Due to

the high degree of noise in target genes, we retained target genes that appeared within a regulon in at least 95% of the runs. Further-

more, each target gene also had to overlap with the union of all possible retained ranked gene expression targets across all GEPs

generated from cNMF. To identify regulons that were specific to the underlying biology of our cell types and GEPs, we calculated

the AUC scores using the R package AUCell, located in the pySCENIC container, for each regulon based on the pruned target

gene list. A regulon was deemed specific to a defined cell population if at least 20% of the cells within the annotated population

scored in the 90th percentile of the overall AUC score for all cells.

Comparison of gene expression programs with gene signatures from the literature
To compare the genes characterizing each GEP with known peripheral blood T cell states defined in the literature (Figure S10),

we obtained gene signatures identified from (1) differential expression (DE) analysis from bulk RNAseq between sorted naive,

Tcm, Tem CD4+ and CD8+ T cell populations by Rose et al.38; (2) DE genes between cell clusters defined from scRNAseq of naive

and memory CD4+ T cells isolated from PBMCs by Cano-Gamez et al.37; (3) DE genes between cell clusters defined from

scRNAseq of blood immune cells by Terekhova et al.40 (4) DE genes between cell clusters defined from scRNAseq of T cells

across nine human tissues by Poon et al.39 In the Rose dataset, we kept genes that defined their Figures 2E and 2H (adjusted

p-value %0.05). In the Cano-Gamez and Poon datasets, we kept DE genes with a minimum log fold-change of 0.25 (adjusted

p-value threshold %0.05 or 0.01, respectively). In the Terekhova dataset, we used the top 100 differentially expressed genes

shared in their Table S5. We computed a weighted Jaccard Index (JI) between the gene lists derived from our GEPs and those

from the Rose, Cano-Gamez, Terekhova and Poon datasets (see quantification and statistical analysis). For the co-expression

analysis of GEPs and gene lists from other datasets, we scored the gene lists on the entire integrated dataset. This was done

using functions like Seurat’s AddModuleScore with the blend = TRUE parameter. Additionally, GEP4, GEP5, and GEP6 were

scored on the Poon et al. dataset using scanpy’s tl.score_genes function, and their scores in specific cell clusters of interest

were displayed in Figure S10B.

Pseudo-bulk differential expression analysis
To investigate for differentially expressed genes between ab thymocytes lineages in Figure 2, we grouped cells by donor and lineage,

restricting our analysis to only donors 2–4 where all ab lineages were sorted, and also restricting ourselves to thymocytes found in

clusters 3, 9, 10 and 11 in the integrated dataset (where CD4+/iNKT and CD8+/MAIT cells showed high gene expression similarity).

We then used DESeq2 (v1.40.2)109 to perform pseudo-bulk DE analysis between lineages using a Wald test. We restricted our anal-

ysis to genes which were significantly upregulated (padj < 0.01) in both CD4+ and iNKT cells compared to CD8+ and MAIT cells, and

likewise for other comparisons shown in Figure 2. To investigate for cell lineage-specific gene signatures in PBMCs in Figure 4, we

grouped cells by batch, cluster and lineage, restricting our analysis to only batches E, F and I where at least 3 or more cell lineages

were sorted and sequenced within the same batch. We then used DESeq2 (v1.34.0)109 to perform pseudo-bulk DE analysis with a

likelihood-ratio test (LRT), where the full model included batch + cluster + lineage, and the reducedmodel included batch + cluster, in

order to detect genes whose expression can be explained by lineage, and not by batch or cell state (i.e., cluster). We used the LRT

test by computing pairwise comparisons, contrasting all lineages against each other (CD4vsCD8, CD4vsiNKT, etc.), for each com-

parison keeping DE genes with an adjusted p-value of 0.01. Then, to extract lineage-specific genes, for each lineage we kept genes

that were commonly upregulated in at least 3 or more contrasts. We normalized the raw counts with the rlog function from DESeq2

and batch-corrected them with removeBatchEffect from the limma package (v3.56.2),110 before displaying the final list of DE genes

on a heatmap with the pheatmap package (v1.0.12).
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Creation of a reference scRNAseq mouse Tinn dataset
ScRNAseq data from mouse thymic iNKT, MAIT and gd T cells51–59 were downloaded from Gene Expression Omnibus or the Euro-

pean Bioinformatics Institute (see key resources table). Data were analyzed using the Seurat package. Analyzed cells were selected

to express between 800 and 4200 genes per cell, with less than 5% of mitochondrial reads. Datasets were merged and integrated

using the FastMNN algorithm,111 using 5000 variable features, k = 20 and auto.merge = TRUE. Cell clustering was carried out with a

resolution parameter set at 0.5, and potential doublets were detected using scDblFinder112 and subsequently eliminated. To discern

differential gene expression between clusters, the FindAllMarkers function was employed, utilizing the MAST algorithm. The analysis

considered latent features, specifically the number of genes per cell, and the sample identity, with a log2 fold change threshold of 0.3.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pseudo-bulk differential expression analysis in thymic samples
Differentially expressed genes in Figures 2B and 2C between ab thymocyte lineages were identified using a Wald test from the DE-

Seq2 package (v1.40.2),109 with a padj < 0.01 threshold. This analysis was restricted only to thymocytes from three sequencing

batches (B, C, D; see Table S1) where all ab lineages were sorted; and to thymocytes in clusters 3, 9, 10 and 11 where naive-like

CD4+/iNKT and CD8+/MAIT had shown transcriptional similarity (based on Figures 1G, 1I, and 2A).

Pseudo-bulk differential expression analysis in PBMC samples
Differential expression analysis in Figure 4was performedwith an LRT analysis, to take into account the heterogeneity of batches and

cell states among peripheral blood T cells (see method details). This analysis was restricted only to PBMCs from three sequencing

batches (E, F, I; see Table S1), where at least three distinct T cell lineages were sorted and sequenced in the same batch. Only DE

genes with padj < 0.01 were kept.

Comparison of GEPs with gene signatures from the literature
In Figure S10, we computed the Jaccard Index (JI) between the gene lists derived from our GEPs and those from the Rose, Cano-

Gamez, Terekhova and Poon datasets. Since the gene lists varied in length, we weighted the JI to make it comparable across pair-

wise comparisons. This was achieved by dividing the JI by the maximal theoretical JI for each pairwise comparison, which is the ratio

of the length of the smaller list to the length of the larger list. This ‘‘weighted Jaccard Index’’ is shown on the x axis of Figure S10A. To

assess the significance of the observed JI, we performed a permutation analysis. We generated 1000 random gene lists A0 and B0,
matching in length and expression pattern to the original lists A and B.We computed the weighted JI between these random lists and

defined an empirical p-value by counting howmany of these weighted JIs were greater than the observed weighted JI divided by the

number of permutations. To account formultiple comparisons, we applied a Bonferroni correction to the empirical p-values. Adjusted

p-values below 0.01 are shown as text in the figure.
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Supplementary Figure 17. Determining genes associated with cNMF derived Gene Expression Programs (GEPs). Gene ranks
(sorted most to least associated, x-axis) are displayed against their gene_spectra_score output from the cNMF analysis (y-axis) as black dots.
The slope at the first elbow point in the fitted sigmoid curve (red line) was calculated as the minimum threshold for genes to be retained in the given GEP.
The same slope (grey dashed line) was applied to every GEP to prevent bias in ranked gene selection, as the gene ranking between GEPs are not
comparable and relative to each GEP.
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